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Influence of impurities on dynamic hysteresis of magnetization reversal
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The effects of impurities on driving-rate-dependent energy loss in ferromagnets are investigated by analyz-
ing several well-defined models for magnetization reversal. The random-field Ising models are analyzed using
a mean-field approximation and Monte Carlo simulation. The hysteresis loopAaiedound to obey a
universal scaling relation with respect to the linear driving rate§the applied fieldA— Ay=h?. The scaling
exponentB is found independent of the disorder strenBthin a random-field spherical model, the energy loss
increases as a power law with the driving rateh?(®). The scaling exponem#(D) increases with increasing
D. These results indicate that the scaling and universality for the field-driven first-order phase transition can be
understood in the framework of dynamic hysteresis.
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I. INTRODUCTION scaling for energy dissipation is generally considered to
come from the consequence of the coexistence of two phases
The field-driven first-order phase transiti@fOPT) is one  during FOPT's: the dynamic response of the interfaces be-
of the most commonly seen phase transitions that have wideveen two phases to the external driving field. Nucleation
technology applications. For example, magnetic hard disksand growth are the fundamental mechanisms for interface
and ferroelectric memory devicesrre based on the prin- motions. The growth of the interface is proposed to be the
ciples of the first-order phase transition driven by magnetiorigin of the power-law scaling for energy dissipation at low
fields in magnets and electric fields in ferroelectric materialssweeping rates, while the nucleation process results in a
respectively. In recent years, the dynamic process or thpgarithmic scaling relation between energy loss and the
switching dynamics of the field-driven first-order phase tran-sweeping rates.
sition in information storage devices has been the subject of In the past several years, experimental studies of this issue
extensive investigations! The sweeping frequency in these have been made possible with the advancement in the prepa-
devices often varies over ten decades. For such a vast spanrition of ultrathin films, high-quality single crystals, and
the dynamic response, the corresponding dynamic propertiésw-dimensional array samples. In ferromagnetic thin films,
and their physical origins could be considerably different. 3 was observed to vary from 0.0 to 0.66, although the power-
The rate-dependent hysteresis loop in the field-drivenaw scaling relation is confirmed in at least five decades of
FOPT has been intensively investigafdd. some model sys-  driving rates'’~*°The discrepancy o between experiments
tems, the area of the hysteresis loop in a conjugate coordand theoretical predictions was observed and attributed to the
nates, i.e., the energy loss per swept cycle of the applieghagnetic anisotropy of the thin-film materials, the domain
field, shows a power-law scaling relation with the driving nucleation, and domain-wall motions. In ferroelectric
rate or frequency of the applied fieldA=A,+aw”, where  samples, this discrepancy is even more significant because of
A, is the static hysteresis loop area ghits a system-related the presence of vacancies and a depleted charge?fayer.
scaling exponent. We can put those model systems into three Impurities and defects are known to play important roles
categories based on the scaling expongntl) In dynamic in the first-order phase transitin’ In switching dynamics,
mean-field models governed by Glauber dynamia=ll rate-dependent hysteresis and energy dissipation are perhaps
dynamics® or Ginzburg-Landau dynamic$ the scaling ex- the two most important nonequilibrium phenomena and are
ponents is observed to be equal to 242) In model systems  significantly influenced by the presence of defects. However,
that are governed by Langevin dynamics, the exponent ithe effects of impurities on the rate-dependent energy dissi-
determined by the spatial dimensionality and the dimensionpation in the field-driven first-order phase transition have not
of order parameter. For example, in Bivector modef? g been well understood to date.
=1/2 forN=2 andd>2; g=1/3 for a largeN vector model Unlike second-order phase transitions that have well-
with O(N) symmetry'® (3) In Ising models,3=0.36 (Ref.  defined critical scaling and critical exponents, there is no
14), 0.45(Ref. 15, and 0.66(Ref. 16 in two-, three-, and general theory for scaling relations in FOPT'’s. Based on the
four-dimensional systems, respectively. above-mentioned model systems and experiment results in
The power-law scaling relation between energy dissipathe field-driven FOPT, it appears that in order to describe the
tion and driving rate has been well confirmed in the modelscaling and universality, we need to consider the dynamic
systems mentioned above, under both sinusoidal and line&ysteresis or rate-dependent energy dissipation: Both the
driving fields. Although there are several exceptions of thehysteresis and energy dissipation are two of the most com-
non-power-law scaling relation reported, the power-law scalmonly occurring phenomena in FOPT's. By considering
ing relation appears to be universal for the field-driven FOPTthese general phenomena, we could explore the possibility of
when the driving rate is low. The power-law scaling relationscaling and universality for the energy dissipation in FOPTs.
lasts at least four to five decades. The physical origin of the\ simple class of the models could be the field-driven FOPT.
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Next, we shall consider the influence of impurities on the
dynamics of metastable states, which is closely related to the 06 ¢
dynamical hysteresis. For the nucleation-controlled or I \\\
growth-controlled kinetics of FOPTs, the interaction between 05[] UM e
defects and interfaces and the interaction among interfaces )
are the two most important mechanisms that cause the dis-
crepancy between theoretical predictions in model systems 243}
and experimental measurements in real systems. Up to now
there has been no model system that could describe the effec o2 FMA1 FM?2
of impurities on the rate-dependent energy dissipation in
FOPTs. As we mentioned above, most of the efforts have
been focused on defect-free model systém§lt is known
that in real systems the rate-dependent energy loss in a FOP1 L , , L ‘
caused by the interface kinetics is directly related to defects. 03 04 05 06 07 08 09 10
They could dramatically affect the motion of interface, de- kgTH
pending on the strength of interaction, the defect concentra-
tion, and their nature. FIG. 1. Phase diagram of a random-field Ising model. FM de-
In this paper we study several model systems in which th@otes ferromagnetic phase. PM denotes paramagnetic phase. UFM
effect of defects is our primary consideration. We shall treats the unstable ferromagnetic phase. The thick solid line is the tran-
the effect of defects as random fields and analyze the SC&”F%“OF' line of the second-order phase transition. The thin solid line is
relation between energy dissipation and riving rates in fieldihe transition line of a first-order phase transition.
driven FOPTSs with the presence of these defects. The present
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work is inspired by the following unanswered questions of d

