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Binary distribution functions of atoms of simple crystals
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We propose a method of statistical description of simple crystals and calculation of their thermodynamic
functions and equation of state. The method is based on the derivation of an exact expression for the binary
distribution function of atomic displacements and a variational procedure for the determination of an effective
constant of the quasielastic bond of atoms of the crystal. For rare gas crystals with Morse and Lennard-Jones
potentials, we obtained the equation of state and thermodynamic parameters of the solid-state, which are in
agreement with experimental data. We also found that a solid-state instability occurs near the observed melting
temperature of the crystal, corresponding to a point above which there is no more an equilibrium effective
parameter of the quasielastic bond.
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[. INTRODUCTION tical model of the equilibrium state of solids, based on a

derivation of an exact expression for the binary distribution

The statistical theory of perfect solids was extensivelyfunction of atomic displacements. In this approach, a crystal
developed in the framework of numerous approaches, which$ represented as a statistical ensemble of regularly located
usually, fall into two classes. Some models are based on thearticles with pair interactions, each particle being character-
single-particle representation of the crystalline state, concerized by its thermal and quantum broadening near the lattice

trating on motion of an individual atom in a self-consistentSite and by its correlations with the motion of other particles.

potential due to interaction with its neighborhdod.The  For such a system, knowledge of the binary distribution
other, more commonly used, class of models is focused ofpnction of atomic displacements is fundamental in deter-
the collective aspect of the lattice dynamics, representing Bning the average potential energy of the interatomic inter-

solid state by means of a set of normal phonon modes. Fgiction. The method developed in this work allows one to
example, the formalism of the self-consistent pho(®&P construct binary functions of atoms of simple quasiharmonic
theory® is well known as a good tool for treatment of the Crystals at any temperature and pressure. In Sec. Il we derive

dynamics of anharmonic solids. In the first order of this@ correlated distribution function of atoms of the whole crys-

model, the self-consistent harmonic (SCH) tal and propose a method of reducing it to the binary func-
approximatior’,*® the true Hamiltonian of the crystal is ap- tion. This procedure was used to determine the parameters of
proximated by an effective harmonic Hamiltonian with the the binary distribution functions of crystals in one, two, and
force constants determined by ensemble averaging the seiéree dimensions. In Sec. Il we evaluate the free energy of a
ond derivatives of the interatomic potential. This yields a seimple crystal with pairwise interaction of atoms in terms of
of self-consistent equations for the phonon frequencies ant€ binary distribution functions, taking into account a con-
vibrational amplitudes to be solved iteratively. The SCptribution due to the cubic anharmonicity of atomic vibra-
theory and its modifications were used successfully to evalutions. Both the free energy and coefficients of the distribution
ate the dynamical properties of both three-dimensi¢aB) function are parametrized by an effective constant of the
Crysta'él_ls and p|ane adsorbed mono'ayers of atd—ﬁ']_ég quaSie|aStiC bond, Whose equilibrium Value iS eVaIUated by
Particularly, the improved self-consistgiC) model, which the variational procedure. In Sec. IV we determine the equa-
is the SCH approximation corrected for cubic anharmonicitytion of state and other thermodynamic parameters of the
provides a Satisfactory description of the phononRGCS in the framework of the approach deVeIOped in Secs.
spectruni®*® and thermodynamic properties of the rare gasll and lll, using the Morse and Lennard-Jones potentials for
(RGC'9'1-132021crystals, except for temperatures near theffhe representation of interatomic interactions. For the limit-
melting point, where the iteration process shows poor coning cases of low and high temperatures, we present the ana-
vergence. This shortcoming is avoided within the effectivelytical expressions for the parameters of the distribution
potential theory?~2*developed during the past decade. Thisfunction and thermodynamic characteristics of the crystal.
powerful technique, based on evaluation of the partitionAn analysis of the results obtained and their comparison with
function via the path integra' method’ was Successfu”y ap.Ihe eXperImental da.ta and Other theore“cal m0de|S are g|Ven
plied to consideration of thermal and elastic properties ofn Sec. IV.
crystalline neorf! Though both single-particle and collective
approaches to the description of the solid state use different
approximations as starting points, they give rise to similar
results, so that they are rather complementary than contradic-
tory, and the choice of the concrete approach is a question of In this section we demonstrate a method of explicit cal-
practical purposes. culation of theN-particle distribution function of atomic dis-
The present paper is devoted to a formulation of a statisplacements in simple harmonic crystals and its reduction to

