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Numerical evaluation of the exact phase diagram of an empirical Hamiltonian: Embedded atom
model for the Au-Ni system
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Molecular-dynamics simulations were used to calculate the Gibbs free energy on the entire compositional
range of gold-nickel alloys described with a set of embedded atom potentials available in the literature.
Thermodynamic integration and switching Hamiltonian techniques were used to obtain the exact phase dia-
gram ~with no approximations!, and that corresponding to the regular approximation. Remarkable agreement
for some properties, such as thesolvuscritical point, the congruential melting, the melting points of the pure
elements, and the formation entropy of the alloy, contrasts with the poor prediction of the location of the
solidus-liquiduslines, reflecting errors in the heat of solution in the liquid phase. The results are compared with
recent experimental reassessment of the Au-Ni phase diagram and withab initio calculations.
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INTRODUCTION

The classic many-body potentials, known generically
the embedded atom model~EAM!, provide a powerful tool
to study several types of simple solids, in particular, tran
tion metals and some of their alloys.1–3 Extensive work has
been done in the application of this model to many so
solutions and intermetallic compounds, but limited effort w
devoted to the computational calculation of the compl
equilibrium phase diagram predicted by this type of appro
mation. Therefore, little is still known about the ability of th
n-body potentials to reproduce details of the equilibriu
phase diagrams of transition metal alloys.

In recent times, several articles appeared showing pro
dures to evaluate numerically the free energy, using bothab
initio and empirical descriptions for the total energy, either
molecular-dynamics~MD! or Monte Carlo frames~MC!. The
use of these techniques has been proposed to increas
precision of the empirical Hamiltonians by incorporating, f
example, the thermodynamic melting temperature in the
ting procedure.4 Specific intermetallics, in particular in th
Al-Ni system, have received a lot of attention and con
quently sets of potentials specially suited for some phases
available in the literature.5 However the reciprocal problem
i.e., what kind of phases are predicted by a given se
potentials, is much less known. The interest in the answe
this question is not only natural curiosity, but has outm
relevance in applications where the results depend on t
modynamic driving forces derived from the equilibriu
phase diagram. One such case is the application of E
potentials to radiation damage problems, where the solid
get is driven far from equilibrium by an energetic projectile6

Another example is the structure of nanophase metallic
loys, where interface segregation and the nature of the p
diagram at such small scales is an issue on discussion.7,8

The Au-Ni system has a simple phase diagram but
usual thermodynamic properties in the sense that it exhib
large positive enthalpy of mixing originated in the significa
size mismatch effect, and large positive excess entropy
flecting a change in the vibrational frequency spectrum
0163-1829/2002/66~5!/054201~10!/$20.00 66 0542
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alloying. This system has received a lot of attention fro
three different avenues: experimental,ab initio, and empiri-
cal potential calculations. Unfortunately, the present state
the art of theab initio calculations for alloys is still insuffi-
cient to accurately reproduce all the features of the ph
diagram, formation enthalpies, entropies, miscibility ga
and tendency to order. For a review of the performed wo
see Refs. 9, 10.

The main features of the diagram are a wide miscibil
gap, and a broad and deep minimum in the liquidus li
Controversies about the location of the solidus as well as
the eventual order in the solid solution have lead to sev
studies starting in 1955.11–14The standard phase diagram f
this system is that of Okamoto and Massalski.15 Recently,
Bienzle et al.16 published a reassessment of the entire d
gram combining electromotive force, differential therm
analysis, x-ray diffraction, and transmission electron micr
copy measurements to determine the phase boundaries i
solid and liquid, and the microstructure of the Au-rich so
solutions. They also provide values for the excess entha
and entropy of mixing that, being positive, cause the la
miscibility gap. The excess enthalpy of the liquid phase
also positive although smaller than the solid value, and
counts for the minimum at the congruent point. Some sh
range order~SRO! above the miscibility gap is also reporte
ruling out claims on clustering of like atoms,17–21or even the
presence of intermetallic phases.22 The diversity of experi-
mental observations is accompanied by a significant un
tainty in the theoretical evaluations that comes from the f
that in this system the formation enthalpy is the result of
cancellation of two large terms: a large and positive va
coming from the elastic lattice distortion due to differe
atomic radii ~Au 1.46 Å and Ni 1.24 Å! and a negative
chemical contribution~estimation based on electronic calc
lations in Ref. 23!, in accordance with the difference in th
electronegativity of the pure elements. According to Lu a
Zunger,24 systems with different sign in these two contrib
tions may show phase separation in the long-range o
~LRO! at low T, and ordering in the SRO at highT, while
phase separation/clustering is shown for systems where
©2002 The American Physical Society01-1
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contributions have equal sign~either positive or negative!.
Therefore, the competition between the accuracy used in
different stages of the modeling ends up with controver
conclusions. Ordering appears clearly in Au-Ni thin films,
recent experimental behavior reports, which is explained
terms of epitaxial strain stabilization.25

