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The T=0 dynamical properties of the one-dimensio(idD) s=% Heisenberg antiferromagnet in a uniform
magnetic field are studied via the Bethe ansatz for cyclic chaif$sifes. The ground state at magnetization
0<M,<N/2, which can be interpreted as a state witll 2spinons or as a state &f/2—M, magnons, is
reconfigured here as the vacuum for a different species of quasiparticlegsittsand antipsinons We
investigate three kinds of quantum fluctuations, namely the spin fluctuations parallel and perpendicular to the
direction of the applied magnetic field and the dimer fluctuations. The dynamically dominant excitation spectra
are found to be sets of collective excitations composed of two quasiparticles excited from the psinon vacuum
in different configurations. The Bethe ansatz provides a frameworKifdhe characterization of the new
quasiparticles in relation to the more familiar spinons and magrdnshe calculation of spectral boundaries
and densities of states for each continuuiin) the calculation of transition rates between the ground state and
the dynamically dominant collective excitatioriis;) the prediction of line shapes for dynamic structure factors
relevant for experiments performed on a variety of quasi-1D antiferromagnetic compounds, including, KCuF
Cu(GH4N5) (NOg3),, and CuGeQ.
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I. INTRODUCTION cles move without attenuation and scatter off each other
nondestructively.

Quantum spin chains are some of the most intensively In completely integrable many-body systems, the identity
studied models representing strongly fluctuating quantun®f the quasiparticles in any given eigenstate is upheld on a
many-body systems because of their amenability to exadigorous basis and encoded by a set of quantum numbers. All
analysis and because of the sustained interest in materigiXcited states can then indeed be generated systematically
exhibiting quasi-one-dimensional magnetic properties. Ovia the creation of quasiparticles from the ground state con-
particular interest are the dynamical properties in the lowfi9ured as a physical vacuum. The interaction of the quasi-

temperature regime, reflecting strong quantum fluctuations.Particles may not be weak, but it is of a kind that preserves
Quantum fluctuations result from the time evolution of their identity. The factorizability of the associat8dnatrices,

nonstationary observables of a many-body system in th hich is characteristic of completely integrable systems, re-

ground state. They can be investigategperimentally, theo- uces all quasmartlcle couplmgs to two-body scattering
. ) : events for which a general solution can be formulated, e.g.,
retically, or computationallyby dynamical probes. The three

o dients of h d ical 5 int i in the form of a Bethe wave functidit
main ingredients ot each dynamica prol:(e)_, Interaction The focus here is set on the quasiparticles that govern the
Hamiltonian, (i) ground state, andii) dynamical variable,

quantum fluctuations of the one-dimensiondD) s=3

make a specific set of collective excitations visible to theHeisenberg antiferromagnet in an external magnetic fiéld:
probe. The specificity is determined by the symmetries of all

three ingredients.

A dynamical probe yields information on spectrum and N
transition rates. Different sets of data are collected from the H=2> [JS, Sy:1—hS. 1)

. . . .. . . n=1

same many-body systefimgredients(i) and(ii)] via particu-
lar fluctuation operatorfingredient(iii )]. Different views of
the quantum fluctuations are filtered out by operator specifidhe ground state at=hg=2J, |F)=[{1---1), has satu-
selection rules and transition rates. rated magnetizatioriyl ,= N/2. It is the reference state of the

Collective excitations are modes in which some of thecoordinate Bethe ansatz and plays the role of the vacuum for
tightly coupled fundamental degrees of freedéstectrons, magnongspin-1 quasiparticlgsAll eigenstates oH are de-
ions, atoms move collectively in more or less complex pat- scribed as configurations of interacting magnons. The ground
terns. The free-particle-like normal modes known to exist instate ah=0, |A), has magnetizatiom ,= 0. It containsN/2
systems made of linearly coupled degrees of freedom are theagnons. In the framework of the Bethe ansatz, it is recon-
inspiration of attempts to describe collective excitations quitdigured as the physical vacuum fepinons a species of spin-
generally as composites of elementary modes that are weaklyquasiparticles, and the entire spectrunids reinterpreted
coupled at most. This requires that the ground state of thas composites of interacting spinon pairs. Likewise at inter-
system can be meaningfully interpreted as a physical vacuummediate fields, 6ch<hg, the ground stat¢G) is reconfig-
in which certain kinds of elementary excitatiofigiasiparti-  ured as a new physical vacuum, and the low-lying collective

0163-1829/2002/66)/05440%12)/$20.00 66 054405-1 ©2002 The American Physical Society



MICHAEL KARBACH, DANIEL BIEGEL, AND GERHARD MULLER PHYSICAL REVIEW B 66, 054405 (2002

excitations are most effectively described as composites dBethe quantum numbers of this set comprise, feerQ
two new species of quasiparticles, nanggihonandantip-  <N/2 and O<m=<N/2—r, all configurations
sinon

In a recent papéta detailed description of these quasi- r 1 r 1

. . ’ . —et oM=<l ,<- - <l,sz—=-+m.
particles in the framework of the coordinate Bethe ansatz 2 2 m<li<l, I 2 2 m @

was given. Their role_ n t_he zero-temperature spin fIUCtuaThe Bethe ansatz suggests a threefold interpretation of the
tions parallel to the direction of the magnetic field was elu-

cidated in the form of line-shape predictions for the associ-gjround statdG) at 0<M,=<N/2 with quantum numbers

ated dynamic structure factor. Here we present a more N M, 1 N M, 1
comprehensive set of applications, which also includes the tlile=1— Z+ 7+ i T o o ©)
perpendicular spin fluctuations and the dimer fluctuations.

Physical realizations of Heisenberg antiferromagnetiddepending on the reference stdfesseudovacuuinused, it
chains have been known for many years in the form of 3Dcan be regarded as a scattering stat®/@— M, magnons, a
crystalline compounds with quasi-1D exchange coupling bescattering state of K, spinons, or the physical vacuum of
tween magnetic ions. For the study of magnetic-field effectpsinons’
in the dynamics as predicted in this paper, the coupling must The states in the s, then all contain the same number
not be too weak or else it will be hard to reach the low-of magnons or spinons but different numbers of psinons. The
temperature regime. It must not be too strong either or else integer quantum numben selects all states frorK, that
will be hard to reach a magnetic field that makes the Zeemanontain m pairs of psinons. The ground statg) at M,
energy comparable to the exchange energy. One compoureN/2—r is the only state wittm=0. The quasiparticle role
that promises to be particularly suitable for this purpose if the psinons in the two-psinorm=1) and four-psinon
copper pyrazine dinitrat¢ Cu(C,H,N,) (NOs),].” (m=2) scattering states was highlighted previodsly.

