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Multicritical phase diagrams of the Blume-Emery-Griffiths model with repulsive biquadratic
coupling including metastable phases
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We investigate the thermal variations of the spin-1 Blume-Emergy-Griffiths model with the repulsive biqua-
dratic interaction by using the lowest approximation of the cluster-variation method. Besides the stable
branches of the order parameters, we obtain the metastable and unstable parts of these curves and also find
phase transitions of the metastable branches of the order parameters. The classification of the stable, meta-
stable, and unstable states is made by comparing the free-energy values of these states. We also study the
dynamics of the model by the path probability method in order to make sure that we find and define the
metastable and unstable branches of the order parameters completely and correctly. This is done by studying
the relaxation of the order parameters and as well as expressing the solution of the dynamic equations by
means of the flow diagrams. Finally, we present the metastable phase diagrams in addition to the equilibrium
phase diagrams in (kT/J,D/J) and (kT/J,K/J) planes.
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I. INTRODUCTION

The Blume-Emery-Griffiths~BEG! model1 is a spin-1
Ising model with bilinear~J! and biquadratic~K! nearest-
neighbor pair interactions in which a single-ion anisotro
parameter~D! is included. The BEG model has attracted
great deal of attention since it was originally proposed
describe phase separation and superfluid ordering in he
mixtures. It has subsequently been used to describe p
transitions in simple and multicomponent fluids, microem
sions, semiconductor alloys, the reentrant phenomeno
phase diagrams, electron conduction models, and marten
transformation to quote only a few. Moreover, the BE
model has also played an important guiding role in the
velopment of microscopic models for adsorbed systems
in the renormalization-group theory of Potts transitions.

The BEG model is defined by the following Hamiltonia

H52J(̂
i j &

SiSj2K(̂
i j &

Si
2Sj

21D(
i

Si
2 , ~1!

whereSi561,0 is at each sitei of a lattice, each site hasz
nearest neighbors, and̂i j & indicates summation over a
pairs of nearest-neighbor sites.

The phase diagrams of the BEG model forK/J>0 have
been studied by the mean-field approximation,1–3 the
position-space renormalization-group method,4 the cluster-
variation method,5,6 series-expansion methods,7 the transfer-
matrix method,8 the constant coupling approximation9

linear-chain approximation,10 and on the Bethe lattice usin
exact recursion equations.11 Recently we also studied th
BEG model forJ andK.0 and obtained the metastable a
unstable states besides the stable state.12 We found that the
metastable and unstable branches of the order param
undergo first- or second-order phase transitions. We also
sented the metastable phase diagram of the BEG mod
addition to the equilibrium phase diagram.13

On the other hand the BEG model with repulsive biqu
dratic coupling, i.e.,K/J,0 is now a subject of intens
0163-1829/2002/66~5!/054105~11!/$20.00 66 0541
o
m
se

-
in
itic

-
d

ers
re-
in

-

study.14 For example, a study of the global phase diagram
the BEG model forK,0 was made by using the mean-fie
approximation~MFA!,15 showing a variety of interesting fea
tures, including single and double reentrancy regions
ferrimagnetic phases. In a renormalization-group calculat
of the model forK/J,0, the phase diagrams16 are different
from the ones of the MFA. The main discrepancy is that
ferrimagnetic phase is seen. Furthermore, for repulsive
quadratic interaction, the BEG model has been investiga
by the Monte Carlo method,17 cluster-variation method,18

and using a Monte Carlo renormalization group.19 In this
context, the exact solutions of the BEG model on the Be
lattice, and the honeycomb and square lattice in two dim
sions are worth mentioning.20 The phase diagrams obtaine
by the above-mentioned works are only the equilibriu
phase diagrams.

In spite of these studies, the equilibrium properties of
BEG model forK/J,0 is not investigated using the lowe
approximation of the cluster-variation method~LACVM ! ex-
tensively. Especially, the metastable and unstable branche
the order parameters and their phase transitions are no
amined in depth. Moreover the metastable phase diagram
the model in addition to the equilibrium phase diagrams w
also not calculated. Therefore, the purpose of this work is
study the behavior of the thermal variation of the order p
rameters and to obtain the metastable and unstable bran
of the order parameters and to investigate their phase tra
tions for repulsive biquadratic interaction. We also study
dynamics of the model in order to make sure that we find a
classify the metastable and unstable branches of the o
parameters completely and correctly. Finally, we present
metastable phase diagrams of the BEG model in additio
the equilibrium phase diagrams.

It is worthwhile to mention that the metastable and u
stable states have been found in many physical systems
perimentally and theoretically. For example, the BEG mo
Hamiltonian with zero-crystal-field interaction theoretical
have been studied for zero magnetic field,21 an external mag-
netic field,22 and as well as for magnetic fields due to t
©2002 The American Physical Society05-1
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dipole and quadrupole moments.23 Moreover, the metastabl
phase diagrams are presented in addition to the equilibr
phase diagram for some alloys,24–26 semiconductors,27,28

polymers,29 water,30 and a ternary system.31 The unstable
continuation of the second-order phase-transition line is a
mentioned in (AIII BV)12XC2X

IV semiconductor alloys, theo
retically in addition to the metastable and equilibrium pha
diagram.32 On the other hand, the BEG model has been u
to calculate the metastable phase diagram of the Cu-Al-
shape-memory alloys,26 semiconductor alloys,28 as well as
the ternary system.31 Moreover, the unstable continuation o
the second-order phase-transition line is presented by u
the BEG model in semiconductor alloys.32

The outline of this work is as follows. In Sec. II, w
define the model briefly and obtain its solutions at equil
rium within the LACVM. The equilibrium properties of the
system are investigated in Sec. III. The dynamics of
model is studied by the path probability method in Sec.
In Sec. V, transition temperatures are calculated preci
and metastable phase diagrams are presented in additi
the equilibrium phase diagrams. Section VI contains
summary and conclusion.

