
PHYSICAL REVIEW B 66, 054302 ~2002!
Binary distribution functions of atoms of simple crystals

A. I. Karasevskii* and V. V. Lubashenko†

Institute for Metal Physics, 36 Vernadsky str., Kiev, 03142, Ukraine
~Received 14 August 2001; revised manuscript received 11 March 2002; published 9 August 2002!

We propose a method of statistical description of simple crystals and calculation of their thermodynamic
functions and equation of state. The method is based on the derivation of an exact expression for the binary
distribution function of atomic displacements and a variational procedure for the determination of an effective
constant of the quasielastic bond of atoms of the crystal. For rare gas crystals with Morse and Lennard-Jones
potentials, we obtained the equation of state and thermodynamic parameters of the solid-state, which are in
agreement with experimental data. We also found that a solid-state instability occurs near the observed melting
temperature of the crystal, corresponding to a point above which there is no more an equilibrium effective
parameter of the quasielastic bond.
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I. INTRODUCTION

The statistical theory of perfect solids was extensiv
developed in the framework of numerous approaches, wh
usually, fall into two classes. Some models are based on
single-particle representation of the crystalline state, conc
trating on motion of an individual atom in a self-consiste
potential due to interaction with its neighborhood.1–4 The
other, more commonly used, class of models is focused
the collective aspect of the lattice dynamics, representin
solid state by means of a set of normal phonon modes.
example, the formalism of the self-consistent phonon~SCP!
theory5–9 is well known as a good tool for treatment of th
dynamics of anharmonic solids. In the first order of th
model, the self-consistent harmonic ~SCH!
approximation,7,10 the true Hamiltonian of the crystal is ap
proximated by an effective harmonic Hamiltonian with t
force constants determined by ensemble averaging the
ond derivatives of the interatomic potential. This yields a
of self-consistent equations for the phonon frequencies
vibrational amplitudes to be solved iteratively. The SC
theory and its modifications were used successfully to ev
ate the dynamical properties of both three-dimensional~3D!
crystals11–15 and plane adsorbed monolayers of atoms.16–18

Particularly, the improved self-consistent~ISC! model, which
is the SCH approximation corrected for cubic anharmonic
provides a satisfactory description of the phon
spectrum13,19 and thermodynamic properties of the rare g
~RGC’s!11–13,20,21crystals, except for temperatures near t
melting point, where the iteration process shows poor c
vergence. This shortcoming is avoided within the effect
potential theory,22–24developed during the past decade. Th
powerful technique, based on evaluation of the partit
function via the path integral method, was successfully
plied to consideration of thermal and elastic properties
crystalline neon.21 Though both single-particle and collectiv
approaches to the description of the solid state use diffe
approximations as starting points, they give rise to sim
results, so that they are rather complementary than contra
tory, and the choice of the concrete approach is a questio
practical purposes.

The present paper is devoted to a formulation of a sta
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tical model of the equilibrium state of solids, based on
derivation of an exact expression for the binary distributi
function of atomic displacements. In this approach, a cry
is represented as a statistical ensemble of regularly loc
particles with pair interactions, each particle being charac
ized by its thermal and quantum broadening near the lat
site and by its correlations with the motion of other particle
For such a system, knowledge of the binary distributi
function of atomic displacements is fundamental in det
mining the average potential energy of the interatomic int
action. The method developed in this work allows one
construct binary functions of atoms of simple quasiharmo
crystals at any temperature and pressure. In Sec. II we de
a correlated distribution function of atoms of the whole cry
tal and propose a method of reducing it to the binary fu
tion. This procedure was used to determine the paramete
the binary distribution functions of crystals in one, two, a
three dimensions. In Sec. III we evaluate the free energy
simple crystal with pairwise interaction of atoms in terms
the binary distribution functions, taking into account a co
tribution due to the cubic anharmonicity of atomic vibr
tions. Both the free energy and coefficients of the distribut
function are parametrized by an effective constant of
quasielastic bond, whose equilibrium value is evaluated
the variational procedure. In Sec. IV we determine the eq
tion of state and other thermodynamic parameters of
RGC’s in the framework of the approach developed in Se
II and III, using the Morse and Lennard-Jones potentials
the representation of interatomic interactions. For the lim
ing cases of low and high temperatures, we present the
lytical expressions for the parameters of the distribut
function and thermodynamic characteristics of the crys
An analysis of the results obtained and their comparison w
the experimental data and other theoretical models are g
in Sec. IV.

II. DISTRIBUTION FUNCTIONS OF ATOMIC
DISPLACEMENTS IN SIMPLE CRYSTALS

In this section we demonstrate a method of explicit c
culation of theN-particle distribution function of atomic dis
placements in simple harmonic crystals and its reduction
©2002 The American Physical Society02-1
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the two-particle function. To illustrate the method, we w
consider one-dimensional crystals, two-dimensional trian
lar crystals and three-dimensional crystals with fcc and
lattices as examples.