II. DISTRIBUTION FUNCTIONS OF ATOMIC
DISPLACEMENTS IN SIMPLE CRYSTALS
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the two-particle function. To illustrate the method, we will R
consider one-dimensional crystals, two-dimensional triangu- Dap(k) =11 > (e Ra—1)d,,,4(0n)
lar crystals and three-dimensional crystals with fcc and bcc "

lattices as examples. is the dynamical matrix withb ,5(0n) being the force con-

stant between atoms 0 amd If atom n belongs to thesth

A. N-particle distribution function coordination sphere of atom 0,
We consider a simple perfect crystal containlgtoms
of massM. Let us denote ,(q;,q,, . .. ,0,) as the normal- ® _ RnoRnp
ized n-particle distribution function of displacements op(0N) =~ Bs RZ
d1.92, - - - .0, Oof atoms 1,2...,n from their sites. Due to s

the collective character of the motion of atoms, the functionyhere R,=|R,—R,| is the radius of thesth coordination

f, should incorporate correlations between displacements @fphere ands; is the constant of the quasielastic bond of
atoms. In the harmonic approximation, the collective atomicatoms separated by distanie.

motion in a crystal is described by a set of normal phonon  gxpressions for the distribution functidi, and its coef-
modes. A normal coordinate corresponding to wave Vvector ficients are applicable to any type of simple harmonic crystal

and branctj is and may be extended to the case of a lattice containing more
e than one atom in an elementary cell.
aj(k)= (—) > Angeipk)e R, (1) The matrixB”? should possess the symmetry of the crys-
N/ 7% tal lattice. If the lattice is symmetrical with respect to rota-

where, is the Ath Cartesian coordinate of the displace- tion a;c;gnd &-fold axis, withk>2, it is easy to demonstrate
ment of atorm from its equilibrium positiorR,,, ande;z(k) ~ thatBny =7ydge , where
is the phonon polarization vector in the direction. Let
X;j(k) andY;(k) be the real and imaginary parts of the nor- M hoj(k)| ,

; ; =— wi(k)tan e (k) (©)]
mal coordinatea;(k), respectively. Because each normal N & ) 2T iB
mode is considered as an independent harmonic oscillator,
the distribution function of atoms of the crystal can be rep-
resented, up to a constant factor, as a product of probabilit
densitiesP(X;(k)) andP(Y;(k)) of the real normal coordi-
nates,

is independent oh and 8. Next, the elementsff,’ with n

Yin' have the most simple form if the coordinate system is
chosen so that theaxis passes through sitegndn’. In this

caseBPA = — yB5,, , where the dimensionless positive
coefficients {¥<1 describe correlations between displace-
fNMlkl P(X;(k)P(Yj(k)), ments of atoms belonging to th&h coordination sphere.

’ Numerical estimation of the coefficient§ for crystals with
where the wave vectok runs over a half of the Brillouin different dimensionality and lattice geometry shows that only
zone. The details of the derivation of expressions forthe parameter;, describing longitudinal correlations of
P(X;(k)) andP(Y;(k)) are given in Appendix A. As a re- neighboring atoms, contributes substantially to the distribu-
sult, the normalizedN-particle distribution function is given tion functionfy . It is reasonable to retain only the parameter
by £3={ in the expression fofy, so that theN-particle distri-

bution function is expressed as

fN:CNeX[{_ Z ) Bff//qnﬁanﬁr:|, (2)
e fN=cNexp{—@ (qﬁ—zE ng:,”, @
n/

whereCy is a normalization factor and
where the subscript’ runs over all atoms of the first coor-

Bff,':M 2 wj(k)tanl‘(ﬁwj(k)) dination sphere of atom, andq}, and q’r:, are longitudinal
N7 1 2T displacements of atomsandn’—i.e., projections of vectors
x e (k)& 5 (K)cog k(Ry— Ry) . gn and g, on thex axis passing through their sites. The

coefficient of the longitudinal correlation of two neighboring

Here summation ovek is taken over all the Brillouin zone. atoms O and is expressed as
The frequencyw;(k) of the phonon with wave vectdr and

branchj is M hwj(k)| ,
(= N7y g, w]-(k)tanl‘( 5T ejx(k)cogk-Rpy). (5
“’J(k):% €ja(K)D oK) €;5(K), Hereaftere;, (k) denotes the projection of the phonon polar-
ization vectore; z(k) on the axis passing through two neigh-
where boring sites.
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B. Two-particle distribution function

To calculate the average potential energy of the pairwis§1
interatomic interaction, we need a two-particle distribution
function f»(q,,q,/), which can be readily derived from the Lattice

PHYSICAL REVIEW B 66, 054302 (2002

TABLE I. Coefficients of the two-particle distribution functions
nd zero- and high-temperature correlation parameters for different
ypes of lattice geometry.