First-principles theoretical determinations of the pha
diagram mainly address the issue of order in the solid ph
In 1994 Amador and Bossolo26 use linear muffin-tin orbital
~LMTO!, together with the cluster expansion for the ene
calculations and the cluster variational method for the f
energy calculations, to determine the formation energy of
random alloy, concluding that the SRO is almost null due
the low ~positive! formation energy; their values for the fo
mation energy, however, are a factor of 3 greater than
experimental ones due to the large mismatch present in
system and the lack of relaxation in their method. Also Co
net et al.27 published a calculation based on the sameab
initio method@LMTO atomic-sphere approximation~ASA!#
and cluster techniques, incorporating lattice relaxation
vibrational effects through a Debye-Gru¨neisen model. Their
prediction for the formation energy of the random solution
in excellent agreement with the experimental values. Ad
tionally, the miscibility gap derived from it, when vibrationa
entropy is included, also agrees very well. Interesting
mention is the fact that the formation energy reported in t
work is almost symmetric in the concentration axis, as is
configurational entropy; the asymmetry in the solvus cu
mainly comes from the positive vibrational entropy contrib
tion. However, some years later28 the same group published
better calculation based on LMTO full potential~FP! and the
results depart from the experiments in the same sense th
the Ref. 26, i.e., the formation energies are smaller that
measured values. The new miscibility gap shows a crit
temperature 150 K above the experimental value, and for
calculation the formation energy and vibrational entropy
both responsible for the asymmetry in the miscibility ga
Finally, they also arrive at the conclusion that the order
tendency has a rather negligible contribution and can be
glected in the free energy calculations.

Wolvertonet al.29 describe a first-principles technique
calculate SRO for several systems, in particular Au-Ni. Th
build an Ising Hamiltonian based on a FP-LAPW and
mixed space cluster expansion, that incorporates the re
ation in the parameter evaluation step, and which is use
lattice MC runs in the canonical ensemble with sample si
between 15–30 thousand atoms. They compare their valu
the Warren-Cowley SRO for the first shell~110!, 20.024
~slight ordering tendency!, with the experimental results o
Wu and Cohen from 1983~Ref. 30! at T51023 K and com-
positionXNi50.4 which is 0.039~slight clustering tendency!.
The agreement on the second shell is much better an
more significance~calculated 0.12, experimental 0.15! show-
ing a clustering type ordering. It is a surprising characteris
of this alloy that being phase separating, shows some sh
with tendency to order.

The use of computer simulations to calculate thermo
namic properties of solids has a long history either via MC
well as MD. In the beginning of the 1980’s, hard spheres a
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other simple models of solids were explored and powe
algorithms were deduced. Among them, Frenkel and La
introduced a method to calculate absolute free energie
arbitrary solids based on the construction of a reversible p
from the solid phase under consideration to an Einstein c
tal with the same crystalline structure.31 Their reversible path
method, with some modifications, is one of the most co
mon methods used today, either in MC and MD. W
equivalent methods for the liquid phase, the equilibriu
phase diagram of a given model Hamiltonian can be c
structed. We note that for this purpose, absolute values of
free energies in the coexisting phases have to be kno
Kranendonk and Frenkel32 reported the first calculation o
the solid-liquid coexistence in binary hard spheres mixtu
with these methods. Mei and Davenport33 calculated the
melting point of Al predicted by an EAM potential using MD
and the ideal gas as a reference system for the liquid ph
Recently, Sturgeon and Laird used this method to modify
Mei and Davenport potential for Al to better reproduce
melting point.4 As an alternative to MD, Lynden-Bellet al.34

used a biased potential in a MC simulation with umbre
sampling to determine the Landau free energy in terms
order parameters that describe the crystalline and the liq
order in terms of the symmetry of the bonds. With it, t
thermodynamic melting and the limit of metastability of th
crystalline phase of several ductile metals described
EAM-type potentials were determined. de Koning a
Antonelli35 analyze the behavior of Einstein oscillators as
reference system in adiabatic switching, using the canon
massive Nose´-Hoover chain dynamics. They arrive at an e
timation of the error in the procedure, allowing a correcti
of the converged results. With this formalism, they study
vacancy free-energy formation in copper.35,36 de Koning
et al. proposed an optimized free energy evaluation based
the switching Hamiltonians, but in such a way that the swi
and the temperature variation are both tackled in a sin
MD run, improving significantly the efficiency of the
method.37 They apply the method to evaluate the free ene
of crystalline Si with empirical potentials. A MC improve
ment that also involves a single simulation was proposed
applied by Bruceet al. to the free energy difference betwee
the fcc and hcp structures of hard spheres.38

Another widely used approach to free energy calculatio
is the quasiharmonic approximation. In this method, a f
energy is evaluated separately as the contribution from
enthalpy ~directly accessible from the simulation! and the
vibrational entropy, through lattice dynamics in the quasih
monic approximation. Examples of application are the te
perature dependence of the elastic constants of Au, the
face energy of Cu, the thermal expansion of Cu3Au by
Barrera and Tendler,39 the structure and energetics of Cu-A
alloys by Barreraet al.40 ~which reproduce correctly the na
ture of the order-disorder transition!, and the phase diagram
on the MnO-MgO system, that contains a miscibili
gap.41,42

With a mixed ab initio–classical potential and lattic
dynamics–MD, a fully theoretical prediction of thermod
namic properties of Al, including a melting point withi
2.5% of the experimental value, was presented by Str
1-2
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NUMERICAL EVALUATION OF THE EXACT PHASE . . . PHYSICAL REVIEW B 66, 054201 ~2002!
et al. in 1994.43 De Wijs et al. also madeab initio calcula-
tions of the same metal using coupling constant integra
with the quasiharmonic crystal and the Lennard-Jones fl
as reference states, again proving the power of the metho
predict basic thermodynamic properties.44

