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Numerical evaluation of the exact phase diagram of an empirical Hamiltonian: Embedded atom
model for the Au-Ni system
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Molecular-dynamics simulations were used to calculate the Gibbs free energy on the entire compositional
range of gold-nickel alloys described with a set of embedded atom potentials available in the literature.
Thermodynamic integration and switching Hamiltonian techniques were used to obtain the exact phase dia-
gram (with no approximations and that corresponding to the regular approximation. Remarkable agreement
for some properties, such as teelvuscritical point, the congruential melting, the melting points of the pure
elements, and the formation entropy of the alloy, contrasts with the poor prediction of the location of the
solidus-liquidudines, reflecting errors in the heat of solution in the liquid phase. The results are compared with
recent experimental reassessment of the Au-Ni phase diagram andhwiitiitio calculations.

DOI: 10.1103/PhysRevB.66.054201 PACS nuni$er81.30.Bx, 82.60.Lf, 02.70.Ns, 64.759

INTRODUCTION alloying. This system has received a lot of attention from
three different avenues: experimental, initio, and empiri-
The classic many-body potentials, known generically asal potential calculations. Unfortunately, the present state of
the embedded atom modétAM), provide a powerful tool the art of theab initio calculations for alloys is still insuffi-
to study several types of simple solids, in particular, transicient to accurately reproduce all the features of the phase
tion metals and some of their alloys® Extensive work has diagram, formation enthalpies, entropies, miscibility gap,
been done in the application of this model to many solidand tendency to order. For a review of the performed work,
solutions and intermetallic compounds, but limited effort wassee Refs. 9, 10.
devoted to the computational calculation of the complete The main features of the diagram are a wide miscibility
equilibrium phase diagram predicted by this type of approxi-gap, and a broad and deep minimum in the liquidus line.
mation. Therefore, little is still known about the ability of the Controversies about the location of the solidus as well as on
n-body potentials to reproduce details of the equilibriumthe eventual order in the solid solution have lead to several
phase diagrams of transition metal alloys. studies starting in 1958 4The standard phase diagram for
In recent times, several articles appeared showing procehis system is that of Okamoto and MassalSkRecently,
dures to evaluate numerically the free energy, using both Bienzle et al® published a reassessment of the entire dia-
initio and empirical descriptions for the total energy, either ingram combining electromotive force, differential thermal
molecular-dynamicgéMD) or Monte Carlo frame¢MC). The  analysis, x-ray diffraction, and transmission electron micros-
use of these techniques has been proposed to increase ttwpy measurements to determine the phase boundaries in the
precision of the empirical Hamiltonians by incorporating, for solid and liquid, and the microstructure of the Au-rich solid
example, the thermodynamic melting temperature in the fitsolutions. They also provide values for the excess enthalpy
ting proceduré. Specific intermetallics, in particular in the and entropy of mixing that, being positive, cause the large
Al-Ni system, have received a lot of attention and conse-miscibility gap. The excess enthalpy of the liquid phase is
guently sets of potentials specially suited for some phases agdso positive although smaller than the solid value, and ac-
available in the literatur@ However the reciprocal problem, counts for the minimum at the congruent point. Some short-
i.e., what kind of phases are predicted by a given set ofange ordefSRO above the miscibility gap is also reported,
potentials, is much less known. The interest in the answer teuling out claims on clustering of like atomé,?*or even the
this question is not only natural curiosity, but has outmosipresence of intermetallic phas&sThe diversity of experi-
relevance in applications where the results depend on themental observations is accompanied by a significant uncer-
modynamic driving forces derived from the equilibrium tainty in the theoretical evaluations that comes from the fact
phase diagram. One such case is the application of EAMhat in this system the formation enthalpy is the result of the
potentials to radiation damage problems, where the solid tacancellation of two large terms: a large and positive value
get is driven far from equilibrium by an energetic projecfile. coming from the elastic lattice distortion due to different
Another example is the structure of nanophase metallic alatomic radii (Au 1.46 A and Ni 1.24 A and a negative
loys, where interface segregation and the nature of the phaséemical contributior{estimation based on electronic calcu-
diagram at such small scales is an issue on discué$ion. lations in Ref. 23, in accordance with the difference in the
The Au-Ni system has a simple phase diagram but unelectronegativity of the pure elements. According to Lu and
usual thermodynamic properties in the sense that it exhibits Zunger?* systems with different sign in these two contribu-
large positive enthalpy of mixing originated in the significanttions may show phase separation in the long-range order
size mismatch effect, and large positive excess entropy r¢LRO) at low T, and ordering in the SRO at high while
flecting a change in the vibrational frequency spectrum orphase separation/clustering is shown for systems where both
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contributions have equal sigeither positive or negatiye  other simple models of solids were explored and powerful
Therefore, the competition between the accuracy used in th@gorithms were deduced. Among them, Frenkel and Ladd
different stages of the modeling ends up with controversialntroduced a method to calculate absolute free energies of
conclusions. Ordering appears clearly in Au-Ni thin films, asarbitrary solids based on the construction of a reversible path
recent experimental behavior reports, which is explained irfrom the solid phase under consideration to an Einstein crys-
terms of epitaxial strain stabilizatidi. tal with the same crystalline structuteTheir reversible path
First-principles theoretical determinations of the phasemethod, with some modifications, is one of the most com-
diagram mainly address the issue of order in the solid phasenon methods used today, either in MC and MD. With
In 1994 Amador and Bossd®duse linear muffin-tin orbital equivalent methods for the liquid phase, the equilibrium
(LMTO), together with the cluster expansion for the energyphase diagram of a given model Hamiltonian can be con-
calculations and the cluster variational method for the freestructed. We note that for this purpose, absolute values of the
energy calculations, to determine the formation energy of théree energies in the coexisting phases have to be known.
random alloy, concluding that the SRO is almost null due tokranendonk and Frenk®l reported the first calculation of
the low (positive) formation energy; their values for the for- the solid-liquid coexistence in binary hard spheres mixtures
mation energy, however, are a factor of 3 greater than thevith these methods. Mei and Davenpdrtalculated the
experimental ones due to the large mismatch present in thimelting point of Al predicted by an EAM potential using MD
system and the lack of relaxation in their method. Also Coli-and the ideal gas as a reference system for the liquid phase.
net et al?’ published a calculation based on the saafle  Recently, Sturgeon and Laird used this method to modify the
initio method[LMTO atomic-sphere approximatioASA)] Mei and Davenport potential for Al to better reproduce its
and cluster techniques, incorporating lattice relaxation ananelting point* As an alternative to MD, Lynden-Bedit al3*
vibrational effects through a Debye-Grisen model. Their used a biased potential in a MC simulation with umbrella
prediction for the formation energy of the random solution issampling to determine the Landau free energy in terms of
in excellent agreement with the experimental values. Addi-order parameters that describe the crystalline and the liquid
