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Influence of impurities on dynamic hysteresis of magnetization reversal

Guang-Ping Zheng and Mo Li
School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, N.W., Atlanta, Georgia 3033

~Received 11 February 2002; revised manuscript received 12 April 2002; published 2 August 2002!

The effects of impurities on driving-rate-dependent energy loss in ferromagnets are investigated by analyz-
ing several well-defined models for magnetization reversal. The random-field Ising models are analyzed using
a mean-field approximation and Monte Carlo simulation. The hysteresis loop areaA is found to obey a
universal scaling relation with respect to the linear driving ratesh of the applied field,A2A0}hb. The scaling
exponentb is found independent of the disorder strengthD. In a random-field spherical model, the energy loss
increases as a power law with the driving rateA}hb(D). The scaling exponentb(D) increases with increasing
D. These results indicate that the scaling and universality for the field-driven first-order phase transition can be
understood in the framework of dynamic hysteresis.

DOI: 10.1103/PhysRevB.66.054406 PACS number~s!: 75.40.Gb, 75.60.Ej, 64.60.Cn
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I. INTRODUCTION

The field-driven first-order phase transition~FOPT! is one
of the most commonly seen phase transitions that have w
technology applications. For example, magnetic hard dis1

and ferroelectric memory devices2 are based on the prin
ciples of the first-order phase transition driven by magne
fields in magnets and electric fields in ferroelectric materia
respectively. In recent years, the dynamic process or
switching dynamics of the field-driven first-order phase tra
sition in information storage devices has been the subjec
extensive investigations.3,4 The sweeping frequency in thes
devices often varies over ten decades. For such a vast sp
the dynamic response, the corresponding dynamic prope
and their physical origins could be considerably different

The rate-dependent hysteresis loop in the field-driv
FOPT has been intensively investigated.8 In some model sys-
tems, the area of the hysteresis loop in a conjugate coo
nates, i.e., the energy loss per swept cycle of the app
field, shows a power-law scaling relation with the drivin
rate or frequencyv of the applied field:A5A01avb, where
A0 is the static hysteresis loop area andb is a system-related
scaling exponent. We can put those model systems into t
categories based on the scaling exponentb: ~1! In dynamic
mean-field models governed by Glauber dynamics,9 cell
dynamics10 or Ginzburg-Landau dynamics,11 the scaling ex-
ponentb is observed to be equal to 2/3.~2! In model systems
that are governed by Langevin dynamics, the exponen
determined by the spatial dimensionality and the dimensi
of order parameter. For example, in anN-vector model,12 b
51/2 for N>2 andd.2; b51/3 for a large-N vector model
with O(N) symmetry.13 ~3! In Ising models,b50.36 ~Ref.
14!, 0.45 ~Ref. 15!, and 0.66~Ref. 16! in two-, three-, and
four-dimensional systems, respectively.

The power-law scaling relation between energy dissi
tion and driving rate has been well confirmed in the mo
systems mentioned above, under both sinusoidal and li
driving fields. Although there are several exceptions of
non-power-law scaling relation reported, the power-law sc
ing relation appears to be universal for the field-driven FO
when the driving rate is low. The power-law scaling relati
lasts at least four to five decades. The physical origin of
0163-1829/2002/66~5!/054406~7!/$20.00 66 0544
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scaling for energy dissipation is generally considered
come from the consequence of the coexistence of two ph
during FOPT’s: the dynamic response of the interfaces
tween two phases to the external driving field. Nucleat
and growth are the fundamental mechanisms for interf
motions. The growth of the interface is proposed to be
origin of the power-law scaling for energy dissipation at lo
sweeping rates, while the nucleation process results i
logarithmic scaling relation between energy loss and
sweeping rates.