From the phenomenological avenue, the embedded-a
type description of the Au-Ni system starts with the paper
Foileset al.45 describing a set of potentials for the transitio
metals of the Ni and Cu columns, and their dilute alloys.
this set, they adjusted the potentials to several propertie
the pure elements as well as the heat of solution of th
alloys. Later, Foiles and Adams evaluated thermodyna
properties of the same elements using these potentia46

They use a quasiharmonic approximation for the free ene
of the solid phases and grand canonical Monte Carlo for
liquid phase; they also use MC to get the free energy of
solid and find good agreement between the two techniq
For the particular case of Ni, the free energies they get
greater than the experimental values in both solid and liq
phases, and this error is the largest for all the elements
sidered. Fortuitously, the reported melting point for pure
1740 K, is in very good agreement with the experiment
cause the errors in the liquid and solid free energies ca
one another. For Au, both free energies are less than
experimental values, as is the melting point 1090 K~18%
below!. Recently, Asta and Foiles47 studied three phase sep
rating solid solutions, including Au-Ni. They developed
second-order energy expansion to treat compositional
displacive disorder casting the problem in the form of a l
tice gas Hamiltonian with effective pair interactions. Th
developed a new potential for Au-Ni because the original o
poorly described~underestimates! the excess heat of mixing
of concentrated solutions. They obtained good agreem
close to equiatomic solutions and a poor description for
lute ones. However, they were unable to calculate the so
line because the alloy is unstable below the critical tempe
ture Tc , which by the way, is 2 to 3 times larger than th
experimental value.

In this work, we study one of the earliest embedded-at
~EAM! potentials developed by Foileset al.45 for Au-Ni to
extract its phase diagram. In this way, this work contribu
to the knowledge of the EAM approach to describe meta
alloys.

We report Gibbs free energies calculated using MD sim
lations for pure elements and for several Au-Ni alloys. W
follow the procedure described by Mei and Davenport33 and
apply it to alloys with different nickel concentration. To ou
knowledge these are the first calculations of the exact
energy of the alloy and with it, the exact phase diagram o
model Hamiltonian. By exact we mean no approximations
the formalism, such as the well-known quasiharmonic
proximation. The numerical evaluations, on the contra
have dispersion originated in either the finite size of
samples, and the finite time used in the averages.

FREE-ENERGY CALCULATION—PURE ELEMENTS

Calculating free energies involves the computation of
partition function by integrating over the entire phase sp
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of a system with a large number of degrees of freedom. Si
this is impossible to do computationally forab initio Hamil-
tonians, approximate schemes such as those mentio
above are used. For empirical Hamiltonians, however, an
most direct calculation of the free energy is possible and
the approach taken in this work.

In the derivations that follow, as well as in the comparis
with experiments, we shall not make a distinction betwe
Gibbs and Helmholtz free energies, as well as internal ene
and enthalpy, because some integrals or averages can be
ter calculated at constantV, and others at constantP. The
difference between these magnitudes is equal toPV, which is
negligible compared to value and error of the variables,
cept at very high pressures. For clarity, however, steps
formulated in terms off or g to make it explicit the ensemble
where the calculation is done.

Let us concentrate first on pure elements to introduce
general procedure, and then we will focus on alloys. W
calculate the free energy per particle at a given tempera
T, f (T), through thermodynamic integration between t
state of interest and a reference state at temperatureT0 with
known free energyf (T0). The free energy per particle i
given by the Gibbs-Duhem integral

f ~T!5 f ~T0!
T

T0
2TE

T0

T h~t!

t2 dt, ~1!

whereh(t) is the enthalpy per particle.
The coupling-constant integration method, or switchi

Hamiltonian method,48 is used to calculatef (T0). We con-
sider a system with HamiltonianH5(12l)W1lU, where
U describes the actual system~in this work, EAM Hamil-
tonian! and W is the Hamiltonian of the reference system
with known free energy. With this Hamiltonian we can ca
culate the free energy difference betweenW andU calculat-
ing the reversible work required when switching from one
the other. This switch has to be reversible, free of any ph
transition. Then the unknown free energy associated toU,
f (T0), is simply given by

f ~T0!5 f W~T0!1D f 1 ,

D f 15
1

N E
0

1K ]H

]l L dl5
1

N E
0

1

^U2W&ldl, ~2!

where f W(T0) is the free energy of the reference system
T0 temperature. The integration is carried over the coupl
parameterl varying between 0 and 1, and^¯& is the average
over a canonical ensemble, or a time average on a~T, V, N!
MD simulation.

For the solid phase it is customary to take as refere
system a set of Einstein oscillators centered on the ave
positions of the atoms in the (T0 ,P50,N) ensemble corre-
sponding to HamiltonianU. The noninteracting Einstein os
cillators have no internal pressure so the only possible
semble is the~T, V, N!. The free energy of the Einstei
crystal can be calculated analytically,49

f W
sol~T0!5 f Eins~T0!523kBT0 ln~T0 /TE!. ~3!
1-3



d

p

w
te

e
ng
e
ou
is

h

siv
it

iti
o

s
n

is

f
n
te

, a
er
a
as

is
tu

n

-
rsity
cro-
and
the

l
de-
the

ody-
of
.

nt

e

m,
the

cle

f

titu-
two
ima-
ma-

the
le-
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Here TE is the Einstein temperature of the oscillators,TE
5\v/kB , wherekB is the Boltzmann constant,v is the fre-
quency of oscillations, and\ is the Planck constant divide
by 2p.

