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Intrasite 4f-5d electronic correlations in the quadrupolar model of the y-a phase transition in Ce
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As a possible mechanism of thea phase transition in pristine cerium a change of the electronic density
from a disordered state with symmeﬂFyngm to an ordered statPa3 has been proposed. Here we include
on-site and intersite electron correlations involving one localize@léctron and one conductiord%lectron
per atom. The model is used to calculate the crystal fielg-Gfe and the temperature evolution of the mean
field of @-Ce. The formalism can be applied to crystals where quadrupolar ordering involves several electrons
on the same site.

DOI: 10.1103/PhysRevB.66.054103 PACS nuni®er64.70.Kb, 71.10-w, 71.27+a, 71.45-d

. INTRODUCTION theory’® of the orientational phase transitions in solig,C

Elementa! .soli(éi cerium is known to undergo structur.alwr1ere a similar space symmetry changer@m— Pa3) oc-
phase transitions? In the pressure-temperature phase diacyrs at 255 K at room pressuik.
gram of Ce the puzzling long-standing problem is to under- The present article is a continuation of our approach to the
stand the apparently isostructural transition between the Clgroblem of they-a transition in Ce based on the technique
bic y anda phases:* An isostructural phase transformation of multipolar interactions between electronic densities of
cannot be ascribed to the condensation of an order parametesnduction and localized electrons in a crystaf Our sec-
and therefore cannot be explained by the Landau theory adnd motivation is to extend our initial meth@dRef. 179 for
phase transitions. In the past, several models and theori¢se case when two electron &ndd) are at the same site of
have been suggested to address this proBlémAmong cerium and all intrasite interaction@ncluding the on-site
them, a Mott-like transition for f electron&® and a Kondo- exchangg between them are taken into account. Our treat-
effect-based approattt?are the competing ones. Also, new ment of intrasite correlations is closely related with the
computational schemes have been applied to the problefiiethod used by Condon and Shortley for many electron
using dynamical mean-field theory combined with the locaiStates of atom&’ Provided that the average number of elec-
density approximatiof® trons per site is conserved this method is exact fo_r intrasite

Under pressure above 5 GRaCe becomes unstable and correlatlonszsand goes beyond the usual self—conslstent—ﬂeld
transforms first to a crystal withC2/m or «-U space approach®~2° employed by band structure calculations.

symmetry (a'-Ce) and then to a body-centered-tetragonal _Besides_ the problem of the-« phase transition i_n Ce, the
(bet) structure @”-Ce) above 12 GPY. This series of trans- microscopic method can be applied furttfeéo describe qua-

formations cannot be explained by invoking the concepts Ofirupolar ordering and to perform crystal field calculations of
the 4f localization-delocalization transition or Kondo vol- manyf electrons on the same site. There are numerous com-

ume collapse models and indicates that there are anisotro unds %h'b'tmg quadrupol'ar 'orderlng at low
interactions present in the phase of cerium. Such electron temperatures and there is a sustained interest in understand-

interactions can be of quadrupolar origin, which are knownnd their properties. Thus, recently Dy8, (Ref. 27, DyBe

to dri trv | : h t it . | (Ref. 28, UCu,Sn (Ref. 29, PrPh (Ref. 30, YbAs, (Ref.
tﬁanrigls aszén;qc?i;)i/deogc?rrrlwg%upn%?:e ransiions i many fan 31), YbSb(Ref. 32 were reported to undergo a quadrupolar

Recently, the isostructural character of thea phase ordering.
transition has been questioned by Eliashberg and
Capellmanrt® They suggest that-Ce should have a dis-
torted fcc structure. Independently, the present authors have
put forward a theory of quadrupolar ordering in ceritfn® As follows from electronic band structure calculations of
There, it was proposed that the« transformation is not ,-Ce there exist three conduction electrons per atom which
really isostructural. Rather, it was associated with hidderform the (66p5d)® metallic band and one localizedf 4
electronic degrees of freedotin our previous workRefs.  electron33°~8In our previous work(Ref. 18, we have al-

17 and 18, we have suggested that the symmetry change igeady considered electric multipole interactions between
from Fm3m to Pa3. This symmetry lowering is a special conduction electrons and the localizefl dlectrons. Below
one. Although accompanied by a lattice contraction, it conwe focus on the on-site and intersite correlations in the sys-
serves the fcc structure of the atomic center-of-mass pointem and will simplify the model. We consider the instanta-
(cerium nuclei and is solely due to the orientational order of neous configuration®5d4f as having the largest statistical
electronic densities. Such a scenario reconciles the  weight on a cerium sitéin comparison with other possibili-
transformation with the Landau theory of phase transitionsties such as §6p5d4f, 6s?5d?, 6s°4f2, etc). The two 6

Our considerations for cerium have been inspired by thelectrons give only a spherically symmetrical density on the

Il. MODEL
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cerium site and their lowest-energy state corresponds to Here R; and R4 are radial components of thef &and &
singlet. Therefore, as a first approximation we discard theng|ectrons, respectively] stands forQ(ﬁ)_ There are 14 ori-

a52 gving a closed_shell(lndee_d, the _'eV‘?' structure of entational vectorgor spin-orbitals (n|i) for a 4f electron
6s°5d4f corresponding to atomic Ce | is similar to that of . . A
(if=1-14) and 10 orientational vectos|iy) for a 5d elec-

5d4f of La 11.3% In fact, in doing so we omit the-d elec- - h i-orbital bo Wri
fron transitions which can contribute to the quadrupolai™n (a=1-10. These spin-orbitals can be written as
density'® We are left then with one & conduction electron

and one localized # electron. In the electronic band struc- (nlip)=(nlmpus(s,(f)), (2.53
ture calculations the charge density of thek électron on the . .
cerium site is considered as an average over all occui)ied (nlig)=(nImg)us(s,(d)). (2.50

states[E(IZ,a)$EF, where« is the band index aneg is  Hereus is the spin function = *) for the spin projections

the Fermi leve). We have shown in Appendix B of Ref. 17 s,==*1/2 on thez axis. The orbital parts(ﬁ|mf> (my

that the electron densn‘}/ is mainly spherical which corre-_ 1 _7) and(Almy) (my=1-5) are expressed in terms of

sponds to the standard “muffin-tinlMT) treatment in elec- i D om A L .

tronic band structure calculations. The spherical density ofPherical harmonicy(©2)=(n[l,m). We find it convenient

5d and 4 electrons will be the starting point in this work. (© Work with real spherical harmonics. We consider

We consider the & electron on a cerium center being instan- 0 it wis w2C WS WBC i3S /A

taneously coupled with thef4electron and include in the {Y3.Y3%, Y35, Y55, Y5, Y55, Y3 =(njmy) (2,62

model all corresponding .intrasite_ interactions_, crystal eI.(::ctricfOr 4f electrons(corresponding tan,=1-7) and

field effects, and intersite multipolar electric interactions.