The spin fluctuations can be observed directly via inelas- The excitations that are important B, (q,) (parallel
tic neutron scattering experiments. At very low temperaturesspin fluctuationsat M ,=N/2—r were found to consist of a
the dominant transitions in the scattering experiment are besmall subset oK, which includes M-psinon states over the
tween the ground sta{&) and a set of excitations\) that  entire range ofn. However, all 2n-psinon states with sig-
are reachable by one of the spin fluctuation operafs nificant spectral weight were found to belong to particular
=N"Y23 €"st u=x,y,z. In the T=0 dynamic spin configurations of Bethe quantum numbeéysin which 2m
structure factors —1 psinons behave like a single degree of freedom with

properties akin to those attributed to an antiparticle. The
@) spectrum ofS, (g, w) was thus identified as arising predomi-
nantly from psinon-antipsinonyy*) excitations® Here our
. ) _ _ ) goal is to identify and interpret the dynamically relevant ex-
each transition withw, =E, —Eg _and 3=k)‘2_ ke contrib- citations also for S, (q,)=%[S. (q,®)+S_.(q,)]
utes a spectral line of intensityzg( G| S|\ )|°. (perpendicular spin fluctuationand Spp(q,w) (dimer fluc-

Some quasi-1D antiferromagnetic colrgmounds, of whichyationg, where we expect psinons and antipsinons to occur
CuGeQ is the most prominent exampte! are susceptible i different combinations.

to a spin-Peierls transition, which involves a lattice distortion

s,m(q,an:zﬂg (GISEIN)28(w—)),

accompanied by an exchange dimerization. The dimer fluc- . SYMMETRIES AND CONSEQUENCES
tuations,D,=N"25€'9"S,- S, ;, as captured by the dy- _ _ _ _
namic dimer structure factor Narrowing down the dynamically dominant sets of exci-

tations and characterizing them as specific quasiparticle con-
figurations proceeds in three steps. First we limit the set of
_ 25( —
SDDW”)—Z“; [(GIDgM[*o(@=w)) 3 relevant excitations by the application of selection rules that
] ) ) are imposed by the symmetry properties of the Hamiltonian
may not be as directly observable as the spin fluctuations byt) angd the fluctuation operators,S; ,D, and that are
an understanding of their quasiparticle composition is a matyjiq for arbitrary system sizes. Then we identify additional

ter of no less importance. selection rules that are valid only fod—co. Finally, we
identify from the states not yet excluded those whose transi-
ll. MAGNONS, SPINONS, PSINONS tion rates are predominant i5,{q,0), S_.(q,w),

The coordinate Bethe ansatz provides a natural classificag.f**(q'“’)' ar_lquD(q,w). This last step, .Which here _is car
ried out empirically, may very well find its ultimate justifi-

tion of the eigenstates of E¢l) in terms of interacting mag- : .
nons. The structure of the Bethe wave function, its determiation .by llfurther symmetries related to complete
nation via the solution of the Bethe ansatz equations, and itjgtegrablllty.
use for the calculation of matrix elements are summarized in
the Appendix.

For our discussion here it turns out to be sufficient to The conservation laws of the total sgB; and itsz com-
considerr-magnon scattering states of the $€t. In the  ponentSt imply that transitions between eigenstates of Eq.
invariant Hilbert subspace of magnetizatigh=N/2—r, the (1) induced by thgnonstationary spin fluctuation operators

A. Selection rules for arbitrary N
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TABLE I. Specifications of typd<, or equivalent states from six classes. Each class contains states that contribute to a specific dynamic
spin structure factor at=0. Clasg(ii) also contributes to the dynamic dimer structure factor. All specifications are relative to a given ground
state withS;=S;=N/2—R=M,, whereM, is the magnetization in a field of a certain strengthThe last column identifies the three
subsets of excitations that dominate the spin and dimer fluctuatioré-for.

Class Sr S,.(0,0) r Bethe quantum numbers Bethe ansatz solutions Dynamically
St dominant sets
(i) M,+1 S, A9, w) R |i<‘>=|§i‘f>+%, i=1,..., R—-1 Z0 =z i=1,...R-1
M, IR=3(N-R+1) Q==
(i) M, S,4q,0) R 1™, i=1,... R A, i=1,... R yy* (P2
M, Spp(q, w) from Eq. (4) with r=R from Eq. (A3) with r=R
(i) M,+1 S_.(q,0) R-1 1 i=1,... R-1 2" i=1,...R-1 g (P3)
M, +1 from Eq.(4) with r=R—1 from Eq.(A3) with r=R—1
(iv) M,+1 S, _(q,w) R+1 IM=1 41 j=1,... R-1 2=z "j=1,.. . R-1
M,—1 |('V) |g\/+)l_ (N-R) Z(iv)_z(iv) —
(v) M, S,_(qw)  R+1 |,<V) 1M+ i=1,... R M=z" i=1,...R
M,—1 |(RV11—5(N R) _ ZS?VJ)rl *®
(vi) M,—1 S, (qo) R+1 1M, i=1,... R+1 Z", i=1,... R+1 by~ (PO
M,—1 from Eq.(4) with r=R+1 from Eq.(A3) with r=R+1

SZ S (vecton and the dimer fluctuation operatbr, (sca- three classe§), (iv), and(v) include sets of states that be-
Iar) satlsfy stringent selection rules. The six classes of excilong to the sam&; multiplets as the setsy or Kg, ;. Table

tations with permissible transitions fronhG) with S;=S; | also lists the Bethe quantum numbeys i=1,...r for
=M, for the fluctuation operatorS;,, 5 ,D are all listed in the typeK, or equivalent states and descrlbgs how the rapidi-
Table I. The locations of these classes of excitations relativiesz;, i=1, ... r for these states are obtained.
to the ground state in theS¢,S7) plane are shown in Fig. 1.

We note that classd#), (iii ), and(vi) include the set&, B. Selection rules forN—s oo

forr=R, R—1, andR+ 1, respectively, while the remaining ) ) )
Before we begin evaluating matrix elements from Bethe

ansatz solutions in production mode, we take note that the

]

Na2 | St ) rotational symmetry of the Hamiltoniafl) and the vector
nature of the spin fluctuation operatdy(S;,S;) imply the
S,(q. ®) O—> v following rigorous relations between transition rates involv-

ing excitations that belong to the sarBe multiplet:*?