A. N-particle distribution function

We consider a simple perfect crystal containingN atoms
of massM. Let us denotef n(q1 ,q2 , . . . ,qn) as the normal-
ized n-particle distribution function of displacemen
q1 ,q2 , . . . ,qn of atoms 1,2, . . . ,n from their sites. Due to
the collective character of the motion of atoms, the funct
f n should incorporate correlations between displacement
atoms. In the harmonic approximation, the collective atom
motion in a crystal is described by a set of normal phon
modes. A normal coordinate corresponding to wave vectok
and branchj is

aj~k!5S M

N D 1/2

(
n,b

qnbej b~k!e2 ik•Rn, ~1!

whereqnb is the bth Cartesian coordinate of the displac
ment of atomn from its equilibrium positionRn , andej b(k)
is the phonon polarization vector in theb direction. Let
Xj (k) andYj (k) be the real and imaginary parts of the no
mal coordinateaj (k), respectively. Because each norm
mode is considered as an independent harmonic oscill
the distribution function of atoms of the crystal can be re
resented, up to a constant factor, as a product of probab
densitiesP(Xj (k)) andP(Yj (k)) of the real normal coordi-
nates,

f N;)
k, j

P~Xj~k!!P~Yj~k!!,

where the wave vectork runs over a half of the Brillouin
zone. The details of the derivation of expressions
P(Xj (k)) and P(Yj (k)) are given in Appendix A. As a re
sult, the normalizedN-particle distribution function is given
by

f N5CNexpF2 (
nn8bb8

Bnn8
bb8qnbqn8b8G , ~2!

whereCN is a normalization factor and

Bnn8
bb85

M

N\ (
k, j

v j~k!tanhS \v j~k!

2T D
3ej b~k!ej b8~k!cos@k~Rn2Rn8!#.

Here summation overk is taken over all the Brillouin zone
The frequencyv j (k) of the phonon with wave vectork and
branchj is

v j~k!5(
a,b

ej a~k!Dab~k!ej b~k!,

where
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Dab~k!5
1

M (
n

8~e2 ik•Rn21!Fab~0n!

is the dynamical matrix withFab(0n) being the force con-
stant between atoms 0 andn. If atom n belongs to thesth
coordination sphere of atom 0,

Fab~0n!52bs

RnaRnb

Rs
2

,

where Rs5uRn2R0u is the radius of thesth coordination
sphere andbs is the constant of the quasielastic bond
atoms separated by distanceRs .

Expressions for the distribution functionf N and its coef-
ficients are applicable to any type of simple harmonic crys
and may be extended to the case of a lattice containing m
than one atom in an elementary cell.

The matrixBnn8
bb8 should possess the symmetry of the cry

tal lattice. If the lattice is symmetrical with respect to rot
tion around ak-fold axis, withk.2, it is easy to demonstrat

that Bnn
bb85gdbb8 , where

g5
M

N\ (
k, j

v j~k!tanhS \v j~k!

2T Dej b
2 ~k! ~3!

is independent ofn andb. Next, the elementsBnn8
bb8 with n

Þn8 have the most simple form if the coordinate system
chosen so that thex axis passes through sitesn andn8. In this

caseBnn8
bb852gzs

bdbb8 , where the dimensionless positiv
coefficientszs

b,1 describe correlations between displac
ments of atoms belonging to thesth coordination sphere
Numerical estimation of the coefficientszs

b for crystals with
different dimensionality and lattice geometry shows that o
the parameterz1

x , describing longitudinal correlations o
neighboring atoms, contributes substantially to the distri
tion function f N . It is reasonable to retain only the parame
z1

x[z in the expression forf N , so that theN-particle distri-
bution function is expressed as

f N5CNexpF2g(
n S qn

22z(
n8

qn
xqn8

x D G , ~4!

where the subscriptn8 runs over all atoms of the first coor
dination sphere of atomn, andqn

x and qn8
x are longitudinal

displacements of atomsn andn8—i.e., projections of vectors
qn and qn8 on the x axis passing through their sites. Th
coefficient of the longitudinal correlation of two neighborin
atoms 0 andn is expressed as

z52
M

N\g (
k, j

v j~k!tanhS \v j~k!

2T Dejx
2 ~k!cos~k•Rn!. ~5!

Hereafterejx(k) denotes the projection of the phonon pola
ization vectorej b(k) on the axis passing through two neig
boring sites.
2-2
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B. Two-particle distribution function

To calculate the average potential energy of the pairw
interatomic interaction, we need a two-particle distributi
function f 2(qn ,qn8), which can be readily derived from th
N-particle functionf N in the form ~4!.

1. One-dimensional crystal

The procedure of the reduction of theN-particle function
f N to the binary distribution function of neighboring atoms
very simple and elucidative in the case of a one-dimensio
crystal. First, let us consider a cluster containing atomn and
its neighborsn21 andn11. A normalized distribution func-
tion of such a cell may be generally represented as

f 3~qn21 ,qn ,qn11!5E f Ndq1•••dqn22dqn12•••dqN

5C3exp$2g@qn
21g~z!~qn21

2 1qn11
2 !