II. MODEL AND METHOD

The BEG model is defined as a two-sublattice model, w
spin variablesSi561,0 andSj561,0 on sites of sublattice
A andB, respectively. The average value of each of the s
states will be denoted byX1

A , X2
A , and X3

A on the sites of
sublatticeA andX1

B , X2
B , andX3

B on the sublatticeB, which
are also called the state or point variables.X1

A andX1
B are the

fractions of the spin value11 on A and B sublattices, re-
spectively, andX2

A andX2
B are the fractions of the spins tha

have value 0 onA andB sublattices, respectively, andX3
A and

X3
B are the fractions of the spins that have the value21 onA

andB sublattices, respectively. These variables obey the
lowing two normalization relations forA andB sublattices,

(
i 51

3

Xi
A51

and

(
j 51

3

Xj
B51. ~2!

However, in order to account for the possible tw
sublattice structure, we need four long-range order par
eters, which are introduced as follows:MA5^Si&A , QA

5^Si
2&A , MB5^Sj&B , and QB5^Sj

2&B for A and B sublat-
tices, respectively.MA and MB are the average magnetiz
tions which is the excess of one orientation over the ot
orientation, called magnetizations, andQA and QB are the
quadrupolar moments which is the average squared ma
tizations forA andB sublattices, respectively. The values
these stable branches of the order parameters define
phases with different symetry. These are~i! the paramagnetic
phase~p! with MA5MB50,QA5QB , ~ii ! the ferromagnetic
05410
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phase~f! with MA5MBÞ0,QA5QB , ~iii ! the antiquadrupo-
lar or staggered quadrupolar phase~a! with MA5MB50,
QAÞQB , and ~iv! the ferrimagnetic phase~i! with MA
ÞMBÞ0,QAÞQB .

The order parameters can be expressed in terms of
internal variables and are given by

MA5^Si
A&5X1

A2X3
A ,

QA5^~Si
A!2&5X1

A1X3
A ,

MB5^Sj
B&5X1

B2X3
B ,

QB5^~Sj
B!2&5X1

B1X3
B . ~3!

Using Eqs.~2! and ~3!, the internal variables can be ex
pressed as linear combinations of the order parameters,

X1
A5

1

2
~QA1MA!, X2

A5~12QA!,

X3
A5

1

2
~QA2MA!,

X1
B5

1

2
~QB1MB!, X2

B5~12QB!,

X3
B5

1

2
~QB2MB!. ~4!

The Hamiltonian of such a two-sublattice BEG model

H52J(̂
i j &

SiSj2K(̂
i j &

Si
2Sj

21DS (
i

Si
21(

j
Sj

2D . ~5!

The equilibrium properties of the system are determin
by the lowest approximation of the cluster-variatio
method33 ~LACVM ! which is identical to the mean-field ap
proximation. The method consists of the following thr
steps:~i! consider a collection of weakly interacting system
and define the internal variables;~ii ! obtain the weight factor
in terms of the internal variables; and~iii ! find the free-
energy expression and minimize it. The LACVM, in spite
its limitations, is an adequate starting point. Within this th
oretical framework it is easy to determine the complete ph
diagrams and find some outstanding features in the temp
ture dependencies of order parameters and as well as o
the metastable portion of the phase diagrams.

The weight factorsWA andWB can be expressed in term
of the internal variables for theA andB sublattices, respec
tively, as

WA5
NA!

)
i 51

3

~Xi
ANA!!

and
5-2
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WB5
NB!

)
j 51

3

~Xj
BNB!!

, ~6!

whereNA andNB are the number of lattice points on theA
andB sublattices, respectively. On the other hand, a sim
expression for the internal energy of the system is found
working out Eq. ~5! in the lowest approximation of the
cluster-variation method.

This leads to

E

N
52JMAMB2KQAQB1D~QA1QB!. ~7!

Substituting Eq.~3! into Eq. ~7!, the internal energy pe
site can be written as

E

N
52J~X1

A2X3
A!~X1

B2X3
B!

2K~X1
A1X3

A!~X1
B1X3

B!1D$~X1
A1X3

A!1~X1
B1X3

B!%,

~8!

whereN5NA1NB is the total lattice points.
Using the definition of the entropySe(Se5k ln W) with

the Stirling approximation, the free energyF(F5E2TS)
per site can now be found as

F5
F

N
52JMAMB2KQAQB1D~QA1QB!

1
1

b S (
i 51

3

Xi
A ln Xi

A1(
j 51

3

Xj
B ln Xj

BD 1lAS 12(
i 51

3

Xi
AD

1lBS 12(
j 51

3

Xj
BD , ~9!

wherelA andlB are introduced to maintain the normaliz
tion condition,b51/kT, T is the absolute temperature, andk
is the Boltzmann factor.