S5@.®) TN\

— Iy (il [2
S.(q, ®) : _|<G|Sq|>\ N
< KeISiN O =D (6a
Sp(qw) = @ (iii)
[ 3
M, = (i) G S* NUWNE
! Kals; 2= KCIS ) (&)

D) | (v) | (v) (M,+1)(2M,+1)’

2(G|sIA M)

i KGls; ) P=—""0
z

(60)

The significance of the relatior{§) is not limited to their
01 M. N/2 usefulness in reducing computational work. The magnetiza-

FIG. 1. Transitions between the ground st with quantum tion ',S_ an extensive qu.antl'ty, implyintyt zoc,N ‘_E‘t h=0. All
numbersS;=S2=M, and six classes of excitations permitted by fransition rates for class), (';’)’ and(v) excitations are then
microscopic selection rule®ef. 12. Each class may contribute to SUPPressed by factof$ or N° relative to the transition rates
exactly one of three dynamic spin structure factors. Clagslso  Of class(ii) and(iii) excitations. The consequence is that in a
contributes to the dynamic dimer structure factor. Fewer classes dhacroscopic system &t 0, the spectral weight of all class
permissible excitations exist foM,=0 (h=0) and M,=N/2 (i), (iv), (v) excitations in theT=0 dynamic spin structure
(h=hyg). factorsS, (9, ) is negligible®
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FIG. 2. Psinon vacuunG) for N=16, M,=4 and ¢ states
with q=0 from the setKj out of class(iii). The I; values are
marked by the positions of the magndssall circles. The spinons
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TABLE Il. ¢ states withq=k—kg=0 from the seK_, out
of class(iii) excited from the psinon vacuunG) for N=24, R
=6: Bethe quantum numbers, wave numiger units of 27/N),
energy, and transition rate. The ground state kgs0 and Eg
=-11.512134686 2 and is realizedret 1.584& ... forN—x.

21,

E—Eg+h

KGISy MM

q
—2+0+2+4+6 7
~4+0+2+4+6 8
—4-2+2+4+6 9
~4-2+0+4+6 10
~4-2+0+2+6 11
—4-2+0+2+4 12

(large circle$ mark|; vacancies. A subset of the spinons are called —6+0+2+4+6 9

psinons(gray circles. The wave numberg=k—kg are given in

units of 277/N.

C. Selection rules related to integrability

—6—2+2+4+6 10
—6—2+0+4+6 11
—6—2+0+2+6 12
—6—4+2+4+6 11

We shall find empirically that in each one of the remain- —6—4+0+4+6 12

1.8184194057
1.9556536638
2.0088932004
1.9746665911
1.8556790610
1.6606927007
2.1612403300
2.2113923024
2.1742818977
2.0527517142
2.3389550993
2.2987048423

0.0626472812
0.1424479327
0.2414561733
0.3895105465
0.6950450037
2.2311978057
0.0104636629
0.0348248694
0.0780182561
0.1743614335
0.0062315774
0.0260883689

ing classegii), (iii ), and(vi) there exists a two-parameter set
of excitations that governs one of the dynamic structure fac-

tors of interest here. We shall name these sets P2, P3, and Fgntyy states (n=1) at 0<g= for R=3. The state in the
respectively(see Table ). Corresponding finitéd spectral ~second row is also counted ag/é state. Hence there are six
contributions of classi), (iv), and(v) states can be inferred of them in total forN=16. Freeing up two additional spinons
from Egs.(6). The associated sets P1, P4, and P5 have thefrom the sidelines produces a set of four-psinon states (
position in the (|,w) plane shifted vertically relative to the =2) of which they states (n=0,1) are special members.
sets P2, P3, and P6 because of the Zeeman splitting, and th&ée maximum number of psinons that can be mobilized at
spectral weight of the former is suppressed by factdrmsr ~ R=3 is equal to the number of spinonsM2=10.

N? as explained previously. We have calculated the transition rafg3|S, [\(")[* be-
tween the ground state fdd=24, M,=4 and all 2Zn-psinon
excitations. We found that thes states are predominant.

. . They are listed in Table Il along with the momentum and
~ In our search for the dynamically most reIevalnt excita-gnergy transfer of the associated spectral linesN=er the
tions, we chus on the case of magne‘uzat_lM_brg/N:‘—1 (half iy states form the continuum P3 im,) space. In Fig.
the_z saturatl(_)n valye We _explore the transition rates for the 3(a) we have plotted all states belonging to P3 for 64
spin and dimer fluctuation opgrators betwgen";he groun‘écircles and the spectral boundaries f8r— . The range of
state|G) and the typeK, states in the classé#), (iii), and P3| tricted ta<|q| < h

(vi). These excitations are found to contribute most of ° ' 'esStICed t@s=[qj=m, where
the spectral weight to the dynamic spin and dimer structure
factors.

IV. DYNAMICALLY DOMINANT EXCITATIONS

1 T

o 4ve,

A. Perpendicular spin fluctuations (P3) .

The spectral weight ir§_, (q,w) is carried exclusively e
by class(iii) excitations(see Table)l A systematic study of 000, ©
the transition rates of typky_; states form=0,1,2 ...
reveals that the dominant contributions to the spectral weight o o o
come from two-psinon ) states. The Bethe quantum Jo0e, o
numbers of the states involved in these transitions are showi ., 1r J

/]

Q)
S¥¥(q)/S_(@)

in Fig. 2 forN=16 andM ,=4. The top row represents the

ground state|G), which contains four magnongsmall 0

circles or eight spinonglarge circleg. This is the psinon 0 3;5 !

vacuum atR=4. The next row is the lowest-lying two- 0 : 0 .

psinon () state excited fromG). This excitation also 03 075 ! 0 05 !

plays the role of the psinon vacuurmE&Q) atR=3. It is or or

then characterized as containing three magnons or ten F|G. 3. (a) Energy versus wave number of tiiey excitations at

spinons. M,=N/4 for N=64 (circles and N—co (continuum P3 between
Mobilizing the two innermost spinons turns them into psi- curves. (b) Integrated intensity o8_, (q) (inseb and relativeyy

nons(gray circle$. The remaining five rows in Fig. 2 repre- contribution(main ploj for N=12,16,20,24,28.

054405-4



QUASIPARTICLES GOVERNING THE ZER®O. .. PHYSICAL REVIEW B 66, 054405 (2002

q.=27M,/N. @ 1

—_
—
—_
—

_
'
9|
\
'
N
'
'
oW
\
= Nol—
o=
ol
— =
—nlo

Note that the continuum P3 is displaced hyg= 7 rela-
tive to the two-psinon continuum discussed in the context of
Ref. 6. The psinon vacuum used for P3 is the state in the firs
row of Fig. 2. In Ref. 6 the state in the second row is the
vacuum. These choices are dictated by the different fluctua
tion operators considered now and then.