22zqn~qn211qn11!#%, ~6!

where functiong(z) is to be determined. Integrating Eq.~6!
over qn21, we arrive at an expression forf 2(qn ,qn11),
which has to be symmetric with respect toqn andqn11. This
condition leads to a quadratic equation forg with the physi-
cal solution

g~z!5
1

2
~11A124z2!.

As a result, the distribution function for the atomsn and n
11 is given by

f 25C2exp$2g@g~z!~qn
21qn11

2 !22zqnqn11#%. ~7!

It is evident from Eq.~7! that taking interatomic correlation
into account in the two-particle functionf 2(qn ,qn11) results
in an additional correlative broadening (g,1) of the range
of localization of atomsn andn11.

2. Two- and three-dimensional crystals

To derive the distribution function of a pair of neighbo
ing atoms in a two- or three-dimensional crystal, let us f
low the same procedure as described above. Consider a
containing an atom~say, atom 0! and its nearest neighbor
1,2, . . . ,z (z is the coordination number!. The distribution
function f z11(q0 ,q1 , . . . ,qz) of atoms of such a cell may b
obtained fromf N by integration of Eq.~4! over coordinates
of all atoms of the crystal exceptz11 atoms of the cell. In
general, it should appear as

f z115Cz11expH 2gFq0
21 (

n51

z

@ g̃~z!qn
222zq0

xqn
x#G J ,

~8!

whereg̃(z) is some unknown function describing the effe
tive broadening of the ranges of localization of neighbors
the central atom 0 due to the correlative interaction w
surrounding atoms. Next we integratef z11 over the coordi-
nates of atoms of the cell, except 0 and 1, with thex axis
05430
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passing through the sites 0 and 1. The resulting two-part
function f 2(q0 ,q1) should be symmetric with respect to var
ablesq0 andq1. As a result, the distribution function of two
neighboring atoms 0 and 1 is given by

f 2~q0 ,q1!5C2exp$2g@gl~z!~x0
21x1

2!22zx~z!x0x1

1gt~z!~y0
21y1

21z0
21z1

2!#%, ~9!

where the functionsgl(z) and gt(z) describe the effective
broadening of atomic distributions in longitudinal and tran
verse directions, andx(z)<1 determines a damping of in
teratomic correlations by the surrounding. A term respons
for an effective transverse correlation is omitted in Eq.~9!
because it is negligible.

Since the one-particle functionf 1 of the distribution of
displacements should be symmetric with respect to coo
nates of the atom, the functionsgl(z) andgt(z) are related to
each other as

gt~z!5gl~z!F12S zx~z!

gl~z! D 2G .
Results of calculation of functionsgl(z) and x(z) for

various types of crystals are listed in Table I. The tw
dimensional crystals are assumed to possess the trian
lattice. In the same table we show the limit valuesz0 andzH
of the correlation parameter, found from Eq.~5! in the cases
of zero and high temperatures@T@\v j (k)#, respectively,
which are determined only by the lattice geometry and
independent of specific values of atomic mass and cons
of the quasielastic bond.

If atoms n and n8 are not neighboring, the correlation
between their displacements are negligible. We consider t
binary distribution function to be just a product of the on
particle functions,

f 2~qn ,qn8!5 f 1~qn! f 1~qn8!, ~10!

where

f 1~qn!5C1exp@2ggt~z!qn
2#. ~11!

III. FREE ENERGY

In the present section we evaluate the free energyF of a
simple perfect crystal with pairwise interaction using t

TABLE I. Coefficients of the two-particle distribution function
and zero- and high-temperature correlation parameters for diffe
types of lattice geometry.

Lattice gl(z) x(z) z0 zH

1D 1
2 (11A124z2) 1 1/3 1/2

2D 122z21
z3

4
12

z

4
1

z2

8
0.201 0.312

bcc 1
2 (11A12

20
3 z2) 1 0.237 0.375

fcc 123z21
z3

2
12

z

2
1

z2

4
0.136 0.25
2-3
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model of the binary functions of the atomic distribution. W
proceed from the Gibbs-Bogoliubov inequality

F<FH5F01^U2U0&, ~12!

whereU is the potential energy of the crystal,^•••& is an
average over the states of the harmonic crystal, and

F05T(
k, j

lnF2sinhS \v j~k!

2T D G , ~13!

^U0&5
1

4 (
k, j

\v j~k!cothS \v j~k!