In the past several years, experimental studies of this is
have been made possible with the advancement in the pr
ration of ultrathin films, high-quality single crystals, an
low-dimensional array samples. In ferromagnetic thin film
b was observed to vary from 0.0 to 0.66, although the pow
law scaling relation is confirmed in at least five decades
driving rates.17–19The discrepancy ofb between experiments
and theoretical predictions was observed and attributed to
magnetic anisotropy of the thin-film materials, the doma
nucleation, and domain-wall motions. In ferroelectr
samples, this discrepancy is even more significant becaus
the presence of vacancies and a depleted charge layer.20

Impurities and defects are known to play important ro
in the first-order phase transition.5–7 In switching dynamics,
rate-dependent hysteresis and energy dissipation are pe
the two most important nonequilibrium phenomena and
significantly influenced by the presence of defects. Howe
the effects of impurities on the rate-dependent energy di
pation in the field-driven first-order phase transition have
been well understood to date.

Unlike second-order phase transitions that have w
defined critical scaling and critical exponents, there is
general theory for scaling relations in FOPT’s. Based on
above-mentioned model systems and experiment result
the field-driven FOPT, it appears that in order to describe
scaling and universality, we need to consider the dyna
hysteresis or rate-dependent energy dissipation: Both
hysteresis and energy dissipation are two of the most c
monly occurring phenomena in FOPT’s. By consideri
these general phenomena, we could explore the possibilit
scaling and universality for the energy dissipation in FOP
A simple class of the models could be the field-driven FOP
©2002 The American Physical Society06-1
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Next, we shall consider the influence of impurities on t
dynamics of metastable states, which is closely related to
dynamical hysteresis. For the nucleation-controlled
growth-controlled kinetics of FOPTs, the interaction betwe
defects and interfaces and the interaction among interfa
are the two most important mechanisms that cause the
crepancy between theoretical predictions in model syst
and experimental measurements in real systems. Up to
there has been no model system that could describe the e
of impurities on the rate-dependent energy dissipation
FOPTs. As we mentioned above, most of the efforts h
been focused on defect-free model systems.9–16 It is known
that in real systems the rate-dependent energy loss in a F
caused by the interface kinetics is directly related to defe
They could dramatically affect the motion of interface, d
pending on the strength of interaction, the defect concen
tion, and their nature.

In this paper we study several model systems in which
effect of defects is our primary consideration. We shall tr
the effect of defects as random fields and analyze the sca
relation between energy dissipation and riving rates in fie
driven FOPTs with the presence of these defects. The pre
work is inspired by the following unanswered questions
dynamic hysteresis. First, what is the universality of hyst
esis scaling for FOPT’s in some well-defined model s
tems? Does the power-law scaling relation valid for the s
tem with quenched-in defects? Second, why is the sca
exponentb in real systems different from that of model sy
tems? How does the presence of impurities in field-driv
FOPTs affect the exponentb? To answer these questions,
Sec. III we investigate two exactly solvable model system
namely a mean-field random-field Ising model~RFIM! and a
random-field spherical model. In Sec. III, we calculate e
actly the energy dissipation in a three-dimensional rando
field Ising model using Monte Carlo simulation. We will giv
the summary and conclusions in Sec. IV.

II. DYNAMIC SCALING FOR HYSTERESIS IN RANDOM-
FIELD MODELS

A. Mean-field approximation for random-field Ising model

By treating the impurities as random fields, we can wr
the Hamiltonian of the Ising system as

Ĥ52J(̂
i j &

SiSj2(
i

hiSi2H~ t !(
i

Si , ~1!

whereSi561 are spin variables and̂ij & denotes the sum
mation extending over all nearest-neighbor spins.H is a ho-
mogeneous external magnetic field;hi is a random field with
bimodal distribution P(hj )5@d(hj2h0)1d(hj1h0)#/2,
whereh0 is the strength of the random field.H, T, andh0 are
in units of exchange interaction strengthJ.