The relative integrated intensity of theyy states,

S (q)/S_.(q), is plotted in Fig. 8b) for various N at
fixed M,=N/4. Corresponding data for the absolute inte-
grated intensityS_, (q) are shown in the inset. We observe

that there is virtually no intensity dg|<qs, outside the
range of continuum P3. Algj| increases frong, toward 7,
S_.(q) increases gradually and at an accelerated rate. Thu
value at the zone boundary diverges in the thermodynamic
limit: S_ . (7)~N*"7 with an exponent(M,/N) that as-
sumes the valié!®

AW N = O

wn oA W N

n(1/4=15312 . .. (8)

for the situation at hand. It reflects the divergei®&e, (q)
~|ar—q|¥7" 1 for N=w. The relativeys contribution to
S_.(q) rises rapidly from zero afj=qs toward a value ex-
ceeding 97.8% atj=. The solid line in the inset is ob-
tained from a two-parameter fig|7—q|*” 1+b, of the

e 00 000 000 @00 O
o0 (e o060 o0 (e 00 o
ORI BN NON I BN NON I BN NON I I )
Qe o0 Oeeoe Oeee Oeoo0o0 o
OO0OO0OO OOOO OOOO OOOO O [wiw
OCO0OO0OO0O OOOO OOOO OOOO O
OO0OO0OO0O OOOO OOOO OOOO O
OO0OO0OO0O OOOO OOOO OOOO O bwi

O0OO0O0O o000 OOOO OOOO O wwe
OO0OO0O OOOO OOOO 0000 O oM

cooo OOOO OOOO OOOO O
O000O OOOO ocoo0oo0o OOOO O

N o A N W

FIG. 4. Psinon vacuunG) for N=16, M,=4 and set ofri*
states with B=q=<m out of the setK,. Thel; are given by the
data atq= /2. . positions of the magnonsmall circle$ in each row. The spinons

When we decreas#l, at fixed N, the soft mode ati  (jarge circles correspond td; vacancies. The psinonj and the
= remains stationary while the soft modecgt g moves  antipsinon ¢*) are marked by a large and a small gray circle,
to the left. AtM,=0, the ¢y states become the two-spinon respectively.
triplets. The two-spinon part &_ , (g,w) is exactly known
for N—c 117 Conversely, when we increasé,, the soft qe=7—27M, /N, 9)

mode alq=as moves to the right and thus narrows the range

of P3 continually. At saturationM,/N=3) the function ) ]
S_.(q,) vanishes identically. and with the partial overlap along a stretch of the upper

boundary, we reconstructed the energy-momentum relations
of the ¢ and ¢* quasiparticle$.
The corresponding search for the dynamically dominant
The parallel spin fluctuations were already analyzed indimer excitations again points to thgyg* continuum P2.
Ref. 6. The relevant excitations are contained in thekset The 4* transition rates for the fluctuation operat@@and
out of clasg(ii). This set is subdivided into sets ofr2psinon D, in a system witiN=16, M,=4 are listed in Table III for
states for &m=M,=N/2—R. Each set fom>0 contrib- comparison. These data suggest that the spectral weight in
utes one branch of excitations with significant spectralSyp(q,w) is concentrated more heavily at lower energy than
weight to S,(q,w). Figure 4 shows the configurations of is observed inS,/q,w). A more quantitative discussion of
Bethe quantum number$; of all these states forlN this evidence will follow in Sec. V.
=16,M,=4. The top row represents the psinon vacuum Finite-N data for the integrated intensitieS,(q) and
(m=0). The four groups of states underneath represent th8y,(q) are presented in Figs.(t) and Hc), respectively.
dynamically dominant branches ofi2psinon states fom Both static structure factors rise from zeragat O to a cusp-
=1,...,4 like maximum atq=qs= /2, where the soft mode is lo-
We argued that thé configurations of these excitations cated. The cusp is of the form-|gs—q|” . A two-
suggest a simpler interpretation in terms of two quasipartiparameter fitaN'~7+b, of the data atg=gqs yields the
cles, namely one psinon/j and one antipsinony*). We  extrapolated valueS, ( 7/2)=0.307 andSpp(7/2)=0.641.
reinterpreted the series of dynamically dominant branche®n approach tq= 7, the intensity drops more drastically in
taken from 2n-parameter sets of multiple-psinon states as &p(q) than inS,/q).
single two-parameter set af* scattering states. These  For both kinds of fluctuations, the intensity gq¢q, al-
states form the continuum P2 fdt—« in the (q,w) plane  most exclusively originates fromy* excitations. At(q
as illustrated in Fig. &). From the shape of the continuum =qg, the relativey* contributions toS,(q) and Spp(q)
with its soft modes atj=0 andq=qs, where are estimated to be at least 93% and 95%, respectively, in the

B. Dimer and parallel spin fluctuations (P2)
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2 T , TABLE lll. yy* states withgq=k—kg=0 from the seKy out
(a) 5 oogggggégo of class(ii) excited from the psinon vacuufG) for N=16, R
o ° g ©0,%0 0,0 N =4 quantg_m numbem, wave numbefin units of 2r/N), energy,
9 o600 o °0,% 0% oS and transition rates. The ground state hks=0 and Eg
0000, oooo =-11.512134686 2 and is realizedrat 1.584% ... forN—o.
~ (800000°°0,%0,° The Bethe quantum numbers were listed in Table Il of Ref. 6.
31F lggoooooz 0 ©% . - -
oggggggzoozoooo 2m g E-Es KGISINMP  KG[DgIN®)
280 § oo 2 2 ®o z °.%q / 0 0  0.0000000000  1.0000000000  1.0000000000
R0 %0 N 7 2 1 0.3504534152  0.0484825989  0.1201967890
& 2 2 0.5271937189 0.0587154211 0.1687346681
0 0 0.5 1 2 3 0.5002699273 0.0773592284 0.2298023543
q/n 2 4 0.2722787522 0.1257902349 0.3456324084
1 1 4 2 0.7981588810 0.0426892576 0.0720507048
4 3 0.9653287066 0.0552255878 0.1098585317
(b) (©) 4 4 0.9301340415  0.0743667351  0.1555227849
4 5 0.6966798553  0.1253357676  0.2470269183
6 3 1.2708459328  0.0345439774  0.0307838904
= = 6 4  1.4285177129  0.0516860817  0.0553527352
X 8 6 5 1.3858078992  0.0753564030  0.0866741700
ﬁ 03 F ﬁ 0.6F 6 6 1.1488426600 0.1406415212 0.1563073306
N =z = | 8 4 1.6819046570 0.0235815843 0.0060903835
? N s *gg = 8 5 1.8257803105 0.0443726010 0.0140423747
« :.3 v ;8 8 6 1.7724601200 0.0744641955 0.0259881320
8 7 15309413164 0.1686893882  0.0589091070
0 0 0.5 1 0 0 05 1 C. Perpendicular spin fluctuations (P6)
0 0 0.5 1 0 0 0.5 1 For finite N, the spectral weight in the dynamic structure
gn a/n factor S, _(q,w) probes excitations from classés)—(vi).