For the liquid, the usual reference systemW is an ideal
gas at the same temperature and volume of the EAM sam
The process to switch fromU to W involves an intermediate
step to avoid particle overlap during the integration. First,
compute the free-energy difference between the true sys
with potentialU ~the EAM potential! and a system with a
repulsive potentialWL ~soft spheres!. In this work, we use
WL50.1 U rep, whereU rep is the pair potential part of the
EAM energy, which is purely repulsive for the potential w
are using.45 The repulsive potential cannot be very stro
because the sample may crystallize, an irreversible proc
As in the solid phase, the integration is carried over the c
pling parameterl varying between 0 and 1. The system
kept at the constant volumeV0 , that equilibrated theU
Hamiltonian at temperatureT0 and P50. Therefore, the
free-energy change for a pure element due to the switc
given byD f 1 , as in the second line of Eq.~2!. The second
step is also double: a reversible expansion of the repul
gas, now atV0 and high pressure, to reach the dilute lim
~where it becomes identical to the ideal gas!, followed by a
reversible compression of the ideal gas, to recover the in
density or volume. The change in free energy due to b
processes is

D f 25kBT0E
0

r0F P

rkBT0
21G dr

r
, ~4!

where r05N/V0 is the particle density. After the proces
represented by Eq.~4! has taken place we end up with a
ideal gas at (T0 ,r0), whose free energyf id is known,

f W
liq~T0 ,r0!5 f id~T0 ,r0!5kBT0@ ln~r0L3!21#. ~5!

Here L is the de Broglie thermal wavelength (L2

5h2/2pmkBT0), whereh is the Planck constant andm is the
atomic mass.49 Then the free energy of the liquid phase
calculated as the sum

gL~T0!5D f 11D f 21 f w
liq~T0 ,r0!. ~6!

Equation~1!, with Eqs.~2! and~6!, give the free energies o
the solid and liquid phases of pure elements as a functio
temperature; with them, the melting points can be de
mined.

ALLOYS

In this work we are interested on the Au-Ni solutions
system with positive heat of mixing that may form eith
homogeneous or heterogeneous solutions in both solid
liquid phases. Therefore the lines of interest in the ph
diagram are the liquids, the solidus, and the solvus~eventu-
ally in both phases!. The strategy for the alloy calculations
to construct a set of free energy functions versus tempera
gc(T), Eq. ~1!, for several values of the concentrationc,
extract from themgT(c) curves for both phases, and the
look at the common tangent construction.
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In principle, Eq.~1! is readily applicable to alloys pro
vided the sample is large enough to self-average the dive
of short-range configurations that appears in a real ma
scopic sample. This is never the case for finite systems
therefore an important issue is to assess the dispersion in
final data originated by the choice of different initia
samples. We come back to this point in the paragraph
scribing the simulations; at this moment let’s assume that
sample is large enough to be representative of the therm
namic limit and therefore the integral in the second term
the right-hand side~RHS! of Eq. ~1! can easily be calculated
Similarly, the free energies of the reference systems~mix-
tures of Einstein oscillators or ideal gases! can be calculated
using the following expression:48

f Eins~c,T0!5c fEins
Ni 1~12c! f Eins

Au 2T0sconf~c!. ~7!

for the Einstein crystal, wherec measures the solute conte
~in what follows Ni is the solute!, and f Eins

Ni and f Eins
Au are

given by Eq.~3!. The configurational entropy per particl
sconf(c), is given by the usual expressionkB @c ln(c)1(1
2c)ln(12c)#, assuming the solution is completely rando
i.e., no SRO appears; we come back to this point in
discussion session. For the ideal gas

f id~c,T0 ,r!5c f id
Ni~rNi!1~12c! f id

Au~rAu! ~8!

or, making the entropy of mixing appear explicitly,

f id~c,T0 ,r!5c f id
Ni~r!1~12c! f id

Au~r!2T0sconf~c!, ~9!

wherer is the total density,rNi andrAu are the partial den-
sities,cr and (12c) r, respectively, and thef id’s are given
by Eq. ~5!. Note the different arguments of thef id’s func-
tions in Eqs.~8! and ~9!.

REGULAR APPROXIMATION

In the regular approximation, the free energy per parti
of a Au-Ni alloy with concentrationc of Ni is given by

gReg5cgNi~T!1~12c!gAu~T!1Dhxs~c,T!2Tsconf,
~10!

wheregAu(T) andgNi(T) are the free energy per particle o
the pure elements. The first two terms in the RHS of Eq.~10!
represent a linear interpolation between the pure cons
ents, i.e., the free energy of an ideal solution, and the last
terms are the excess free energy in the regular approx
tion, that measures the departure of the regular approxi
tion from ideal behavior

DgReg~c,T!5Dhxs~c,T!2Tsconf. ~11!

Here the excess enthalpy of mixing per particleDhxs is the
difference between the enthalpy of the actual mixture and
linear interpolation between the enthalpies of the pure e
ments, i.e., the enthalpy of the ideal solution

Dhxs~c,T!5hmix~c,T!2hid~c,T!,

hid~c,T!5chNi1~12c!hAu . ~12!
1-4
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By definition, the difference between the free energy o
tained in the exact calculation@Eq. ~1! for the alloy# and that
of the regular approximation@Eq. ~10!# is equal to2TDsvib ,
whereDsvib is the excess vibrational entropy, provided th
the solution is random.