Thus, the self-consistent equations for the four long-ra
order parameters, namely,MA , QA , MB , andQB are there-
fore obtained by

]F

]Xi
A

50 ~ i 51,2,3!

and

]F

]Xj
B

50 ~ j 51,2,3!. ~10!

Using Eqs.~3!, ~9!, and~10!, the self-consistent equation
are found to be

MA5
2 sinh~bJMB!

expb~D2KQB!12 cosh~bJMB!
,

05410
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QA5
2 cosh~bJMB!

expb~D2KQB!12 cosh~bJMB!
,

MB5
2 sinh~bJMA!

expb~D2KQA!12 cosh~bJMA!
,

QB5
2 cosh~bJMA!

expb~D2KQA!12 cosh~bJMA!
, ~11!

whereD/J andK/J are called the ratio of the coupling con
stant. We are now able to examine the behavior of the or
parameters of the two-sublattice BEG model with repuls
biquadratic coupling by solving of the self-consistent equ
tions, i.e., Eq.~11!, numerically. In the following section, we
shall examine the thermal variations of the system.

III. THERMAL VARIATIONS

In this section, we shall study the temperature depend
cies of the order parametersMA , QA , MB , andQB by solv-
ing four nonlinear equations, namely, the set of se
consistent equations, i.e., Eq.~11!, numerically. These
equations are solved by the Newton-Raphson method34 and
thermal variations of the order parameters for several va
of D/J andK/J are plotted in Figs. 1–6. In the figures, th
subscript 1 denotes the stable states~solid lines!, subscript 2
corresponds to metastable states~dash-dotted lines!, and 3 to
unstable states~dashed lines!. This classification is done by
matching the free-energy values of these states.Tc or Tc8 and
Tt are the critical or the second-order phase-transition
the first-order phase-transition temperatures for the sta
branches of the order parameters, respectively.Tf i and Ti f
are the second-order phase-transition temperatures from
ferromagnetic phase to the ferrimagnetic phase and from
ferrimagnetic phase to the ferromagnetic phase, respectiv
for the stable branches of order parameters.Tt2 and Tc2 or
Tc28 are the first- and second-order phase-transition temp
tures for the metastable branches of the order parame
respectively.Tt2 is the first-order phase-transition temper
ture where the discontinuity occurs first for the metasta
branches of the order parameters. Finally,Tu is the upper
limit of the stability temperature in which the discontinui
occurs first for the stable branches of the order parame
Therefore, the transitions atTt2 and Tu are based on the
same mechanism.

The behavior of the temperature dependence of the o
parameters depends onD/J andK/J values and, by match
ing the free-energy values of the solutions of the order
rameters, the following six main topological different typ
of behaviors are found:

A. Type 1

For D/J50.49 andK/J50.0, the stable values of th
magnetizations, namely,MA1 ,MB1, decrease to zero discon
tinuously, hence a first-order phase-transition occurs, see
Fig. 1~a!. The first-order phase transition temperatureTt for
the stable branch of magnetization is indicated by an ar
andTu is the upper limit of the stability temperature in Fig
5-3



om

of

a

m
t
s
es
en

n-

er
tr

-
dru-
r
go a

ges:

-
ta-

nsi-

te

th
sp
the

et

ters
sive
order

pper

ches

ters
the

un-

CESUR EKIZ AND MUSTAFA KESKIN PHYSICAL REVIEW B66, 054105 ~2002!
1~a!. The stable branches of the order parameters bec
metastable afterTt , seen in the figure.

For D/J50.55 andK/J50.0, the metastable branches
the order parameters, i.e.,MA2 , MB2 , QA2, and QB2, de-
crease to zero discontinuously, therefore a first-order ph
transition occurs atTt250.183 for MA2 , MB2 , QA2, and
QB2, and belowTt2 the unstable branches of order para
eters also exist, seen in Fig. 1~b!. It should be mentioned tha
the stable branches of the quadrupole order parameter
not undergo any phase transitions and the stable branch
the magnetizations are equal to zero. It is worthwhile to m
tion that in order to distinguishM andQ we included inset
figures in Figs. 1~a! and 1~b!.

B. Type 2

For D/J50.413 andK/J520.15, the temperature depe
dence of the order parameters is similar to Fig. 1~a! but only
differ from Fig. 1~a! in that the stable branches of the ord
parameters undergo two successive second-order phase
sitions, i.e., atTc50.252 andTc850.337 in addition to the
first-order phase transition atTt50.188, seen in Fig. 2.