FIG. 5. (a) Energy versus wave number thie/* excitations at
M,/N=1/4 for N=64 (circles and N—x (partially folded con-
tinuum P2 outlined by solid lings(b) Integrated intensitys,(q)
relative P2 contribution (main
=12,16,20,24,28,32(c) Integrated intensitySyp(q) (inse) and
relative P2 contributionmain ploy for N=12,16,20,24,28. The
lines in (b) connect theN=32 data points and the lines (o) the
N =28 data points. The values 8 (#/2) andSpyp(7/2) extrapo-

(insey and

lated toN—c are marked +).

limit N—o. At q=qs the ¢¢* parts ofS,(q) andSpp(q)

plod for

However, we know from Sec. lll B that the intensities of

class¢tiv) and clasgv) excitations are bound to fade away in
the limit N—o, The clasdvi) excitations contain the set
Kgry1. It turns out that much of the spectral weight in

N S, _(q,w) is carried again bys¢* excitations. However, the

transitions(G| Sy |\) probe theyy* states in a different in-
variant subspace than the transition&|Sg/\) and
(G|Dg[\) do. This causes some dramatic changes in the
spectrum and in the spectral-weight distribution.

The differences are best illustrated by Fig. 6 in relation to

Figs. 2 and 4. The top row in all three figures shows Ithe

decrease monotonically but remain dominant except in theonfiguration of the ground stat€) for N=16, M,=4. The
immediate vicinity of the zone boundary. The data suggest amaining rows in Fig. 4 represent thig/* states in the

gualitative difference in how the relativg)* intensities ap-

same invariant subspace, whereas the remaining rows in Fig.

proach zero ag— . If the behavior near the zone boundary 2 represent they states in the subspace with one less mag-

can be described by a power law|7—q|?, then we predict
y=1 for the dimer fluctuations ang=0.3 for the spin

fluctuations®

Upon varying the value df1,, the continuum P2 changes
its shape continuously. In both limits ,/N—0 andM,/N

1
—3,

it degenerates

subspace.

non (i.e., two more spinons The firsty state(second row
in Fig. 2) also plays the role of the psinon vacuum in that

The second row in Fig. 6 represents the lowest excitation
probed by<G|S§|)\> and, at the same time, the psinon
into a single branch and thenvacuum with one more magndhne., two less spinonsThe

vanishe$:*?> At M,=0 the dimer fluctuations and the spin three groups of five states underneath represent the complete
fluctuations are produced by entirely different sets of excitaset of y¢* states in the same invariant subspace. Because
tions. S, (q, ) is known to be dominated by the continuum the momentum transfer for thege/* states is relative to a

of two-spinon triplet excitation¥, which are Bethe ansatz different psinon vacuum than was the case forilyé states

solutions with real rapiditiesSyp(q,®) is presumably gov-

discussed in Fig. 4, the observable spectrum of the con-

erned by two-spinon singlet excitations, which are Bethe antinuum P6 which emerges fot— « [Fig. 7(a)] is the mirror
image of the continuum PgFig. 5a)].

satz solutions with complex rapiditié8.
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FIG. 6. Psinon vacuurfG) for N=16,M,=4 and set ofiy*
states with sq=<= out of the setKs. The |, are given by the
positions of the magnon@mall circle$ in each row. The spinons
(large circle$ correspond td; vacancies. The psinon/) and the
antipsinon ¢*) are marked by a large and a small gray circle,
respectively. The last row describes a state from classhat be-
longs to the sam&; multiplet as the psinon vacuum.

The last row in Fig. 6 is not exactly g/* state. It differs
from the * in the previous row only by the smallest
change in one Bethe quantum number. This clagsstate
belongs to the sam@; multiplet as the ground stat&) (top

2 T T

o
©
[*}
Q
el
OO
S.@

o/
SV (S, (@)
2

(a) (b)

q/n q/n

FIG. 7. (a) Energy versus wave number tiie/* excitations at
M,=N/4 for N=64 (circles andN—co (partially folded continuum
P6 outlined by solid lines (b) Integrated intensitys, _(q) (insed
and relative P6 contributiofmain plod for N=12,16,20,24,28. The

PHYSICAL REVIEW B 66, 054405 (2002

TABLE IV. ¢y states withg=k—kg=0 from the seK, , out
of class(vi) excited from the psinon vacuunG) for N=16, R
=4: Bethe quantum numbers, quantum numbemwave number
(in units of 27/N), energy, and transition rate. The ground state has
ke=0 and Eg=-115121346862 and is realized &t
=1.584& ... forN—~. The last row describe a state from class
(v) that belongs to the sanf& multiplet as|G).

21, 2m q E-Ec—h  [GIS;IND)]?
—4-2+0+2+4 0 8 -—1.4624484093 1.9420228564
—4-2+0+2+6 2 7 -—1.0239463125 0.6324984574
—4-2+0+4+6 2 6 -—0.7427954774 0.0473348211
—4-2+2+4+6 2 5 —0.6661027722 0.0187604165
—4+0+2+4+6 2 4 -—0.8076063179 0.0156977974
—2+0+2+4+6 4 3 —1.1468483618 0.0980201222
-4-2+0+2+8 4 6 -—0.5201660070 0.3553105587
—4-2+0+4+8 4 5 —0.2494575408 0.0606512819
—4-2+2+4+8 4 4 —0.1822770670 0.0309111714
—4+0+2+4+8 6 3 —0.3302018783 0.0280474732
—2+0+2+4+8 6 2 -—0.6710449481 0.2106074048
—4-2+0+2+10 6 5 —0.0400322092 0.1984683911
—4-2+0+4+10 6 4 +0.2167505272 0.0646015620
—4-2+2+4+10 8 3 +0.2717353551 0.0401817835
—4+0+2+4+10 8 2 +0.1166329921 0.0372990435
-2+0+2+4+10 8 1 —0.2237883038 0.3577163008
—4-2+0+2+12 8 0 0.0000000000  0.5000000000

row). We have included it here because its transition rate is
significant. In fact, it is the only excitation a=0 with a
nonzero transition rate. Even though it is not a member of
the setKg, 1, its contribution toS, _(q,w) marks a natural
endpoint of the continuum P6. The excitation energies and
transition rates pertaining to all states shown in Fig. 6 are
listed in Table IV.

The integrated intensit$, _(q) as shown in Fig. () is
almost flat in the region €q=<qs. The intensity ag=0 is
exactly known'

S;_(0)=2M,/N=1/2. (10

At q>aS the functionS, _(q) rises gradually and with in-
creasing slope ending in a divergencegat . The relation

S;-(q)=2M,/N+S_.(q) 11

dictates that the singularity is the one already described in
Sec. IVA: S, _(q)~|m—q|Y" 1.