2T D ~14!

are the free energy and average potential energy of a
monic crystal, respectively. The average potential energy
the crystal is calculated using the binary distribution fun
tions of atomic displacements of the simple crystal given
Eq. ~9! or ~10! and is expressed as

^U&5
1

2 (
n,n8

^u~r nn8!&

5
1

2 (
n,n8

E u~r nn8! f 2~qn ,qn8!dqndqn8 , ~15!

whereu(r ) is interatomic potential,nÞn8.
Using the symmetric binary functions~9! and~10! for the

evaluation of^U& results in omitting the odd derivatives o
the interatomic potential, which are of particular importan
at high temperatures. The leading contribution to the f
energy due to cubic anharmonicity was taken into accoun
perturbation theory in the ISC approximation,11 which repre-
sents the first-order SCP theory corrected for the cubic ter
The ISC theory is known to give an excellent description
the thermodynamic properties of the quasiclassical an
monic solids~Ar, Kr, and Xe!,11,20 though results for solid
neon do not fit satisfactorily the observed data at h
temperature.21 Similarly to the ISC model,11 we add a cor-
rectionDF3 due to the cubic anharmonicity of atomic vibr
tions to the free energy~12! of the quasiharmonic crystal:

DF352
\2

3N2M3 (
1,2,3

D~k11k21k3!

v1v2v3
uC123u2W123,

~16!

where

W1235
n1n21n2n31n3n11n11n21n311

v11v21v3

13
n2n31n3n12n1n21n3

v11v22v3
,

C1235 (
n,a,b,g

ei (k11k21k3)Rn/2Sa
(1)Sb

(2)Sg
(3)^Fabg~0n!&,

Sa
(1)5sin(k1Rn/2)ej 1a(k1), n5(e\v/T21)21, and

^Fabg(0n)& is the third-order force constant averaged w
the binary distribution function obtained in the prese
05430
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model. Similarly to the corresponding expression in the I
theory,11 the total free energy of the crystal is

FT5FH1DF3 , ~17!

but here the average potential energy is calculated using
binary distribution functions taking into account the corre
tions between longitudinal displacements of neighboring
oms. Moreover, employment of a variational technique
the calculation of the effective constants of the quasiela
bond allows us to avoid inaccuracy due to the iteration p
cedure and evaluation of derivatives of the interatomic
tential in the ISC model, especially at high temperature, a
to get analytical expressions for thermodynamic characte
tics of the crystal.

IV. RARE GAS CRYSTALS

A. Free energy

The simple analytic expressions for the binary distributi
function ~9! of atomic displacements and its coefficients~3!
and~5! enables one to estimate the average potential en
of interatomic interactions for any pairwise potential. In th
section we follow the method developed in the preced
sections to determine the distribution functions and equi
rium parameters for rare gas crystals with fcc lattices. As w
recently shown,24 a contribution to the cohesive energy
the RGC’s due to three-body interactions does not exc
3% for Ne and is maximal~7%! for Xe. Thus, one may use
pairwise potentials to describe interatomic interactions in
RGC’s. In the present work we employ the Morse potent

u~r !5A@e22a(r 2R0)22e2a(r 2R0)#

and the Lennard-Jones~LJ! potential

u~r !54eF S s

r D 12

2S s

r D 6G ,
whereA, R0 , a, e, ands are the potential parameters. Th
LJ potential was recently successfully used for calculation
the properties of solid neon in the framework of the im
proved effective potential method.21 The parameters of both
potentials, listed in Table II, were determined so that
internal energy, lattice parameter, and~in the case of the
Morse potential! the bulk modulus of the RGC’s atT50,
calculated within the present model, fitted the observed v
ues. In the case of the Morse potential we restrict ourse
to consideration of only the interaction of neighboring atom

TABLE II. Parameters of the Morse and LJ potentials and the
Boer parametersL for the RGC’s.

Morse LJ
a (Å 21) A ~K! R0 (Å) L s (Å) e ~K! LLJ

Ne 2.05 52.98 3.04 0.4357 2.75 40.81 0.08
Ar 1.62 170.76 3.71 0.1360 3.37 132.52 0.028
Kr 1.56 236.23 3.97 0.0767 3.61 182.85 0.015
Xe 1.38 332.04 4.32 0.0457 3.92 257.34 0.00
2-4
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and in calculations with the LJ potential we take into acco
the three first coordination spheres. We also employ the o
parameterb1 of the quasielastic bond of neighboring atom
It was found that accounting for the next constantb2 has no
pronounced effect on the calculated values of both cry
free energy and equilibrium solid-state parameters.

With the Morse potential and binary distribution functio
~9!, the average potential energy of the interaction of nei
boring atoms is expressed as

^u&
A

5
e22b1

q

g*

11
2

g* gtaR

2
2e2b1

q

4g*

11
1

2g* gtaR

, ~18!

where b5a(R2R0) is the reduced lattice expansion,R
[R1 is the nearest-neighbor distance,g* 5g/a2, and

q~z!5
2

gl~z!1zx~z!
~19!

is a correlation factor, representing the contribution of
correlations in the energy of interatomic interactions (q52 if
z50). Equation~18! holds also if the atoms are not neig
bors of each other, withbs5a(Rs2R0) and q52. For the
RGC’s, it turned out that the denominators in Eq.~18! are
close to unity at any temperature and pressure; i.e., the
tribution of the transverse displacements of neighboring
oms to the average potential energy is negligibly small a
can be omitted in the present consideration.