If the system satisfies the detailed balance condition
finite temperatureT and is described by Glauber dynamic
based on the mean-field approximation, the thermal ave
magnetization̂ Sj& is independent of sitej, and the equation
of motion can be written as
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dt
^Sj&52^Sj&1^ f ~Sj !&, ~2!

where

f ~Sj !5tanhF S J(
i

Si1hi1H D Y kBTG ~3!

is a function of the nearest neighbors of thej th spin. Because
the observed magnetization can be written asm5@^Sj&#,
where @¯# denotes the average over the random-field c
figurations, Eq.~2! therefore becomes

d

dt
m52m1

1

2 F tanhS Jm1h01H

kBT D1tanhS Jm2h01H

kBT D G .
~4!

The phase diagram of the RFIM without applied field
depicted in Fig. 1 by setting the right-hand side of Eq.~4! to
zero. (T,h0) denotes an initial equilibrium phase before t
external field is applied.P(Tt,h0

t ) denotes the tricritical point
that separates a second-order phase transition from a F
Besides the ferromagnetic and paramagnetic phases, the
a metastable ferromagnetic phase.Tc is the critical tempera-
ture at a givenh0 .

The hysteresis loop is obtained by applying a sweep
field to the system. For a pure Ising model with sinusoid
field H(t)5H0 cosvt, the loop area is written as9

A2A0~T!}H0
2/3v2/3gL~v/H0

g!, ~5!

wheregL(x) is a scaling function,T,Tc , andg50.3. The
dynamical hysteresisA2A0(T) first increases and then de
creases with increasingv for a fixed field amplitudeH0 . In
the random-field Ising model, we choose a linear vary
field: H(t)5H02ht and H(t)52H01ht, where H0 is
large enough for magnetization saturation andh is defined as
a linear driving rate. The advantage of using the linear dr

FIG. 1. Phase diagram of a random-field Ising model. FM d
notes ferromagnetic phase. PM denotes paramagnetic phase.
is the unstable ferromagnetic phase. The thick solid line is the t
sition line of the second-order phase transition. The thin solid lin
the transition line of a first-order phase transition.
6-2
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INFLUENCE OF IMPURITIES ON DYNAMIC . . . PHYSICAL REVIEW B 66, 054406 ~2002!
ing field is that the hysteresis loop area is independent ofH0
and the scaling forA(h;T,h0) can be well determined.

Equation~4! is solved using fifth Runge-Kutta formulas
Figure 2 shows the typical hysteresis loops of system w

FIG. 2. Hysteresis loops at different linear driving rates in
RFIM. ~a! The initial state is in the FM1 or FM2 phase.h50.01,
0.005, 0.0025, 0.001 25, 0.000 625, and 0.000 312 5 from inne
outer loops.~b! The initial state is in the UFM phase. The drivin
rates are the same as those in~a!. ~c! The initial state is in the PM
phase. The driving rates areh50.01, 0.0025, 0.000 625
0.000 156 25, and 0.000 002 44 from inner to outer loops.
05440
h

different initial phases. Comparing those with the pure Is
model, we find that the hysteresis loops in a random-fi
Ising model have different shapes that are caused by
impurities. Started from an initial ferromagnetic phase~FM
phase!, the system undergoes a FOPT and generates hy
esis@Figs. 2~a! and 2~b!#.

Figure 3~a! shows the effect of temperature on the lo
area at small disorder strength. The static loop areaA0(T,h0)
is calculated from Eq.~4! by settingh50 and dm/dt50.
For the FOPT, i.e.,T,Tc , the energy loss is a power-law
function of the driving rateh:

A2A0~T!}hb, A0}~Tc2T!a, ~6!

where a52 and b52/3 are independent of the disorde
These exponents are the same as those of a pure Ising
els. When the initial state is a paramagnetic~PM! phase and
h0 is small—i.e., the hysteresis loop is not caused
FOPTs—the hysteresis loop area can be written as

A}h2/3/~11ahb8!, ~7!

to

FIG. 3. log-log plots of dynamical hysteresisA-A0 with respect
to the driving ratesh. ~a! At different temperatures and fixedh0 .
The inset is the log-log plot of the static loop areaA0 with Tc-T. ~b!
At different h0 and fixedT. The inset shows the relation betwee
log A0 andh0 .
6-3
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GUANG-PING ZHENG AND MO LI PHYSICAL REVIEW B66, 054406 ~2002!
wherea is a constant andb8,0 depends on temperatureT
and disorder strengthh0 .