From the technical point of view, thisd model is a man 0 vlc 1S \2C \/25| _ /1

electron generalizatlioon of the concepts of Ref. 17. Weyare (Y2, Y25, Y27, Y2%, Y27 = (nmq) (2.6b

aware that the model based on fiteconfiguration is incom-  for 5d electrons(corresponding tany=1-5). We use the

plete, but it has an advantage of taking into account all indefinition of real spherical harmonics of Ref. $Jee also

trasite interactionsoften referred to as Hund's rulesvhich  explicit expression$2.1) in Ref. 17], which is different from

are usually omitted in the electron band structurethe definition of Condon and Shortlé.The advantage of

calculations:>** Later we will briefly discuss a possibility to using the basis with real spherical harmonics is that the ma-

refine our model with the help of the valence bof@  trix elements of Coulomb and exchange interactions stay

Heitler-London theory of chemical bonding*® real.

We consider a face-centered-cultfcc) crystal of N Ce The order of indices in Eq$2.2) and(2.3) is important if

atoms. Each atomic site possesses oh@dd one 8 elec-  we associate the first electron with thestatei; while the

tron. The position vector of an electron near a crystal lattice&second with thed statei4. Then in addition to the vectors

siten is given by (2.2) we have to consider the states described by the vectors
lig;if)n (the first electron is in thé, state and the second is

R(N)=X(n)+r(n). (2.1) in thei; statg. However, from the dynamicgl equivalence of

the electrons we can permute the spin-orbitals to the standard

HereX(n) is the lattice vector which specifies the centers of°rder, Eq.(2.2), by using

the atoms(or Ce nuclei on a rigid fcc lattice. The radius N TR 5

vectorr(n) is given in polar coordinates bgr (n),Q(n)), liasine=—liria)s, @7

wherer is the length and)=(0,¢) stands for the polar since it requires the interchange of the two electrons. In order

angles. We label the two-electron basis ket vectors at a lattice» describe the same quantum staitg i) we will use the

site n by a single index (4 or, alternatively, by the pair of basis vector$2.2) and apply Eq(2.7) when neededAlter-

single-electron indicesi(,ig): natively, one can use the procedure of antisymmetrization of
the basis vector$2.2) as described elsewhefelhus, our
Nada=lit:ign. (2.2  basis(2.2) consists of 140 different vectofs;q).

The ground-state energy of the f@d) electron system,
The indexi stands for the electron orbital and spin projectionEg, can be calculated in the local density approximation
quantum numbers. The corresponding basis wave functiond.DA) with spherically symmetric Coulomb and exchange

are potentials. Going beyond this model in atomic cerium, one
has to take into account multipolar on-sf&so called intra-
Fr = (e (i) 23 sne) Coulomb mterz_icnons_ and sp|n—qrb|t coupling. In ;ohd
(" la)a=(rligs- (rli)s 23 cerium, the interactions with conduction electrons and inter-
where site Coulomb interactions still have to be added.

In the following we will study these effects within a uni-

TR U fied formalism based on a multipole expansion of the Cou-
(rliga=Re(r(mXnlie), (243 omp potential and of the systematic use of site symmetry of
~ o the crystal lattice. For the case of on-site Coulomb interac-

(r'lign=Rq(r" (n){(n'lig). (2.4p  tions between two electrorishargee= —1) we have
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o 1 part of these correlations in previous wdfkand here we
V(R(n),R'(n))===—=——. (2.8 study all of them in the framework of thiel model. In fact,
[r(n)—r’(n)] these multipole interactions are responsible for the electronic
derms of atom£? We will see that their combined effect low-
ers the energy of the cerium atom by1—-2 eV in compari-
son with the spherically symmetric case, yet usually they are
o . . not taken into account in the electronic band structure calcu-
V(R(n),R'(n"))= 2 vAA(r,r")SA(N)S,(n"), lations in solids. Although our consideration in this section is
A based on the original technique for multipole interactiths,
(2.99 it overlaps largely with the method of Condon and

The multipole expansion in terms of site-symmetry-adapte
functions(SAF’s) S, (n) reads

where Shortley?” However, for two reasons we have decided to
briefly review it here. First, we consider below a more gen-
r'< A eral case which is not limited by tHeS (Russell-Saundeys
van (M) = 5y | 515704 (2.9 coupling and consideration of diagonal matrix elements. Sec-
r> ond, the results of this section are used to describe crystal
with ro=max¢,r’), r-=min(r,r'), and Sy, =6, . electric field effects and the phase transition to #a3

Clearly, the last expression is site independent. The SAF'structure.
are linear combinations of spherical harmonics and transform The direct matrix elements for the intrasite Coulomb in-
as irreducible representations of the site point gréRpf.  teractions are obtained if we consider only fhé transitions
37). The indexA stands for [, 7), with 7=(I", u,k). Herel for the first electron and thd-d transitions for the second.
accounts for the angular dependence of the multipolar exparwe start from Eq(2.99 and obtain
sion, I" denotes an irreducible representat{@gmthe present
case of the grou®y,), w labels the representations that oc- L
cur more than once, arkddenotes the rows of a given rep- (l¢4|;V(R(n),R'(n))|J¢q)
resentation.