In the case of the LJ potential, the average potential
ergy of the interatomic interaction was estimated by
saddle-point technique:

^u&
4e

5F S s

RD 12

^ r̃ 212&2S s

RD 6

^ r̃ 26&G ,
where r̃ 5r /R,

^ r̃ 2n&5
e2n2/2g̃

S 12
n

g̃
D n11/22

n

2gR2gt

e2(n12)2/2g̃

S 12
n12

g̃
D n15/2,

and g̃52gR2/q(z).
It is convenient to introduce a reduced temperaturet

5T/A and the de Boer parameter, which is expressed a

L5
\a

AMA
~20!

in the case of the Morse potential and as

LLJ5
\

sAMe

for the LJ potential.
In the subsequent consideration we present the analy

results related only to the Morse potential. If one introduc
the reduced phonon frequencyṽ j (k) by
05430
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v j~k!5
AcL

\
ṽ j~k!, ~21!

wherec5(b1 /Aa2)1/2 is a dimensionless parameter of th
quasielastic bond of neighboring atoms, the crystal free
ergy depends only on the reduced temperaturet, de Boer
parameter, and two variational parametersb andc, determin-
ing the lattice expansion and effective quasielastic bond c
stant, respectively. In all formulas containing sums overk,
we replace the summation with integration over the volu
of an elementary cell of the reciprocal lattice. The compu
tional formulas for both two- and three-dimensional rare g
crystals are summarized in Appendix B.

The equilibrium values of the variational parameters
functions of temperature are found from minimization of t
free energyFT with respect tob andc. In Fig. 1 we plot the
reduced quasielastic bond parameterc versus temperature
calculated for solid Ar at zero pressure. A drastic decreas
c(t) as the temperature approaches the melting point is
dicative of the vicinity of the instability pointtc , where the
crystalline system becomes unstable with respect to
quasielastic bond parameterc. For Ar, tc50.513, while the
reduced melting temperature is 0.486. As will be shown la
the disappearance of the free energy minimum with resp
to c is responsible for a steep increase of the heat capacityCp
and reduction of the bulk modulus of the RGC’s at tempe
tures close to the melting point.

The temperature dependence of the reduced quasiel
bond parameterc may be directly related to the experiment
data on the sound velocityuj k in crystals. At small values of
the wave vectork, we may writeṽ j (k)5k j kkR, where the
coefficient k j k takes into account the polarization of th
sound wave and direction of its propagation in the crys
and get the relation between the sound velocity and par
eterc,

FIG. 1. Reduced effective constant of the quasielastic bond
neighboring atoms of solid Ar vs temperature at zero pressure
culated using the Morse potential by the free energy minimizat
~solid line! and estimated from the experimental data for the te
perature dependence of the longitudinal sound velocity in the@100#
direction ~Ref. 25! ~circles!.
2-5
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c~t!5S M

a2A
D 1/2

uj k

k j kR~t!
.

In Fig. 1 we plot also the values ofc(t), found in such way
from the observed temperature dependence of the longit
nal sound velocity in the@100# direction of Ar crystal.25

The correlation parameterz is one of the important char
acteristics of the crystalline phase as a statistical ensemb
regularly arranged particles. The temperature depende
z(t) for Ar at zero pressure calculated at equilibrium valu
of c is presented in Fig. 2. The correlation parameter
creases continuously with temperature, compensating
hancement of the interatomic repulsion due to thermal bro
ening of the range of the localization of atoms. T
contribution of the correlations of atomic displacements
the potential energy of interatomic interaction is expresse
Eq. ~18! by the correlation factorq(z), which depends on the
temperature through the parameterz ~Fig. 3!. As apparent
from Fig. 3, the correlations affect the energy of interatom
interaction only at low temperature. At high temperatu
when z→zH , q(z)→2, coinciding with the value corre
sponding to the completely uncorrelated statistical distri
tion of displacements of atoms of the crystal.

FIG. 2. Correlation parameter vs reduced temperature in Ar

FIG. 3. Correlation factorq(z) vs reduced temperature in Ar.
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B. Equation of state of the RGC’s

From Eq.~17! one can derive the equation of state of
crystal and determine its thermodynamic properties. Keep
in mind that the equilibrium value of the variational param
eterc depends implicitly on the temperature and volume
the crystal, we may write the equation of state of the crys
as

P5Pl1
EphgG

V
1DP3 , ~22!

where

Pl52S ]^U&
]V D

T

2S ]^U&
]c D

T
S ]c

]VD
T

is the pressure due to the lattice compression,

Eph52T2S ]

]T S FH

T D D
V

2^U&

is the energy of the phonon subsystem of the crystal,

gG52

S ] ln c

] ln VD
T

12S ] ln c

] ln TD
V

~23!

is the Grüneisen parameter, and

DP352S ]DF3

]V D
T

2S ]DF3

]c D
T
S ]c

]VD
T

is an additional contribution to the phonon gas pressure
to cubic anharmonicity~phonon interaction!.