dynamic hysteresis. First, what is the universality of hyster- &<Sj>: ECIARUCHE 2
esis scaling for FOPT’s in some well-defined model sys-

tems? Does the power-law scaling relation valid for the syswhere

tem with quenched-in defects? Second, why is the scaling

exponentB in real systems different from that of model sys- f(Sj):tan)—{ 3> S+h+H / kBT} 3
tems? How does the presence of impurities in field-driven i

FOPTs aff he expone@? To answer th ions, in . . . .
Sgc. I?I aeeféiegti(;a?g t\i/ycj)pexgc%ysso?va:b?esfnglcjjgsg?/stséms!S a function of the nea_res; heighbors of mb spin. Because
namely a mean-field random-field Ising mod®FIM) and a the observed magnetization can be written nas[(%-}],
random-field spherical model. In Sec. lll, we calculate ex-here[---] denotes the average over the random-field con-
actly the energy dissipation in a three-dimensional randomt'gurat'ons’ Eq(2) therefore becomes
field Ising model using Monte Carlo simulation. We will give d 1 Im+ hat H Im—hat H
the summary and conclusions in Sec. IV. —m=—-m+ = tank(+ +tan)‘(+
B B

dt 2

IIl. DYNAMIC SCALING FOR HYSTERESIS IN RANDOM-
FIELD MODELS The phase diagram of the RFIM without applied field is
depicted in Fig. 1 by setting the right-hand side of Ej.to
zero. (T,hy) denotes an initial equilibrium phase before the
By treating the impurities as random fields, we can writeexternal field is applied®(T',hf) denotes the tricritical point
the Hamiltonian of the Ising system as that separates a second-order phase transition from a FOPT.
Besides the ferromagnetic and paramagnetic phases, there is
R a metastable ferromagnetic pha$g.is the critical tempera-
H=-J3> s5-2 hS-HMHX S, (1) ture at a giverh,.
(i ' ' The hysteresis loop is obtained by applying a sweeping
field to the system. For a pure Ising model with sinusoidal
field H(t)=H, coswt, the loop area is written as

A. Mean-field approximation for random-field Ising model

whereS;=*+1 are spin variables angij) denotes the sum-

mation extending over all nearest-neighbor splhss a ho-

mogeneous external magnetic fielid;is a random field with A—AO(T)OCHS’3w2’3gL(w/Hg), (5)

bimodal distribution P(h;)=[&(h;—hg)+ d(h;j+hg)1/2,

wherehy is the strength of the random field, T, andhy are  whereg, (x) is a scaling functionT<T., and y=0.3. The

in units of exchange interaction strength dynamical hysteresi\— Ay(T) first increases and then de-
If the system satisfies the detailed balance condition atreases with increasing for a fixed field amplitudeH,. In

finite temperaturel’ and is described by Glauber dynamics, the random-field Ising model, we choose a linear varying

based on the mean-field approximation, the thermal averadgeeld: H(t)=Hy—ht and H(t)=—Hy+ht, where Hy is

magnetization(S;) is independent of sitg and the equation large enough for magnetization saturation arid defined as

of motion can be written as a linear driving rate. The advantage of using the linear driv-
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FIG. 3. log-log plots of dynamical hysteredisA, with respect
to the driving ratedh. (a) At different temperatures and fixdd,.
The inset is the log-log plot of the static loop aveawith T.-T. (b)

