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We investigate the thermal variations of the spin-1 Blume-Emergy-Griffiths model with the repulsive biqua-
dratic interaction by using the lowest approximation of the cluster-variation method. Besides the stable
branches of the order parameters, we obtain the metastable and unstable parts of these curves and also find
phase transitions of the metastable branches of the order parameters. The classification of the stable, meta-
stable, and unstable states is made by comparing the free-energy values of these states. We also study the
dynamics of the model by the path probability method in order to make sure that we find and define the
metastable and unstable branches of the order parameters completely and correctly. This is done by studying
the relaxation of the order parameters and as well as expressing the solution of the dynamic equations by
means of the flow diagrams. Finally, we present the metastable phase diagrams in addition to the equilibrium
phase diagrams irk{T/J,D/J) and kT/J,K/J) planes.
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. INTRODUCTION study* For example, a study of the global phase diagram of
the BEG model foK<0 was made by using the mean-field
The Blume-Emery-Griffiths(BEG) model is a spin-1  approximatiofMFA),'® showing a variety of interesting fea-
Ising model with bilinear(J) and biquadratiqK) nearest- tures, including single and double reentrancy regions and
neighbor pair interactions in which a single-ion anisotropyferrimagnetic phases. In a renormalization-group calculation
parameter(D) is included. The BEG model has attracted aof the model fork/J<0, the phase diagrartfsare different
great deal of attention since it was originally proposed tofrom the ones of the MFA. The main discrepancy is that no
describe phase separation and superfluid ordering in heliufierrimagnetic phase is seen. Furthermore, for repulsive bi-
mixtures. It has subsequently been used to describe phageadratic interaction, the BEG model has been investigated
transitions in simple and multicomponent fluids, microemul-by the Monte Carlo methotl, cluster-variation methotf
sions, semiconductor alloys, the reentrant phenomenon iand using a Monte Carlo renormalization grddpn this
phase diagrams, electron conduction models, and martensitiontext, the exact solutions of the BEG model on the Bethe
transformation to quote only a few. Moreover, the BEGIattice, and the honeycomb and square lattice in two dimen-
model has also played an important guiding role in the desions are worth mentionir. The phase diagrams obtained
velopment of microscopic models for adsorbed systems anldy the above-mentioned works are only the equilibrium
in the renormalization-group theory of Potts transitions.  phase diagrams.
The BEG model is defined by the following Hamiltonian:  In spite of these studies, the equilibrium properties of the
BEG model forK/J<O0 is not investigated using the lowest
_ 202 > approximation of the cluster-variation methQdACVM ) ex-
H= _J% S5~ K% SIS+ DZ S (1) tensively. Especially, the metastable and unstable branches of
the order parameters and their phase transitions are not ex-
whereS;==1,0 is at each site of a lattice, each site has  amined in depth. Moreover the metastable phase diagrams of
nearest neighbors, andj) indicates summation over all the model in addition to the equilibrium phase diagrams were
pairs of nearest-neighbor sites. also not calculated. Therefore, the purpose of this work is to
The phase diagrams of the BEG model FotJ=0 have study the behavior of the thermal variation of the order pa-
been studied by the mean-field approximatioh,the rameters and to obtain the metastable and unstable branches
position-space renormalization-group mettothe cluster-  of the order parameters and to investigate their phase transi-
variation method,® series-expansion metholishe transfer-  tions for repulsive biquadratic interaction. We also study the
matrix method, the constant coupling approximatidn, dynamics of the model in order to make sure that we find and
linear-chain approximatioff, and on the Bethe lattice using classify the metastable and unstable branches of the order
exact recursion equations.Recently we also studied the parameters completely and correctly. Finally, we present the
BEG model forJ andK>0 and obtained the metastable and metastable phase diagrams of the BEG model in addition to
unstable states besides the stable sfate found that the the equilibrium phase diagrams.
metastable and unstable branches of the order parametersit is worthwhile to mention that the metastable and un-
undergo first- or second-order phase transitions. We also pretable states have been found in many physical systems ex-
sented the metastable phase diagram of the BEG model perimentally and theoretically. For example, the BEG model
addition to the equilibrium phase diagrah. Hamiltonian with zero-crystal-field interaction theoretically
On the other hand the BEG model with repulsive biqua-have been studied for zero magnetic fi€l@n external mag-
dratic coupling, i.e.,K/J<O0 is now a subject of intense netic field?? and as well as for magnetic fields due to the
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dipole and quadrupole momerftsMoreover, the metastable phase(f) with Ma=Mz#0,Q,= Qg, (iii) the antiquadrupo-
phase diagrams are presented in addition to the equilibriunar or staggered quadrupolar phase with M,=Mg=0,
phase diagram for some allo$,2® semiconductor§’?®  Q,#Qg, and (iv) the ferrimagnetic phaséi) with M,
polymers?® water®® and a ternary systefl. The unstable #Mg#0,Q,#Qg.