tionally, the miscibility gap derived from it, when vibrational order in terms of the symmetry of the bonds. With it, the
entropy is included, also agrees very well. Interesting tahermodynamic melting and the limit of metastability of the
mention is the fact that the formation energy reported in thatrystalline phase of several ductile metals described by
work is almost symmetric in the concentration axis, as is theeAM-type potentials were determined. de Koning and
configurational entropy; the asymmetry in the solvus curveAntonell®® analyze the behavior of Einstein oscillators as a
mainly comes from the positive vibrational entropy contribu-reference system in adiabatic switching, using the canonical
tion. However, some years laféthe same group published a massive Nosé¢ioover chain dynamics. They arrive at an es-
better calculation based on LMTO full potent{&P) and the timation of the error in the procedure, allowing a correction
results depart from the experiments in the same sense than af the converged results. With this formalism, they study the
the Ref. 26, i.e., the formation energies are smaller that theacancy free-energy formation in coppef® de Koning
measured values. The new miscibility gap shows a criticakt al. proposed an optimized free energy evaluation based on
temperature 150 K above the experimental value, and for thithe switching Hamiltonians, but in such a way that the switch
calculation the formation energy and vibrational entropy areand the temperature variation are both tackled in a single
both responsible for the asymmetry in the miscibility gap.MD run, improving significantly the efficiency of the
Finally, they also arrive at the conclusion that the orderingmethod®’ They apply the method to evaluate the free energy
tendency has a rather negligible contribution and can be nesf crystalline Si with empirical potentials. A MC improve-
glected in the free energy calculations. ment that also involves a single simulation was proposed and
Wolverton et al?® describe a first-principles technique to applied by Bruceet al. to the free energy difference between
calculate SRO for several systems, in particular Au-Ni. Theythe fcc and hep structures of hard sphefes.
build an Ising Hamiltonian based on a FP-LAPW and a Another widely used approach to free energy calculations
mixed space cluster expansion, that incorporates the relaxs the quasiharmonic approximation. In this method, a free
ation in the parameter evaluation step, and which is used irnergy is evaluated separately as the contribution from the
lattice MC runs in the canonical ensemble with sample sizegnthalpy (directly accessible from the simulatipmand the
between 15-30 thousand atoms. They compare their value @fbrational entropy, through lattice dynamics in the quasihar-
the Warren-Cowley SRO for the first shell10, —0.024 monic approximation. Examples of application are the tem-
(slight ordering tendengy with the experimental results of perature dependence of the elastic constants of Au, the sur-
Wu and Cohen from 198&Ref. 30 at T=1023 K and com- face energy of Cu, the thermal expansion of;@u by
positionXy;= 0.4 which is 0.03gslight clustering tendengy ~ Barrera and TendI€r, the structure and energetics of Cu-Au
The agreement on the second shell is much better and @flloys by Barreraet al*® (which reproduce correctly the na-
more significancécalculated 0.12, experimental 0)1ghow-  ture of the order-disorder transitiprand the phase diagram
ing a clustering type ordering. It is a surprising characteristion the MnO-MgO system, that contains a miscibility
of this alloy that being phase separating, shows some shelgap?'42
with tendency to order. With a mixed ab initio—classical potential and lattice
The use of computer simulations to calculate thermodydynamics—MD, a fully theoretical prediction of thermody-
namic properties of solids has a long history either via MC asiamic properties of Al, including a melting point within
well as MD. In the beginning of the 1980’s, hard spheres an®.5% of the experimental value, was presented by Straub
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et al. in 1994% De Wijs et al. also madeab initio calcula-  of a system with a large number of degrees of freedom. Since
tions of the same metal using coupling constant integratiorhis is impossible to do computationally fab initio Hamil-
with the quasiharmonic crystal and the Lennard-Jones fluidonians, approximate schemes such as those mentioned
as reference states, again proving the power of the method &bove are used. For empirical Hamiltonians, however, an al-
predict basic thermodynamic propertfés. most direct calculation of the free energy is possible and is
From the phenomenological avenue, the embedded-atontlhe approach taken in this work.
type description of the Au-Ni system starts with the paper by In the derivations that follow, as well as in the comparison
Foileset al*® describing a set of potentials for the transition with experiments, we shall not make a distinction between
metals of the Ni and Cu columns, and their dilute alloys. InGibbs and Helmholtz free energies, as well as internal energy
this set, they adjusted the potentials to several properties @nd enthalpy, because some integrals or averages can be bet-
the pure elements as well as the heat of solution of theiter calculated at constaM, and others at constaft The
alloys. Later, Foiles and Adams evaluated thermodynamidifference between these magnitudes is equ\owhich is
properties of the same elements using these potefitials.negligible compared to value and error of the variables, ex-
They use a quasiharmonic approximation for the free energgept at very high pressures. For clarity, however, steps are
of the solid phases and grand canonical Monte Carlo for théormulated in terms of or g to make it explicit the ensemble
liquid phase; they also use MC to get the free energy of thevhere the calculation is done.
solid and find good agreement between the two techniques. Let us concentrate first on pure elements to introduce the
For the particular case of Ni, the free energies they get argeneral procedure, and then we will focus on alloys. We
greater than the experimental values in both solid and liquictalculate the free energy per particle at a given temperature
phases, and this error is the largest for all the elements cof, f(T), through thermodynamic integration between the
sidered. Fortuitously, the reported melting point for pure Ni,state of interest and a reference state at temperaveith
1740 K, is in very good agreement with the experiment beknown free energyf(T,). The free energy per particle is
cause the errors in the liquid and solid free energies cancgjiven by the Gibbs-Duhem integral
one another. For Au, both free energies are less than the
experimental values, as is the melting point 1090 18% T T h(7)
below). Recently, Asta and Foil&sstudied three phase sepa- F(T)=1(To) T_O_TL —= dr, @
rating solid solutions, including Au-Ni. They developed a 0
second-order energy expansion to treat compositional anghereh(r) is the enthalpy per particle.
displacive disorder casting the problem in the form of a lat- The coupling-constant integration method, or switching
tice gas Hamiltonian with effective pair interactions. They Hamiltonian method® is used to calculaté(T,). We con-
developed a new potential for Au-Ni because the original onesider a system with HamiltoniaH = (1—\)W+\U, where
poorly describedunderestimatgshe excess heat of mixing U describes the actual systefm this work, EAM Hamil-
of concentrated solutions. They obtained good agreemetibnian and W is the Hamiltonian of the reference system,
close to equiatomic solutions and a poor description for diwith known free energy. With this Hamiltonian we can cal-
lute ones. However, they were unable to calculate the solvusulate the free energy difference betwadrandU calculat-
line because the alloy is unstable below the critical temperaing the reversible work required when switching from one to
ture T., which by the way, is 2 to 3 times larger than the the other. This switch has to be reversible, free of any phase
experimental value. transition. Then the unknown free energy associatetl,to
In this work, we study one of the earliest embedded-atonf(T,), is simply given by
(EAM) potentials developed by Foilest al*® for Au-Ni to