The relativeg/* contribution to the integrated intensity
is largest near the zone center and near the zone boundary as
shown in the inset to Fig.(B). It gradually drops from 100%
atq=0 to ~20% at the soft-mode positiogy= g5 and then
rises back to~72.5% atq= 7. Note that the\ dependence
of the relative intensity data is much strongematq, than

at qsas. We shall see that the qualitatively differedtde-

solid line in the inset results from a two-parameter fit as explainegpendences are also observed in transition rates, from which

in the context of Fig. 3.

interesting conclusions can be drawn.
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V. LINE SHAPES 6 T T T T
- @ ° DD
To calculate the line shapes of tiiey and ¢* contribu- g 41 | © z e .
tions to the dynamic spin and dimer structure factors we use & 4 ‘; 1
wherever applicable, the product ansatz % 2t J 1 o :
— — * o 1
S(q,@)=D(d,©)M(q,) (12 o g | s, .
0 0.6 1.2 18 B o Do &
discussed at some length in Ref. 6. The fa@dq, ») is the %3 . - 3 %;E 2l ..
density of ¢y or y* states, which can be evaluated for =z ° = .
very largeN via the Bethe ansatz. The factbt(q,w) rep- & ©[ S5 2 ‘s
resents the scaled transition ratek G|ShIN)?, u=z,+, *;‘; ePog | .,
—, or N[(G|Dy|\)[? between the ground state and the sets of s *e ™ © ‘s
Y or i states. These matrix elements are also calculatec 0 ® . "‘-E 0 0 . . 0
via the Bethe ansatz but only for much smaller systems. 0 0.6 12 18 0 06 12 L8
For the applications considered here, the product ansat_ o/] /I

depends on a reasonably fast convergence, within the spec- : . B _

tral boundaries of the continua P2, P3, and P6, of the finite-,. FIG. 8. (8) Density of sy states aq_..ﬂ/z for N=2048. (b)

N t iti te data t d th functid Dimer (DD) and parallel spin £2) transition rates between the
ransition rate a. a OY"ar a Smoq unc r(q,a_)).as .__psinon vacuum and thé* states afy= /2 for N<32 (z2) and

N—co. Problems with this ansatz arise when the finite-sizey < og (DD). (c) Line shape atj= /2 of the ys/* contribution to

excitations for which transition rates are available are subje(‘it;zz(q ) andSpp(q, ). All results are fotM = N/4. The scales in

to significant energy shifts caused by the quasiparticle inter) and(c) on the left(right) are forDD (z2).

action. Forygys andyy* scattering states, these are effects of

O(N™1) as discussed in Ref. 6. The exercise of caution is, . , . .
also indicated when the scaling behavior of the finite-sizdNiS tendency is considerably slower for the parallel spin

transition rates changes at spectral boundaries as is srductuations than for the dimer fluctuations. The resulting line
quently the case. shapes are dramatically different.

Notwithstanding these caveats, the product ansatz is a e saw that the slow approach to zerougj of the par-
useful tool for merging the best available transition-rate datallel spin transition rate#?" (7/2,0) combined with the
and de_nsity-of-fsta'_[es data. It V\l/gls succe_ssful_ly tested for th@ivergence inD**" (w/2,w) produces a diverging trend at
two-spinon excitations d¥,=0."> Any major distortions of wy in Slzpép*(wlzlw)_ The result is a characteristic double-

the line shapes predicted by the product ansatz can eak structur8. The more rapid approach to zero of the

avoided if we omit all data points &l (g, w) that are shifted . e .
across spectral boundaries. Any theoretical and computa{j-'rner transition ratesvl 5 (7/2,0) overcomes the diver-

tional advances that make it possible to calculate transitiogence of DY (m/2,0) and produces a single-peak line
rates for larger systems will improve the predictive power ofshape inSVD"é*(w/Z,w).

the product ansatz. Now we consider the wave numbers halfway between the
soft modeqs and the zone boundary or the zone center. The
A. Spp(Q,@) and S,/q,w) line-shape determination via product ansat8gf (g, o) at

What can be observed in a fixedscan of the dimer and 9= 7/4, 3w/4 is illustrated in Fig. 9. The corresponding data
parallel spin fluctuations aj=qs? The line shape determi- gor;he pr?ra”_e| spin flur(]:tuatlons W(;are sl']lown I%FI%FZ?AT)RG]C'

. * - o . . For this situation the upper edge of one ban
nguon ofSb (W_/Z’w) 'S |IIustrflted In Fig. 8 in cor.npa_rlson coincides with the lower edge of the other bamg=@7/4).
with corresponding data fa};" (/2,») as shown in Fig. 8 Even though the number of available data points for
of Ref. 6. The first factor in the product ansatz is the samejimer transition rates is limited, there is a clear indication
for both sets of data, namely the density ™ states in  that the line shapes of the dimer fluctuations again consist of
continuum P2. It has the characteristic shape with a squargingle-peak structures with a divergence at the lower band
root divergence at the upper band edgeas shown in panel  edgew, #0 and a shoulder reaching to the upper band edge
(@. wy, in strong contrast to the double-peak structures pre-

The scaled transition ratesM;”f*(Tr/Z,w) and dicted for the line shapes of the parallel spin fluctuations.
Mg‘é*(w/Z,w) [panel (b)] are monotonically decreasing In' summary, the spectral-weight dis_tribution of the dy—'
functions. For both kinds of fluctuations the data at low fre-Namic structure factors that probe the dimer and parallel spin

quencies are consistent with the power-law divergence, ~ fluctuations have many commonalities but also some very
distinct properties. In both cases, the dominant spectrum is

the continuum P2 ofyy* states within the invarianM,
subspace, which also contains the ground st&e Both

with 7—2=—0.48 ... aspredicted by conformal invari- functions S% (q,w) and S/¥"(q,w) are strongly peaked
ance. It is neawy where the two sets of data differ most. along the lower continuum boundagy (q). Only the latter
While both transition rate functions tend to vanishaaj, is also peaked along the upper continuum boundasyq).

SU (m12,0)~ S (712,0) ~ 07 2, (13)
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FIG. 9. (a) Density of yy* states atq= /4, 3w/4 for N FIG. 11. (a) Density of sy states ag=#/2 for N=2048.(b)

=2048.(b) Dimer transition rates between the psinon vacuum andPerpendicular spin transition rates between the psinon vacuum and
the yy* states atj= /4, 3w/4 for N=16,24.(c) Line shape ayy  the yy* states af==/2 for N=12,16,20,24,28(c) Line shape at

= /4, 37/4 of the yyy* contribution toSpp(q, »). All results are  q= /2 of the ¢* contribution toS, _(q,w). All results are for

for M,=N/4. M,=N/4.