continuation of the second-order phase-transition line is also The order parameters can be expressed in terms of the
mentioned in A"'BY),_4CY% semiconductor alloys, theo- internal variables and are given by

retically in addition to the metastable and equilibrium phase

diagram® On the other hand, the BEG model has been used Ma=(SH=X~X5,
to calculate the metastable phase diagram of the Cu-Al-Mn
shape-memory alloy® semiconductor alloy& as well as Qa={((SH2)=X7+X5,
the ternary systerft Moreover, the unstable continuation of
the second-order phase-transition line is presented by using Mg=(S})=X;—X3,
the BEG model in semiconductor alloys.
The outline of this work is as follows. In Sec. I, we QB=((S}3)2>=X?+X§- 3

define the model briefly and obtain its solutions at equilib-
rium within the LACVM. The equilibrium properties of the Using Egs.(2) and (3), the internal variables can be ex-

system are investigated in Sec. Ill. The dynamics of thepressed as linear combinations of the order parameters,
model is studied by the path probability method in Sec. IV.

In Sec. V, transition temperatures are calculated precisely A L A

and metastable phase diagrams are presented in addition to X1=5(QatMa),  Xz=(1-Qa),

the equilibrium phase diagrams. Section VI contains the

summary and conclusion. 1

X3=5(Qa=Ma),
Il. MODEL AND METHOD

The BEG model is defined as a two-sublattice model, with

spin variablesS;= + 1,0 andS; = = 1,0 on sites of sublattices
A andB, respectively. The average value of each of the spin

g1 B
X1:§(QB+ Mg), X;=(1—-Qpg),

states will be denoted by}, X5, and X5 on the sites of 1

- B B B - - X8==(Qg—Mp). (4)
sublatticeA and X7, X5, andX3 on the sublatticd3, which 37 o\B B
are also called the state or point variablé$.andX? are the
fractions of the spin value-1 on A and B sublattices, re- The Hamiltonian of such a two-sublattice BEG model is
spectively, andX5 and X5 are the fractions of the spins that

have value 0 o andB sublattices, respectively, ax§ and H=—J s -k 2524 p
X3 are the fractions of the spins that have the vatue onA <|§1:> S % t
andB sublattices, respectively. These variables obey the fol-

lowing two normalization relations foh andB sublattices, The equilibrium properties of the system are determined
by the lowest approximation of the cluster-variation

3 method® (LACVM ) which is identical to the mean-field ap-

E XiA=1 proximation. The method consists of the following three
=1 steps:(i) consider a collection of weakly interacting systems

and define the internal variablg§;) obtain the weight factor
in terms of the internal variables; andi) find the free-

3 energy expression and minimize it. The LACVM, in spite of
> XJB= 1. 2 its limitations, is an adequate starting point. Within this the-
i=1 oretical framework it is easy to determine the complete phase

diagrams and find some outstanding features in the tempera-

However, in order to account for the possible two-ture dependencies of order parameters and as well as obtain
sublattice structure, we need four long-range order paramhe metastable portion of the phase diagrams.
eters, which are introduced as followd ,=(S)a, Qa The weight factoraV* andW® can be expressed in terms
=(S)a, Mg=(S))g, andQg=(S)s for A and B sublat-  of the internal variables for th& andB sublattices, respec-
tices, respectivelyM , and My are the average magnetiza- tively, as
tions which is the excess of one orientation over the other
orientation, called magnetizations, a@ and Qg are the NAI
guadrupolar moments which is the average squared magne- WA=
tizations forA andB sublattices, respectively. The values of
these stable branches of the order parameters define four h
phases with different symetry. These @nethe paramagnetic
phase(p) with M,=Mg=0,Q,=Qg, (ii) the ferromagnetic and

> S+, sf). (5)
i ]

and

3
(XANAY!
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NB!
W= ————, (6)

3
IT (xPnB)
j=1

whereN” andNB are the number of lattice points on tie

and B sublattices, respectively. On the other hand, a simple
expression for the internal energy of the system is found by Qs
working out Eq.(5) in the lowest approximation of the

cluster-variation method.
This leads to

E
N=—JMAMB_KQAQB+D(QA+QB)- (7)

Substituting Eq(3) into Eq. (7), the internal energy per

site can be written as

E
N I X(XE-X3)

—K(XPHX5)(XE+X5) + D{(XT+X5) + (XB+X5)},
8

whereN=N”+ N8 is the total lattice points.

Using the definition of the entrop$.(S.=k In W) with
the Stirling approximation, the free energy(F=E—-TYS)
per site can now be found as

F
b= N= —JIMAMg—KQAQg+D(Qa+Qp)

3 3 3
1
+=| 2 XPINXP D XPInXP | AR 1= x{*)
B\i=1 =1 =1
3
+AB[1-2> XP/, 9)
=1
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B 2 cosl{BIMg)
Qa= expB(D—KQg)+2 cosliBIMg)’

_ 2 sin(BIM,)
MB_expB(D—KQAHZ cosliBIM,)’

- 2 cosliBIM,)
~expB(D—KQ,)+2 costiBIM,)’

11)

whereD/J andK/J are called the ratio of the coupling con-
stant. We are now able to examine the behavior of the order
parameters of the two-sublattice BEG model with repulsive
biquadratic coupling by solving of the self-consistent equa-
tions, i.e., Eq(11), numerically. In the following section, we
shall examine the thermal variations of the system.