N-particle functionf in the form (4). a9 X9 o H
1D 3(1+1-42%) 1 1/3 1/2
1. One-dimensional crystal IS ¢ 2
The procedure of the reduction of theparticle function 2D 1-20+ 1-4+35 0201 0312
fy to the binary distribution function of neighboring atoms is 1 [ 20,2
very simple and elucidative in the case of a one-dimensional bee 2(1HV1=58) ! 0.237 0375
crystal. First, let us consider a cluster containing atoand a2, 8 NS
its neighborsn—1 andn+ 1. A normalized distribution func- fee 1=30+ 2 ! 2" 2 0.136 0.25

tion of such a cell may be generally represented as

f3(Qn—1vqn yqn+1):f deq1~ . 'dqn—ZdQn+2' . qu

=Caexp{— Y[+ 9() (92 1+03 1)
_qun(qnfl"'qmrl)]}a (6)

where functiong({) is to be determined. Integrating E@®)
over g,_1, We arrive at an expression fdi,(d,,qn+1),
which has to be symmetric with respectggandq,,. ;. This
condition leads to a quadratic equation gpwith the physi-
cal solution

1
9(0)=5(1+1-422).

As a result, the distribution function for the atomsandn
+1 is given by

fo=Coexp{ = Y[9(0)(43+ a2 1) — 2{0nbn11]}- (7)

It is evident from Eq(7) that taking interatomic correlations

into account in the two-particle functio(q, ,q,,+1) results
in an additional correlative broadening<1) of the range
of localization of atoms andn+1.

2. Two- and three-dimensional crystals

passing through the sites 0 and 1. The resulting two-particle
functionf,(qg,q1) should be symmetric with respect to vari-
ablesqy andq;. As a result, the distribution function of two
neighboring atoms 0 and 1 is given by

f2(0o,G1) = Coexp{ — Y 91( ) (X3 +X2) — 2L x({)XoX1

+a(O(Yotyitze+z)1, (C)

where the functiong,(¢) and g;({) describe the effective
broadening of atomic distributions in longitudinal and trans-
verse directions, ang({)<1 determines a damping of in-
teratomic correlations by the surrounding. A term responsible
for an effective transverse correlation is omitted in E).
because it is negligible.

Since the one-particle functiofy of the distribution of
displacements should be symmetric with respect to coordi-
nates of the atom, the functiogg ¢) andg,(¢) are related to

each other as
~ éx(é)ﬂ
! (gm '

Results of calculation of functiong,(¢{) and x(¢) for
various types of crystals are listed in Table I. The two-
dimensional crystals are assumed to possess the triangular
lattice. In the same table we show the limit valdgsand {y

9(H)=ai(0)

To derive the distribution function of a pair of neighbor- of the correlation parameter, found from E§) in the cases

ing atoms in a two- or three-dimensional crystal, let us fol-of zero and high temperaturéd>%w;(k)], respectively,

low the same procedure as described above. Consider a celhich are determined only by the lattice geometry and are
containing an atongsay, atom @ and its nearest neighbors independent of specific values of atomic mass and constant
1,2,...z (zis the coordination numbgrThe distribution  of the quasielastic bond.

functionf,, 1(q0,9;1, - . - ,0,) of atoms of such a cell may be If atomsn andn’ are not neighboring, the correlations
obtained fromfy by integration of Eq(4) over coordinates between their displacements are negligible. We consider their
of all atoms of the crystal excegt- 1 atoms of the cell. In  binary distribution function to be just a product of the one-
general, it should appear as particle functions,

(10

fo(dn,dn) ="11(0n) f1(an),

q§+n§1 [9()a2—2¢q59; “
(8)

whereg(¢) is some unknown function describing the effec-
tive broadening of the ranges of localization of neighbors of
the central atom 0 due to the correlative interaction with

fz+1:Cz+lexf4 -7 where

f1(dn) = Caexd — y9,(£)G21. (11)

lll. FREE ENERGY

surrounding atoms. Next we integrdtg, ; over the coordi-
nates of atoms of the cell, except 0 and 1, with ¥haxis

In the present section we evaluate the free en&rgy a
simple perfect crystal with pairwise interaction using the
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model of the binary functions of the atomic distribution. We  TABLE Il. Parameters of the Morse and LJ potentials and the de
proceed from the Gibbs-Bogoliubov inequality Boer parametera for the RGC's.

F<Fy=Fo+(U—-Uy), (12 Morse LJ

-1
whereU is the potential energy of the crystdl,- -) is an a«A) A R(A) A oh) € Ay

average over the states of the harmonic crystal, and Ne 205 5298 3.04 04357 275 40.81 0.0879
Ar 1.62 170.76 3.71 0.1360 3.37 132.52 0.0283

hw;(k
Fo=TS In 2sin>—( i )) | (13 K& 156 23623 397 00767 361 18285 00155
ki 2T Xe 1.38 332.04 4.32 0.0457 3.92 257.34 0.0096
1 fiw;(k)
(Uo)= 4 kE} hw;(k)cot 2T (14 model. Similarly to the corresponding expression in the ISC

theory!! the total free energy of the crystal is
are the free energy and average potential energy of a har-
monic crystal, respectively. The average potential energy of Fr=Fu+AFs, 7
the crystal is calculated using the binary distribution func-
tions of atomic displacements of the simple crystal given b
Eqg. (9) or (10) and is expressed as

but here the average potential energy is calculated using the
ybinary distribution functions taking into account the correla-
tions between longitudinal displacements of neighboring at-
1 oms. Moreover, employment of a variational technique for
(U)= 5 > () the calculation of the effective constants of the quasielastic
n,n’ bond allows us to avoid inaccuracy due to the iteration pro-

1 cedure and evaluation of derivatives of the interatomic po-

=5 E f u(ron) f2(an, 9, )dg,da, (15) tential in the.ISC model,.espemally at high temperature, and

n,n’ to get analytical expressions for thermodynamic characteris-

whereu(r) is interatomic potentialn#n’. tics of the crystal.