In Fig. 4 we plotted the calculated temperature dep
dence of the Gru¨neisen parameter for Ar, which exhibits a
anomalous increase in the vicinity of the melting point.

FIG. 4. The Gru¨neisen parameter of solid Ar vs temperature
zero pressure.
2-6
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In Figs. 5–7 we show the thermodynamic properties
solid Ar ~nearest-neighbor distance, heat capacity, and b
modulus! versus temperature, calculated in the framework
the present approach.

C. Rare gas crystals at high and low temperatures

In both limiting cases of high and low temperatures, t
expressions for g* , z, ws5(F02^U0&)/NA, and w3
5DF3 /NA may be expanded into power series with resp
to the parametercL/t. Such an expansion simplifies su
stantially the minimization of the free energy with respect
b andc and allows one to get explicit analytical expressio
for the equilibrium parameters of the crystal.

In the high-temperature limitt.cL, we find

g* '
c2

t (
l 50

3

nl S cL

t D 2l

, ~24!

z'm01m1S cL

t D 2

, ~25!

FIG. 5. Temperature dependence of the nearest-neighbor
tance in solid Ar at zero pressure. The observed values are
Ref. 26.

FIG. 6. Heat capacity of solid Ar per atom vs temperature
zero pressure. The observed values are from Ref. 27.
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ws'tFp01p1S cL

t D 4G13t lnS cL

t D , ~26!

w3'2
a3t2

c6 S e22b1q/g* 2
1

4
e2b1q/4g* D 2

, ~27!

where a3'1.5 for Ar, and nl , ml , and pl are numerical
coefficients determined by the phonon spectrum of the c
tal ~see Appendix C!. Values of these coefficients for the fc
lattice are listed in Table III.

In the case of low temperature (t!cL),

g* '
c

L Fs12s2S t

cL D 4G , ~28!

ws'cLF t12t2S t

cL D 4G , ~29!

and the correlation parameter atT50 is z050.136. Expres-
sions for the coefficientssl and t l are given in Appendix C,
and their values for the fcc lattice are shown in Table IV.

In the case of zero temperature, the internal energy
atom is given by

E0526AexpS 2
1

2s1

q0L

c0
D 1

3

4
ALs1c0 , ~30!

where

c05A3q0

t1s1
2

q0

4s1
L ~31!

is-
m

t

FIG. 7. Zero-pressure bulk modulus of solid Ar per atom
temperature at zero pressure. The observed values are from Re

TABLE III. Coefficients of the high-temperature expansion
the parametersg* , z, andws .

n0 n1 n2 n3 m0 m1 p0 p1

2 5/6 0.475 0.296 1/4 27/96 1/3 1/48
2-7
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is the equilibrium parameter of the quasielastic bond aT
50, q05q(z0)51.87. The equilibrium quantum lattice ex
pansion is

b05
3

4s1

q0L

c0
. ~32!

The average distance between neighboring atoms and
bulk modulus of the crystal atT50 are, respectively, given
by

R~0!5R01
b0

a
, ~33!

BT~0!5
4A2Aa2e22b0/3

3R~0! F 12
9

8s1

q0L

c0

11
7

8s1

q0L

c0

G .

~34!

Equating the right-hand parts of Eqs.~30!, ~33!, and~34! to
the observed values of the sublimation energy, lattice sp
ing, and bulk modulus for the RGC’s~see Ref. 28 and refer
ences therein!, we obtained a set of equations for three p
rameters of the Morse potential. In the case of the
potential, we fitted the crystal energy and the interatom
distance atT50.

Consideration of the purely quantum motion of atoms
the crystal in the limitT50 may be used as a check of th
validity of the present statistical model of solids. On the o
hand, equilibrium values of the parametersg and z at T
50 can be found directly from Eqs.~3! and~5!. On the other
hand, they may be considered as variational parameter
the ground-state wave function of atoms of the crystal.
this case, values ofg and z can be calculated by the direc
variational method from the corresponding Scro¨dinger equa-
tion. The ground-state energy of the crystal as a function
g* andz is

E~g,z!5NAS 3

4
g* L226e2q(z)/2g* D .

We found that minimization ofE with respect tog* and z
yields the equilibrium energy and parameters of the cry
which coincide completely with the corresponding ze
temperature values calculated within the present approa

In the limit of a classical crystal (L50), its equilibrium
parameters are expressed explicitly as

TABLE IV. Coefficients of the low-temperature expansion
the parametersg* andws .

s1 s2 t1 t2

1.928 0.550 1.446 0.092
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b'
3t

4c2
,

~35!
c'~11A12t/tc!

1/2,

where the critical temperaturetc'(119a3/16)21 corre-
sponds to the point of the disappearance of the minimum
the free energy with respect toc. Keeping in mind the tem-
perature dependence of the constant of the quasielastic
~35!, we can represent the crystal heat capacity in the hi
temperature range as

Cp

3N
'11

t

2c4
1

t2

4c6tc
2A12t/tc

. ~36!