Ill. THERMAL VARIATIONS

In this section, we shall study the temperature dependen-
cies of the order parametei$,, Qa, Mg, andQg by solv-
ing four nonlinear equations, namely, the set of self-
consistent equations, i.e., Ed11l), numerically. These
equations are solved by the Newton-Raphson m
thermal variations of the order parameters for several values
of D/J andK/J are plotted in Figs. 1-6. In the figures, the
subscript 1 denotes the stable statedid lineg, subscript 2
corresponds to metastable stafgash-dotted linesand 3 to
unstable state&ashed lines This classification is done by
matching the free-energy values of these stdiger T, and
T, are the critical or the second-order phase-transition and
the first-order phase-transition temperatures for the stable
branches of the order parameters, respectively.and T;;
are the second-order phase-transition temperatures from the
ferromagnetic phase to the ferrimagnetic phase and from the
ferrimagnetic phase to the ferromagnetic phase, respectively,
for the stable branches of order paramet&gs.and T, or
T, are the first- and second-order phase-transition tempera-
tures for the metastable branches of the order parameters,

where\” and\® are introduced to maintain the normaliza- respectively.T,, is the first-order phase-transition tempera-
tion condition,3=1/kT, T is the absolute temperature, ad tyre where the discontinuity occurs first for the metastable

is the Boltzmann factor.

branches of the order parameters. Finally, is the upper

Thus, the self-consistent equations for the four long-rang@mit of the stability temperature in which the discontinuity

order parameters, nameM,, Qa, Mg, andQg are there-
fore obtained by

e (i=1,2,3
A |: 149
XA
and
o® =0 (j=12,3 (10)
IxP =589

Using Egs.(3), (9), and(10), the self-consistent equations

are found to be

B 2 sin( BIMg)
Ma= expB(D—KQg)+2 coslifIMg) "’

occurs first for the stable branches of the order parameters.
Therefore, the transitions &, and T, are based on the
same mechanism.

The behavior of the temperature dependence of the order
parameters depends @YJ andK/J values and, by match-
ing the free-energy values of the solutions of the order pa-
rameters, the following six main topological different types
of behaviors are found:

A. Type 1

For D/J=0.49 andK/J=0.0, the stable values of the
magnetizations, namelil o, ,Mg,, decrease to zero discon-
tinuously, hence a first-order phase-transition occurs, seen in
Fig. 1(a). The first-order phase transition temperatilifefor
the stable branch of magnetization is indicated by an arrow
andT, is the upper limit of the stability temperature in Fig.
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o L ; [N\ Q22 FIG. 2. The temperature dependence of the order parameters
] // o300 M exhibiting a first-order phase transition and the two successive
= ’,\,IS_QA&MB&QB?’ " 01612 0.1613 0.1614 second-order phase transitions for the stable branches of the order
d‘: 05 (b) parameters foD/J=0.413 andK/J=—0.15. T, and T, represent

% Qa1.98 the first-order phase transition for the stable states and the upper
= i limit stability temperature, respectively.. and T, represent the

second-order phase-transition temperatures for the stable branches
To Mar=Mgy =0 of order parameters.
0.0 1 1 1
0.1 0.2 0.3 0.4 0.5 C. Type 3
kTH ForD/J=—0.3 andK/J= — 1.5, the stable values of qua-

FIG. 1. The temperature dependencies of the order parameterdrupolar order parameters undergo a first-order antiquadru-
Subscript 1 indicates the stable stégelid lines, 2 the metastable Polar phase transition ak;, seen in Fig. 3. On the other
state(dash-dotted lings and 3 the unstable statdashed lines T,  hand, the stable branches of the magnetizations undergo a
and T, are the first-order phase-transition temperatures for theésecond-order ferromagnetic phase transitiorTat There-
stable and metastable branches of the order parameters, respéere, the system experiences the following phase changes:
tively. (a) A first-order phase transition for the stable branch of theFrom the antiquadrupolde) phase to the ferromagnetit)
order parameters fob/J=0.49 andK/J=0.0. (b) A first-order ~ phase and then from the ferromagnéfijcphase to the para-
phase transition for the metastable branch of the order parametersagnetic(p) phase, as shown in Fig. 3. Moreover, the meta-
for D/J=0.55 andK/J=0.0. stable branches of quadrupolar order paramet®gs, and

Qg2, undergo a second-order antiquadrupolar phase transi-

1(a). The stable branches of the order parameters beconi®n atT,,=0.374.
metastable aftef,, seen in the figure. 1.0
For D/J=0.55 andK/J=0.0, the metastable branches of T e~
the order parameters, i.eVMjpo, Mg,, Qar, and Qg,, de-
crease to zero discontinuously, therefore a first-order phase
transition occurs afl;,=0.183 for Mp,, Mg,, Qar, and
Qg», and belowT;, the unstable branches of order param- g
eters also exist, seen in Fighl. It should be mentioned that E'“
the stable branches of the quadrupole order parameters do.&
not undergo any phase transitions and the stable branches oix
the magnetizations are equal to zero. It is worthwhile to men-
tion that in order to distinguisiv and Q we included inset
figures in Figs. a) and 1b).