extract its phase diagram. In this way, this work contributes f(To)=fw(To) +Afy,
to the knowledge of the EAM approach to describe metallic
alloys. 1 (1/0H 11
We report Gibbs free energies calculated using MD simu- Afl:ﬁ fo N dA= N fo (U=W),dh, @

lations for pure elements and for several Au-Ni alloys. We
follow the procedure described by Mei and Davenpaand wheref,(T;) is the free energy of the reference system at
apply it to alloys with different nickel concentration. To our T, temperature. The integration is carried over the coupling
knowledge these are the first calculations of the exact freparametei varying between 0 and 1, afd ) is the average
energy of the alloy and with it, the exact phase diagram of @ver a canonical ensemble, or a time average 6f &, N)
model Hamiltonian. By exact we mean no approximations inMD simulation.
the formalism, such as the well-known quasiharmonic ap- For the solid phase it is customary to take as reference
proximation. The numerical evaluations, on the contrarysystem a set of Einstein oscillators centered on the average
have dispersion originated in either the finite size of thepositions of the atoms in theT,P=0,N) ensemble corre-
samples, and the finite time used in the averages. sponding to HamiltoniatJ. The noninteracting Einstein os-
cillators have no internal pressure so the only possible en-
semble is the(T, V, N). The free energy of the Einstein
crystal can be calculated analyticafy,

Calculating free energies involves the computation of the ol
partition function by integrating over the entire phase space fw(To) = feind To) = = 3kgTo IN(To/Te). ()

FREE-ENERGY CALCULATION—PURE ELEMENTS
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Here T¢ is the Einstein temperature of the oscillatofg In principle, Eqg.(1) is readily applicable to alloys pro-

=hwlkg, wherekg is the Boltzmann constang is the fre-  vided the sample is large enough to self-average the diversity

quency of oscillations, anfl is the Planck constant divided of short-range configurations that appears in a real macro-

by 2. scopic sample. This is never the case for finite systems and
For the liquid, the usual reference syst#this an ideal therefore an important issue is to assess the dispersion in the

gas at the same temperature and volume of the EAM sampléinal data originated by the choice of different initial

The process to switch frofd to W involves an intermediate samples. We come back to this point in the paragraph de-

step to avoid particle overlap during the integration. First, wescribing the simulations; at this moment let's assume that the

compute the free-energy difference between the true systesample is large enough to be representative of the thermody-

with potentialU (the EAM potential and a system with a namic limit and therefore the integral in the second term of

repulsive potentiaW, (soft spheres In this work, we use the right-hand sidéRHS) of Eq. (1) can easily be calculated.