For the systems whose initial states are in other region
the phase diagram, the hysteresis loop area can be writte
Eq. ~6!. Figure 3~b! shows the effect ofh0 on the hysteresis
scaling. The inset indicates that the static loop areaA0 is an
exponential function ofh0 . If the hysteresis is caused b
FOPT’s, the exponentb is 2/3. Although the impurities in-
troduce an unstable state (M50) during the magnetization
reversal process as shown in Fig. 2~b!, the exponentb is
independent of the disorder strength.

B. Random-field spherical model

Consider a three-dimensional model with a random fie
the Hamiltonian for a spherical model can be written as

Ĥ52
J0

2 (
iÞ j

SiSj2(
i

HiSi , ~8!

with constraint( iSi
25N, where N is the total number of

spins and2`,Si,1` is a continuous spin variable.Hi
5H1hi , andhi is a Gaussian random field with zero me
and varianceh0

2. The Langevin dynamics for this constraine
system is

]sq

]t
52G@l~ t !2bJ0#sq1hq~ t !, ~9!

wheresq is the Fourier transform of the spin fluctuation:

sq5
1

AN
(

i
~Si2m!ejqr 1, ~10!

and m[@^( iSi&#/N is the average magnetization.hq is a
Gaussian white noise:

^hq&50, ^hq~ t !h2q~ t8!&52G d~ t2t8!. ~11!

In Eq. ~9!, l(t) is a Lagrange multiplier corresponding to th
constraint andG is set to 1.

Using the Fokker-Planck equation for constrained sys
derived by Schwartz,21 the Langevin equation~9! leads to the
equations of motion for the following physical quantities:

dm~ t !

dt
52@~12J0 /kBT!1~J0 /kBT!m21s~ t !#m~ t !1H,

dCq~ t !

dt
52$12@~12J0 /kBT!1~J0 /kBT!m21s~ t !

1q2#Cq~ t !2h0
2xq~ t !%,

dxq~ t !

dt
512@~12J0 /kBT!1~J0 /kBT!m21s~ t !

1q2#xq~ t !, ~12!

where
05440
in
as

:

m s~ t !5
J0

NkBT F(
q

Cq~ t !1h0
2xqG ,

Cq~ t ![@^s2q~ t !sq~ t !&#,

xq~ t ![
1

h0
2 @hq^s2q&#. ~13!

To solve the coupled differential-integral equations~12!
and ~13! numerically, we use 50-node Gauss-Legend
quadrature and fifth Runge-Kutta formulas for numerical
tegral and differential, respectively. The system without
applied field is at the ferromagnetic phase whenJ0 /kBT
52.

Figure 4 compares the rate-dependent hysteresis loop
the random-field spherical systems with and without impu
ties. At the same driving rate, the loop area in system w
impurities is smaller than that of a pure system. Figure

FIG. 4. Hysteresis loops caused by the first-order phase tra
tion in spherical models.J0 /kBT52. The driving rates areh
50.01, 0.005, 0.0025, 0.001 25, 0.000 625, 0.000 312
0.000 156 25, and 0.000 078 13.~a! h050.0 and~b! h054.0.
6-4
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INFLUENCE OF IMPURITIES ON DYNAMIC . . . PHYSICAL REVIEW B 66, 054406 ~2002!
shows the log-log plots of energy loss~area of hysteresis
loop! and the driving rates at different disorder strengt
The energy loss is fitted well to a power-law function of t
driving rate:

A~T,h0!}hb~h0!. ~14!

Although the scaling relation@Eq. ~14!# is independent of the
disorder strength, the scaling exponentb increases with in-
creasing disorder strengthh0 . For strong disorder strength,b
is apparently different withb51/2 in an impurity-free sys-
tem, as shown in the inset of Fig. 5.