05

0.0
B. Type 2 0.0
ForD/J=0.413 and/J= —0.15, the temperature depen- kT
dence of the order parameters is similar to Fig) but only FIG. 3. The temperature dependence of the order parameters

differ from Fig. Xa) in that the stable branches of the order exhibiting the first-order antiquadrupolar phase transition and the
parameters undergo two successive second-order phase traacond-order ferromagnetic phase transitionsdéd=—0.3 and
sitions, i.e., afT,=0.252 andT.,=0.337 in addition to the K/J=-1.5. The metastable quadrupolar order parameters also un-
first-order phase transition a=0.188, seen in Fig. 2. dergo a second-order antiquadrupolar phase transitidi,at
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FIG. 4. The temperature dependencies of the order parameters
for D/J=0.12 andK/J=—-1.0. T, and T, are the second-order
ferromagnetic phase transition for the stable branches of order pa-
rameters, andl';, and T.,, are the second-order antiquadrupolar ©
phase-transition temperatures for the metastable quadrupolar order
parameters.

Mp Qa M Q

05
D. Type 4
For D/J=0.12 andK/J=—1.0, the stable branches of
order parameters undergo two successive second-order ferro- 0.0 , ‘
magnetic phase transitions, the phase transition from the qua- 00 02 0.4 06 0.8
drupolar (g) phase to ferromagnetig) phase afl.=0.042 kT/J

and then from the(f) phase to'(p) phase aff;=0.345 as FIG. 5. Temperature dependence of the order parameters for
temperature increases, seen in Fig. 4. Moreover, the Metas \stantk/J= — 3.0 and various values of the paramelst). (a)
stable branches of the quadrupolar order parame@gs, The second-order ferromagnetic phase transition for the stable
and Qgy, undergo two successive second-order antiquadrisranches of the magnetizatiod,,; andMg;, and the second-order
polar-phase transitions &t,=0.044 andT.,,=0.177, re-  antiquadrupolar phase transition for the metastable branches of the
spectively. quadrupolar order paramete®,, and Qg,, for D/J=—-3.0. T,
and T, are the second-order phase-transition temperatures for
E. Type 5 Ma1, Mg1, Qaz, and Qg,, respectively. (b) Two successive
. . . second-order ferrimagnetic phase transitions and one ferromagnetic

In this t_ype,. the following three different subtypes havephase transition of s?able oprder parametersDéd= —2.15. Theg
bee.n obtalned. etastable quadrupolar order paramet€g, and Qg,, also un-

(i) Figure 3a) represents the temperature dependence O:1l1ergo a single second-order antiquadrupolar phase transitig at
the order parameters fdt/J=—3.0 andD/J=—3.0. The 1 3T, are the second-order phase-transition temperatures from
stable branches of the magnetizations decrease to zero Cfie ferromagnetic phase to the ferrimagnetic phase and from the
tinuously as the temperature increases, hence the secongrrimagnetic phase to the ferromagnetic phase, respectively, for the
order ferromagnetic phase transition occursTgt0.8095,  stable branches of order parametei®. Two successive second-
seen in Fig. Ba). However, the metastable branches of qua-order antiquadrupolar phase transitions of stable quadrupolar order
drupolar order parameterQu, and Qg,, undergo a single parametersQ,; andQg;, for D/J=0.2.
second-order antiquadrupolar phase transitioh gt 0.352.

(i) ForK/J=—3.0 andD/J= —2.15, the stable branches successive second-order antiquadrupolar phase transitions,
of the order parameters experience three successive seconfle phase transition from the quadrupolgy phase to anti-
order phase transitions: First, the phase transition from thguadrupolar(a) phase aflf,=0.055 and then from théa)
ferromagnetic(f) phase to ferrimagneti¢i) phase atTs;  phase to(p) phase aff.,=0.595 as temperature increases,
=0.0625, second, from thé) phase to(f) phase atTi; jllustrated in Fig. %c). Moreover, there are not any branches
=0.265, and finally, from théf) phase to(p) phase aff.  of magnetizations in this case.
=0.697 as temperature increases, as seen in fby. More-
over, the metastable branches of quadrupolar order param-
eters,Q,, and Qg,, undergo a single second-order antiqua-
drupolar phase transition at,=0.646. Figure 6 shows the temperature dependence of the order

(iii) ForK/J=—3.0 andD/J=0.2, the stable branches of parameters fob/J=0.0 andK/J= —0.9. We find a second-
quadrupolar order parametei®,; and Qg;, undergo two order ferromagnetic phase transition for the stable branches

F. Type 6
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1.0

where X; is the path probability rate for the system to go
from statei to j. The coefficients } are the product of three
factors:k;; the rate constants witkj; =kK;; , a temperature-
dependent factor which guarantees that the time-independent