W, =0.1 U™, whereU'™P is the pair potential part of the Similarly, the free energies of the reference systémix-

EAM energy, which is purely repulsive for the potential we tures of Einstein oscillators or ideal gasean be calculated

are usindg®® The repulsive potential cannot be very strongusing the following expressioff:

because the sample may crystallize, an irreversible process. _

As in the solid phase, the integration is carried over the cou- feind €, To)=CfEist (1-C) fEihs ToScon©).  (7)

pling parametein varying between 0 and 1. The system is

kept at the constant volum¥,, that equilibrated theJ

Hamiltonian at temperaturd@, and P=0. Therefore, the

free-energy change for a pure element due to the switch 2 _{C), is given by the usual expressidg [cIn(c)+(1

given by Af;, as in the second line of E¢2). The second _8)in(1—c)], assuming the solution is completely random
step is also double: a reversible expansion of the repulsive ), uming ution 1 P y '

gas, now atV, and high pressure, to reach the dilute limit giéur;c;ic?nRsoesi?c?r?aEgr \a’]ee ?doergf 22Ck to this point in the
(where it becomes identical to the ideal gésllowed by a ' 9

for the Einstein crystal, where measures the solute content
(in what follows Ni is the solute and f{  and f24 are

igiven by Eq.(3). The configurational entropy per particle

reversible compression of the ideal gas, to recover the initial feT —cfNi( o)+ (1— ) FAu
density or volume. The change in free energy due to both alC:To,p)=Clig(pn) + (1= C)Fig (pau) ®
processes is or, making the entropy of mixing appear explicitly,
Aok | ”0[ P _1}@ @ fia(c.To.p)=Ci(p) + (1= ) ()~ ToSeond©), (9)
o [pksTo p’

wherep is the total densitypy; andp,, are the partial den-
where po=N/V, is the particle density. After the process sities,cp and (1—c) p, respectively, and théy's are given
represented by Eq4) has taken place we end up with an by Eq. (5). Note the different arguments of tHg's func-
ideal gas at{y,po), whose free energfiy is known, tions in Egs.(8) and(9).

fl\ila(ToyPO)zfid(TOvPO)=kBTO[|n(P0A3)_1]- 5 REGULAR APPROXIMATION

Here A is the de Broglie thermal wavelengthA¢
=h2/2rmkgT,), whereh is the Planck constant amdis the
atomic masé® Then the free energy of the liquid phase is

calculated as the sum gReg=cgNi<T)+(1—c)gAu(T)+Ahxs<c,T>—Tsconf,( §
i 1
9L(To)=Afy+Af,+FI%(Tg, po). (6)

In the regular approximation, the free energy per particle
of a Au-Ni alloy with concentratiort of Ni is given by

i ) i , wherega,(T) andgyi(T) are the free energy per particle of
Equation(1), with Egs.(2) and(6), give the free energies of he nyre elements. The first two terms in the RHS of &Q)

the solid anql liquid phases of pure elements as a function Qpresent a linear interpolation between the pure constitu-
temperature; with them, the melting points can be detergns e the free energy of an ideal solution, and the last two

mined. terms are the excess free energy in the regular approxima-
tion, that measures the departure of the regular approxima-
ALLOYS tion from ideal behavior
In this work we are interested on the Au-Ni solutions, a AGred € T) = A€, T) = Tsoont- (11)

system with positive heat of mixing that may form either

homogeneous or heterogeneous solutions in both solid ardere the excess enthalpy of mixing per partidle,, is the
liquid phases. Therefore the lines of interest in the phaseifference between the enthalpy of the actual mixture and the
diagram are the liquids, the solidus, and the soli@@ntu- linear interpolation between the enthalpies of the pure ele-
ally in both phases The strategy for the alloy calculations is ments, i.e., the enthalpy of the ideal solution

to construct a set of free energy functions versus temperature

g.(T), Eqg. (1), for several values of the concentration Ahy(c,T)=hni(c,T)—hy(c,T),
extract from themg,(c) curves for both phases, and then
look at the common tangent construction. hig(c, T)=chyi+(1—c)hg,. (12

054201-4



NUMERICAL EVALUATION OF THE EXACT PHASE . .. PHYSICAL REVIEW B 66, 054201 (2002

By definition, the difference between the free energy ob- 301
tained in the exact calculatiditq. (1) for the alloy] and that 3l
of the regular approximatiofiq. (10)] is equal to— TAS,, , o o et
whereAs,;, is the excess vibrational entropy, provided that  -3.4- ,,rv—';ﬁw
the solution is random. : I
-3.6 - APV e
%
SIMULATIONS o B A B
e - PJor o® DDD“T .,r"r e Ni
We use the EAM potentials of Foiles al*® for our simu- R et o s
lations. All samples have 256 atoms and the configurations | o ouni
for different values of the Ni concentration are obtained by ] — 38; s:
Monte Carlo runs in the transmutation ensemble  -444 D
(T,P,N,Aw), with N the total number of atoms anju the : o 100 1m0 a0 2000
difference in chemical potential, adjusted to get the desired T [K]