Using the symmetric binary functior{8) and(10) for the
evaluation of(U) results in omitting the odd derivatives of IV. RARE GAS CRYSTALS
the interatomic potential, which are of particular importance
at high temperatures. The leading contribution to the free
energy due to cubic anharmonicity was taken into account by The simple analytic expressions for the binary distribution
perturbation theory in the 1ISC approximatitinyhich repre-  function (9) of atomic displacements and its coefficief®s
sents the first-order SCP theory corrected for the cubic term&nd (5) enables one to estimate the average potential energy
The ISC theory is known to give an excellent description ofof interatomic interactions for any pairwise potential. In this
the thermodynamic properties of the quasiclassical anhagection we follow the method developed in the preceding
monic solids(Ar, Kr, and X&,'%% though results for solid sections to determine the distribution functions and equilib-
neon do not fit satisfactorily the observed data at highrium parameters for rare gas crystals with fcc lattices. As was
temperaturé! Similarly to the ISC modet! we add a cor- recently showrf# a contribution to the cohesive energy of
rectionAF 5 due to the cubic anharmonicity of atomic vibra- the RGC’s due to three-body interactions does not exceed

tions to the free energ§l2) of the quasiharmonic crystal: 3% for Ne and is maxima(7%) for Xe. Thus, one may use
pairwise potentials to describe interatomic interactions in the

A. Free energy

72 Ak +ky+Kg) RGC's. In the present work we employ the Morse potential
AFg=— PIVE |‘1’12§2W123: o o
3N“M*° 1,2,3 W1WHrW3 u(r)=A[e 2a(r Ro)_ze a(r RO)]
(16)
and the Lennard-JonégkJ) potential
where

12

6
NqNy+ NoNg+Nany+Ng+Np+Na+ 1 u(r)=4e (r_’)
whereA, Ry, «a, €, ando are the potential parameters. The
3n2n3+ N3Ny~ NiN>+Ng LJ potential was recently successfully used for calculation of
0T W~ w3 ' the properties of solid neon in the framework of the im-
proved effective potential methdd.The parameters of both
potentials, listed in Table I, were determined so that the
internal energy, lattice parameter, afid the case of the
D)o holT a1 Morse potentigl the bulk modulus of the RGC’s ai=0,
S, '=sinkiRn/2)ej 4(K1), n=(e"""-1)" and  calculated within the present model, fitted the observed val-
(®,4,(0n)) is the third-order force constant averaged withues. In the case of the Morse potential we restrict ourselves
the binary distribution function obtained in the presentto consideration of only the interaction of neighboring atoms,

’

123~ Wit wrt+ wg

‘I’lzsanB ei(k1+k2+k3)Rn/2Sgl)S(ﬁz)S(y3)<q)aﬁy(()n»’
QP Y
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and in calculations with the LJ potential we take into account 1.45
the three first coordination spheres. We also employ the only
parameteiB; of the quasielastic bond of neighboring atoms.
It was found that accounting for the next constgathas no 1.35
pronounced effect on the calculated values of both crystal
free energy and equilibrium solid-state parameters.

With the Morse potential and binary distribution function o 1.251
(9), the average potential energy of the interaction of neigh-

1.40 1

1.30 1

boring atoms is expressed as 1.204
1.15-
q q

—2b+ — —b+ ——

u e * 2e *
w_ AN v (18) 1.10-

A 2 1 T T T T T v T T T T T
1+ 1+ 00 0. 02 03 04 05
¥*giaR 2y*giaR

T
where b=a(R—R;) is the reduced lattice expansio®

—R, is the nearest-neighbor distange, = y/a21 and FIG. 1. Reduced effective constant of the quasielastic bond of

neighboring atoms of solid Ar vs temperature at zero pressure cal-

culated using the Morse potential by the free energy minimization

9)=———— (19 (solid line) and estimated from the experimental data for the tem-
() +Ix(0) perature dependence of the longitudinal sound velocity irj166]

is a correlation factor, representing the contribution of thedirection(Ref. 23 (circles.