[11]
‘n’n. state is the equilibrium state, and a third factor which is the
= 5l fraction of the system that is in the stajee.g.,X;. Detailed
§ balancing requires that
< !
= L QA3'QBa///I X'l :X“ . (13)
d / Ma1.Mp1
S ; ; ; ; .
. , ,E’Z/ l e Mavero |7, The following two options were introduced by Kikuctii:
0.0 0.2 04 06 . B JE JE
(A) Xi=kiZ rexp—%5|=—<—=—<|| (143
KT/ ij ij 2\ aX; ﬂXj
FIG. 6. The temperature dependence of the order parameters
exhibiting a second-order ferromagnetic phase transition for the _q
stable branches of the magnetization and second-order antiquadru- (B)  Xjj=k;Z “exp-p ax. | (14Db)
polar phase transition for the metastable branches of the quadrupo- !
lar order parameters fdd/J=0.0 andK/J=—0.9. which both fulfill the necessary requirements expressed by

Eqg. (13), andZ is the partition function andE the internal

of magnetizations af .= 0.4525. Furthermore, one observes energy which is given in Sec. Il. Assumption A is called
a single second-order antiquadrupolar phase transition for theecipe | and assumption B is called recipe Il by Kikughi.
metastable branches of the quadrupolar order parameterEhere are two rate constants in the model and can be easily
Qa, andQg,, atT.,=0.198. It should be mentioned that this defined in the language of a lattice gas since the spin-1 Ising
type is similar to type 6), but at zero temperatur@ s model can be used for a lattice gas containing molecules that
=Qp3=0Qp,=0.0 andQ,,=2/3. On the other hand in type have two orientations: Usin¥, andX, as occupation num-
5(i), at zero temperatur@ ;=Qg3=Qa>=1.0 and Qg> bers andX; holes. Therefore, the first rate constants lare
=2/3, as seen Fig.(§). =ky3=k; which is the insertion or removal of particles as-
sociated with translation of particles through the lattices. The
second rate constakfs;=k, is associated with reorientation
of a molecule at a fixed site. It is assumed that double pro-

In this section, we study dynamics of the BEG model bycesses, the simultaneous insertion or removal or rotation of
the path probability methotPPM),3>¢since the metastable two particles, do not take place, i.e., only single jumps are
behavior is a dynamical behavior. In this study we haveallowed.
checked all the solutions, which were obtained within the ~We use recipe Il in order to derive the dynamic equations
LACVM, and as well as their classifications. The PPM is thePecause the general behavior of the solution of the dynamic
natural extension into the time domain of the cluster-equations, namely, relaxation curves and also flow diagrams,
variation method and provides a systematic derivation of th&loes not drastically changéUsing Egs.(3), (8), (12), and
rate equations for successive approximations which are weffl4), the set of dynamic equations for the order parameters
known in the equilibrium statistical mechanics. It has beerfre obtained:
successfully applied to describe the nonequilibrium behavior
of a number of homogeneous and inhomogeneous stationary
systems such as substitutional diffusion in ordered systéms,
diffusion and ionic conductivity in solid electrolytéS the

IV. DYNAMICS OF THE SYSTEM

dM,
Zajedr ~ (KD —en)Qn

kinetics of the order-disorder transformation in hmdy- — (ki +e5+keg)Ma+ (€] —€5),
centerfld-cubbc alloys® a binaar%/ alloy’® a spin-1/2 Ising
model;~ spin-1 Ising systems;"* phonon and atomic diffu- dQa A AL A AL A
sion systemé’ a ternary systefi and the microscobic ZA—kldtZ—(91+62+63)QA+(61+63),
mechanism of the current-induced domain conversion phe-
nomena on the S{001) vicinal surface’® We should also dM
mention that efforts have been made to show how the PPM ZB—B=(k— 1)(8?—92)(93
can be used to evaluate atomistic parameters combined with kdt
experiments’ (KP4 Bt kB Mot (B B
In this method the rate of change of the state variables is (key+e;+ke;)Met(er—e;),
written as 40
B
. Zoj gi = (EirerenQat(eltes), (19
i
- = Xii—Xi+), 12
dt ; (X5i=Xiy) 12 wherek=Kk, /ky,
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FIG. 7. Relaxation curves of the order parameters FIG. 8. The flow diagram of the SyStem for two different sets of
M, Qa, Mg, andQg for different sets of values of the rate con- rate constantgsolid) k;=k,=1 and (dashedl k;=1k,=10. The
stants:k;=k,=1 (solid), k;=1 andk,=10 (dashedl Subscripti open circle corresponds to the stable state, the filled square to the
indicates the initial values the stable state, anu the metastable Metastable state, and the filled circle is the unstable staté-or
state. (a) For K/J=—0.15, D/J=0.413, andkT/J=0.15. Thick = K/J=-0.15,D/J=0.413, anckT/J=0.15. (b) For K/J=—0.15,
lines are forM,;, Mg;=0.5, Mg,;=0.75, andQg,;=0.99. Thin  D/J=0.413, anckT/J=0.30.
lines are forM,;=Qa;=Mpg;=Qp;=0.4. (b) For K/J=-3.0,