FIG. 1. The temperature dependencies of the order parame
Subscript 1 indicates the stable state~solid lines!, 2 the metastable
state~dash-dotted lines!, and 3 the unstable state~dashed lines!. Tt

and Tt2 are the first-order phase-transition temperatures for
stable and metastable branches of the order parameters, re
tively. ~a! A first-order phase transition for the stable branch of
order parameters forD/J50.49 andK/J50.0. ~b! A first-order
phase transition for the metastable branch of the order param
for D/J50.55 andK/J50.0.
05410
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C. Type 3

For D/J520.3 andK/J521.5, the stable values of qua
drupolar order parameters undergo a first-order antiqua
polar phase transition atTt , seen in Fig. 3. On the othe
hand, the stable branches of the magnetizations under
second-order ferromagnetic phase transition atTc . There-
fore, the system experiences the following phase chan
From the antiquadrupolar~a! phase to the ferromagnetic~f!
phase and then from the ferromagnetic~f! phase to the para
magnetic~p! phase, as shown in Fig. 3. Moreover, the me
stable branches of quadrupolar order parameters,QA2 and
QB2, undergo a second-order antiquadrupolar phase tra
tion at Tc250.374.

rs.

e
ec-

ers

FIG. 2. The temperature dependence of the order parame
exhibiting a first-order phase transition and the two succes
second-order phase transitions for the stable branches of the
parameters forD/J50.413 andK/J520.15. Tt and Tu represent
the first-order phase transition for the stable states and the u
limit stability temperature, respectively.Tc and Tc8 represent the
second-order phase-transition temperatures for the stable bran
of order parameters.

FIG. 3. The temperature dependence of the order parame
exhibiting the first-order antiquadrupolar phase transition and
second-order ferromagnetic phase transitions forD/J520.3 and
K/J521.5. The metastable quadrupolar order parameters also
dergo a second-order antiquadrupolar phase transition atTc2.
5-4
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D. Type 4

For D/J50.12 andK/J521.0, the stable branches o
order parameters undergo two successive second-order f
magnetic phase transitions, the phase transition from the
drupolar ~q! phase to ferromagnetic~f! phase atTc50.042
and then from the~f! phase to~p! phase atTc850.345 as
temperature increases, seen in Fig. 4. Moreover, the m
stable branches of the quadrupolar order parameters,QA2
and QB2, undergo two successive second-order antiquad
polar phase transitions atTc250.044 andTc2850.177, re-
spectively.

E. Type 5

In this type, the following three different subtypes ha
been obtained:

~i! Figure 5~a! represents the temperature dependence
the order parameters forK/J523.0 andD/J523.0. The
stable branches of the magnetizations decrease to zero
tinuously as the temperature increases, hence the sec
order ferromagnetic phase transition occurs atTc50.8095,
seen in Fig. 5~a!. However, the metastable branches of qu
drupolar order parameters,QA2 and QB2, undergo a single
second-order antiquadrupolar phase transition atTc250.352.

~ii ! For K/J523.0 andD/J522.15, the stable branche
of the order parameters experience three successive se
order phase transitions: First, the phase transition from
ferromagnetic~f! phase to ferrimagnetic~i! phase atTf i
50.0625, second, from the~i! phase to~f! phase atTi f
50.265, and finally, from the~f! phase to~p! phase atTc
50.697 as temperature increases, as seen in Fig. 5~b!. More-
over, the metastable branches of quadrupolar order pa
eters,QA2 andQB2, undergo a single second-order antiqu
drupolar phase transition atTc250.646.

~iii ! For K/J523.0 andD/J50.2, the stable branches o
quadrupolar order parameters,QA1 and QB1, undergo two

FIG. 4. The temperature dependencies of the order param
for D/J50.12 andK/J521.0. Tc and Tc8 are the second-orde
ferromagnetic phase transition for the stable branches of orde
rameters, andTc2 and Tc28 are the second-order antiquadrupo
phase-transition temperatures for the metastable quadrupolar
parameters.
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successive second-order antiquadrupolar phase transit
the phase transition from the quadrupolar~q! phase to anti-
quadrupolar~a! phase atTc50.055 and then from the~a!
phase to~p! phase atTc850.595 as temperature increase
illustrated in Fig. 5~c!. Moreover, there are not any branch
of magnetizations in this case.

F. Type 6

Figure 6 shows the temperature dependence of the o
parameters forD/J50.0 andK/J520.9. We find a second
order ferromagnetic phase transition for the stable branc

ers

a-

der

FIG. 5. Temperature dependence of the order parameters
constantK/J523.0 and various values of the parameterD/J. ~a!
The second-order ferromagnetic phase transition for the st
branches of the magnetization,MA1 andMB1, and the second-orde
antiquadrupolar phase transition for the metastable branches o
quadrupolar order parameters,QA2 and QB2, for D/J523.0. Tc

and Tc2 are the second-order phase-transition temperatures
MA1 , MB1 , QA2, and QB2, respectively. ~b! Two successive
second-order ferrimagnetic phase transitions and one ferromag
phase transition of stable order parameters forD/J522.15. The
metastable quadrupolar order parameters,QA2 and QB2, also un-
dergo a single second-order antiquadrupolar phase transition atTc2 .
Tf i andTi f are the second-order phase-transition temperatures f
the ferromagnetic phase to the ferrimagnetic phase and from
ferrimagnetic phase to the ferromagnetic phase, respectively, fo
stable branches of order parameters.~c! Two successive second
order antiquadrupolar phase transitions of stable quadrupolar o
parameters,QA1 andQB1, for D/J50.2.
5-5
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of magnetizations atTc50.4525. Furthermore, one observ
a single second-order antiquadrupolar phase transition fo
metastable branches of the quadrupolar order parame
QA2 andQB2, atTc250.198. It should be mentioned that th
type is similar to type 5~i!, but at zero temperatureQA3
5QB35QB250.0 andQA252/3. On the other hand in typ
5~i!, at zero temperatureQA35QB35QA251.0 and QB2
52/3, as seen Fig. 5~a!.