composition. Sufficiently long runglonger than 16 MC
steps/atom allow the development of any eventual short- FIG. 1. Temperature dependence of the enthalpy per particle of
range order. Determinations of the Warren-Cowley SRO pasolid and liquid different Au-Ni alloygheating runs
rameters during MC runs in the solid and liquid close to the
phase transition indicate a null value for the nearest neighbor  q(T)=g(T,)(T/Ty) — T[ax(T—To) +a; In(T/To)
shell within the precision accessible with this sample size, in
agreement with experimental findintfs. The precision —ao(UT=1MTy)], (13
needed in free energy determinations, of the order of few ) o o
meV/atom, crucially depends on the size of the sample. Fofherea; are the polynomial coefficients of a quadratic fit to
different initial configurations of the finite sample, different e enthalpies reported in Fig. 1. They are given in Table |,
values of the internal energy are obtained; fluctuations ofogether with the quantities enteriggTo) in Eq. (13).
these values at the sample size chosen are one of the main 1he reference free energy of the solgi¥ o) is calculated
sources of error in the present work. To avoid this limitationat To=296 K using Einstein temperaturdg'=200 K and
larger samples, or averages over different samples as done Tig" = 100 K. The Einstein temperature is chosen to minimize
Ref. 40, are needed. the structure of the switch curve in order to improve the
The temperature control in MD runs is provided by anumerical precision, which in this scale has to be a few meV
thermostat based on a damping term whose strength and sigitom. Sturgeon and Laitdpropose a systematic way to
is determined by the difference between the actual and deshoose the Einstein temperature: the best value is that giving
sired kinetic energies of the total sample. The center of masg mean-squared displacement similar to the value obtained
motion, if any, is implicitly preserved by the equations of thewith the EAM interactions.
motion for every step, so the initial condition has to be pre- To calculate the switch, we first cool down the samples to
pared with zero c.m. velocity. For long runs, this constraint isO K at the volume corresponding =0 at T=296 K and
checked along the run and eventual departures are correctetitermine the equilibrium positionfrjo} of the Einstein
If the zero center of mass motion constraint is taken intocrystal. Typically, we calculate the averade— W, at con-
account explicitly in the thermostat, then E(®). and(5) are  stant temperature and constant volume, for values \edry-
no longer valid, and they have to be replaced by more ining between 0 and 1 with an intervAl\ =0.05. Again, the
volved expressions given in Ref. 50. calculations at a given are carried out in two successive
A constant-pressure simulation using the Parrinelloruns each of 1bsteps and averagés)-Wsg,) are taken on
Rahman algorithiit and a time step of 2 fs is used in the the second set of time steps. We fit a polynomial curve of
simulations. In every run, the first 4@ime steps are used to fifth degree to these points and solve the integral of 2.
equilibrate the sample and the statistical average of the theanalytically.
modynamic variables is obtained on an additional set 6f 10 In the liquid phase, the Helmholtz free-energy change
time steps. In the case of the solid, the sample is heated iAf, is evaluated at a reference temperaflige: 2300 K. The
successive runs between 296 and 1800 K, with a temperatusyerage volumeY,, of a sample equilibrated at 2300 K is
interval of 50 K. In every run, the enthalpy per particle forused to generate a cubic sample with volumg
the solidhg(T) is obtained. The same is done to determine=V,/(2300 K). This cubic sample is taken as the starting
the liquid phase internal enthaldy (T). In this case, the sample for each run for every value &af The switching
samples are heated up to 5000 K to melt them, and theparametei varies between 0 and 1, in intervals of 0.05, and
cooled down from 2300 to 1600 K, in temperature steps obefore eachU—W,,) average process we equilibrate the
50 K. sample, as for the solid case. A sixth degree polynomial is
Second-order polynomials are adjusted to the simulatiofiitted to the points and the integral of E@) is solved ana-
results of the internal enthalpy for solid and liquid Au-Ni lytically. We then expand the sample keeping the temperature
alloys, see Fig. 1, and the integral of E@) is solved ana- constant and equal ff,. This is done in 14 consecutive runs
lytically. The resulting Gibbs free energies per particle arereducing the pressure from about 125 to 2 kbar. At every step
computed as two successive runs of Qime steps each are carried out.
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FIG. 2. Example of the integranlU —W), appearing in the
switching Hamiltonian method, Ed2), versus the switching pa-
rameter\, corresponding to the liquidright axi9 and solid(left
axis) phases of pure Ni.

TIK]

FIG. 3. Calculated and experimen{&ef. 16 Gibbs free energy
per particlegs andg, for solid and liquid phases of pure Ni and Au.

The average pressure, density, and temperature are obtaingdy at the same time to minimize the structure of the inte-
during the second run. Two more values are added to thi§rand in Eq(2). The role of the thermostat in this procedure
data: the origin P=0,0=0), corresponding to the ideal gas js crycial; the Einstein oscillators do not thermally equili-
limit, and the average pressure and density obtained for thgrate among themselves because they are independent, only
casel=0. Once the evolution of pressure as a function ofthe \ U part of the Hamiltonian leads to equipartition. There-
density is obtained, we proceed to calculate the integrand Gbye the precision of the integral becomes a difficult issue for
Eq. (4) P/pkgT—1, and to fit a sixth degree polynomial to sma|| \ and long equilibration runs are needed. The Lange-
this function. The Helmholtz free-energy chanijé; is ob-  yin thermostat is a good option to avoid this difficulty.