At different hy and fixedT. The inset shows the relation between
logAq andhg.

different initial phases. Comparing those with the pure Ising
model, we find that the hysteresis loops in a random-field
Ising model have different shapes that are caused by the
impurities. Started from an initial ferromagnetic phdsi
phase, the system undergoes a FOPT and generates hyster-
esis[Figs. 2a) and 2b)].
Figure 3a) shows the effect of temperature on the loop

, ) , , , . , area at small disorder strength. The static loop &g& ,h)
ot o 0o ! 048 o e is calculated from Eq(4) by settingh=0 anddm/dt=0.
© " For the FOPT, i.e.T<T., the energy loss is a power-law
function of the driving rateh:

FIG. 2. Hysteresis loops at different linear driving rates in a
RFIM. (a) The initial state is in the FM1 or FM2 phaske=0.01,
0.005, 0.0025, 0.001 25, 0.000 625, and 0.000 3125 from inner to
outer loops.(b) The initial state is in the UFM phase. The driving
rates are the same as thosdan (c) The initial state is in the PM
phase. The driving rates arén=0.01, 0.0025, 0.000 625,
0.000 156 25, and 0.000 002 44 from inner to outer loops.

A—Ay(T)xhP,  Agx(T,—T)?, (6)
where a=2 and =2/3 are independent of the disorder.
These exponents are the same as those of a pure Ising mod-
els. When the initial state is a paramagnéBi) phase and

hy is small—i.e., the hysteresis loop is not caused by

ing field is that the hysteresis loop area is independebtof EopTs_the hysteresis loop area can be written as

and the scaling foA(h;T,hy) can be well determined.
Equation(4) is solved using fifth Runge-Kutta formulas. ,
Figure 2 shows the typical hysteresis loops of system with Axh?3(1+ah?), (7)
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wherea is a constant ang’ <0 depends on temperatufe
and disorder strength,.

For the systems whose initial states are in other regions ir

the phase diagram, the hysteresis loop area can be written
Eq. (6). Figure 3b) shows the effect ohy on the hysteresis
scaling. The inset indicates that the static loop dkgas an
exponential function ohg. If the hysteresis is caused by
FOPT’s, the exponenB is 2/3. Although the impurities in-
troduce an unstable statd(=0) during the magnetization
reversal process as shown in FighR the exponeniB is
independent of the disorder strength.

B. Random-field spherical model

Consider a three-dimensional model with a random field:

the Hamiltonian for a spherical model can be written as

Jo
52 S

1#]

A=-— SJ—Z HiS, 8
with constraint2;S?=N, whereN is the total number of
spins and—»<S <+ is a continuous spin variabléd;
=H+h,;, andh; is a Gaussian random field with zero mean
and variancdng. The Langevin dynamics for this constrained
system is

97 _

=~ TIMO -~ Bolorg + 7q(1), ©

whereo is the Fourier transform of the spin fluctuation:

1 )
aq=m2 (S—m)eldn, (10)

and m=[(X;S)]/N is the average magnetization, is a
Gaussian white noise:

(mg)=0, (mq(t)p_q(t))=2T &(t—t').

In Eq.(9), \(t) is a Lagrange multiplier corresponding to the
constraint and” is set to 1.

(11)

Using the Fokker-Planck equation for constrained system

derived by SchwartZ! the Langevin equatio(®) leads to the
equations of motion for the following physical quantities:

dm(t) )
—gr = ~L(1=Jo/keT)+(Jo TkaT)m?+s(t) Jm(t) + H,
dCqy(t) ,
G =2{1-[(1=Jo/keT)+ (Jo ke T)M*+ (1)
+02]Cq(1) —hdxq(D)},
ch;*t(t) — 1 [(1—Jo/keT) + (Jo/keT)M2+ (1)
+9%]xq(1), (12)
where
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FIG. 4. Hysteresis loops caused by the first-order phase transi-
tion in spherical modelsJy/kgT=2. The driving rates arén
=0.01, 0.005, 0.0025, 0.00125, 0.000625, 0.0003125,
0.000 156 25, and 0.000 078 1@&) hy=0.0 and(b) hy=4.0.