On the other hand, the Coulomb interaction between two

electrons at different sites#n’ (intersite reads

EOUI:; viRealisincaliia),

(3.9

where

o e s o 1
V(R(n),R'(n ))_M' (2.19 vi?\=f drrzf dr'r 2R2(NRA(r v sa(r,r’)

The multipole expansion is given by (3.2

o L R . . accounts for the average radial dependence vehjlg(r,r')
V(R(N),R'(N"))= 2 vaa(N0';r,r")S(n)Sy ('), is given by Eq.(2.9b. We use the superscripsandD in
AL (2.113 order to indicate that we have transitions between tvfo 4
' stateq F=(f,f)] and the transitions between twal States

where [D=(d,d)]. The elementg, are defined by
- . L=, Sa(MSy(n)
()= [ aa [ aa'i Re-R G cutido= [ doG sy aialio. (333
211
The intersite multipole expansioi2.113 is anisotropic and o R N
converges fast sinéé CA('de):f dQ(ig/n)Sx(n)(nljg). (3.3b
- - (n'(r)" N . .
vaa(nnrr )~ ———————o—. (212 The other possibility is to consider the transition§ 4
IX(n)=X(n")"" " —5d for the first electron and the transitiond 5 4f for the

second. This gives the exchange interactions and then we
should use Eq(2.7) in order to return to the standard order
of the spin-orbitals. We find

Therefore, it is sufficient to consider it only for nearest
neighbors. From the practical point of view, one can calcu

late vy, (N,N";Fo,rg) only for two fixed radiirg andr.
Then one obtains 4 ,-(n,n’;r,r’) as a function of andr’

K == e exch
by employing the dependen¢2.12). (gl V(R(N),R"(N)|J5a)

lll. INTRASITE INTERACTIONS :_; o€, (ijg)caligin), (3.9

The interactions which we analyze in this section are
present already in atomic ceritih®* We have considered a where
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vg\fd) S\df) TABLE I. Term energies of théd configuration in the absence
of spin-orbit coupling.E,, and AE stand for the singlet-triplet en-
B 5 o , , , ergy means and the singlet-triplet energy differences, respectively.
=] drre ) drir" Ry Ra(r)Ra(r " )Re(r )vaa(r,r’) s the orbital quantum number of the two electrons. The energy
corresponding to the spherically symmetric description is taken as
(3.9 zero. All energies are in units K.

and _ .
L Singlets Triplets En AE
CA(ifjd):f dQi¢|N)S,(M)(A]j o), 369 P 13541.8 5384.5 9463.1 8157.3
D —3011.8 1951.8 —530.0 —4963.5
F 2767.8 —6616.1 —1924.1 9383.9
C?\f(idjf)zf dQ(id|ﬁ>SA(ﬁ)<ﬁ|jf>. (3.6b G —9378.4 —1485.3 —5431.8 —7893.1
H 12 310.8 —5653.4 3328.7 17964.2
We observe that in the basis with real orbitals, Eg6a and
(2.6b), and with real function§, the coefficients, are real 4
aw
and we get vgfd)=ﬁ65(4f,5d). (3.9

Caligir)=ca(jsia)- 3.7
AT A (Notice, however, that our coefficients are different from

We start with the description of spherically symmetric those of Condon and Shortlé). We have estimated the in-
terms (=0) corresponding to the trivial functior§, tegrals in Eqs(3.9) from the radial dependencé@® andRy
=1/\/4=. The coefficientsc, in Egs. (3.3 and (3.3b be-  obtained from calculations on a cerium atom in the LDA. We
come diagonal, have found thav5°=85858, v;°=24260,v{¥=83128,

viP=26563, andy 'Y =12584, in kelvin.
Finally, we rewrite expression@.1) and (3.4) in matrix
g form as

38 (Il V(intra)| ;) CO'= 055 (14 Igg) +v5°¢5° (1 ¢l Ipo)
while ¢;—q(ifj4)=C=0(iqgj 1) =0. Hence, we obtain a contri- (3.10a
bution to (1|V|J)¢°U! which is proportional to the unit ma- d
trix. Since it corresponds only to a shift of the ground—statean

1] 1]

. 1 . 1
Cl:O(Ide):E il g? CI=O(|fJf):\/ﬁ

energy, it is irrelevant. 1 IV(int exch
In considering the other contributiofwith [>0) in Egs. (11al V(intra)|Jsq)
(3.1 and(3.4) we will take advantage of the selection rules = —[o{" eI Ia) + 05 VeV (1 gl Ira)
imposed by the coefficients,, Egs. (3.39, (3.3b and () (1)
(3.68, (3.6b). First of all, we notice that the coefficients, +og ey V(1alIra) ], (3.10b

are diagonal in terms of spin components. From the
theory of addition of angular momen{aee, for example,
Ref. 36 we know that nonzero coefficients (i¢js) can oc-
curifl (in A) equalsto 0,1,2 . . ,6, Eq.(3.39. Furthermore,
the odd values of are excluded due to the parity of the ClFD(Ifd|de):
integrand in Eq(3.33 and finally we obtain thalt=0, 2, 4,
and 6. Analogously, for thd-d transitions the allowed coef-
ficients are with =0, 2, and 4, Eq(3.3b. For thef-d tran-
sitions, Eq.(3.63, (3.6b), we find thatl=1, 3, and 5. Next
we notice that if the radial par®;, R4, are the same for all
spin-orbitals of 4 and & states, correspondingly, then the Cl(fd)(lfd|~]fd):(2 C(I,q—)(ifjd)c(l,r)(idjf)>-
integrals(3.2) and (3.5 depend only on. We can condense T

the notation v{®=v R for 1=0, 2, and 4 andv{/¥ (3.11b
=o{DE for I'=1, 3, and 5. In fact, these integrals are We solve the secular problem for the 24040 matrix of
proportional toF¥ and G in the notation of Condon and intrasite interactions

Shortley??

Here the direct Coulomb matrices °(14J;q) are defined

2 C(I,r)(ifjf)c(l,r)(idjd))a (3.113

where |=2 and 4, and the three “exchange” matrices
c"D(14419¢q) (1=1, 3, and 5 are given by

(1ol V(intra) | Jga) = (I tq| V(intra)| ) !
V=TT R 41,50), 0fP= o F(41 50) + (1 gl V(intra) | Jr) ", (3.1
2 5 e Ya 9 el (1g|V(intra)| J¢ )", (3.12)

4 4 and obtain the ten energy levétsy quoted in columns 2 and
(fd) 7T ~1 (fd) _ 7T ~3 3 of Table I. This term spectrum corresponds to the us&al
U1 3 GH41.5d), vy 7 GH(41.50), (Russell-Saunderscoupling without spin-orbit interactions.
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TABLE Il. Calculated lowest term energies of tlfid configu-
ration with the spin-orbit coupling and the Langéactors(columns

2—-4), AE=E;y—E{('G,). Last two columns are experimental

data(Ref. 34. All energies are in units of K.