correlations in the energy of interatomic interactiogs-@ if

¢=0). Equation(18) holds also if the atoms are not neigh- AcCA _

bors of each other, withh,= a(Rs—R,) andq=2. For the j(k)=——w;(k), (21)
RGC's, it turned out that the denominators in E#8) are

close to unity at any temperature and pressure; i.e., the con-

tribution of the transverse displacements of neighboring at\'/vherec=(,81/Aa2)1’2 is a dimensionless parameter of the
oms to the average potential energy is negligibly small andy agjelastic bond of neighboring atoms, the crystal free en-

can be omitted in the present consideration.
. . ergy depends only on the reduced temperatyrele Boer
In the case of the LJ potential, the average potential en- gy dep y peraty

; ok . ? arameter, and two variational parameteendc, determin-
ergy of the interatomic interaction was estimated by th ! : . . .
. o ing the lattice expansion and effective quasielastic bond con-
saddle-point technique:

stant, respectively. In all formulas containing sums okger
(u) o\12 o\8 _ we replace the summation with integration over the volume
—= (—) (rlz)—(—) <r6>}, of an elementary cell of the reciprocal lattice. The computa-
de R R : . .
tional formulas for both two- and three-dimensional rare gas
wherer=r/R, crystals are summarized in Appendix B.
The equilibrium values of the variational parameters as
n e (n+2)%12y functions of temperature are found from minimization of the
TSR free energyF with respect td andc. In Fig. 1 we plot the
reduced quasielastic bond parameteversus temperature
calculated for solid Ar at zero pressure. A drastic decrease of
~ c(7) as the temperature approaches the melting point is in-
andy=2yR?/q({). dicative of the vicinity of the instability point., where the
It is convenient to introduce a reduced temperatare crystalline system becomes unstable with respect to the
=T/A and the de Boer parameter, which is expressed as quasielastic bond parameterFor Ar, 7.=0.513, while the

reduced melting temperature is 0.486. As will be shown later,
hia the disappearance of the free energy minimum with respect

e~ n2/2;/

T = -
< > (1_ E) n+172 2’)’R29t

Y

n+2
1—-—

Y

A= JMA (20 to cis responsible for a steep increase of the heat cap@gity
and reduction of the bulk modulus of the RGC’s at tempera-
in the case of the Morse potential and as tures close to the melting point.
The temperature dependence of the reduced quasielastic

h bond parameter may be directly related to the experimental

ALJ:W data on the sound velocity in crystals. At small values of

_ the wave vectok, we may writew;(k) = x;kR, where the

for the LJ potential. coefficient «; takes into account the polarization of the

In the subsequent consideration we present the analyticabund wave and direction of its propagation in the crystal,
results related only to the MoNrse potential. If one introducesand get the relation between the sound velocity and param-
the reduced phonon frequenay(k) by eterc,

054302-5



A. . KARASEVSKII AND V. V. LUBASHENKO PHYSICAL REVIEW B 66, 054302 (2002

3.2
0.24 1
0.22 1
0.20 - 3.0 1

ap

0.18- =9
0.16- Ar ///

2.8
0.14 1

T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0 20 40 60 80
T T (K)

FIG. 2. Correlation parameter vs reduced temperature in Ar. L )
FIG. 4. The Grumeisen parameter of solid Ar vs temperature at
zero pressure.
12
Ujk :
R(7) B. Equation of state of the RGC'’s
KkjkR(7)

M

U PO

From Eq.(17) one can derive the equation of state of a
crystal and determine its thermodynamic properties. Keeping
In Fig. 1 we plot also the values of 7), found in such way in mind that the equilibrium value of the variational param-
from the observed temperature dependence of the longitudéter c depends implicitly on the temperature and volume of
nal sound velocity in th¢100] direction of Ar crystaf® the crystal, we may write the equation of state of the crystal
The correlation parametéris one of the important char- @s
acteristics of the crystalline phase as a statistical ensemble of
regularly arranged particles. The temperature dependence
{(7) for Ar at zero pressure calculated at equilibrium values
of c is presented in Fig. 2. The correlation parameter in-
creases continuously with temperature, compensating envhere
hancement of the interatomic repulsion due to thermal broad-
ening of the range of the localization of atoms. The 5 (a(u)) (0(U)) ( o"C)
I T T T

E
P=P|+%YG+AP3, (22)

contribution of the correlations of atomic displacements to By 9C V]
the potential energy of interatomic interaction is expressed in

Eq. (18) by the correlation factog(¢), which depends on the
temperature through the parametefFig. 3. As apparent
from Fig. 3, the correlations affect the energy of interatomic

is the pressure due to the lattice compression,

interaction only at low temperature. At high temperature, Ephz—Tz(i H ) —(U)
when ¢— ¢y, q({)—2, coinciding with the value corre- aT\ T /)]
sponding to the completely uncorrelated statistical distribu-
tion of displacements of atoms of the crystal. is the energy of the phonon subsystem of the crystal,
2.00 dlnc
alnVv T
1.98 1 Y= — m (23
1.96 1 aInT/,,
1.94 1 . L
S is the Gruneisen parameter, and
S 1.92
AP aAF3> (aAF3) (ac)
1.90 1 3=— — -
Ar NV |\ e [V,
1.88
is an additional contribution to the phonon gas pressure due

0.0 0.1 0.2 0.3 0.4 0.5 to cubic anharmonicityphonon interaction

In Fig. 4 we plotted the calculated temperature depen-
dence of the Gmeisen parameter for Ar, which exhibits an
FIG. 3. Correlation factoq(?) vs reduced temperature in Ar. anomalous increase in the vicinity of the melting point.