IV. DYNAMICS OF THE SYSTEM

In this section, we study dynamics of the BEG model
the path probability method~PPM!,35,36 since the metastabl
behavior is a dynamical behavior. In this study we ha
checked all the solutions, which were obtained within t
LACVM, and as well as their classifications. The PPM is t
natural extension into the time domain of the clust
variation method and provides a systematic derivation of
rate equations for successive approximations which are
known in the equilibrium statistical mechanics. It has be
successfully applied to describe the nonequilibrium beha
of a number of homogeneous and inhomogeneous statio
systems such as substitutional diffusion in ordered system37

diffusion and ionic conductivity in solid electrolytes,38 the
kinetics of the order-disorder transformation in bcc~body-
centered-cubic! alloys,39 a binary alloy,40 a spin-1/2 Ising
model,41 spin-1 Ising systems,42,43 phonon and atomic diffu-
sion systems,44 a ternary system45 and the microscobic
mechanism of the current-induced domain conversion p
nomena on the Si~001! vicinal surface.46 We should also
mention that efforts have been made to show how the P
can be used to evaluate atomistic parameters combined
experiments.47

In this method the rate of change of the state variable
written as

dXi

dt
5(

iÞ j
~X j i 2X i j !, ~12!

FIG. 6. The temperature dependence of the order param
exhibiting a second-order ferromagnetic phase transition for
stable branches of the magnetization and second-order antiqu
polar phase transition for the metastable branches of the quadr
lar order parameters forD/J50.0 andK/J520.9.
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where Xi j is the path probability rate for the system to g
from statei to j. The coefficients Xi j are the product of three
factors:ki j the rate constants withki j 5kji , a temperature-
dependent factor which guarantees that the time-indepen
state is the equilibrium state, and a third factor which is
fraction of the system that is in the statei, e.g.,Xi . Detailed
balancing requires that

X i j 5X j i . ~13!

The following two options were introduced by Kikuchi:35

~A! X i j 5ki j Z
21 expF2

b

2 S ]E

]Xi
2

]E

]Xj
D G , ~14a!

~B! X i j 5ki j Z
21 expF2bS ]E

]Xj
D G , ~14b!

which both fulfill the necessary requirements expressed
Eq. ~13!, and Z is the partition function andE the internal
energy which is given in Sec. II. Assumption A is calle
recipe I and assumption B is called recipe II by Kikuchi35

There are two rate constants in the model and can be e
defined in the language of a lattice gas since the spin-1 Is
model can be used for a lattice gas containing molecules
have two orientations: UsingX1 andX2 as occupation num-
bers andX3 holes. Therefore, the first rate constants arek12
5k235k1 which is the insertion or removal of particles a
sociated with translation of particles through the lattices. T
second rate constantk135k2 is associated with reorientatio
of a molecule at a fixed site. It is assumed that double p
cesses, the simultaneous insertion or removal or rotatio
two particles, do not take place, i.e., only single jumps
allowed.

We use recipe II in order to derive the dynamic equatio
because the general behavior of the solution of the dyna
equations, namely, relaxation curves and also flow diagra
does not drastically change.42 Using Eqs.~3!, ~8!, ~12!, and
~14!, the set of dynamic equations for the order parame
are obtained:

ZA

dMA

k1dt
5~k21!~e1

A2e3
A!QA

2~ke1
A1e2

A1ke3
A!MA1~e1

A2e3
A!,

ZA

dQA

k1dt
52~e1

A1e2
A1e3

A!QA1~e1
A1e3

A!,

ZB

dMB

k1dt
5~k21!~e1

B2e3
B!QB

2~ke1
B1e2

B1ke3
B!MB1~e1

B2e3
B!,

ZB

dQB

k1dt
52~e1

B1e2
B1e3

B!QB1~e1
B1e3

B!, ~15!

wherek5k2 /k1,

rs
e
ru-
o-
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ei
A5expS 2

b

N

]E

]Xi
AD , ej

B5expS 2
]E

]Xi
BD ,

ZA5(
i 51

3

ei
A

and

ZB5(
j 51

3

ej
B . ~16!

These dynamic equations are solved by two differ
methods: The first one is the Runge-Kutta method. We
this method to study relaxation curves of order parame
and to see the flatness property of the metastable state a
well as the overshooting phenomenon. Relaxation curve
order parameters for several values ofD/J, K/J, ki , and
kT/J are plotted in Figs. 7~a! and 7~b!. The second one is to

FIG. 7. Relaxation curves of the order paramet
MA , QA , MB , andQB for different sets of values of the rate con
stants:k15k251 ~solid!, k151 andk2510 ~dashed!. Subscripti
indicates the initial value,s the stable state, andm the metastable
state. ~a! For K/J520.15, D/J50.413, andkT/J50.15. Thick
lines are forMA,i , MB,i50.5, MB,i50.75, andQB,i50.99. Thin
lines are forMA,i5QA,i5MB,i5QB,i50.4. ~b! For K/J523.0,
D/J522.15, and kT/J50.5. Thick lines are forMA,i5QA,i