E¢q g AE Cel La Il (fd)
G, -10570.3 0.9323 0 0 0
Sk, —-9226.5 0.7030 1343.8 329.2 881.7
H, —8155.1  0.8958 24152 18409 1764.7
3k, —7048.8 1.0825 35215 2393.0 2354.5
SH, —6449.4  1.0334 41209 31779 2850.7
3G, —42473  0.7659 6323.0 19985 5472.8

PHYSICAL REVIEW B 66, 054103 (2002

Comparison with the experimental d¥tan a Ce atom
shows that the order of the three lowest levis,, °F,, and
3H, with the multiplet'G, as the ground state is correct. On
the other hand, the experimental data show that in atomic Ce
different levels (such as'G, 3F, 3H) are considerably
mixed up. Due to the strong spin-orbit coupling, there is an
appreciable mixing betweetG, and ®H,, and betweerfF,
and 'D,. The ground state of a Ce atom has 55%@f, and
29% of °H,.3* The next level which lies only 329 K above
the ground state has 66% OF, and 24% of 'D,.3* In
conclusion, although the actual atomic spectra of cerium dif-
fer somewhat from our results obtained for the configu-
ration, Table Il, our approach captures the main properties
and we will use it for Ce in the solid state. In the following

We have also checked our results by working with the eigenwe Wil extend the calculations of the energy level scheme by
vectors of Eq(312 which can be obtained independent'y |nC|Ud|ng intersite interactions. We will treat Separa'[e|y ’;he

by exploiting the formulagTable 4 of Ref. 22 of vector

addition of angular momentg {=3 andj,=2). The levels
of Table | correspond to the following parameters in the no-

tations of Condon and Shortléy: F,=325.4, F,=25.1,

G,=567, G3=47, andG5=7.2 (in K). [These parameters

should not be confused with those in E¢3.9).]

and thea phase of solid Ce.

IV. INTERSITE INTERACTIONS

In this section we will first consider the matrix of intersite
interactions for the f{d) system on a crystal in general. Next

We now consider the effect of the spin-orbit coupling. We will show that the interaction is largely simplified by
Starting with the spherically symmetric LDA calculation of a crystal symmetry and derive the crystal electric filREF).
cerium atom we obtain that in the one-electron approxima¥Ve calculate the energy spectrum of tHe) system in pres-

tion Agy(f)=E(7/2)—E((5/2)=4003.4 K and Ay (d)

=E4(5/2)— E4(3/2)=2344.0 K. This gives for the spin-

orbit coupling constantg;=1143.8 K and{4=937.6 K.
Therefore, a typical value of spin-orbit splitting-s1000 K

ence of the crystal electric field in the disordered cubic
phase.

We start from expressiof2.113 and write it in the space
of two-electron state vectols;y). Carrying out the angular

which shows that it cannot be treated as a small perturbatiohntegrationsdﬂ(ﬁ), dQ’(ﬁ), dQ(ﬁ’), and dQ’(ﬁ’), we
to theL S term scheme, Table I. In order to take into accountobtain
the spin-orbit coupling exactly we have to consider the op-

erator
Vso= Vol f) +Vso(d), (3.13
where
Voo F)=¢L(F)-S(f), (3.143
Veo(d)=£aL(d)-S(d). (3.14b

The matrix of interactions reads

(HalVsdJIra) = il Vso(D)]i) 81 i, (1ol Vso( D) i) 6 j )-
(3.15
Since we know the matrix elementd¢|Vq(f)|j;) and
(i4lVso(d)|jq) [see, for example, the explicit EGA.2) of
Ref. 17, we can calculate the matrix elements for theéé

(ealiV gl VR(M),R'(N"))] Ifa)ir [ d5ada

=3 2 3 vt (n-n)
aB o'p' AN’
X{CA(iaja)a(iﬁjﬁ)}{c/\’(ia’ja’)é(iﬁ’jﬁ’)}'
4.

Here each of the indices, «', 8, B’ runs over the labelf

d. The coefficients, are defined by Eq€3.63 and(3.6b),
while &(igj ) stands for the Kronecker delta symbol. For
a=f, we haveB=d and for a=d, B=f, with a similar
correspondence betweeri andB’. The intersite interaction

’ ’
element{*{,“ is given by

o
a o

configuration. We now solve the secular problem for the sumv 3.~ (n—n")

of the intrasite and spin-orbit interactions, starting from the

matrix of

Ulintra=V(intra) + Vs, (3.19

and obtain 20 energy levelE;y}. Since we are interested
only in the lowest levels, we quote in Table Il the first six out

of the 20 levels.

=f drrzf dr'r 2R2(1R2,(r" o s (R0,
(4.2

Notice that only direct Coulomb interactions are present
in Eq. (4.1, and with the help of the selection rules for the

(The procedure of calculation of magnetic moments andoefficientsc, we conclude that only the interactions with

the Landeg factors is given in Appendix A.

=0, 2, 4, and 6 have to be considered.
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A. crystal electric field (y phase

aa® _ 2 2 . ’
In the y phase the electronic density is compatible with VA, 0 f drr Ra(r)vAlo(n,n 1 (4.69

the crystal structur& m3m. At each atomic site the CEF has gng
the point group symmetr®,,. In lowest approximation, the
CEF corresponds to the potential experienced by a charge at

P9 ho periel ) y 219 Qa,:fdr’r’sz,(r’). (4.60
a central siten, when spherically symmetrid (=0) contri- @

butions from charge densities at the 12 neighboring sites Notice thatQ, stands forQ; or Q4 which are chargegn
on the fcc lattice and similar terms from the electronic den-ypjts e) of the 4f or 5d electron. As befor€*the integra-
sity in the interstitial regions are taken into account.tion is taken over &r’'<Ryr, WhereRy,t is the radius of
Previously’*® these effects were studied for a singlé 4 the muffin-tin sphere. Besidesf Znd & electrons we can
electron per Ce atom. Here we present an extension to th@sg consider similar contributions frons &lectrons and nu-
(415d) system. ) clei belonging to nearest neighbors. Notice that the interac-
In the crystal field approximation the functioig.(n) at  tion parameters § andv’$, Eq.(4.6b, remain the same
any of the 12 sites’ reduce toYg=1/\/4m. We will write an  for all these contributions and all we have to do is to collect
index 0 forA" (I"=0,A4). The coefficientg,, in Eq.(4.1)  the charges together. Finally, after summation over 12 near-
now reduce to est neighbors and simplifications, we obtain

e i w3 (IalaVer(R)Jra)a
CO'a’Ja’:_ Ia/'!JD(" .
Ja
" = [B),Ca, (i) dlicie) +BY e (el o) i )],