T
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3.88

3.86 —— Morse

3.84 1 ® experiment
—_ 3.824 =
’ @
= o
o 3.80- X

ml—
> 12 —— Morse
o 8+ ® experiment
O 20 40 60 80 1 T T T
T (K)

FIG. 5. Temperature dependence of the nearest-neighbor dis-

tance in solid Ar at zero pressure. The observed values are from FIG- 7. Zero-pressure bulk modulus of solid Ar per atom vs

Ref. 26. temperature at zero pressure. The observed values are from Ref. 26.
In Figs. 5—-7 we show the thermodynamic properties of _ N cA 4 + 3] cA (26

solid Ar (nearest-neighbor distance, heat capacity, and bulk ¢~ 7 PoPa| Tim =)

modulus versus temperature, calculated in the framework of

the present approach. A 1 2

C. Rare gas crystals at high and low temperatures

In both limiting cases of high and low temperatures, thewhere a;~1.5 for Ar, andn;, m;, and p, are numerical
expressions fory*, ¢, os=(Fy—(Up))/NA, and ¢;  coefficients determined by the phonon spectrum of the crys-
=AF3/NA may be expanded into power series with respectal (see Appendix € Values of these coefficients for the fcc
to the parametecA/7. Such an expansion simplifies sub- lattice are listed in Table III.
stantially the minimization of the free energy with respect to  In the case of low temperature<€cA),

b andc and allows one to get explicit analytical expressions

for the equilibrium parameters of the crystal. L, C r\4
In the high-temperature limit>cA, we find Y EANISTS A | (28)
3
c? cA\? S8
Vi~ — |—Zo n|(7) , (24) es~CA tl—t2<C—A) , (29)

2 and the correlation parameter Bt 0 is {,=0.136. Expres-
{~mg+ ml(—) , (25) sions for the coefficients; andt, are given in Appendix C,
T and their values for the fcc lattice are shown in Table IV.

In the case of zero temperature, the internal energy per

1.6 v atom is given by
14 —— Morse i
. = :'..
L I¢;;J<perimem .« E 6A 1 GoA 3AA 30
s 0 © 25, co | | 4T \S1c0 (30
% where
\D.
¢ 0.64 3
Jo Yo
=\/———A 1
Co tys; 4s; 3D
TABLE lll. Coefficients of the high-temperature expansion of

80 the parameters*, ¢, and ¢s.

No ng n; ! My my Po P1

FIG. 6. Heat capacity of solid Ar per atom vs temperature at 2 5/6 0.475 0296 1/4 —7/96 1/3 1/48
zero pressure. The observed values are from Ref. 27.
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TABLE V. Coefficients of the low-temperature expansion of 37
the parameters* and ¢;. b~ —,
4c?
S1 Sz ty t (35)

c~(1+\1—7/7)*?

where the critical temperature,~(1+9a3/16) ! corre-
sponds to the point of the disappearance of the minimum of
is the equilibrium parameter of the quasielastic bondrat the free energy with respect t Keeping in mind the tem-
=0, go=0(£o)=1.87. The equilibrium quantum lattice ex- perature dependence of the constant of the quasielastic bond

1.928 0.550 1.446 0.092

pansion is (35), we can represent the crystal heat capacity in the high-
temperature range as
°=%qu' (32 o gy T, T (36)
ro 3N 2¢c* 4C6’T§\/1_T/TC.

The average distance between neighboring atoms and thefollows from Eq. (36) that the anomalous rise of the heat
bulk modulus of the crystal ak=0 are, respectively, given capacityC, near the melting point is associated with an in-
by creasing of the temperature sensitivity of the effective pa-

rameter of the quasielastic bonft¢/dr/>1) as the tem-

0 perature approaches the instability point. Numerical
R(0)=Ry+ —, (33)  analysis of the instability temperature for the RGC's shows

@ that 7. is slightly higher than the melting pointy, but

|dc/d7|>1 atr=7y,.

qoA
B.(0)= 4\2A e 203 9 Co V. DISCUSSION
T 3R(0) 8s, 1+ 7 QoA | The starting point of the method of statistical description
8s; Co of the crystal state, developed in the present work, is the