D/J=-2.15, andkT/J=0.5. Thick lines are forM,;=Qai  express the solution of the equations by means of the flow
zg'ggar?gg'vl_iio:%%:_oz'ooloind thin lines are foM,;=Meg, diagra_lm‘,18 which shows the solution of these equations in a
' AT EREEACB TR two-dimensional phase space Mfand Q, starting with ini-
tial values very close to boundaries. As time progresses by
given small steps, the values bf andQ are computed and
’ the point representing them moves in the plane. A set of the
solution curve is obtained by considering all different initial
values. The results are presented, for fixed valueB f,
ZAZE eiA K/J, ki, andkT/J, in Figs. 8a) and 8b). In the figures, the
i=1 open circle is the stable equilibrium solution which corre-
sponds to the lowest values of the free energy or the deepest
and minimum, the filled square is the metastable state because
3 the system relaxes into it and it does not correspond to the
ZB:E eB (16) deepest minimu_m but_ corr_esponds to the secqndary mini-
mum, and the filled circle is the unstable solution or state
which corresponds to the peak or saddle point. If one studies

These dynamic equations are solved by two differenfig. 7(@) and Fig. 8a (K/J=-0.15, D/J=0.413, and
methods: The first one is the Runge-Kutta method. We uskT/J=0.15) one can see that the system relaxes into only
this method to study relaxation curves of order parametersvo different states. One is the stable state,(=0.92127,
and to see the flatness property of the metastable state and Mg, =0.92127; Q,=0.92218Q5z,=0.92218), which cor-
well as the overshooting phenomenon. Relaxation curves aksponds to the lowest value of free energy or the deepest
order parameters for several values @fJ, K/J, kj, and  minimum, and the other is the metastable stal,{
kT/J are plotted in Figs. (&) and qb). The second one isto =0.0, Mg,=0.0; Qa,=0.10310Q5,=0.10310), which