At the central siten, the electronic density has full cubic '

symmetry. We denote the corresponding SAF’sEm{(ﬁ), .0

A1=(1,A,g), whereA,, stands for the unit representation of where
the cubic site grou®,,. We retain the functions fdr=4 and
| =6, which correspond to the cubic harmonks and K. 12

fo_ F e
The selection rules imply that thé-d transitions are per- BA, ,/47TQe“evA1° ’ (4.89
turbed byK, only, while for thef-f transitions bottK, and
K are relevant. Expressig2.113 reduces to 12
d
BAlz\/T_TrQeffeleg. (4.8b

1 - -
N % vA,0(MNT ) Sy, (N). Here again we writdd for (dd) andF for (ff). We take as
(4.43 an effective charg®.¢;= QT the total charge inside a MT

sphere. In contradistinction to our previous wdriéhere we

V(R(n),R'(n"))=

The elements have neglected the effect of interstitial charges. Previously it
was found that ahomogeneoudistribution of negative
va o(ﬁ A charge in the interstices increases the effective charge by an
SO amount 2.89,7. This fact is due to the angular dependence
SAl(ﬁ) of the leading cubic harmoni§, , A;=(1=4A,,), in Eq.

dﬂ(ﬁ)f dQ’(n’) (44D (4.4b. IndeedK,(n) is positive and maximum along the

cubic direction[100] (the centers of the intersticesind

negative and small alongl10] (the sitesn’). On the other
hand, if we consider an inhomogeneous charge distribution
where most of the electronic density in the interstices is lo-
cated close t§110], then the contribution to the crystal field
from interstitial charges can be assumed to be negligibly
small. We observe that previously the inclusion of contribu-
tions from a homogeneous charge distribution in the inter-
stices has led to an overestimation of calculated crystal field
splitting in comparison with the experimental valdés.
Returning to expressiod.2) we write within the crystal In practice, it is convenient to calculamﬁ‘i‘g from

field approximation

=l
47 IR(N)—R'(n")]
have the same value for all 12 neighbatson the fcc lattice.
In addition they are independent of, as follows from ex-
pression(2.12 for |'=0. We then define the crystal field
operator by

N 12 . .
CE n))=— UAlo n,nr, Ay n). .
Ver(R(N)) WAE (n,n";r,f")Sy (n). (4.5

UAlo(ﬁ,ﬁ';RMTJ”)

a, (4.99
Rt

A > aa @
vx‘zg“(n—n’)zvi‘;g- o (4.639 UA,0
where where
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TABLE 1ll. Lowest levels of the energy spectrum di” B. Quadrupolar ordering (a phase
=Ulintrat Ver, y-Ce. Numbers in parentheses stand for degen-
eracy;Ae;=1409.6 K, Ag,=2499.4 K; the site group i®y,. In the cubic phasey-Ce) with theFm3m space symme-

try the nontrivial electron density distribution is given by

L 6 (0 (eime) O Mz (#8)  ciupic harmonicsk,(Q) and Kg(Q) with 1=4 and 6. All
ALl (1) —-10661.1 0.0 0 quadrupole densities with=1"=2 average to zero. Only
T.,1 (3) —-10613.7 47.4 +0.4596; 0 fluctuations of electric quadrupoles are allowed in the inter-
E, 1 (2) —10580.9 80.2 0:0 action, Eq.(4.1), and those lead to an effective attractive
T, 1 (3 —10505.6 155.5 +23112: 0  interaction at theX point of the Brillouin zoné.*8 This in-
T, 2 (3) —9251.5 Agq +0.6634; 0 teraction drives a transition to a new phase which is charac-
E, 2 2 —9224.4 Ag +27.1 0:0 terized by an ordering of electric quadrupoles such that the
T, 2 3 —8161.7 Ae, £2.2447; 0 space group symmetry Ba3. This order-disorder transition
T2, 3 € —8154.2 Agp+7.5 +0.4503; 0 is accompanied by a contraction of the crystal lattice which
Ay 2 (1) —8145.9 Ae,+15.8 0 stays cubic. We have associated this phase transition with the
E.3 (2 —-8137.5  Ae,+24.2 0;0 y— a transition of Ce. In real space tiea3 ordering im-

plies the appearance of four distinct sublattices of simple
cubic structurgsee Fig. 3 of Ref. 1)7 We label these sub-

qlcv:f dr/r'(HAR2(p 7y, (4.9p lattices which contain the site®,0,0 (a/2)(0,1,1), @/2)
%X(1,0,1), and &/2)(1,1,0) by{ﬁp}, p=1-4, respectively.
Then the CEF operatd#.5), with an effective charg®.+:, In principle, one can proceed as in Ref. 17 and derive an
can be rewritten as effective mean-field Hamiltonian. Here we will start from the
crystal in real space and consider the following four quadru-
VCF(ﬁ(ﬁ)):% BAlsAl(ﬁ)f', (4.103 polar SAF’'s corresponding to the four sublatticesP&3:

where®

1
2 oaol R ) Sing( @)= FISD TS0+, (4132

1 \/EQeffc RlMT

Our calculations fory-Ce (a=9.753 a.u.) yieldQuyt
=+0.9136e|,** q¥/Ry;=0.22271, q}/R};=0.03604, Siny(Q)= J_[ S1(Q)=S,(Q)+S3(Q)], (4.130
as/RS, W= =0.01739(in a.u), and Bj= 11984 Bf=193.9,
andBf=74.4(all in K).*! We then consider the Hamiltonian

Ba

(4.100

H?(N)=Ulintra+ Ver(n), (4.11) Sing(Q)= \/_[Sl(Q) S,(0)—-S3(Q)], (4.139

which we associate with the phase of Ce. By diagonalizing
H” we have found that in the cubic CEF the 20 atomiclike
levels of cerium are split into 58 distinct sublevels which can
be labeled by single-valued irreducible representations 1