(39 common representation of a crystal as a system of bound
oscillators, whose collective motion is described by a set of
Equating the right-hand parts of Eq80), (33), and(34) to  normal modes of vibration. From such a consideration, we
the observed values of the sublimation energy, lattice spagassed on consistently to the representation of the crystal as
ing, and bulk modulus for the RGC(see Ref. 28 and refer- an ordered ensemble of particles, whose spatial distribution
ences therein we obtained a set of equations for three pa-is determined by the dynamical characteristics of the crystal.
rameters of the Morse potential. In the case of the LJAppealing to symmetry reasoning allowed us to reduce the
potential, we fitted the crystal energy and the interatomid\-particle function of the distribution of atomic displace-
distance aff=0. ments(4) to the binary distribution functiof9), providing a
Consideration of the purely quantum motion of atoms ofmeans for the exact evaluation of the average potential en-
the crystal in the limifT=0 may be used as a check of the €rgy (15) of the pair interaction of atoms in the crystal. In-
validity of the present statistical model of solids. On the onetroducing the effective constant of the quasielastic bond, we
hand, equilibrium values of the parameteysand { at T ~ parametrized the crystal free ener@y), representing it as a
=0 can be found directly from Egg3) and(5). On the other  function of the reduced temperaturethe De Boer constant,
hand, they may be considered as variational parameters @nd two dimensionless variational parameters, the lattice ex-
the ground-state wave function of atoms of the crystal. InPansion and the constant of the quasielastic bond. In contrast
this case, values of and ¢ can be calculated by the direct to the iterative procedure employed in the SCP theories,
variational method from the corresponding Stinger equa-  Within the present model the equilibrium values of the varia-

tion. The ground-state energy of the crystal as a function ofional parameters are calculated via minimization of the crys-
y* and{ is tal free energy. Such an approach not only gives the benefit

of simple and clear computatiorfg’hich become trivial in
the cases of high and low temperatyrdsut allows one to
E(y,0)=NA EV*AZ_Gefq(f)IZy* _ reveal a number of characteristic features, which are not evi-
4 dent within the SCP model.
An analysis of the free energy of the RGC as a function of
We found that minimization oE with respect toy* and/  the effective parameter of the quasielastic bond shows that
yields the equilibrium energy and parameters of the crystathe free energy minimum with respect ¢todisappears at a
which coincide completely with the corresponding zero-temperaturerc just above the melting point,,. The ap-
temperature values calculated within the present approachproach to the instability point is accompanied by a steep
In the limit of a classical crystalX =0), its equilibrium  reduction of the parametes (|dc/d7|>1 at r~17¢) in a
parameters are expressed explicitly as narrow temperature rangé&ig. 1). Such drastic change of
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the sensitivity of the system manifests itself in an abrupt 1 (= ‘

increase of the heat capaciBy, of the RGC's near the melt- P(Xj(k))= EJ oyj(g)e '9%iMdg. (A2)
ing point (Fig. 6), which was observed experimentally. Such o

behavior of the RGC is attributed to the substantial contribuy, yiew of the definition ofP(X;(k)), Eq. (A1) can be re-
tion of the anharmonicity to the free energy of the crystal inyitten as

the high-temperature range, depending stronglycoat 7

>cA. The vibrational anharmonicity leads to a breakdown oy j(g):<eig><,-(k)>' (A3)
of the self-consistent quasielastic interatomic bonds at high ’

temperatures, manifesting itself in the disappearance of thehere(---) denotes averaging over the equilibrium distri-
free energy minimum with respect ® A correlation be-  bution ofX;(k). In terms of the operatols, andbl’j of the
tween this instability and melting of the RGC'’s is the subjectcreation and annihilation of phonons, we may write

of a separate study. Particularly, it was demonstratéht

the cubic anharmonicity of atomic vibrations is responsible 12 s N

for a dramatic reduction of the vacancy formation energy Xj(k)= 2 T(k)) [P+ by j+boij byl

near the melting temperature. J (A4)

Another item to be mentioned is the role of the inter-
atomic correlations in the statistical model of the crystal. Aswhere w;(k) is the phonon frequency, corresponding to the
apparent from Fig. 2, the correlation paramefeises with ~ wave vectork and jth vibration branch. The averagé3)
temperature. But the least value of the correlation factocan be expressed in terms of cumulakis of the random
q(¢), providing the maximal gain in the energy of the inter- variableX;(k) as
atomic interaction, is realized at low temperat(fFeg. 3). At
high temperaturey({)—2, which coincides with the value 9% () K,
g(0)=2 corresponding to the completely uncorrelated sys- (€'9%i) =ex nz'l nr
tem. However, taking the temperature dependence of the fac-
tor g into account is important in the calculation of the heatRestricting ourselves to the first nonvanishing cumulant
capacity and bulk modulus of solids.

In the present work we studied the thermodynamics of the 5 9°h 1
RGC's, using two potentials to approximate the interatomic Ko=—gXX}(k))=— 20,(K) Ngj + §>,
interaction. The parameters of both potentials were found by !
fitting the observed values of the internal energy, interatomievheren,; =[exp(iw;(k)/T—1)] " * is the average occupation
distance, and bulk modulus of the RGC's B0 in the  number of phonons, we obtain
framework of the present statistical model of the solid state.