50.99 andMB,i5QB,i50.01 and thin lines are forMA,i5MB,i

50.0 andQA,i50.99,QB,i50.01.
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express the solution of the equations by means of the fl
diagram,48 which shows the solution of these equations in
two-dimensional phase space ofM andQ, starting with ini-
tial values very close to boundaries. As time progresses
given small steps, the values ofM andQ are computed and
the point representing them moves in the plane. A set of
solution curve is obtained by considering all different initi
values. The results are presented, for fixed values ofD/J,
K/J, ki , andkT/J, in Figs. 8~a! and 8~b!. In the figures, the
open circle is the stable equilibrium solution which corr
sponds to the lowest values of the free energy or the dee
minimum, the filled square is the metastable state beca
the system relaxes into it and it does not correspond to
deepest minimum but corresponds to the secondary m
mum, and the filled circle is the unstable solution or st
which corresponds to the peak or saddle point. If one stud
Fig. 7~a! and Fig. 8~a! (K/J520.15, D/J50.413, and
kT/J50.15) one can see that the system relaxes into o
two different states. One is the stable state (MA150.92127,
MB150.92127; QA150.92218,QB150.92218), which cor-
responds to the lowest value of free energy or the dee
minimum, and the other is the metastable state (MA2
50.0, MB250.0; QA250.10310,QB250.10310), which

s FIG. 8. The flow diagram of the system for two different sets
rate constants~solid! k15k251 and ~dashed! k151,k2510. The
open circle corresponds to the stable state, the filled square to
metastable state, and the filled circle is the unstable state.~a! For
K/J520.15, D/J50.413, andkT/J50.15. ~b! For K/J520.15,
D/J50.413, andkT/J50.30.
5-7
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does not correspond to the deepest minimum but corresp
to the secondary minimum. Moreover, the unstable solut
marked with a filled circle, can be seen explicitly in Fi
8~a!, because it is seen as a saddle point. If one comp
Fig. 7~a! and Fig. 8~a! with Fig. 2 for kT/J50.15, one can
see that the stable and metastable solutions coincide ex
with each other. Moreover, if one compares only Fig. 8~a!
with Fig. 2 for kT/J50.15, one can see that the unstab
point, as a separator between the stable and metas
points, coincides with each other one exactly. On the ot
hand, the system relaxes only one state, i.e., the stable
in Fig. 8~b! (K/J520.15,D/J50.413, andkT/J50.3), be-
cause there do not exist any metastable solutions. If
compares this figure with Fig. 2 forkT/J50.3, one can see
that the stable and unstable solutions coincide with e
other exactly. If there is some metastable state in the sys
at this temperature, i.e.,kT/J50.3, the system should rela
into it, because all the possible initial values are taken.
cause we have seen that the system always relaxes into
state, i.e., the stable state, hence there do not exist any m
stable states in this case. Furthermore, Fig. 7~b! (K/J
523.0, D/J522.15, andkT/J50.5) shows the relaxation
of the order parameters in which for theseK/J and D/J
values the stable branches of the order parameters exper
three successive second-order phase transitions and the
stable branches of quadrupolar order parameters under
single second-order antiquadrupolar phase transition,
see Fig. 5~b!. In this case, since the metastable solutions e
besides the stable solutions, the system may also relax
the metastable states. If the initial values are close to
metastable solutions, the system relaxes into it, otherw
into the stable states, seen in Fig. 7~b! explicitly. If one com-
pares Fig. 7~b! with Fig. 5~b! for kT/J50.5, one can see tha
the stable and metastable solutions coincide with each o
exactly. Finally, these facts show us that the solutions
their classifications obtained in the LACVM are comple
and correct.

It is worthwhile to mention that following dynamic be
haviors have been found from these figures:~i! If the tem-
perature is less thanTu for Figs. 7~a! and 8~a! and less than
Tc2 for Fig. 7~b!, the system either relaxes to the stable sta
or the metastable states and, therefore, relaxation proce
depend on the rate constants and the initial values of
order parameters. If the initial values are close to the m
stable state, the system always relaxes to the metas
state, otherwise to the stable state, shown in Figs. 7~a! and
8~a!. From Figs. 7~a! and 7~b! the ‘‘flatness’’ properties of the
metastable state49 are seen clearly, becauseQA250.10310,
QB250.10310, andMA25MB250.0 for Fig. 7~a! and QA2
50.95474, QB250.32404, andMA25MB250.0 for Fig.
7~b! correspond to the metastable state for which the sa
results are also found in the equilibrium study, exactly.~ii ! If
the temperature is greater thanTc8 , the system always re
laxes into the disordered states and if the temperature is
tween Tc and Tc8 the system always relaxes to the stab
state because there do not exist any metastable states in
regions. Therefore, relaxation processes are independe
the rate constants and initial values of the order parame
It is worthwhile to mention that if the temperature is equal
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the critical temperatureTc or Tc8 , the system takes too lon
a time to relax into the disordered state. This behavior
been also observed in time-dependent one-dimensional s
1/2 Ising50 and spin-1 Ising systems.42,43 Moreover, since
k2.k1 and initial values are not very close to the stable sta
the system relaxes into the metastable state more thak1
5k2, seen in Fig. 8~a! explicitly. This fact has been observe
experimentally. For example, if one cools some liquid allo
very rapidly, one can obtain amorphous metallic alloys
metallic glasses.51 Furthermore, one can also see how a s
tem freezes in a metastable state as well as the role of
unstable points as a separator between stable and metas
points. ~iii ! Since the system has also unstable states, fo
number of cases the system tries to go to an unstable
via one of the order parameters, but after some time
relaxation curve makes a sharp turn~a ‘‘U turn,’’ so to speak,
or an inverse ‘‘U turn,’’ seen in Fig. 7! and relaxes to eithe
the stable state or to the metastable state. This is called
‘‘overshooting’’ phenomenon which is often discussed in t
glass transition and has also been observed in numbe
other systems.31,39,42,43,47