J
s(t)= WH; cq<t>+héxq}
Cy()=[(o_g()ag(D))],

1
Xq(t)Eh_(z)[hq<U—q>]- 13

To solve the coupled differential-integral equatidi®)
and (13) numerically, we use 50-node Gauss-Legendre
quadrature and fifth Runge-Kutta formulas for numerical in-
tegral and differential, respectively. The system without an
applied field is at the ferromagnetic phase whiyikgT
=2.

Figure 4 compares the rate-dependent hysteresis loops in
the random-field spherical systems with and without impuri-
ties. At the same driving rate, the loop area in system with
impurities is smaller than that of a pure system. Figure 5
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ration timety on the field changelH in FOPT's under modéb)
FIG. 5. Relation between hysteresis loop area A and the drivingiriving field. The system size of the 3D RFIM Is=128 andD
rateh. The plots are in log-log scales. The inset shows the relation=2.16.
between the scaling exponefitand the strength of disordé.

shows the log-log plots of energy logarea of hysteresis RFIM at zero temperature is such a system that has been well

g . : investigated. We are interested in looking at the effect of
loop) and the driving rates at different disorder strengths. . . . o

I : : disorder on the hysteresis scaling for FOPT’s in this system.
gﬂ\?ir?;?;%g' loss is fitted well to a power-law function of the The 3D RFIM can be described by Ed). We assume the

h-)ochB(ho) random field is a Gaussian variable with zero mean and vari-
A(T,ho) : 14 anceD? WhenH=0 the system was shown to have a

Although the scaling relatiofEq. (14)] is independent of the  disorder-driven phase transition@g=2.16 a'gT=O.22When .
disorder strength, the scaling exponghincreases with in- the sweeping field is applied, the hysteresis loops show dis-
creasing disorder strenglly. For strong disorder strengts, ~ tinct shapes below and aboizk. . If D>D., the hysteresis
is apparently different wit)B=1/2 in an impurity-free sys- loop ponsusts of many small ab.rupt changes anq the pverall
tem, as shown in the inset of Fig. 5. loop is smooth. IfD<D, there is an obviously discontinu-
The scaling exponeng for the FOPT in this model shares ©US jump in the hysteresis loop, exhibiting a field-driven
the same features as the critical exponents in a second-ordePPT. Because the system is kepTat0, the thermal effect
phase transition that are found to be dependent on the disoPn energy dissipation in the FOPT can 'be excluded and we
der strengtif? This important feature suggests that it is pos-are able to focus on the effect of impurities on the hysteresis
sible to describe the scaling and universality for FOPT’s usScaling.

ing the concept of dynamic hysteresis scaling. The 3D RFIM described by Eq1) is investigated in this
work by Monte Carlo simulations. Physical quantities are

averaged over 1000-5000 random-field configurations. The
system size id =128. To speed up the simulation, a fast
algorithm similar to the sort-list algorithm is used. All spins
In the last section, the results from the solvable modelsire updated simultaneously. One time step, or one Monte
indicate that when stochastic kinetics is taken into accountCarlo stepgMCS), in the simulation is defined as one attempt
the scaling exponent for the FOPT depends on the disordef all spin updates. A spin will flip if its local fieldf;
strength. In the systems without fluctuations such as the=XJS+h;+H changes sign. The external field is de-
mean-field model, the impurities do not affect the scalingcreased bydH and then is fixed until all spins have been
exponent. To explore this finding furthermore, we shall con-updated. There are three types of driving modes in our simu-
sider other systems that have no thermal fluctuation, bufation studies(a) An infinite slow driving field or static driv-
show field-driven FOPT's. The three-dimension@D) ing field. In this driving modelH is adjusted to the minimum

IIl. DYNAMIC HYSTERESIS IN A THREE-DIMENSIONAL
RFIM AT ZERO TEMPERATURE

TABLE I. Energy loss and critical field in the 3D RFIM under mo@-and mode) driving fields.

w H,
Mode D=1.80 D=2.16 D=2.33 D=1.80 D=2.16 D=2.33
@ 3.132 2.839 2.657 1.586 1.443 1.403
(b) 3.140 2.807 2.650 1.586 1.444 1.403

(dH=10"%)
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10 tweendW anddH cannot be fitted to Ed6). It is interesting
to see that the scaling exponent in the 3D RFIM is the same
®D=150 as that of a pure 3D Ising model whefe=0.45.
0OD=2.33
4 D=2.16
slope=0.45 IV. SUMMARY AND CONCLUDING REMARKS