©

Comparison of the theoretical temperature dependences of gzﬁ(nkj+1/2)
the lattice spacing, heat capacity, and bulk modulus of the Gk,j(g):exF{ - T(k)} (AS)
RGC, calculated for both potentials, with the experimental !
data over the whole range of allowable temperatfégs.  Substituting Eq(A5) into Eg.(A2), we get
5-7), displays good agreement between the theoretical and
observed results. 2wj(k) hioj(K)\ _,
In conclusion, it should be noted that the present model ~ P(X;j(k))=Cexp — ——tanh ——=—|Xj(k) |.
may be rather efficient in the investigation of the thermody-
namic state of crystals with complex lattices. In a similar way one can calculate the probability density
P(Y;j(k)) of the variableY;(k). In the representation of nor-
ACKNOWLEDGMENTS mal modes, the crystal distribution functidg is a product

of probability densities of Bl independent variableX;(k)
and Y;(k) or the square root of the product of probability
densities ofall real normal coordinates,

We are grateful to Professor Mikhail Ivandnstitute for
Metal Physics, Kieyand Professor W. HolzapféUniversity
of Paderborn, Germanyor valuable discussions and several

helpful suggestions. - wj(K)_ [hej(k)
fn=Cexp —

kz,j % ‘a”'{ 2T

where the summation is taken over all wave vectors in the

Let us determine the Fourier transform of the thermody-irst Brillouin zone. Taking into account that
namic probability density?(X;(k)) of a real normal coordi-

[Xf(k)wf(k)]},
APPENDIX A: CALCULATION OF THE N-PARTICLE
DISTRIBUTION FUNCTION

nateX;(k) as XZ(K)+Y#(k)
- , M
ak,j(g)=f P(X;(k))€'9%i®dX; (k). (A1) N 2 Gnglnp€ip(K)€) 5 (K)COK(Ry—Ry),
. nn'Ba’
Then the Fourier inversion gives we rewritefy in the coordinate representation
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APPENDIX C: COEFFICIENTS OF THE HIGH-
fu ex;{ NE 2 nglin’ B,Z ;(k) AND LOW-TEMPERATURE EXPANSIONS

nn’ BB’
Coefficients of the high-temperature expansiq@d)—

hoj(k : : B .
Xtanl‘(%) e, 5(K)€; 4 (K)CoK(Ry—Ryy) | (27) and low-temperature expansiof8)—(29) are given by
APPENDIX B: COMPUTATIONAL FORMULAS
FOR THE RARE GAS CRYSTALS No=75 E f wfe(K)dK,

To carry out integration over the volume of an elementary
cell of the reciprocal lattice, we introduce reduced variables 1 3
K proportional to the coefficients of decomposition of the n1=2—42 f o (K)erdK,
wave vectork with respect to the vectors of the reciprocal J
lattice. Integration is to be made over each varidbldrom
0 to 1. For the two-dimensional triangular lattice with the 1 5
axis directed along a chain of neighboring atoms, such vari- ”2:2702 f o (K)efdK,
ables are given by !

kR=2mKy, kR=2m(2K,—K;)/\/3. 17
o : o Ng=—omn JZﬁ(K)e?dK,
For the bcc lattice with the coordinate axes lying in the 403204 ! X
[100], [010], and[001] directions,

_ 1 ~
keR= 37 (K;+Kj), mo:_ﬁg fwj?(K)ejzx(K)cosndK,
0 |

kyR=3m(K1+Ky),

1 1 -
keR=13m(Ko+Ka), my=—| mgn;— o, X f @} (K)ef(K)cosn dK |,
0 ]
and for the fcc lattice with the same orientation of the coor-
dinate axes,
_ 3 +> f Inw;(K) dK
kR=2m(K;— Ko+ Ks), Pi="5t2 | oK) dk,

kyR=\27(K;+K,—Ks),

> f o (K)dK
P2=500q 2 of
K,R=\2m(—K;+Ky+Ks). 28807 :

Equations(3), (5), (13), and(14) take on the form

1= f w;(K)e%(K)dK,
]

e’ (K)dK, (B1)

- Awi(K
y*=%2 fwj(K)tan}{C(;—'T()

J

2 Jw](K)tan}‘{ ’( )

]

$,=2>, fz)j(K)e‘:"iejzx(K)dK,
J

e (K)cosndK,
(B2)

=7 f In[ZSim{%”dK, (B3)

i

<Uo> cA CAwj(K)
2 jwj r{—T} dK,  (B4)

where p=27K, for triangular and fcc lattices andy =S f[l_ o;(K) e vidK.
=2m(K,+K,+Kj) for the bee lattice. 2™ < 2

1 -
lo=—— 2 | ®j(K)cospe? (K)dK,
S1 9 J J

1 ~
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