The divergence along, (q) is caused by the transition rates, S (mw)~wY772 1p-2=-1346..., (14

whereas the divergence along,(q) is a density-of-states
effect. for the spectral-weight distribution of the infinite chain. The

solid line represents a two-parameter dity*/7~ 2+ b, of the
B. S_.+(q,®) da:'{z-zl 1202ir8)t52 4r2e§r€|:_shenting .t.he Ioweast excEgtLon fﬂslr
. =12,16,20,24,28. The transition rate data at higher frequen-
. nge we focus on 'ghe I|_ne shapeqt  of the g con- cies appear to approach zero sufficiently rapidly to overcome
trlbu_tlon to the dynamic spin structu_re fac®r . (g, ). The . the divergent trend of the density of states to produce a
continuum P3 ot states was prewou'_sly found to be domi- monotonically decreasing spectral-weight distribution with a
nant. The results predicted on the basis of the product ansa&lsp singularity at the upper continuum boundary.
are shown N Fig. 10. - Similar single-peak line shapes are expected for figged-
The density of states has the same characteristic shape ans across the range of the continuum P3. Hencerthe
Seen pre"'OUS'Y- _The_spectrgl V\_/e|ght IS strongly concentrateg,\ihtion to the perpendicular spin fluctuations is a struc-
in the lowest finite-size excitation. The scaling behavior Ofture that is strongly peaked along the lower continuum
the transition rate for that statBl{ G|S [\)[*~(1/N)*7~2, boundaryw, (q) in the shape of the psinon dispersi@md a
translates, via conformal invariance, into a power-law 'nfra'shoulder reaching to the upper boundary(q) of the con-
red divergence, tinuum P2. Given the strong divergence 8f% (q,w) at
. . (Qq), the perpendicular spin fluctuations offer the most
. promising way to measure the energy-momentum relation of
@ | © the psinon quasiparticle by means of neutron scattering.

4 ' : 40

IDW(r.0)
(%]

C.S:-(q,@)

Here we are back to focusing on line shapes produced by
20 | ] JYf* excitations as in Sec. V A, but not in the same invariant
M, subspace. Nevertheless, the continuum P6 as depicted in
® . Fig. 7(a) produces, ag= /2, a band of equal width and
location as continuum P2 depicted in Fig. 5 did.

The data used in the product ansatz applied to

. e . S’_’;”’f(w/Z,w) are shown in Fig. 11. The density of states is

0 R 0 : exactly the same as in Fig. 8. The data for the transition rates
0 0.4 0.8 0 0.4 0.8 . . . . .
are monotonically increasing witl. The trend in the low-

of] of] .
frequency limit is thatM?"" (7/2,0) approaches a finite

. . l//* .
Perpendicular spin transition rates between the psinon vacuum ant Iule, po?S'bly Ze'fo- G'\t/ﬁn the fact ttlﬁt(ld (T/Z’wg IS flafj .
the ¢y states afg= = for N=12,16,20,24,28(c) Line shape af at low frequencies, € same trend IS observed In

* . . .
=1 of the ¢ contribution toS_, (q,w). All results are forM, S (m/2,w). The prediction of conformal invariance for the
=N/4. leading infrared singularity is

[=1

f==1

>

[

=]
18¥ ()

80

40 + -

M¥¥(r,0)

FIG. 10. (a) Density of ¢ states atg=m for N=2048. (b)
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1 P ' 8 R , value of the scaling exponemnt do the transition rate data
(@ . (b) exhibit minimal N dependence?
. sk { (i) For states that are inside a continuum, the product
2r e 1 61 . . ansatz requires requires that the exponentl minimizes
. q=t Sl R 2fgm * ] the N dependence of the transition rate data.
3 1 . ;i, NENULEE B (i) For states that mark the boundary of a continuum
w05y 0 005 ol o 41,0 005 0l 4 where the spectral-weight distribution has a divergent singu-
9 M IN £ v IN v larity that is not caused by a divergent density of states the
'., .. z < exponent which minimizes thN dependence of the transi-
%, 2 2t % A tion rate data is in the range<Ow<<1.
< o - liu ."' (iii ) For states that form a branch with nonvanishing spec-
I B ow i tral weight in the limitN—oo, the exponent that minimizes
0 MNP Frrondil o Lwerenem | @57 the N dependence ig=0.
ot 2z 3 0 ! z 3 There is ample evidence for the first scenario in the results
4 4 presented earlier. The data in paf@l strongly indicate that
FIG. 12. (a) Unscaled andb) scaledyy* transition rates for the thﬂd scenario is realized for the antipsinon branch at 0
S, _(g,w) at M,=N/4 for N=12,16,20,24,28. <(g<ds-. The evidence is rigorous for the isolated excitation

at q=0, which carries all the spectral &, _(q,w) as dis-
cussed previously.

Panel(b) suggests that the second scenario applies to the
antipsinon branch atgs<q<w. The exponenta=1/y

At the upper band edgey, the transition rate data ex- =0.653 ... used here is suggested by conformal invariance,
hibit a pronounced maximum that could either signal a di-pyt there is a strong possibility that the singularity of

vergence or a cusp singularity for the infinite system. What'sﬁ"’f(q,w) along the antipsinon branch a;<q$rr is gov-

ever the case may be, this enhancement amplifies thg . by ag-dependent exponent. The insets to Fig. 12 show

divergent density of states B!/ (7/2,0). the N dependence of the corresponding datg-atr, which
Recall that the pal’allel Spin fluctuations exhibit a double'is off the scale used in the main p|ots_ At the zone boundary,
peak line shape at the soft-mode wave nuntperBy con-  the width of continuum P6 has shrunk to zero, which is
trast, the line shape of the perpendicular spin fluctuations afkely to affect theN dependence of the transition rate singu-
the soft-mode wave numbgg is a single-peak structure with larly, as indicated.
the spectral weight concentrated near the upper band edge. In conclusion, this study makes predictions of unprec-
For other wave numbers we do at present not have enougtdented detail for the line shapes of the spin and dimer fluc-
transition rate data points for a useful application of thetuations in the 1Ds=3% Heisenberg antiferromagnet at zero
product ansatz. Nevertheless, from the few data points thaémperature and nonzero magnetic field. Foremost among
we do have some interesting conclusions can be drawn. these predictions is the direct observability in the perpen-
In the transition rate data currently available we observeicular spin fluctuations of the dispersion relations for the
that the spectral weight is heavily concentrated in a singléwo quasiparticles that play a crucial role in this situation:
excitation for any giverg# /2. For 0<q<(s that excita- the psinon and the antipsinon.
tion is located along the lower boundary of continuum P6 A project of considerable interest is the generalization of
and for qs<q= along the upper boundary. Both bound- the .ana.lly3|s reported here 1o the H3-1/2 XXZ model,
aries have the shape of the antipsinon disper&ibinerefore, ~29@in via the Bethe ansatz. The lower symmetry ofXbeZ
N I . i model imposes less stringent selection rules on the transi-
the contribution 088}~ (q, ) to the perpendicular spin fluc- qhg induced by the spin and dimer fluctuation operators. A
tuations offers the most direct way to measure the dlspersmgtudy of quantum fluctuations in theXZ model at nonzero

of the antipsinon qbua3|p_art|c_le d'?fy means Off Ee”tr?nmagnetic field is likely to yield new insights into the nature
scattering—not once but twice, in different parts of the Bril- o¢ the  and y* quasiparticles.