It follows from Eq. ~36! that the anomalous rise of the he
capacityCp near the melting point is associated with an i
creasing of the temperature sensitivity of the effective
rameter of the quasielastic bond (udc/dtu@1) as the tem-
perature approaches the instability pointtc . Numerical
analysis of the instability temperature for the RGC’s sho
that tc is slightly higher than the melting pointtM , but
udc/dtu@1 at t5tM .

V. DISCUSSION

The starting point of the method of statistical descripti
of the crystal state, developed in the present work, is
common representation of a crystal as a system of bo
oscillators, whose collective motion is described by a se
normal modes of vibration. From such a consideration,
passed on consistently to the representation of the crysta
an ordered ensemble of particles, whose spatial distribu
is determined by the dynamical characteristics of the crys
Appealing to symmetry reasoning allowed us to reduce
N-particle function of the distribution of atomic displace
ments~4! to the binary distribution function~9!, providing a
means for the exact evaluation of the average potential
ergy ~15! of the pair interaction of atoms in the crystal. In
troducing the effective constant of the quasielastic bond,
parametrized the crystal free energy~17!, representing it as a
function of the reduced temperaturet, the De Boer constant
and two dimensionless variational parameters, the lattice
pansion and the constant of the quasielastic bond. In con
to the iterative procedure employed in the SCP theor
within the present model the equilibrium values of the var
tional parameters are calculated via minimization of the cr
tal free energy. Such an approach not only gives the ben
of simple and clear computations~which become trivial in
the cases of high and low temperatures!, but allows one to
reveal a number of characteristic features, which are not
dent within the SCP model.

An analysis of the free energy of the RGC as a function
the effective parameter of the quasielastic bond shows
the free energy minimum with respect toc disappears at a
temperaturetC just above the melting pointtM . The ap-
proach to the instability point is accompanied by a ste
reduction of the parameterc (udc/dtu@1 at t'tC! in a
narrow temperature range~Fig. 1!. Such drastic change o
2-8
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the sensitivity of the system manifests itself in an abr
increase of the heat capacityCp of the RGC’s near the melt
ing point ~Fig. 6!, which was observed experimentally. Su
behavior of the RGC is attributed to the substantial contri
tion of the anharmonicity to the free energy of the crystal
the high-temperature range, depending strongly onc at t
.cL. The vibrational anharmonicity leads to a breakdo
of the self-consistent quasielastic interatomic bonds at h
temperatures, manifesting itself in the disappearance of
free energy minimum with respect toc. A correlation be-
tween this instability and melting of the RGC’s is the subje
of a separate study. Particularly, it was demonstrated29 that
the cubic anharmonicity of atomic vibrations is responsi
for a dramatic reduction of the vacancy formation ene
near the melting temperature.

Another item to be mentioned is the role of the inte
atomic correlations in the statistical model of the crystal.
apparent from Fig. 2, the correlation parameterz rises with
temperature. But the least value of the correlation fac
q(z), providing the maximal gain in the energy of the inte
atomic interaction, is realized at low temperature~Fig. 3!. At
high temperatureq(z)→2, which coincides with the value
q(0)52 corresponding to the completely uncorrelated s
tem. However, taking the temperature dependence of the
tor q into account is important in the calculation of the he
capacity and bulk modulus of solids.

In the present work we studied the thermodynamics of
RGC’s, using two potentials to approximate the interatom
interaction. The parameters of both potentials were found
fitting the observed values of the internal energy, interato
distance, and bulk modulus of the RGC’s atT50 in the
framework of the present statistical model of the solid sta
Comparison of the theoretical temperature dependence
the lattice spacing, heat capacity, and bulk modulus of
RGC, calculated for both potentials, with the experimen
data over the whole range of allowable temperatures~Figs.
5–7!, displays good agreement between the theoretical
observed results.

In conclusion, it should be noted that the present mo
may be rather efficient in the investigation of the thermod
namic state of crystals with complex lattices.
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APPENDIX A: CALCULATION OF THE N-PARTICLE
DISTRIBUTION FUNCTION

Let us determine the Fourier transform of the thermo
namic probability densityP(Xj (k)) of a real normal coordi-
nateXj (k) as

sk, j~g!5E
2`

`

P~Xj~k!!eigXj (k)dXj~k!. ~A1!

Then the Fourier inversion gives
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P~Xj~k!!5
1

2pE2`

`

sk, j~g!e2 igXj (k)dg. ~A2!

In view of the definition ofP(Xj (k)), Eq. ~A1! can be re-
written as

sk, j~g!5^eigXj (k)&, ~A3!

where ^•••& denotes averaging over the equilibrium dist
bution ofXj (k). In terms of the operatorsbk, j andbk, j

† of the
creation and annihilation of phonons, we may write

Xj~k!5
1

2 S \

2v j~k! D
1/2

@bk, j1bk, j
† 1b2k, j1b2k, j

† #,

~A4!

wherev j (k) is the phonon frequency, corresponding to t
wave vectork and j th vibration branch. The average~A3!
can be expressed in terms of cumulantsKn of the random
variableXj (k) as

^eigXj (k)&5expS (
n51

`
Kn

n! D .