V. THE METASTABLE PHASE DIAGRAMS IN ADDITION
TO THE EQUILIBRIUM PHASE DIAGRAMS

In this section, we present the metastable phase diagr
in addition to the equilibrium phase diagrams of the BE
model for K/J<0 since we make sure that the metasta
branches of the order parameters were obtained comple
and correctly in Sec. IV. The critical or second-order pha
transition temperatures for the stable and metasta
branches of the order parameters in the case of a sec
order phase transition are calculated easily and precisely
ing the Hessian determinant14 which is the determination o
the second derivative of the free energy with respect to
ternal or spin variables, namely,Xi and Xj . On the other
hand, the first-order phase-transition temperatures for
stable branches of order parameters are found by matc
the free-energy values while increasing and decreasing
temperature. The temperature at which the free-energy
ues equal each other is the first-order phase-transition t
perature (Tt) for the stable order parameters. Furthermo
the first-order phase-transition temperature (Tt2) for the
metastable branches of the order parameters is the tem
ture where the discontinuity occurs first forMA2 , QA2 , MB2,
andQB2.

We can now obtain the metastable and equilibrium ph
diagrams of the BEG model and the calculated phase
grams are presented in Figs. 9~a!–9~f!. In these phase dia
grams, thick solid and thin dashed lines represent the sec
and first-order phase transitions for the stable branches o
order parameters and thin and thick dash-dotted lines i
cate the first- and second-order phase transitions of the m
stable branches of the order parameters, respectively.

Figure 9~a! shows the phase diagrams in the (kT/J,D/J)
plane forK50.0, which is called the Blume-Capel model. A
is seen in the figure, besides the ferromagnetic~ordered!
phase (f ), two different paramagnetic~disordered! phases
are found by including the phase transitions of the metasta
5-8
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FIG. 9. The equilibrium phase diagrams~thick solid and thin dashed lines! and metastable phase diagrams~thin and thick dash-dotted
lines! of the BEG model forK/J andD/J. Thin dashed line and thin dash-dotted line represent the first-order phase transition for the
and metastable branches of the order parameters, respectively. Thick solid line and thick dash-dotted line represent the second-o
transition for the stable and metastable branches of the order parameters, respectively. Ferromagnetic (f ), dense ferromagnetic (d f),
ferrimagnetic (i ), antiquadrupolar (a), paramagnetic (p), and dense paramagnetic (dp) phases are found. The special points are tricriti
(T), bicritical (B), multicritical (A), critical end point (E), zero-temperature highly degenerate (S), and zero-temperature critical (Z). ~a!
K/J50.0. ~b! K/J520.15. ~c! K/J521.0. ~d! K/J521.5. ~e! K/J523.0. ~f! D/J50.0.
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The
branches of the order parameters, namely,MA2 , MB2 , QA2,
and QB2. ~i! The pure paramagnetic~p! phase as seen wit
only the stable branch of the quadrupolar order parame
QA1 andQB1. ~ii ! The dense paramagnetic (dp) phase with
the metastable and unstable branches of order param
occur besidesQA1 and QB1. The p and dp can also be de-
fined as follows:p is a region where the only solution is th
paramagnetic solution, i.e.,MA5MB50, while in the dp
region this paramagnetic phase can coexist on sufficie
short-time scales with another less symmetrical locally sta
phase, i.e., the metastable phase. Moreover, in thedp region
the unstable solutions of the order parameters also exist.
boundary of the pure and dense paramagnetic phases~thin
dash-dotted line! is the first-order line for the metastab
branches of the order parameters that starts atD/J51.0 and
ends atT in which is the tricritical point where the second
order phase-transition line turns to a first-order one.

We turn to the very interesting case when the biquadr
~K! and bilinear exchange interactions~J! have opposite
signs. Figure 9~b! illustrates the metastable phase diagram
addition to the equilibrium phase diagram forK/J520.15.
This phase diagram is similar to the phase diagram give
Fig. 9~a!, except a double reentrant behavior takes place
the system. For the range of 0.411<D/J<0.418, the system
exhibits thef -p-f -p successive phase transitions as the te
perature is increased. As value ofK/J increases in the nega
tive value, and eventually the tricritical point disappears
seen in Fig. 9~c!. In Fig. 9~c! three main regions appear i
the system.~p! represents a disordered state or paramagn
phase of the system withMA15MB150 and QA15QB1
05410
rs,