A(Ty), E(T3), Ty(T,), andTx(T's) of Oy. In particular, S{n4}(Q):ﬁ[_sl(ﬂ)"_sz(ﬂ)_sl’a(ﬂ)]-
three lowest levels of cerium are split according to the fol-

lowing schemg?:3¢ (4.139
1
CamArt Tyt B+ T, (4123 Here we use the short notati®=S,_,1, x-1_3) for real
(1=2T 5 k=1-3)
3F,—T,+E, (4.12ph  Spherical harmonic¥3®, Y3°, and Y3* which belong to a

three-dimensional irreducible representatidp, of Oy,.
SH,—T,+A+T,+E. (4.120 (These spherical harmonics are proportional to the Cartesian

componenty z, zx, andxy for k=1-3)
The calculated splittings of these levels are quoted in Table gajow we consider the intersite quadrupole interactions

[Il. In presence of a magnetic field, there occurs an addltlonanQ(n A) which involve only the functions(4.133—

splitting of the triplets. The corresponding magnetic mo-
ments are given in the last column of Table lDetails of (4.13d. [There are also SAF’s with=4 and 6 allowed by

the calculations can be found in Appendix A the second the Pa3 symmetry” but those lead to weaker multipole in-
part of the present section we will study the energy levels irféractions, Eq(2.12.] We then rewrite Eq(4.1) for a case
the ordered phase. whenne{n;} andn’ e{ny} (p'=2,3, 4:
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(il 2 2 VORR AN 30 [ rada where we have define W“'“'=4y’m“.’“’ and usedk and
. D for (aa), with a=f or d, respectively. The values of
N yeee st A@@¢’«" have been calculated befdfeHere we use the val-
=72 Ty (gl gl ues A\FF=2241 K, \PF=\FP=6489 K, and \PP
o o o =18793 K, calculated for-Ce. Including the intrasite part
X1Cnyi(iariar) 8(irip)}y (4149 y), .. and the crystal fieldee(ny), Eq. (4.1, which are

also present in the ordered phase, we obtain the full mean-

where, as beforey,a’, 3,8 run overf andd, and where the field Hamiltonian

same exclusion rule® a=f thenB=d and vice versphold
betweena and 8 as well as betweea’ and 8’. Here we > > >
pemweena and b HMF(Ry) = UMF(Ry) + Ver(n) +Ulipga - (4.20

Finally, the expectation valueghe order parameter ampli-

aca' o _ 2 112152 2 ., >, tudes pS’e and pg’e, Eqg. (4.19, are found by solving the
’ fdrr fdr MR ANR (v aa(nntir, ), following mean-field equations

(4.15
- - N - Qn _HMF A
with v, (R,A";r,r") where n=(0,0,0), n’=(a/2)(0,1,1) pg,e:Tr{”F(”l)ex'{[ HT (/T (4.223
and A =(1=2T,q,k=1). The coefficients, ; are defined Tr{exd —HYF(n)/TT}
as - -
Tr{p3(ny)exd —HYF(ny)/T]}
i iy=d i ge= < . (422p
C{np}(lal a) <|a|S{np}|Ja>' (41® Pp Tr{exn:_HMF(nl)/T]} (
We introduce the quadrupolar density operators for it (|t is convenient to rewrite these equations in the basis
electron system on each sublattice: |Ka)=|kekq) whereHMF is diagonal,
Q 2\ S 1 .
paa(np)_% lta)Ciny(Tala) 61 (el (4.17) pS’e=Z KEM Cin (Kikp)e™ ', (4.233
where ﬁpe{np}, p=1-4. Here agaire=8, B=d or « 1
=d, B=f. In terms of quadrupolar density operators, the pe==> Cihpy(Kakg)e™ T, (4.23h
quadrupolar interaction operator between tvfd)( systems ZiGe
at siten; e {n;} andn,, e{n,} reads with
L. ,yaaa'a' R R B e T
V(nl-np’): _2 3 Pga(nl)PS’a'(np’)- Z_KEfd € . (4230

(4.18 Equations(4.200—(4.239 are solved self-consistently. First,
we introduce nonzero expectation valygs® andp - in the
mean-field Hamiltoniatd M. After this we diagonalizéi™F

,@nd calculate new values oi2® and p2*© at a given tem-
arP_eratureT according to Egs(4.223 and (4.22h. Then we

The mean-field potential at siﬁel is obtained by summing

V(ny,n,) over the 12 nearest neighbars of n; on the fcc
lattice and by approximating the quadrupolar densities
these nearest-neighbor sites by their thermal expectation v

) - use these values to improve the mean-field Hamiltonian
ues. The thermal expectation valuegﬁa(np) does not de- (4.21), etc., until the input and output valuespﬂ'e andpQ®
pend(i.e., is the sameon any site of a given sublattice and D

) i : ._converge. The results of the numerical calculation are shown
from the equivalence of the four sublattices it follows that it Fig. 1

is the same on all sites of the fcc lattice. We then write The procedure outlined above converges very slowly in
the vicinity of 100 K, i.e., at the phase transition point. We

Q(n)\=,Qe
(PaalNp)) =P » (419 have found the transition temperatufe=97 K and the or-
where the superscript stand for thermal expectation. The dgre parameter _discontinuitiep@“(T,)=—0.06956 and
mean-field potential is then given by pp (T1)=—0.038 75.(From symmetry considerations it fol-

lows that the phase transition is of first ord@rAt T=0 the
- - > averages in Eq4.19 are taken over the ground-state dou-
MF _ aaa’'a’ Q Qe .
UMF() = =42 »**“pZ,(M)pge (4208 it and we obtainp@(T=0)= —0.154 62, pQ%(T=0)=
“ —0.084 85. The lowest five levels ¢fMF for this case are

or, explicitly, given in Table IV.
R R Notice, however, that unlike the crystal fieM.g the
UMF(ny)=—(\FFp@e+APFp2®)pQ(n,) mean-field potentiaUMF, Eq. (4.20b, and the Hamiltonian