Two solvable model systems are employed in this work to
investigate the universality of dynamical scaling for field-
driven FOPT’s with the presence of defects. The mean-field
approximation for a random-field Ising model suggests that
for a field-driven FOPT at a low driving rate, the dynamical
energy lossA— A, is a power-law function of the linear driv-
ing rate. The scaling exponeptis equal to 2/3 and is inde-
pendent of the disorder. The dynamical hysteresis that is not
caused by the FOPT cannot be expressed by a unique scaling
107 function with respect to the driving rate. When the linear

driving rate is high, all dynamical hysteresis can be fitted to

FIG. 7. Relation between dynamical energy lod&=w—w, & power-law function of the driving rate and the exponent is
and the linear driving rates in a 3D RFIM. The plots are in log-log 2/3. These results are different from the hysteresis scaling in
scales. The solid lines are power-law curves with exponent 0.45. @ mean-field Ising model under a sinusoidal applied field.

In a random-field spherical model, the energy dissipation
local field f; after a metastable state is reachén). Step-  jn FOPT's is also fitted well to a power-law function of the
driving mode is kept as a constant throughout the magnetion the disorder strength. The reason whyncreases with
zation reversal process. It is added to the driving field onlyincreasing disorder strength is that the stronger the disorder,
after the metastable state is reach@iLinear driving field.  the easier for the driving field to drive the system to satura-
Itis achieved by changing the field by a fixddi every ime  tjon magnetization, because the impurities introduce addi-
step. _ ) tional disorder to the ferromagnetic ordered phase. In the

The energy loss per sweeping cycle can be derived basgfean-field model, the random field we considered is of
on the criterion of a spin flip af =0. The local energy dis- short-range correlation: thereforg,is independent of disor-
sipation due to a spin flip can be calculated by der strength.

dW,=f,AS, (15) The scaling for energy dissipation in FOPT’s is also in-
i i ’ : . . .
vestigated by applying Monte Carlo simulations to a deter-
whereAS§=0, =2 is the local spin flip. It is easy to prove ministic system, a 3D RFIM at zero temperature. Since the
that the total energy loss per cycle is equal to the loop areaysteresis loop is deterministic for a given random-field con-

dw

dH

N noONK) figuration, the energy loss can be calculated exactly. Like the
W= dW= & MdH= 2lf. 16 mean-field RF_IM, in fleld-drlven_ FOPT’S_ 'ghe scah_ng for the
Ei ' é kgl ;1 | '| (16) energy loss with respect to the linear driving rate is observed

to be independent of disorder strength. The scaling exponent
B is also the same as that in a pure 3D Ising model.

In conclusion, we find that in the systems with random-
field impurities the scaling for energy dissipation of field-
driven FOPT’s can be written as=A,+ ah®. The exponent
is independent of the disorder strength when stochastic ki-
netics is neglected. For the mean-field RFIB4 2/3, and for
the 3D RFIM at zero temperaturg=0.45. These results are
the same as those of corresponding pure systems. For a
random-field spherical model, the power-law scaling relation
‘between energy dissipation and linear driving rate holds, but
. Ay=0 and the scaling exponet depends on the disorder

o - . 0Qtrength. These results indicate that it is possible to under-
driving field [driving mode(b)]. However, the energy 10Ss in - . "the scaling and universality for FOPT's in the frame-

systems driven by a linear driving fie[dnode(c)] is quite work of rate-dependent energy dissipation.
different. Figure 7 shows its dynamic energy dissipation, i.e.,

dW=W-W,, whereW, is the energy loss under a static
driving mode. When there is a FOPTRD,(L), dW can
be fitted to a power-law function as in E@) and the expo- Financial support for this work was provided by the De-
nent 8=0.44+0.04 andB=0.43+0.04 for D=1.80 andD partment of Energy under Contract No. DE-FGO02-
=2.16, respectively. For the system with=2.33 in which  99ER45784 and the Whiting School of Engineering at Johns
the hysteresis is not generated by a FOPT, the relation bédopkins University.

wheren is the total number of jump$J(k) is the number of
flip spins in thekth jump, andj labels the flipped spin in the
kth jumps.

Under a quasistatic driving modgtep-function driving
field), the discontinuous magnetization changd (the larg-
est jump in the loopand the duration timé, of the FOPT
are shown in Fig. 6. Table | compares the energy dissipatio
under the driving mode&®) and(b). H. is the critical field at
which the FOPT occurs, antiM is the largest. From Table |
we find that the energy loss and the critical field in the sys
tem under static driving field—i.e., driving modés)—are
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