054105-7



CESUR EKIZ AND MUSTAFA KESKIN PHYSICAL REVIEW B66, 054105 (2002

does not correspond to the deepest minimum but correspondise critical temperaturé; or T, , the system takes too long
to the secondary minimum. Moreover, the unstable solutiona time to relax into the disordered state. This behavior has
marked with a filled circle, can be seen explicitly in Fig. been also observed in time-dependent one-dimensional spin-
8(a), because it is seen as a saddle point. If one compared?2 Ising® and spin-1 Ising systenf$:** Moreover, since
Fig. 7(a) and Fig. §a) with Fig. 2 for kT/J=0.15, one can k,>k; and initial values are not very close to the stable state,
see that the stable and metastable solutions coincide exactiye system relaxes into the metastable state more khan
with each other. Moreover, if one compares only Fige)8 =Kk,, seen in Fig. &) explicitly. This fact has been observed
with Fig. 2 for kT/J=0.15, one can see that the unstableexperimentally. For example, if one cools some liquid alloys
point, as a separator between the stable and metastablery rapidly, one can obtain amorphous metallic alloys or
points, coincides with each other one exactly. On the othemetallic glasses! Furthermore, one can also see how a sys-
hand, the system relaxes only one state, i.e., the stable stdtm freezes in a metastable state as well as the role of the
in Fig. 8b) (K/J=-0.15,D/J=0.413, anckT/J=0.3), be- unstable points as a separator between stable and metastable
cause there do not exist any metastable solutions. If onpoints. (iii) Since the system has also unstable states, for a
compares this figure with Fig. 2 f&T/J=0.3, one can see number of cases the system tries to go to an unstable state
that the stable and unstable solutions coincide with eackia one of the order parameters, but after some time the
other exactly. If there is some metastable state in the systenelaxation curve makes a sharp tden*U turn,” so to speak,
at this temperature, i.ekT/J=0.3, the system should relax or an inverse “U turn,” seen in Fig.)7and relaxes to either
into it, because all the possible initial values are taken. Bethe stable state or to the metastable state. This is called the
cause we have seen that the system always relaxes into of@vershooting” phenomenon which is often discussed in the
state, i.e., the stable state, hence there do not exist any megilass transition and has also been observed in number of
stable states in this case. Furthermore, Figb) 7(K/J  other systemd} 39424347
=—3.0,D/J=—-2.15, ankT/J=0.5) shows the relaxation
of the order parameters in which for thekéJ and D/J V. THE METASTABLE PHASE DIAGRAMS IN ADDITION
values the sta_ble branches of the order parameters experience 14 e EQUILIBRIUM PHASE DIAGRAMS
three successive second-order phase transitions and the meta-
stable branches of quadrupolar order parameters undergo a In this section, we present the metastable phase diagrams
single second-order antiquadrupolar phase transition, alsa addition to the equilibrium phase diagrams of the BEG
see Fig. B). In this case, since the metastable solutions exisimodel for K/J<0 since we make sure that the metastable
besides the stable solutions, the system may also relax intranches of the order parameters were obtained completely
the metastable states. If the initial values are close to thand correctly in Sec. IV. The critical or second-order phase-
metastable solutions, the system relaxes into it, otherwis&ransition temperatures for the stable and metastable
into the stable states, seen in Figb)7explicitly. If one com-  branches of the order parameters in the case of a second-
pares Fig. () with Fig. 5b) for kT/J=0.5, one can see that order phase transition are calculated easily and precisely us-
the stable and metastable solutions coincide with each othémg the Hessian determindhtwhich is the determination of
exactly. Finally, these facts show us that the solutions anthe second derivative of the free energy with respect to in-
their classifications obtained in the LACVM are completeternal or spin variables, namel); and X;. On the other
and correct. hand, the first-order phase-transition temperatures for the
It is worthwhile to mention that following dynamic be- stable branches of order parameters are found by matching
haviors have been found from these figur@g:If the tem-  the free-energy values while increasing and decreasing the
perature is less thah, for Figs. 1a) and 8a) and less than temperature. The temperature at which the free-energy val-
T, for Fig. 7(b), the system either relaxes to the stable statesies equal each other is the first-order phase-transition tem-
or the metastable states and, therefore, relaxation processgsrature T;) for the stable order parameters. Furthermore,
depend on the rate constants and the initial values of ththe first-order phase-transition temperatufg,) for the
order parameters. If the initial values are close to the metametastable branches of the order parameters is the tempera-
stable state, the system always relaxes to the metastaltiere where the discontinuity occurs first s, , Qaz, Mgo,
state, otherwise to the stable state, shown in Fi¢®. &hd  and Qg,.
8(a). From Figs. 7a) and 1b) the “flatness” properties of the We can now obtain the metastable and equilibrium phase
metastable state are seen clearly, becau§®,,=0.10310, diagrams of the BEG model and the calculated phase dia-
Qg>=0.10310, andM pp,=Mg,=0.0 for Fig. 7@) andQp,  grams are presented in Fig9ap-9(f). In these phase dia-
=0.95474, Qp,=0.32404, andM ,,=Mpg,=0.0 for Fig.  grams, thick solid and thin dashed lines represent the second-
7(b) correspond to the metastable state for which the samand first-order phase transitions for the stable branches of the
results are also found in the equilibrium study, exadily. If order parameters and thin and thick dash-dotted lines indi-
the temperature is greater thdp,, the system always re- cate the first- and second-order phase transitions of the meta-
laxes into the disordered states and if the temperature is bstable branches of the order parameters, respectively.
tweenT. and T, the system always relaxes to the stable Figure 9a shows the phase diagrams in theT(J,D/J)
state because there do not exist any metastable states in thgdane forK =0.0, which is called the Blume-Capel model. As
regions. Therefore, relaxation processes are independent isf seen in the figure, besides the ferromagnéticered
the rate constants and initial values of the order parameterphase {), two different paramagneti¢disordered phases
It is worthwhile to mention that if the temperature is equal toare found by including the phase transitions of the metastable
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FIG. 9. The equilibrium phase diagrartthick solid and thin dashed lineand metastable phase diagrafttén and thick dash-dotted
lines) of the BEG model folK/J andD/J. Thin dashed line and thin dash-dotted line represent the first-order phase transition for the stable
and metastable branches of the order parameters, respectively. Thick solid line and thick dash-dotted line represent the second-order phase
transition for the stable and metastable branches of the order parameters, respectively. Ferronfdgraditsé ferromagneticd(),
ferrimagnetic (), antiquadrupolarg), paramagneticf), and dense paramagnetidf) phases are found. The special points are tricritical
(T), bicritical (B), multicritical (A), critical end point E), zero-temperature highly degenera®,(and zero-temperature criticaZ). (a)
K/J=0.0.(b) K/J=-0.15.(c) K/J=—-1.0.(d) K/J=—1.5.(e) K/J=-3.0.(f) D/J=0.0.

branches Qf the order parameters, namigly,, Mp,, QAz,. #0. (f) denotes pure ferromagnetic phase in which the stable
and Qgy. (i) The pure paramagnetip) phase as seen with pyranches of the order parameters exiimetimes unstable
only the stable branch of the quadrupolar order parameterg,,nches also occur, e.g., as seen in Fig(®f) represents

Qa1 andQg;. (i) The dense paramagnetidff) phase with 5 yense ferromagnetic phase and in this region the metastable
®fd unstable branches of the order parameters also exist be-

occur beside®,; andQg,. The p anddp can also be de- 40 4he stable quadrupolar order parame®@gs,and Qg,.

fined as follqws:p IS a region w_here_the only sqlutlon Is the Moreover, the second-order phase line for the metastable
paramagnetic solution, i.eM,=Mg=0, while in thedp