DD 0.\ FD 06 O HMF depend implicitly on temperatufE since the order pa-
—(Nps AT pE)ps(ne), (4200 rameter amplitudep®® and pS° change with temperature,
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e e e e L T B L i e leads to a uniform lattice contraction conserving the cubic
0.00 o symmetry of the lattice.
-0.02 . The change of the energy spectrum at the transition im-
-0.04 ] plies a change of the magnetic susceptibility. Indeed, we
©  -0.06 ] have found that the calculated magnetic moments are differ-
OQ__O_Og_' ] ent in y- and a-Ce. Moreover, in the ground state afCe
0.10 ] the magnetic moment of thef4electron is bound to the
042 ] magnetic moment of thedbelectron(a qualitative origin of
014 3 ] this correlation is given in Appendix )BThe lowest mag-
046 ] ] netic excited stateH, 2 in Table 1V) is separated from the
ground state by an energy gape~350 K which is much

AL A LA DL RNLA INNLENN B BLENN BN LR B B

0 10 20 30 40 50 60 70 80 90 100 110 120 larger than a typical crystal field excitation in thephase,
TEMPERATURE (K) Table Ill. However, here our treatment is incomplete. Al-

though the present model carefully takes into account the
Intrasite interactions, it does not describe properly the metal-
lic bonding in Ce.
) o o The question of correspondence between our approach
Fig. 1, and the energy splittings:i(- €;) decrease with in-  anq electron band structure calculations deserves a special
creasingT up to T,. Above the phase transition point the giention. As we have discussed in Sec. I, in the “muffin-
spectrum transforms discontinuously to thatyetCe, Table i, gnoroximation a localized # electron experiences only

!ll_l.b'll'hle doubls degenerate statétlse reprefa}antatioan r:n a field of spherical symmetry and occupies a 14-fold degen-
able V) are due to time-reversal symmetryFor a further erate level. The localized states of thé dlectron then are

dlscu'ssmn cr)]f the energy Sﬁectrum WF we refer tof Ar\]p— uncorrelated with the states of conduction electrons, because
g;eer::?rl)(;rfg where we study the magnetic moments of the tWO[he spherical component of thd 4lensity is independent of
: its spin (s,) and orbital (n) projections. In our study we
show that this simple picture is not correct and there exist
V. DISCUSSION AND CONCLUSIONS ;trong local correlatio_ns bt_atween Iocali_zeﬂ dand delocal-
ized 5d electrons omitted in a conventional band structure
This work is an extension of our previous model of the calculation. These correlations arise due to the Coulomb on-
v-a phase transition in Ce based on the idea of quadrupolsite repulsion and reflect the electronic term structure of
ordering!”*® In addition to the intersite quadrupolar cou- atomic cerium, Sec. Ill. We show that the excitations of the
plings here we consider the multipolar intraditérect Cou-  4f electron are combined with those ofl %lectron in a
lomb and exchangeinteractions between one localized 4 single spectrum, which is sensitive to crystal site symmetry
electron and one delocalizedd5electron taken instanta- because of intersite interactions, Sec. IV.
neously at a same cerium site. The intrasite interactions are In principle, band structure calculations with the full po-
treated exactly in the adopted3d model. Iny-Ce we have tential (FP) extension [so-called FP-linear muffin-tin
calculated and analyzed the crystal electric field excitationsprbita® (FLMTO) and FP-linear augmented plane-w&ve
Table IlI. In a-Ce thePa3 quadrupolar ordering sets in and (FLAPW) methodg are capable of dealing with nonspherical
drives they_a phase transition. The quadrup0|ar order ha§:0ntributi0ns of denSity and pOtentiaI. Provided that the site
been studied in the mean-field approximation, E4s20p—  symmetry is introduced explicitly, calculations with the full
(4.239. We have calculated the phase transition temperaturotential option can describe some, but not all, structural
(T,=97 K) and the evolution of the order parameter ampli-properties associated with tiken3m— Pa3 transformation.
tudes p2® andp2®; see Fig. 1 by solving self-consistently The reason is that the band structure calculations are based
the mean-field equation&.200—(4.239. We have shown on the single-determinant Hartree-Fock method. In our treat-

beforé”18 that quadrupolar ordering in thBa3 structure Ment each local two-electron basis function, E¢®2)-
(2.6), corresponds to a Slater determinpnith the permuta-

tion property(2.7)]. The solutions are expressed as linear

combinations of all these functiorideterminants As such,

our method corresponds to a many-determinant treatment or

configurational interactiofCl). Clearly, it is not the case

with the band structure approach. This explains why the con-

FIG. 1. Calculated evolution of the order parameter amplitude
p2¢ and p3® with temperature.

TABLE IV. Lowest levels of the energy spectrum BMF at T
=0 and magnetic momeni$1, for a-Ce. Numbers in parentheses
stand for degeneracy; the site grougSis=C3Xi.

L & (0 (6—e) 0 M (e) ventional band structure treatment is missing some intrasite
E, 1 2 —10888.5 0.0 +2.0683 and intersite correlations which are taken into account in our
Al (1) —-10721.4 167.1 0 approach.

A, 2 (1 -10699.7 188.8 0 The other drawback of the FP electronic band structure
E, 2 2 -10542.2 346.3 +1.0116 calculations is connected with the LDA. In the LDA the ex-
E, 3 ) ~-104271 461.4 +0.4882 change potential is a function of density and has the full

(unit) symmetry of the crystal. This implies that the density
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and the LDA exchange potential are invariant under inverwith

sion in both phases. Expanding the exchange potential in

terms of spherical harmonics on a cerium site we find that v - 2

only harmgnics with even are allowed by the inversion M= pelL(1)+25(D)], (A23)
symmetry, i.e.| =2,4, etc. However, as we observe from Eq. R . .

(3.10b the contributions witloddvalues ofl are relevant for M(d)=ug[L(d)+25(d)], (A2b)
the exchange betweerf 4nd 5 electrons, namely,=1, 3,

and 5. Thus, these terms are washed away by the LDA treajtg being the Bohr magneton. The matrix elements/gf,

ment. read
On the other hand, the present method should be extended
to include the metallic bonding in Ce explicitly. In our opin- Ll Vinad Jia) = (¢ My()]j) S
ion, a combination of the local correlations with the band (HralVinagJrar= ({1l Me( D 1) lala
structure approach constitutes a challenge for further studies. +H(igd MAd)]ja) i, j)-H,  (A3)

We are presently working on the problem and hope to

achieve this by employing the valence bc(MB) or Henlgr- where (i{| M,(f)]j;) and (ig M,(d)|j4) are one-particle
London approach. The VB method is more difficult to imple- jatrix elements which can be easily computed. If we diag-
ment, but usually it gives a better description of chemicalynaiize the matrix of H+Vpag), then the degeneracies of

. . 3
bonding than the method of molecular orbit#ié: The al- e energy terms are lifted and the magnetic moment of each
ternative approach is a merger with one of the existing band ,pievels is given by

structure methods and introducing in some way a ClI treat-
ment.