SIMULATIONS

We use the EAM potentials of Foileset al.45 for our simu-
lations. All samples have 256 atoms and the configurati
for different values of the Ni concentration are obtained
Monte Carlo runs in the transmutation ensem
(T,P,N,Dm), with N the total number of atoms andDm the
difference in chemical potential, adjusted to get the des
composition. Sufficiently long runs~longer than 104 MC
steps/atom! allow the development of any eventual sho
range order. Determinations of the Warren-Cowley SRO
rameters during MC runs in the solid and liquid close to
phase transition indicate a null value for the nearest neigh
shell within the precision accessible with this sample size
agreement with experimental findings.16 The precision
needed in free energy determinations, of the order of
meV/atom, crucially depends on the size of the sample.
different initial configurations of the finite sample, differe
values of the internal energy are obtained; fluctuations
these values at the sample size chosen are one of the
sources of error in the present work. To avoid this limitati
larger samples, or averages over different samples as do
Ref. 40, are needed.

The temperature control in MD runs is provided by
thermostat based on a damping term whose strength and
is determined by the difference between the actual and
sired kinetic energies of the total sample. The center of m
motion, if any, is implicitly preserved by the equations of t
motion for every step, so the initial condition has to be p
pared with zero c.m. velocity. For long runs, this constrain
checked along the run and eventual departures are corre
If the zero center of mass motion constraint is taken i
account explicitly in the thermostat, then Eqs.~3! and~5! are
no longer valid, and they have to be replaced by more
volved expressions given in Ref. 50.

A constant-pressure simulation using the Parrine
Rahman algorithm51 and a time step of 2 fs is used in th
simulations. In every run, the first 104 time steps are used t
equilibrate the sample and the statistical average of the t
modynamic variables is obtained on an additional set of4

time steps. In the case of the solid, the sample is heate
successive runs between 296 and 1800 K, with a tempera
interval of 50 K. In every run, the enthalpy per particle f
the solidhS(T) is obtained. The same is done to determ
the liquid phase internal enthalpyhL(T). In this case, the
samples are heated up to 5000 K to melt them, and t
cooled down from 2300 to 1600 K, in temperature steps
50 K.

Second-order polynomials are adjusted to the simula
results of the internal enthalpy for solid and liquid Au-N
alloys, see Fig. 1, and the integral of Eq.~1! is solved ana-
lytically. The resulting Gibbs free energies per particle a
computed as
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g~T!5g~T0!~T/T0!2T@a2~T2T0!1a1 ln~T/T0!

2a0~1/T21/T0!#, ~13!

whereai are the polynomial coefficients of a quadratic fit
the enthalpies reported in Fig. 1. They are given in Table
together with the quantities enteringg(T0) in Eq. ~13!.

The reference free energy of the solidsg(T0) is calculated
at T05296 K using Einstein temperaturesTE

Ni5200 K and
TE

Au5100 K. The Einstein temperature is chosen to minim
the structure of the switch curve in order to improve t
numerical precision, which in this scale has to be a few m
atom. Sturgeon and Laird4 propose a systematic way t
choose the Einstein temperature: the best value is that gi
a mean-squared displacement similar to the value obta
with the EAM interactions.

To calculate the switch, we first cool down the samples
0 K at the volume corresponding toP50 at T5296 K and
determine the equilibrium positions$r i0% of the Einstein
crystal. Typically, we calculate the average^U2Wso& at con-
stant temperature and constant volume, for values ofl vary-
ing between 0 and 1 with an intervalDl50.05. Again, the
calculations at a givenl are carried out in two successiv
runs each of 104 steps and averages^U-WSo& are taken on
the second set of time steps. We fit a polynomial curve
fifth degree to these points and solve the integral of Eq.~2!
analytically.

In the liquid phase, the Helmholtz free-energy chan
D f 1 is evaluated at a reference temperatureT052300 K. The
average volume,Vav of a sample equilibrated at 2300 K i
used to generate a cubic sample with volumeV0
5Vav(2300 K). This cubic sample is taken as the starti
sample for each run for every value ofl. The switching
parameterl varies between 0 and 1, in intervals of 0.05, a
before eacĥ U2Wliq& average process we equilibrate th
sample, as for the solid case. A sixth degree polynomia
fitted to the points and the integral of Eq.~2! is solved ana-
lytically. We then expand the sample keeping the tempera
constant and equal toT0 . This is done in 14 consecutive run
reducing the pressure from about 125 to 2 kbar. At every s
two successive runs of 104 time steps each are carried ou

FIG. 1. Temperature dependence of the enthalpy per particl
solid and liquid different Au-Ni alloys~heating runs!.
1-5
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The average pressure, density, and temperature are obt
during the second run. Two more values are added to
data: the origin (P50,r50), corresponding to the ideal ga
limit, and the average pressure and density obtained for
casel50. Once the evolution of pressure as a function
density is obtained, we proceed to calculate the integran
Eq. ~4! P/rkBT21, and to fit a sixth degree polynomial t
this function. The Helmholtz free-energy changeD f 2 is ob-
tained by the analytical integration of this polynomial.