The scaling exponentb for the FOPT in this model share
the same features as the critical exponents in a second-o
phase transition that are found to be dependent on the d
der strength.22 This important feature suggests that it is po
sible to describe the scaling and universality for FOPT’s
ing the concept of dynamic hysteresis scaling.

III. DYNAMIC HYSTERESIS IN A THREE-DIMENSIONAL
RFIM AT ZERO TEMPERATURE

In the last section, the results from the solvable mod
indicate that when stochastic kinetics is taken into acco
the scaling exponent for the FOPT depends on the diso
strength. In the systems without fluctuations such as
mean-field model, the impurities do not affect the scal
exponent. To explore this finding furthermore, we shall co
sider other systems that have no thermal fluctuation,
show field-driven FOPT’s. The three-dimensional~3D!

FIG. 5. Relation between hysteresis loop area A and the driv
rateh. The plots are in log-log scales. The inset shows the rela
between the scaling exponentb and the strength of disorderD.
05440
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RFIM at zero temperature is such a system that has been
investigated. We are interested in looking at the effect
disorder on the hysteresis scaling for FOPT’s in this syste

The 3D RFIM can be described by Eq.~1!. We assume the
random field is a Gaussian variable with zero mean and v
ance D2. When H50 the system was shown to have
disorder-driven phase transition atDc52.16 atT50.22 When
the sweeping field is applied, the hysteresis loops show
tinct shapes below and aboveDc . If D.Dc , the hysteresis
loop consists of many small abrupt changes and the ove
loop is smooth. IfD,Dc , there is an obviously discontinu
ous jump in the hysteresis loop, exhibiting a field-driv
FOPT. Because the system is kept atT50, the thermal effect
on energy dissipation in the FOPT can be excluded and
are able to focus on the effect of impurities on the hystere
scaling.

The 3D RFIM described by Eq.~1! is investigated in this
work by Monte Carlo simulations. Physical quantities a
averaged over 1000–5000 random-field configurations.
system size isL5128. To speed up the simulation, a fa
algorithm similar to the sort-list algorithm is used. All spin
are updated simultaneously. One time step, or one Mo
Carlo step~MCS!, in the simulation is defined as one attem
of all spin updates. A spin will flip if its local fieldf i
5SJSj1hj1H changes sign. The external field is d
creased bydH and then is fixed until all spins have bee
updated. There are three types of driving modes in our sim
lation studies:~a! An infinite slow driving field or static driv-
ing field. In this driving modedH is adjusted to the minimum

g
n

FIG. 6. Dependence of magnetization changeDM and the du-
ration time t0 on the field changedH in FOPT’s under mode-~b!
driving field. The system size of the 3D RFIM isL5128 andD
52.16.
TABLE I. Energy loss and critical field in the 3D RFIM under mode-~a! and mode-~b! driving fields.

Mode

W Hc

D51.80 D52.16 D52.33 D51.80 D52.16 D52.33

~a! 3.132 2.839 2.657 1.586 1.443 1.403
~b!

(dH51023)
3.140 2.807 2.650 1.586 1.444 1.403
6-5
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GUANG-PING ZHENG AND MO LI PHYSICAL REVIEW B66, 054406 ~2002!
local field f i after a metastable state is reached.~b! Step-
function driving field or quasistatic driving field.dH in this
driving mode is kept as a constant throughout the magn
zation reversal process. It is added to the driving field o
after the metastable state is reached.~c! Linear driving field.
It is achieved by changing the field by a fixeddH every time
step.

The energy loss per sweeping cycle can be derived ba
on the criterion of a spin flip atT50. The local energy dis-
sipation due to a spin flip can be calculated by

dWi5 f iDSi , ~15!

whereDSi50, 62 is the local spin flip. It is easy to prov
that the total energy loss per cycle is equal to the loop a

W5(
i

N

dWi5 R M dH5 (
k51

n

(
j 51

N~k!