tained by the analytical integration of this polynomial. The free-energy functiongs(T) andg, (T) for the solid
and liquid phases of the pure elements are shown in Fig. 3.
RESULTS The melting temperaturg,, is obtained from the intersection

of these curves. Au free energies cros$4t=1325 K, 13 K

The MD simulations carried out for several Au-Ni alloy (1%) below the experimental melting poiit’=1337.6 K.
compositions show a smooth behavior of the solid and liquidrhe intersection of Ni free energies givg#i: 1962 K,
internal enthalpiedis and h, as a function of temperature \hich is 236 K(14%) bigger than the experimental melting
when the concentration changes, see Fig. 1. A step shows thgjint T&P=1726 K.
temperature at which the solid be'comes'a liquid. These s_teps The calculated values of the excess enthalpy of mixing
do not reflect the thermodynamic melting but the meltlngper particleAh,, Eq.(12), are shown in Fig. 4 as a function
temperature for those particular conditions of the simulationy¢ ine Ni concentration. We obtaikh, positive and smaller

The points shown in the figure correspond to heating runSyan the experimental value for the solid, and negative—
from room temperature up to 2300 K. These points are the

integrand appearing in E@l). On cooling, the points over-

lap, except by a histeresis in the solid-liquid transitions re-
lated to the overheating-undercooling phenomena. The laten 446
heat of melting for pure Ni is 0.191 and 0.101 eV/at. for Au ]
in good agreement with the experimental values of 0.182 anc  ¢.04
0.128 eV/at. found in the literatufé.

0.08 4

The integrand for the switching Hamiltonians, Ef), is § 0.02 L
shown in Fig. 2 for pure Ni in the solid phase. The shape of2 s :
these curves satisfy the Bogoliubov inequality?H(\)/ gf 0.00 ¢¢ Bxperiment X o >
aN?)<0,*® which is used to test the accuracy of the inte- 1 o2t
grand. For the solid phase, the regior 1 is difficult to get -0.024 This work —;—1123;’:: o r
with a good precision because the average Hamiltonian de I e I
termining the equations of motion in this case is clos&Jto 004 Tl o r
(the EAM), while one of the magnitudes to be averagejs ! o 4'0' """" o & o
the term coming from the Einstein oscillatots.is indepen- C,, [at. %]

dent of the center of mass motion, Blttis very sensitive to
it, so thex~1 limit, and then the integral, has significant  FIG. 4. Calculatedcircles and experimentaltriangles (Ref.
errors. Similarly, in the liquid phase, the switch to the repul-16) excess enthalpy of mixing for solid and liquid Au-Ni alloys.
sive gas depends on the strength of the repulsive potentiafilled and empty marks correspond to the solid and liquid phases,
which is adjusted to avoid crystallization and atom overlaprespectively.

054201-6



NUMERICAL EVALUATION OF THE EXACT PHASE . .. PHYSICAL REVIEW B 66, 054201 (2002

0.00 4 0.4+ -

Experiment A
A solid
A& Liquid
-0.05 4 0.3+ This Work A u
e Solid
O Liquid
= 3
S -0.10 =, 0.2 -
2 2
g 2
-0.15 0.1 A -
TIK] Exp. Reg.App. Exact Calc.
Solid —A— ] L]
Liquid A u] o]
-0.20 v T v T T T v T v 0.0 ; . ; T . . . . ,
0 20 40 60 80 100 0 20 40 60 80 100
Cy lat. %] C, [at. %]
FIG. 5. Excess free energyg of solid and liquid Au-Ni alloys FIG. 6. Calculated and experimental entropy of soli@ (
at two different temperaturescircles exact calculation(squares  — 1173 K) and liquid T = 1373 K) Au-Ni alloys.
regular approximation(triangles experimental results taken from
Ref. 16.

~0.41, in excellent agreement with the experimental value

contrary to experiments—for the liquid. Positive values of¢=0-425, and alf~850 K, well below the experimental
Ah*s for the solid indicate a tendency for phase separation’@lué T=1228.15K. The enhanced stability of the liquid
and the possible existence of a miscibility gap. We report thdnegative excess enthalpis at the origin of this discrep-
excess enthalpy for the solid phaseTat 1000 K since at 2ncy: in factAg, is much more negative than the experimen-
higher temperatures the alloys with low concentration of nitél value and intersects the solid free energy at a much lower

are already liquid. The figure shows a maximumcat0.8 temperature. The splitting between solidus and liquidus is

for the solid, a more pronounced asymmetry than the experf/SC more pronounced. The much higher melting point of Ni
mental one. Excess enthalpies of both solid and liquidS @ additional major difference. .
phases, obtained from our MD simulations for these poten- In the solid region a miscibility gap appears. Always in
tials, are smaller than the experimental values reported b e regular apprOX|n_1at|on, the gap extends to temperatures
Bienzleet al® In particular, MD simulations show that un- V€Y close to thesolidus We have asolvuscurve with a

like atoms attract each other in the liquid leading to negativéitical temperaturd .~900 K atc~0.73. The experimental

values ofAh,.. This tendency increases as temperature inYa/ue isT;=1083.45 K atc=0.706. Also, the experimental

creases. miscibility gap extends over a larger range of low Ni con-
Small values of excess enthalpy for solid and liquid Som_centratlor_]s_ than that found in th|_s reg_ular approxu_natlon.
tions lead to smallefmore negativevalues of excess free The precision of these determinations is such that it could
energy Ag(c,T), either in the regular approximation, Eg. als_o havg.predlcteq a contact betyveen _slmdyqsand the
(12), or in the exact calculation. This is shown in Fig. 5, solidus giving a peritectic system with an invariant horizon-

where we compare both calculations with the experimentai@! line in the phase diagram located Bt 900 K. This is
results for solid T=1073K) and liquid T=1373K) due to the fact that the congruential point is 400 K lower