RESULTS

The MD simulations carried out for several Au-Ni allo
compositions show a smooth behavior of the solid and liq
internal enthalpieshS and hL as a function of temperatur
when the concentration changes, see Fig. 1. A step show
temperature at which the solid becomes a liquid. These s
do not reflect the thermodynamic melting but the melti
temperature for those particular conditions of the simulati
The points shown in the figure correspond to heating ru
from room temperature up to 2300 K. These points are
integrand appearing in Eq.~1!. On cooling, the points over
lap, except by a histeresis in the solid-liquid transitions
lated to the overheating-undercooling phenomena. The la
heat of melting for pure Ni is 0.191 and 0.101 eV/at. for A
in good agreement with the experimental values of 0.182
0.128 eV/at. found in the literature.14

The integrand for the switching Hamiltonians, Eq.~2!, is
shown in Fig. 2 for pure Ni in the solid phase. The shape
these curves satisfy the Bogoliubov inequality^]2H(l)/
]l2&,0,48 which is used to test the accuracy of the in
grand. For the solid phase, the regionl;1 is difficult to get
with a good precision because the average Hamiltonian
termining the equations of motion in this case is close toU
~the EAM!, while one of the magnitudes to be averaged isW,
the term coming from the Einstein oscillators.U is indepen-
dent of the center of mass motion, butW is very sensitive to
it, so thel;1 limit, and then the integral, has significa
errors. Similarly, in the liquid phase, the switch to the rep
sive gas depends on the strength of the repulsive poten
which is adjusted to avoid crystallization and atom overl

FIG. 2. Example of the integrand̂U2W&l appearing in the
switching Hamiltonian method, Eq.~2!, versus the switching pa
rameterl, corresponding to the liquid~right axis! and solid~left
axis! phases of pure Ni.
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and at the same time to minimize the structure of the in
grand in Eq.~2!. The role of the thermostat in this procedu
is crucial; the Einstein oscillators do not thermally equi
brate among themselves because they are independent,
thelU part of the Hamiltonian leads to equipartition. Ther
fore the precision of the integral becomes a difficult issue
small l and long equilibration runs are needed. The Lan
vin thermostat is a good option to avoid this difficulty.

The free-energy functionsgS(T) andgL(T) for the solid
and liquid phases of the pure elements are shown in Fig
The melting temperatureTm is obtained from the intersectio
of these curves. Au free energies cross atTm

Au51325 K, 13 K
~1%! below the experimental melting pointTm

exp51337.6 K.
The intersection of Ni free energies givesTm

Ni51962 K,
which is 236 K~14%! bigger than the experimental meltin
point Tm

exp51726 K.
The calculated values of the excess enthalpy of mix

per particleDhxs, Eq. ~12!, are shown in Fig. 4 as a functio
of the Ni concentration. We obtainDhxs positive and smaller
than the experimental value for the solid, and negative

FIG. 3. Calculated and experimental~Ref. 16! Gibbs free energy
per particlegS andgL for solid and liquid phases of pure Ni and Au

FIG. 4. Calculated~circles! and experimental~triangles! ~Ref.
16! excess enthalpy of mixing for solid and liquid Au-Ni alloys
Filled and empty marks correspond to the solid and liquid pha
respectively.
1-6
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contrary to experiments—for the liquid. Positive values
Dhxs for the solid indicate a tendency for phase separat
and the possible existence of a miscibility gap. We report
excess enthalpy for the solid phase atT51000 K since at
higher temperatures the alloys with low concentration of
are already liquid. The figure shows a maximum atc'0.8
for the solid, a more pronounced asymmetry than the exp
mental one. Excess enthalpies of both solid and liq
phases, obtained from our MD simulations for these pot
tials, are smaller than the experimental values reported
Bienzleet al.16 In particular, MD simulations show that un
like atoms attract each other in the liquid leading to nega
values ofDhxs. This tendency increases as temperature
creases.

Small values of excess enthalpy for solid and liquid so
tions lead to smaller~more negative! values of excess free
energy Dg(c,T), either in the regular approximation, Eq
~11!, or in the exact calculation. This is shown in Fig.
where we compare both calculations with the experime
results for solid (T51073 K) and liquid (T51373 K)
phases.16

Figure 5 also shows that the results in the regular appr
mation ~squares! are closer to the experiment~up triangles!
than the values obtained with the exact calculation for b
solid and liquid phases. The difference between the ex
results and regular approximation indicates a significant
fluence of the vibrational entropy. From the difference in fr
energy between the regular approximation and the exact
culation, we determine the vibrational entropy; see Fig.
The results of MD simulations and the experimental value16

for both solid and liquid Au-Ni alloys show remarkab
agreement.

The relative magnitudes of the excess free energy in
liquid and in the solid, determine the nature of the pha
diagram. We present first the results in the regular appr
mation. The predictions for the Au-Ni phase diagram a
shown in Fig. 7, together with the experimental results fr
Ref. 16. The diagram exhibits a two-phase solid-liquid
gion with a minimum at the congruential point located ac

FIG. 5. Excess free energyDg of solid and liquid Au-Ni alloys
at two different temperatures:~circles! exact calculation,~squares!
regular approximation,~triangles! experimental results taken from
Ref. 16.
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;0.41, in excellent agreement with the experimental va
c50.425, and atT;850 K, well below the experimenta
value T51228.15 K. The enhanced stability of the liqu
~negative excess enthalpy! is at the origin of this discrep-
ancy; in factDgL is much more negative than the experime
tal value and intersects the solid free energy at a much lo
temperature. The splitting between solidus and liquidus
also more pronounced. The much higher melting point of
is an additional major difference.