ers

ly
le

he

ic

n

in
in

-

s

tic

Þ0. ~f! denotes pure ferromagnetic phase in which the sta
branches of the order parameters exist~sometimes unstable
branches also occur, e.g., as seen in Fig. 6!. (d f) represents
a dense ferromagnetic phase and in this region the metas
and unstable branches of the order parameters also exis
sides the stable quadrupolar order parameters,QA1 andQB1.
Moreover, the second-order phase line for the metasta
branches of the order parameters~thick dash-dotted line!
separates the~f! phase from the (d f) phase. In this phase
diagram, the special point is only the zero-temperature c
cal ~Z! point and the equilibrium phase diagram shows
reentrant behavior in which the reentrant behavior starts
the first time atZ and appears in the range of the 0,D/J
,0.22. On the other hand, the metastable phase diagram
illustrates the reentrant behavior in the range of the
,D/J,0.166. Figure 9~d! represents the metastable pha
diagram in addition to the equilibrium phase diagram
K/J521.5. In the phase diagram, the antiquadrupolar~a!
phase is separated from the paramagnetic~p! phase by two
second-order phase lines that meet at a bicritical point (B).
The antiquadrupolar~a! phase is also separated from th
dense ferromagnetic (d f) and ferrimagnetic~i! phases by the
first-order phase-transition line. Moreover, (d f) and ~i!
phases are separated by the other second-order phase
starting at the zero-temperature highly degenerate point~S!
and terminating at the critical end point (E). For more nega-
tive values of biquadratic interaction such asK/J523.0 the
phase diagram of the system becomes more interesting.
phase diagram forK/J523.0 is illustrated in Fig. 9~e!. The
5-9
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CESUR EKIZ AND MUSTAFA KESKIN PHYSICAL REVIEW B66, 054105 ~2002!
phase diagram is similar to the phase diagram of Fig. 9~d!,
except the critical end point~E! in Fig. 9~d! disappears or it
joins to a multicritical point (A), seen in Fig. 9~e!. Finally,
Fig. 9~f! illustrates the phase diagram of the BEG model
the (kT/J,K/J) plane forD/J50.0. In the phase diagram
the four different regions have been seen, namely, (p), (a),
(d f), and (f ). The second-order phase-transition lines for
stable branch of the order parameters~thick solid lines! sepa-
rate (a), (p), and ~f! phases. Moreover, the second-ord
phase line for the metastable branches of the order pa
eters~thick dash-dotted line! separates~f! and (d f) phases.
On the other hand, the dotted line separates the~a! phase
from the (d f) phase. It should be mentioned that~f! and (d f)
can also be defined as follows:~f! is a region where the only
solution is the ferromagnetic solution~sometimes unstable
solutions also occur!, i.e., MA ,MB50,QA ,QBÞ0, while in
the d f region this ferromagnetic phase can coexist on su
ciently short-time scales with another less symmetrical
cally stable phase.

In conclusion, all the equilibrium phase diagrams of t
system are exactly the same as the equilibrium phase
grams of Hoston and Berker.15 However, we have also ob
tained and presented the metastable phase diagrams o
BEG model in addition to the equilibrium phase diagram

VI. SUMMARY AND CONCLUSION

In this work, we have investigated the thermal variatio
of the order parameters of the spin-1 Ising BEG model w
the repulsive biquadratic interaction by using the LACVM
Besides the stable branches of the order parameters, we
tained the metastable and unstable parts of these curves
phase transitions of the metastable branches of the orde
rameters were also found. The classification of the sta
metastable, and unstable states is made by matching the
energy values of these solutions. We also studied the dyn
ics of the model by the path probability method in order
make sure that we have found and defined the metastable
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unstable branches of the order parameters completely
correctly. Then, we presented the multicritical phase d
grams of the BEG model including the phase transitions
metastable branches of the order parameters. Therefore
presented the metastable phase diagram in addition to
equilibrium phase diagram for the BEG model with the r
pulsive biquadratic interaction. We found that the equil
rium phase diagrams of the system are exactly the sam
the equilibrium phase diagrams of Hoston and Berke15

However, the main difference is about the paramagnetic
ferromagnetic phases as follows: We found two differe
paramagnetic and ferromagnetic phases which we calle
pure paramagnetic~p! phase with MA15MB150,QA1
5QB1 and a pure ferromagnetic~f! phase with the stable
branches of the order parameters, i.e.,MA15MB1Þ0,QA1
5QB1, and a dense paramagnetic phase (dp) with the meta-
stable and unstable branches of order parameters exi
besidesQA15QB1 and dense ferromagnetic phase (d f) with
the stable, metastable, and unstable branches of the o
parameters. In the phase diagrams, the first-order phase
~thin dash-dotted lines! for the metastable branches of th
order parameters separate the~p! phase from the (dp) phase,
seen in Figs. 9~a! and 9~b!. On the other hand, the secon
order phase lines~thick dash-dotted lines! for the metastable
branches of the order parameters separate the~f! phase from
the (d f) phase, seen in Figs. 9~c!–9~f!.

Finally, it is worthwhile to mention that we have foun
that the metastable phase diagrams of the BEG model
K/J<0, which has served as a paradigm for a large num
of physically important phenomena, always exists at the l
temperatures that are consistent with experimental and t
retical works on some alloys,24–26 semiconductors,27,28

polymers,29 water,30 and the ternary system.31
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