2u f j u, ~16!

wheren is the total number of jumps,N(k) is the number of
flip spins in thekth jump, andj labels the flipped spin in the
kth jumps.

Under a quasistatic driving mode~step-function driving
field!, the discontinuous magnetization changeDM ~the larg-
est jump in the loop! and the duration timet0 of the FOPT
are shown in Fig. 6. Table I compares the energy dissipa
under the driving modes~a! and~b!. Hc is the critical field at
which the FOPT occurs, andDM is the largest. From Table
we find that the energy loss and the critical field in the s
tem under static driving field—i.e., driving modes~a!—are
the same as those in the system driven by a step-func
driving field @driving mode~b!#. However, the energy loss i
systems driven by a linear driving field@mode ~c!# is quite
different. Figure 7 shows its dynamic energy dissipation, i
dW5W2Wa , whereWa is the energy loss under a stat
driving mode. When there is a FOPT atD,Dc(L), dW can
be fitted to a power-law function as in Eq.~6! and the expo-
nent b50.4460.04 andb50.4360.04 for D51.80 andD
52.16, respectively. For the system withD52.33 in which
the hysteresis is not generated by a FOPT, the relation

FIG. 7. Relation between dynamical energy lossdW5W2Wa

and the linear driving rates in a 3D RFIM. The plots are in log-l
scales. The solid lines are power-law curves with exponent 0.4
05440
ti-
y

ed

a.

n

-

on

.,

e-

tweendWanddH cannot be fitted to Eq.~6!. It is interesting
to see that the scaling exponent in the 3D RFIM is the sa
as that of a pure 3D Ising model whereb50.45.

IV. SUMMARY AND CONCLUDING REMARKS

Two solvable model systems are employed in this work
investigate the universality of dynamical scaling for fiel
driven FOPT’s with the presence of defects. The mean-fi
approximation for a random-field Ising model suggests t
for a field-driven FOPT at a low driving rate, the dynamic
energy lossA2A0 is a power-law function of the linear driv
ing rate. The scaling exponentb is equal to 2/3 and is inde
pendent of the disorder. The dynamical hysteresis that is
caused by the FOPT cannot be expressed by a unique sc
function with respect to the driving rate. When the line
driving rate is high, all dynamical hysteresis can be fitted
a power-law function of the driving rate and the exponen
2/3. These results are different from the hysteresis scalin
a mean-field Ising model under a sinusoidal applied field

In a random-field spherical model, the energy dissipat
in FOPT’s is also fitted well to a power-law function of th
linear driving rate. However, the scaling exponent depe
on the disorder strength. The reason whyb increases with
increasing disorder strength is that the stronger the disor
the easier for the driving field to drive the system to satu
tion magnetization, because the impurities introduce ad
tional disorder to the ferromagnetic ordered phase. In
mean-field model, the random field we considered is
short-range correlation: therefore,b is independent of disor-
der strength.

The scaling for energy dissipation in FOPT’s is also
vestigated by applying Monte Carlo simulations to a det
ministic system, a 3D RFIM at zero temperature. Since
hysteresis loop is deterministic for a given random-field co
figuration, the energy loss can be calculated exactly. Like
mean-field RFIM, in field-driven FOPT’s the scaling for th
energy loss with respect to the linear driving rate is obser
to be independent of disorder strength. The scaling expon
b is also the same as that in a pure 3D Ising model.

In conclusion, we find that in the systems with rando
field impurities the scaling for energy dissipation of fiel
driven FOPT’s can be written asA5A01ahb. The exponent
is independent of the disorder strength when stochastic
netics is neglected. For the mean-field RFIM,b52/3, and for
the 3D RFIM at zero temperature,b50.45. These results ar
the same as those of corresponding pure systems. F
random-field spherical model, the power-law scaling relat
between energy dissipation and linear driving rate holds,
A050 and the scaling exponentb depends on the disorde
strength. These results indicate that it is possible to un
stand the scaling and universality for FOPT’s in the fram
work of rate-dependent energy dissipation.
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