phased? than the experiment for the reasons mentioned above.
Figure 5 also shows that the results in the regular approxi- .
mation (squarep are closer to the experimefup triangles 2000 - 1962 K

than the values obtained with the exact calculation for both
solid and liquid phases. The difference between the exac
results and regular approximation indicates a significant in- ]
fluence of the vibrational entropy. From the difference in free 14007
energy between the regular approximation and the exact calg 1200 |
culation, we determine the vibrational entropy; see Fig. 6.~
The results of MD simulations and the experimental vaities
for both solid and liquid Au-Ni alloys show remarkable 1 :
agreement. 600 . F
The relative magnitudes of the excess free energy in the 1
liquid and in the solid, determine the nature of the phase R 5 T % 00
diagram. We present first the results in the regular approxi- c, lat. %]
mation. The predictions for the Au-Ni phase diagram are
shown in Fig. 7, together with the experimental results from FIG. 7. Au-Ni phase diagram in the regular approximation—
Ref. 16. The diagram exhibits a two-phase solid-liquid re-solidus-liquidusandsolvuscurves. The experimental phase diagram
gion with a minimum at the congruential point locatedcat (broken line$ (Ref. 16 is shown for comparison.

T=riy—

1800 -

1600

1325K

1000

800 4 900 K, 73 at.%
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FIG. 9. Monte Carlo calculations of crystalline order parameter
showing the melting temperatures of the pure elements and the
alloy at 42% Ni content, the congruent melting point.

FIG. 8. Au-Ni phase diagram in the exact calculation. The ex-
perimental phase diagraiioroken lines (Ref. 16 is shown for
comparison.

ent composition. These results are shown in Fig. 9 indicating

Finally, we compare the results obtained in the exact cala remarkable agreement between these three values and those
culation with the experimental phase diagram, see Fig. 8extracted from the phase diagram, Figs. 7 and 8. This con-
Considering the large positive excess entropy contribution, istitutes a robust validation of our results.
is to be expected that the exact result differ significantly from Although these three points of the phase diagram are quite
the regular approximation. The exact calculation shows thaprecise, the location of almost every other point, especially
the region of two phases is very narrow in the region of lowon thesolidusline is affected by significant errors. The main
Ni concentration. The congruential point is found at the sameource of them is the sample size, that induces fluctuations in
concentration, c~0.42, but at higher temperature]  the trend curve of enthalpy versus composition, Fig. 4, of a
~1000 K, than in the regular approximation, which is con-few meV/atom depending on which sample is taken from the
sistent with the larger excess entropy for the solid than foMonte Carlo generation process. These fluctuations disap-
the liquid (see Figure Bthat corrects in part the negative pear in the thermodynamic limit by self-averaging of local
mixing enthalpy of the liquid. Theolvushas a critical tem- order arrangements, but for a sample with 256 atoms, they
perature of~700 K at approximately the same composition, are important. A way to overcome this limitation is to repeat
c~0.8, as in the regular approximation. In both calculationsthe procedure for several samples, and then take average
the location on thec axis of the congruential and critical values, as done in Ref. 40; other way is to increase the size
points is in fairly good agreement with the experiments.  of the sample. Another source of error in the location of the
solidusline is the fact that we calculated a small set of con-
centrations, namely, 0, 20, 40, 60, 80, 90, 95, and 100% Ni,
while for a proper determination of treolidus more values

We presented the exact phase diagram of a model Hamibf ¢ would have been needed to account for the sensitive
tonian. Two different aspects have to be discussed now. Thieehavior ofg originated in the infinite derivative of the en-
first aspect is related to the precision of the method to revedropy of mixing close toc=0 andc=1. Analytic error de-
the true phase diagram of the model, a question that ariséermination associated to the phase diagrams, Figs. 7 and 8,
naturally considering the sensitivity of these results to smalls not possible because the location of phase boundaries is
errors in the calculated valuga few meV/atom in free en- the result of a geometric constructigthe common tangent
ergies translates into 50—100 K in the location of the pointsonstruction. However, qualitative error estimation is sug-
in the phase diagramThe second aspect concerns the abilitygested through the size of the symbols used in these figures,
of the model to reproduce the features of the real system. representing approximately 25° in temperature and 2% in

The precision of the phase diagram is even more relevartoncentration. Similarly, the data in figs. 2, 4—6, are affected
considering that for the same potentials, Foiles and Adamby 2—3 meV/atom error, as suggested by the symbol size.
reported for Ni a melting point of 1740 & while we find In Fig. 6 we obtained the vibrational contribution to the
1962 K, and for Au they report 1090 K while our value is entropy as the difference between the exact result and the
1325 K. There are several simpler ways to calculate meltingegular approximation in excellent agreement with the ex-
points with precision, which can be used to check the validperiments. Alternatively, the derivative of the free energy
ity of the complex way used in this work. In particular, a g(T,c) with respect to temperature equals minus the entropy.
Monte Carlo simulation with the EAM potential and full S=S.,,+ Si, can then be calculated for all concentrations
relaxation shows the transition temperature through the crysand temperatures using the data of Table I. Following this
talline order parametdr parameter that projects the position way we get essentially the same values3gj reflecting the
of the atoms in a subspace corresponding to a fcc latticeonsistency of the data.
regardless of their chemical natwrd&his procedure can be Additionally, the entropy difference between the two
applied to both pure elements and to the alloy at the congryshases of the pure elements at the melting point timgss

DISCUSSION
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TABLE |. Free-energy parameters at the reference temperdyirdEnergy changes of the Hamiltonian switchf() and reversible
expansion Af,). Einstein crystal {g;,9 and ideal gasf(y) free energies. Coefficients of the free-energy calculations.