In the solid region a miscibility gap appears. Always
the regular approximation, the gap extends to temperat
very close to thesolidus. We have asolvuscurve with a
critical temperatureTc;900 K atc;0.73. The experimenta
value isTc51083.45 K atc50.706. Also, the experimenta
miscibility gap extends over a larger range of low Ni co
centrations than that found in this regular approximatio
The precision of these determinations is such that it co
also have predicted a contact between thesolvus and the
solidus, giving a peritectic system with an invariant horizo
tal line in the phase diagram located atT;900 K. This is
due to the fact that the congruential point is 400 K low
than the experiment for the reasons mentioned above.

FIG. 6. Calculated and experimental entropy of solidT
51173 K) and liquid (T51373 K) Au-Ni alloys.

FIG. 7. Au-Ni phase diagram in the regular approximation
solidus-liquidusandsolvuscurves. The experimental phase diagra
~broken lines! ~Ref. 16! is shown for comparison.
1-7
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Finally, we compare the results obtained in the exact c
culation with the experimental phase diagram, see Fig
Considering the large positive excess entropy contribution
is to be expected that the exact result differ significantly fr
the regular approximation. The exact calculation shows
the region of two phases is very narrow in the region of l
Ni concentration. The congruential point is found at the sa
concentration, c;0.42, but at higher temperature,T
;1000 K, than in the regular approximation, which is co
sistent with the larger excess entropy for the solid than
the liquid ~see Figure 6! that corrects in part the negativ
mixing enthalpy of the liquid. Thesolvushas a critical tem-
perature of;700 K at approximately the same compositio
c;0.8, as in the regular approximation. In both calculatio
the location on thec axis of the congruential and critica
points is in fairly good agreement with the experiments.

DISCUSSION

We presented the exact phase diagram of a model Ha
tonian. Two different aspects have to be discussed now.
first aspect is related to the precision of the method to rev
the true phase diagram of the model, a question that ar
naturally considering the sensitivity of these results to sm
errors in the calculated values~a few meV/atom in free en
ergies translates into 50–100 K in the location of the poi
in the phase diagram!. The second aspect concerns the abi
of the model to reproduce the features of the real system

The precision of the phase diagram is even more relev
considering that for the same potentials, Foiles and Ada
reported for Ni a melting point of 1740 K,45 while we find
1962 K, and for Au they report 1090 K while our value
1325 K. There are several simpler ways to calculate mel
points with precision, which can be used to check the va
ity of the complex way used in this work. In particular,
Monte Carlo simulation with the EAM potential and fu
relaxation shows the transition temperature through the c
talline order parameter~a parameter that projects the positio
of the atoms in a subspace corresponding to a fcc lat
regardless of their chemical nature!. This procedure can be
applied to both pure elements and to the alloy at the con

FIG. 8. Au-Ni phase diagram in the exact calculation. The
perimental phase diagram~broken lines! ~Ref. 16! is shown for
comparison.
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ent composition. These results are shown in Fig. 9 indica
a remarkable agreement between these three values and
extracted from the phase diagram, Figs. 7 and 8. This c
stitutes a robust validation of our results.

Although these three points of the phase diagram are q
precise, the location of almost every other point, especi
on thesolidusline is affected by significant errors. The ma
source of them is the sample size, that induces fluctuation
the trend curve of enthalpy versus composition, Fig. 4, o
few meV/atom depending on which sample is taken from
Monte Carlo generation process. These fluctuations dis
pear in the thermodynamic limit by self-averaging of loc
order arrangements, but for a sample with 256 atoms, t
are important. A way to overcome this limitation is to repe
the procedure for several samples, and then take ave
values, as done in Ref. 40; other way is to increase the
of the sample. Another source of error in the location of t
solidusline is the fact that we calculated a small set of co
centrations, namely, 0, 20, 40, 60, 80, 90, 95, and 100%
while for a proper determination of thesolidus, more values
of c would have been needed to account for the sensi
behavior ofg originated in the infinite derivative of the en
tropy of mixing close toc50 andc51. Analytic error de-
termination associated to the phase diagrams, Figs. 7 an
is not possible because the location of phase boundarie
the result of a geometric construction~the common tangen
construction!. However, qualitative error estimation is su
gested through the size of the symbols used in these figu
representing approximately 25° in temperature and 2%
concentration. Similarly, the data in figs. 2, 4–6, are affec
by 2–3 meV/atom error, as suggested by the symbol siz

In Fig. 6 we obtained the vibrational contribution to th
entropy as the difference between the exact result and
regular approximation in excellent agreement with the
periments. Alternatively, the derivative of the free ener
g(T,c) with respect to temperature equals minus the entro
S5Sconf1Svib can then be calculated for all concentratio
and temperatures using the data of Table I. Following t
way we get essentially the same values forSvib reflecting the
consistency of the data.