Restricting ourselves to the first nonvanishing cumulant

K252g2^Xj
2~k!&52

g2\

2v j~k! S nk j1
1

2D ,

wherenk j5@exp(\vj(k)/T21)#21 is the average occupatio
number of phonons, we obtain

sk, j~g!5expF2
g2\~nk j11/2!

4v j~k! G . ~A5!

Substituting Eq.~A5! into Eq. ~A2!, we get

P~Xj~k!!5C expF2
2v j~k!

\
tanhS \v j~k!

2T DXj
2~k!G .

In a similar way one can calculate the probability dens
P(Yj (k)) of the variableYj (k). In the representation of nor
mal modes, the crystal distribution functionf N is a product
of probability densities of 3N independent variablesXj (k)
and Yj (k) or the square root of the product of probabili
densities ofall real normal coordinates,

f N5C expF2(
k, j

v j~k!

\
tanhF\v j~k!

2T G@Xj
2~k!1Yj

2~k!#G ,
where the summation is taken over all wave vectors in
first Brillouin zone. Taking into account that

Xj
2~k!1Yj

2~k!

5
M

N (
nn8bb8

qnbqn8b8ej b~k!ej b8~k!cosk~Rn2Rn8!,

we rewrite f N in the coordinate representation
2-9



ar
le
he
al

ar

he

or

A. I. KARASEVSKII AND V. V. LUBASHENKO PHYSICAL REVIEW B 66, 054302 ~2002!
f N5expF2
M

N\ (
nn8bb8

qnbqn8b8(k, j
v j~k!

3tanhS \v j~k!

2T Dej b~k!ej b8~k!cosk~Rn2Rn8!G .

APPENDIX B: COMPUTATIONAL FORMULAS
FOR THE RARE GAS CRYSTALS

To carry out integration over the volume of an element
cell of the reciprocal lattice, we introduce reduced variab
K proportional to the coefficients of decomposition of t
wave vectork with respect to the vectors of the reciproc
lattice. Integration is to be made over each variableKi from
0 to 1. For the two-dimensional triangular lattice with thex
axis directed along a chain of neighboring atoms, such v
ables are given by

kxR52pK1 , kyR52p~2K22K1!/A3.

For the bcc lattice with the coordinate axes lying in t
@100#, @010#, and@001# directions,

kxR5A3p~K11K3!,

kyR5A3p~K11K2!,

kzR5A3p~K21K3!,

and for the fcc lattice with the same orientation of the co
dinate axes,

kxR5A2p~K12K21K3!,

kyR5A2p~K11K22K3!,

kzR5A2p~2K11K21K3!.

Equations~3!, ~5!, ~13!, and~14! take on the form

g* 5
c

L (
j
E ṽ j~K !tanhFcLṽ j~K !

2t
Gejx

2 ~K !dK , ~B1!

z52
c

Lg*
(

j
E ṽ j~K !tanhFcLṽ j~K !

2t
Gejx

2 ~K !coshdK ,

~B2!

F0

NA
5t(

j
E lnH 2 sinhFcLṽ j~K !

2t
G J dK , ~B3!

^U0&
NA

5
cL

4 (
j
E ṽ jcothFcLṽ j~K !

2t
GdK , ~B4!

where h52pK1 for triangular and fcc lattices andh
52p(K11K21K3) for the bcc lattice.
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APPENDIX C: COEFFICIENTS OF THE HIGH-
AND LOW-TEMPERATURE EXPANSIONS

Coefficients of the high-temperature expansions~24!–
~27! and low-temperature expansions~28!–~29! are given by

n05
1

2 (
j
E ṽ j

2ejx
2 ~K !dK ,

n15
1

24 (
j
E ṽ j

4~K !ejx
2 dK ,

n25
1

240 (
j
E ṽ j

6~K !ejx
2 dK ,

n35
17

40320(j
E ṽ j

8~K !ejx
2 dK ,

m052
1

2n0
(

j
E ṽ j

2~K !ejx
2 ~K !coshdK ,

m15
1

n0
Fm0n12

1

24 (
j
E ṽ j

4~K !ejx
2 ~K !cosh dK G ,

p152
3

2
1(

j
E ln ṽ j~K ! dK ,

p25
1

2880(
j
E ṽ j

4~K !dK ,

s15(
j
E ṽ j~K !ejx

2 ~K !dK ,

s252(
j
E ṽ j~K !e2ṽ jejx

2 ~K !dK ,

z052
1

s1
(

j
E ṽ j~K !coshejx

2 ~K !dK ,

t15
1

4 (
j
E ṽ j~K !dK ,

t25(
j
E F12

ṽ j~K !

2
Ge2ṽ jdK .
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