To=296 K 9s(To) Afy fEins a a; h)
0% Ni —4.01488 —3.93184 —0.08304 4.1392810°8 2.30470< 1074 —3.92296
20% Ni —-4.11310 —4.02803 —0.08507 7.08464 1.94317 —4.00833
40% Ni —4.20338 —4.,12483 —0.07855 5.24308 2.11667 —4.11171
60% Ni —4.28534 —4.21730 —0.06804 3.16491 2.37220 —4.21880
75% Ni —4.34837 —4.29205 —0.05632 2.62324 2.44480 —4.30145
80% Ni —4.35838 —4.30473 —0.05365 3.38929 2.29682 —4.31105
85% Ni —4.38367 —4.33547 —0.04820 2.45152 2.43717 —4.34937
90% Ni —4.40169 —4.35792 —0.04377 2.76865 2.38583 —4.37273
95% Ni —4.42410 —4.38530 —0.03880 2.50231 2.41022 —4.40193
100% Ni —4.45485 —4.42485 —0.03000 2.50614 2.40940 —4.44497
To=2300 K g.(To) Af,y Af, fid a, a; ag
0% Ni —5.97886 —3.67856 0.66609 —2.96639 —2.16607% 108 3.98586< 10 4 —3.93358
20% Ni —6.09640 —3.77319 0.65557 —2.97878 —2.19563 3.99809 —4.06636
40% Ni —6.11691 —3.84434 0.65168 —2.92425 —2.33022 4.11734 —4.19213
60% Ni —6.08372 —3.89789 0.65164 —2.83747 —2.39753 4.23915 —4.29897
75% Ni —6.01545 —3.93360 0.65930 —2.74115 1.77105 2.79347 —4.24693
80% Ni —5.99472 —3.93596 0.66101 —2.71977 —2.00220 4.24640 —4.38253
85% Ni —5.95677 —3.94614 0.66465 —2.67528 —1.41262 4.11276 —4.40098
90% Ni —5.92507 —3.95569 0.66941 —2.63878 —1.55162 4.19990 —4.42130
95% Ni —5.88758 —3.95994 0.67089 —2.59853 —0.83478 3.98417 —4.41992
100% Ni —5.80695 —3.96158 0.68269 —2.52806 —2.20455 4.54990 —4.49225

the latent heat of melting. From E€L3) for g(T), the coef-
ficientsa; from Table I, andl ,, from Fig. 3, we get the latent
heat of meltingL for Au, L,=0.101 eV/at.,, and for Ni

Wolverton et al

|28

small tendency to ordering in an alloy which is phase sepa-
rating at lower temperaturesAb initio calculations by
gave values similar to these. The experi-

Ln\i=0.191 eV/at., in good agreement with the experimentaiment is also close to zero but positive. For the second shell,
values 0.128 eV/at. for Au and 0.183 eV/at. for Ni. the experiment gives a positive value, 0.148, while #fe

It is curious then that while this alloy is poorly described initio result is 0.120. This EAM potential gives a positive
in terms of the enthalpy of mixing of both liquid and solid value but smaller than the experiment: 0.05. It is curious that
phases, the entropy is in excellent agreement with the experihe ab initio and EAM show a change in sign between the
ments. In fact, Fig. 4 shows that in the enthalpy of solidSRO parameter of the first and second shell, ordering and
phase there is approximately a factor 3 to 4 between prediG|ystering tendency respectively, while the experimental val-
tion and experiment, despite the fact that the dilute heats qfies are both positive. For the liquid, the fact that the excess
solution (i.e., the derivatives of this curve at=0 andc enthalpy is negative may give a SRO showing tendency to

=1) are correct because they were used as input data in trlfrdering. This is what happens at 1023 K amd 0.4, the
fitting procedure of the potentials. But the prediction is mUChSRO is—0.033, a small tendency to ordering '

worse for the liquid phase, where these EAM potentials pre- In summary we presented an exact calculation of the

dict a negative excess enthalpy of mixing, against a . Lo
positive—although much smaller than in the solid phase—phase diagram of a model Hamiltonian, namely, the EAM

value found experimentally. This curiosity is probably re- po.tentlal fOI‘Au-NI.Of Folleset al. \.M:T‘ find an overall qugh- )
lated to the facts described in the introduction in the sens&at've_" agrgement n the charact.er'lsch of the phase d|e}g.ram.
that Au-Ni has a cancellation of two large contributions to@SPlidus-liquiduswith a large splitting and with a deep mini-
the enthalpy of mixing, namely, the size effect and theMum a_t the right cqncentraﬂon,smlvuswﬂh the right con-
chemical effect. Somehow, the EAM is capturing an aspecgentration at the critical temperature, and reas_onable values
of reality that is able to describe the vibrations of the alloyfor the melting temperatures of the pure constituents. How-
(that is the derivatives of the enedgiut is unable to de- €Vver, the wrong enhanced stability of the liquid with respect
scribe the energetics itself. to the ideal mixture, drops the position of the liquid free

Not only are the vibrations well described, but the order isenergy, intersecting the solid one at lower temperatures; con-
too. The nearest-neighbor Warren-Cowley SRO parametegequently the location on the temperature axis of the charac-
close to(but below the congruent melting temperature gives teristic points of the phase diagram is approximately 300 K
a value close to zero and negati/e0.044; this reflects a below the experimental values.
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