region this paramagnetic phase can coexist on sufficientlgr"’mches of the order parametdthick dash-dottg d line
short-time scales with another less symmetrical locally stabl eparates thef) phase f_“’”ﬁ the (f) phase. In this phase_ .
phase, i.e., the metastable phase. Moreover, il fheegion diagram, the special point is qnly the zero-Femperature criti-
the unstable solutions of the order parameters also exist. TH&! () point and the equilibrium phase diagram shows a
boundary of the pure and dense paramagnetic phiisies reen?rant.behawor in which the_ reentrant behavior starts for
dash-dotted lingis the first-order line for the metastable the first time atZ and appears in the range of the<®/J
branches of the order parameters that star®/dt=1.0 and <0.22. On the other hand, the metastable phase diagram also
ends atT in which is the tricritical point where the second- illustrates the reentrant behavior in the range of the 0
order phase-transition line turns to a first-order one. <D/J<0.166. Figure &) represents the metastable phase
We turn to the very interesting case when the biquadraticliagram in addition to the equilibrium phase diagram for
(K) and bilinear exchange interactiori§) have opposite K/J=-—1.5. In the phase diagram, the antiquadrupd&r
signs. Figure ) illustrates the metastable phase diagram inphase is separated from the paramagn@ighase by two
addition to the equilibrium phase diagram #§fJ=—0.15. second-order phase lines that meet at a bicritical pdt (
This phase diagram is similar to the phase diagram given iThe antiquadrupolafa) phase is also separated from the
Fig. 9a), except a double reentrant behavior takes place imense ferromagnetiaf) and ferrimagneti¢i) phases by the
the system. For the range of 0.44D/J<0.418, the system first-order phase-transition line. Moreoverdf) and (i)
exhibits thef-p-f-p successive phase transitions as the temphases are separated by the other second-order phase line
perature is increased. As valuekfJ increases in the nega- starting at the zero-temperature highly degenerate g&int
tive value, and eventually the tricritical point disappears asand terminating at the critical end poirE). For more nega-
seen in Fig. &). In Fig. 9c) three main regions appear in tive values of biquadratic interaction suchk&l= — 3.0 the
the system(p) represents a disordered state or paramagnetiphase diagram of the system becomes more interesting. The
phase of the system witt,;=Mg;=0 and Q,;=Qg;  phase diagram fok/J=—3.0 is illustrated in Fig. &). The
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phase diagram is similar to the phase diagram of Fid),9 unstable branches of the order parameters completely and
except the critical end poinE) in Fig. 9(d) disappears or it correctly. Then, we presented the multicritical phase dia-
joins to a multicritical point A), seen in Fig. ). Finally, = grams of the BEG model including the phase transitions of
Fig. g(f) illustrates the phase diagram of the BEG model inmetastable branches of the order parameters. Therefore, we
the kT/J,K/J) plane forD/J=0.0. In the phase diagram, presented the metastable phase diagram in addition to the
the four different regions have been seen, namely, (a),  equilibrium phase diagram for the BEG model with the re-
(df), and (f). The second-order phase-transition lines for thepulsive biquadratic interaction. We found that the equilib-
stable branch of the order parametghick solid lineg sepa-  rium phase diagrams of the system are exactly the same as
rate @), (p), and (f) phases. Moreover, the second-orderthe equilibrium phase diagrams of Hoston and BetRer.
phase line for the metastable branches of the order paranttowever, the main difference is about the paramagnetic and
eters(thick dash-dotted lineseparatesf) and df) phases. ferromagnetic phases as follows: We found two different
On the other hand, the dotted line separates(fiephase  paramagnetic and ferromagnetic phases which we called a
from the df) phase. It should be mentioned tliitand df) pure paramagnetic(p) phase with Mpa;=Mg;=0,Qa1
can also be defined as followd) is a region where the only =Qg; and a pure ferromagnetif) phase with the stable
solution is the ferromagnetic solutiogisometimes unstable branches of the order parameters, iM.,;=Mg;#0,Qa1
solutions also occlyi.e., Mp,Mg=0,Q4,,Q#0, while in  =Qg;, and a dense paramagnetic phagp)(with the meta-
the df region this ferromagnetic phase can coexist on suffistable and unstable branches of order parameters existing
ciently short-time scales with another less symmetrical lo-besidesQa; =Qg; and dense ferromagnetic phase with
cally stable phase. the stable, metastable, and unstable branches of the order
In conclusion, all the equilibrium phase diagrams of theparameters. In the phase diagrams, the first-order phase lines
system are exactly the same as the equilibrium phase di&thin dash-dotted lingsfor the metastable branches of the
grams of Hoston and Berké&t.However, we have also ob- order parameters separate thgphase from thedp) phase,
tained and presented the metastable phase diagrams of theen in Figs. @ and 9b). On the other hand, the second-
BEG model in addition to the equilibrium phase diagrams. order phase lineghick dash-dotted lingdor the metastable

VI. SUMMARY AND CONCLUSION

branches of the order parameters separatéfiighase from
the (df) phase, seen in Figs(@—9(f).
Finally, it is worthwhile to mention that we have found

In this work, we have investigated the thermal variationsthat the metastable phase diagrams of the BEG model for
of the order parameters of the spin-1 Ising BEG model withi/3< 0 which has served as a paradigm for a large number
the repulsive biquadratic interaction by using the LACVM. of physically important phenomena, always exists at the low

Besides the stable branches of the order parameters, we ofg

‘mperatures that are consistent with experimental and theo-

tained the metastable and unstable parts of these curves, apfical works on some alloyé% semiconductoré’ 28
phase transitions of the metastable branches of the order pﬁolymersz,g water?® and the ternary systei‘ﬁ.
rameters were also found. The classification of the stable,

metastable, and unstable states is made by matching the free-
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