Additionally, the entropy difference between the tw
phases of the pure elements at the melting point timesTm is

-
FIG. 9. Monte Carlo calculations of crystalline order parame

showing the melting temperatures of the pure elements and
alloy at 42% Ni content, the congruent melting point.
1-8
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TABLE I. Free-energy parameters at the reference temperatureT0 . Energy changes of the Hamiltonian switch (D f 1) and reversible
expansion (D f 2). Einstein crystal (f Eins) and ideal gas (f id) free energies. Coefficientsai of the free-energy calculations.

T05296 K gS(T0) D f 1 f Eins a2 a1 a0

0% Ni 24.01488 23.93184 20.08304 4.1392831028 2.3047031024 23.92296
20% Ni 24.11310 24.02803 20.08507 7.08464 1.94317 24.00833
40% Ni 24.20338 24.12483 20.07855 5.24308 2.11667 24.11171
60% Ni 24.28534 24.21730 20.06804 3.16491 2.37220 24.21880
75% Ni 24.34837 24.29205 20.05632 2.62324 2.44480 24.30145
80% Ni 24.35838 24.30473 20.05365 3.38929 2.29682 24.31105
85% Ni 24.38367 24.33547 20.04820 2.45152 2.43717 24.34937
90% Ni 24.40169 24.35792 20.04377 2.76865 2.38583 24.37273
95% Ni 24.42410 24.38530 20.03880 2.50231 2.41022 24.40193
100% Ni 24.45485 24.42485 20.03000 2.50614 2.40940 24.44497

T052300 K gL(T0) D f 1 D f 2 f id a2 a1 a0

0% Ni 25.97886 23.67856 0.66609 22.96639 22.1660731028 3.9858631024 23.93358
20% Ni 26.09640 23.77319 0.65557 22.97878 22.19563 3.99809 24.06636
40% Ni 26.11691 23.84434 0.65168 22.92425 22.33022 4.11734 24.19213
60% Ni 26.08372 23.89789 0.65164 22.83747 22.39753 4.23915 24.29897
75% Ni 26.01545 23.93360 0.65930 22.74115 1.77105 2.79347 24.24693
80% Ni 25.99472 23.93596 0.66101 22.71977 22.00220 4.24640 24.38253
85% Ni 25.95677 23.94614 0.66465 22.67528 21.41262 4.11276 24.40098
90% Ni 25.92507 23.95569 0.66941 22.63878 21.55162 4.19990 24.42130
95% Ni 25.88758 23.95994 0.67089 22.59853 20.83478 3.98417 24.41992
100% Ni 25.80695 23.96158 0.68269 22.52806 22.20455 4.54990 24.49225
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the latent heat of melting. From Eq.~13! for g(T), the coef-
ficientsai from Table I, andTm from Fig. 3, we get the laten
heat of meltingL for Au, LAu50.101 eV/at., and for Ni
LNi50.191 eV/at., in good agreement with the experimen
values 0.128 eV/at. for Au and 0.183 eV/at. for Ni.

It is curious then that while this alloy is poorly describe
in terms of the enthalpy of mixing of both liquid and sol
phases, the entropy is in excellent agreement with the exp
ments. In fact, Fig. 4 shows that in the enthalpy of so
phase there is approximately a factor 3 to 4 between pre
tion and experiment, despite the fact that the dilute heat
solution ~i.e., the derivatives of this curve atc50 and c
51! are correct because they were used as input data in
fitting procedure of the potentials. But the prediction is mu
worse for the liquid phase, where these EAM potentials p
dict a negative excess enthalpy of mixing, against
positive—although much smaller than in the solid phase
value found experimentally. This curiosity is probably r
lated to the facts described in the introduction in the se
that Au-Ni has a cancellation of two large contributions
the enthalpy of mixing, namely, the size effect and t
chemical effect. Somehow, the EAM is capturing an asp
of reality that is able to describe the vibrations of the all
~that is the derivatives of the energy! but is unable to de-
scribe the energetics itself.

Not only are the vibrations well described, but the orde
too. The nearest-neighbor Warren-Cowley SRO param
close to~but below! the congruent melting temperature giv
a value close to zero and negative~20.044!; this reflects a
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small tendency to ordering in an alloy which is phase se
rating at lower temperatures.Ab initio calculations by
Wolverton et al.28 gave values similar to these. The expe
ment is also close to zero but positive. For the second sh
the experiment gives a positive value, 0.148, while theab
initio result is 0.120. This EAM potential gives a positiv
value but smaller than the experiment: 0.05. It is curious t
the ab initio and EAM show a change in sign between t
SRO parameter of the first and second shell, ordering
clustering tendency respectively, while the experimental v
ues are both positive. For the liquid, the fact that the exc
enthalpy is negative may give a SRO showing tendency
ordering. This is what happens at 1023 K andc;0.4, the
SRO is20.033, a small tendency to ordering.

In summary we presented an exact calculation of
phase diagram of a model Hamiltonian, namely, the EA
potential for Au-Ni of Foileset al.45 We find an overall quali-
tative agreement in the characteristics of the phase diag
a solidus-liquiduswith a large splitting and with a deep min
mum at the right concentration, asolvuswith the right con-
centration at the critical temperature, and reasonable va
for the melting temperatures of the pure constituents. Ho
ever, the wrong enhanced stability of the liquid with resp
to the ideal mixture, drops the position of the liquid fre
energy, intersecting the solid one at lower temperatures; c
sequently the location on the temperature axis of the cha
teristic points of the phase diagram is approximately 300
below the experimental values.
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