louin zone.
The outstanding role of the excitations along the two an-

tipsinon branches at<q andg>q is illustrated in Fig. 12, ACKNOWLEDGMENTS

where we have plotted the transition raf¢s| Sy |\)[* ver- Financial support from the DFG Schwerpuriiollektive

susq of all states from continuum P6 across various systenyantenzustade in elektronischen 1D lérgangsmetall-
sizes. However, the role of the finité-excitations that are verbindunger(for M.K.) is gratefully acknowledged.

part of these dominant branches is differengatgs andq
>(. This is evident by comparison of pand€k and (b),
which  show differently scaled transition rates
N“|(G|Sq M)

To make sense of the data in this representation we must The Bethe ansatas an exact method for the calculation
distinguish three scenarios and ask the question: For whatf eigenvectors of integrable quantum many-body systems.

S (ml2w)~ w2, p+2=353... (15

APPENDIX: CALCULATING MATRIX ELEMENTS
VIA THE BETHE ANSATZ
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The Bethe wave function of any eigenstate of Ek.in the  transform into each other under translation. Translationally
invariant subspace with=N/2—M, reversed spins relative invariant basis vectors have the form

to the magnon vacuum, 61

1 .
jik=—= 2 e"j), (A5)
= 3 alng,...n)S, S [F) (AD v, =0
1<n;<---<n,=<N N =TIy — ) — () —
where|j)=T'|j)o=[n{’—1, ... n’=1) and I=N/d;<N
has coefficients of the form is an integer. The wave numbessealized in the setA5) are
r r multiples mod(2r) of 27/d;. 0 "
_ [ The set of basis vectordj)o=|ny’, ... n{"), j
a(ng, ... *nr)ngs EXP( Iizl kpnj+ > 2 Opipi| (A2)  —1 .. d arethe generators of the translationally invariant
' basis. The set of distinct vectof k) for fixed k is labeled

determined byr magnon moment&; and one phase angle je 7.C{1,...d}. The rotationally invariant subspace for
0;;=— 0;; for each magnon pair. The suRe S, is over the fixed N/2—r, which has dimensionalityD=N!/[r!(N
permutations of the labeld,2, ... r}. —r)!], splits into N translationally invariant subspaces of

The consistency requirements for the coefficientsdimensionality D,, one for each wave numbek
a(ny, ...,n,) inferred from the eigenvalue equatidhl ) =2m7n/N,n=0, ... N—1. We have
=E|) and the requirements imposed by translational in- p
variance lead to a set of coupled nonlinear equations for the
ki and 6;;. A computationally convenient rendition of the D_le dj_ogkdw Di Dk—j;jk ' (A6)
Bethe ansatz equations for a state specified by Bethe quan-
tum numberd 4, ... |, has the form The Bethe eigenvectdiAl) expanded in this basis can

thus be written in the form

Nop(z)=2ml,+ >, d(z—z)/2), i=1,...r, (A3) d-1 d d-1
J# J |'ﬂ>:j2j aj;ﬁ e"k|j>|:j21 a, |20 ey, (A7)
€ k = = =

where  ¢(z)=2 arctarg, ki=7—¢(z), and i (i) (i) .

= msgiRe(z —2z)]- $((z—2)/2). The energy and wave where theaj=a_1(n see N ), the Bethe coefficients of the

number of the eigenvector thus determined are generator basis vectof§),, are the only ones that must be
evaluated. The last expression of E47) holds because the

2 om L Bethe coefficients; of all generatorsj), that do not occur
=—> —, k=ar—— > 1., (A4) inthe set’ are zero.

J i=11+7 N = We calculate transition rates for the dynamic structure
factor (2) in the form

r

whereE-=JN/4 is the energy of the magnon vacuum.

In the past, the Bethe ansatz was rarely used for the pur- (ol S| thm) 2
pose of calculating matrix elements. The main deterrent has |<G|S§|m>|2= 2q T > (A8)
been the need of evaluating the s@ia S, over ther! mag- I ol /| ol

non permutations in the coefficier(42) of the Bethe eigen- where |#o),| ) are the(non-normalizedi Bethe eigenvec-

vectors(Al). However, the tide is now changing rapidly for tors of the ground state and of one of the excited states from
tional power andii) theoretical advances that make it pos-

sible to reduce matrix elements of Bethe wave functions to d

determinantal expressiohs. [|]|2= 21 djla>. (A9)
In the following, we sketch how the matrix elements can =

be manipulated effectively by using the Bethe wave func-The matrix element ¢o|S;|¢m) is nonzero only ifg=k,

tions directly. The use of the determinantal expressions of-ky+2#Z. For the fluctuation operat(ﬁ}f1 it can be evalu-

Bethe ansatz transition rates for the calculation of dynamiated in the form

structure factors will be reported elsewhéte.

d N di-1

In designing an efficient algorithm, we must heed the fact z 1 —70) (M) ign J g /a2l
that in the calculation of a single matrix element, the sum <‘/’O|Sq|'//m>_\/_ﬁ ;1 a8 21 € ,:20 e (J1Sali -
PeS, is evaluated many times, once for every coefficient (A10)
a(nq, ...,n,) of the two eigenvectors involved. Under these

circumstances, it is imperative that the algorithm has rapid '€ Nonvanishing matrix elementgo| Sy | ¢m) for the other

access to a table of permutations. Such tables can be gengPin fluctuation operators must also satisfiy=ky,—ko
ated recursively by powerful algorithns. +2x7 and can be reduced to somewhat more complicated

The computational effort can be reduced considerably i€XPressions involving elemen,tos{jo|sﬁ|jm)|m between basis
we use the translational symmetry of Hé&1), guaranteed vectors from differentS; subspaces. The memory require-
by the relationa(n;+1, ... n,+1)=e*'a(n;, ... ,n,) be- ments for the calculation of one such matrix element are 6.7
tween Bethe coefficien{#\2) pertaining to basis vectors that MB for N=18,r=9 and 73 MB forN=20, r=10.
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