Finally, we would like to mention again that we are aware
of the fact that our approach is not complete, but it certainly _ _
underlines the importance of the structural factors and thd/Nereie,} stands for the energy level&q} or {€;} givenin
local correlations for this long-standing problem. We havel@bles Il or Il and 1V, for the atomic casgntrasite, the y
shown that the local electronic interactions can trigger the?hase, and the phase, respectively. The results &, for
y—a phase transition in Ce, but other aspects of the probthe solid-state phases are quoted in Tables Il and IV. The
lem (in particular, chemical bonding, eicshould also be Landeg factors are obtained from
taken into account. As befofé® we suggest synchrotron
radiation experiments in order to check the appearance of My(€,,])=pngd(e,)], (A5)
weak superstructure reflections in tR@3 structure @-Ce)
and to study diffuse scattering in and a-Ce. where | is the z projection of a total angular moment:

The present model generalizes our initial approggef. =—J,—J+1,...,+J. The calculatedg factors for the
17) for a many-electron case. The method can be apyisd atomic case, Table II, are close to the experimental vatties.
has been done for TmTe in Ref. 26 study quadrupole In case ofy-Ce anda-Ce thez axis is the[001] axis of
orderings® in lanthanides and their compounfiByB,C,  the cubic crystal. Fory-Ce only triply degenerate levels of
(Ref. 27, DyBg (Ref. 28, UCw,Sn (Ref. 29, PrPh (Ref. Ty or T, symmetry have nonzero magnetic moments which
30) YbAs (Ref. 31, YbSb(Ref. 32] where a fewf electrons are —M(t), 0 and +M(t), where M(t)>0 and t

My(€,)=(€,|Me,), (A4)

at each site are involved in the process of ordering. =(Ty,u) or t=(T,,u), Table lll. For a-Ce only doubly
degenerate levels & symmetry have nonzero magnetic mo-
ACKNOWLEDGMENTS ments which are-— M(e) and + M(e), where M(e)>0

) ande=(E,u), Table IV. The doubly degenerate states are
We thank D.V. Lopaev for references on atomic spectrajye to time-reversal symmeti§lt is worth noting that in the
and AT Boothroyd for discussions. This work has been f'_'ground state &,1) the magnetic moment of the localized 4
nancially supported by the Fonds voor Wetenschappelijkjectron is not independent. It is attached to the magnetic
Onderzoek, Vlaanderen. moment of the 8 conduction electron. The change of sign
of the magnetic moment of thed5electron under time-
APPENDIX A reversal symmetry now requires the concomitant change of

In order to calculate the effective magnetic moments andhe sign of the magnetic moment of the localizefdedectron.
the Landeg factors we study the polarization of electronic We discuss the origin of this correlation in Appendix B.

add to the Hamiltoniaft [that is,U|nya , EQ.(3.16), for the ground state E_,l) gi\_/es rise to a Pauli paramagnetism. The
atomic case,U|iyya+Veer, EQ. (4.11), for y-Ce, and other levels given in Table IV represent excited states of

Ulinra+ Veee+UMF, Eq. (4.20), for a-Ce] a magnetic term  @-Ce. However, we observe that the fitstpresentatior, 1
of Table I1V) and the second staté (2) are nonmagnetic. The
Vinag= — Mz H. (Ala) first magnetic excited stateE(2) is separated from the
ground state by an energy gap&é~350 K. This observa-
tion could explain the absence of a Curie-Weiss contribution
M= M (F)+ My(d)], (Alb)  to the magnetic susceptibility, at temperature$ <T;.

Here
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FIG. 2. The transformatioix,y,z}—{x’,y’,z'} [the Euler
angles area=m/4, B=arccos(1{3), y=0 for passive and
(7,8, a) for active rotation$and the functionS‘{nl}, Eqg. (4.133.

APPENDIX B

We consider the functioS{nl}(Q), Eqg. (4.133, in a new

coordinate system of ax€g’,y’,z’'} where thez’ axis cor-
responds to the cubid11] axis, Fig. 2.
Then

S (V) =Y(Q"), (B1)

where )’ stands for the polar angle®(,¢’) in the new
system of axes. The coefficiermgﬂl}(ifjf) and c{Dnl}(idj d)

Eq. (4.16, become diagonal in the new basis,

Cin (i ad o) = (il Yalia)di (B2)

PHYSICAL REVIEW B 66, 054103 (2002

whereQ); andQ refer to the polar coordinates of 4nd
electrons, respectively.

Indeed, there are 11 functions;)J[/':L5 (M =-5,
—4,...,5),which form a basis of the two-particle irreduc-
ible representationH of the group S@) of three-
dimensional rotationgln Eq. (B3) we quote only two func-
tions; the others can be obtained from Tabfeo# Ref. 22]

In the LS (Russel-Saunderscoupling the triplet®H lies
lower in energy than the singletH, Table I. If now we
include the diagonal mean-field coupling™", we obtain
that the six states with the orbital componepid and ) g °
and with the spin componentd s=—1, 0, 1 (originating
from the ®H triplet) go down in energy. These six states are
further split by the spin-orbit coupling in three magnetic dou-
blets ofE symmetry of the site grous=CzXi. Finally, in
the full treatmentSec. IV B) the middle doublet is split by
the crystal field in two nonmagnetic componentsfosym-
metry. This explains qualitatively the origin of the four low-

est levels of the?a3 structure ofa-Ce, Table IV. The real
situation is more complex since there is a mixing of different
configurations in atomic cerium. Nevertheless, a consider-
able admixture of théH configuration(29% is found in the
ground state of atomic ceriuthand it is very likely to occur

in y-Ce.

In a-Ce orbital functions of 8 electrons on neighboring
sites overlap, giving rise to band structure effects. Here we
consider these effects only as a perturbation to the ground
stateE, 1, Table IV. Then in the tight-binding approximation
a band state with wave vectéris a mixture of thed func-
tions Y3(Q)) andY, %(Q}). However, as we have seen ear-
lier, these electronic & states are bound to the two-
4f-electron state¥3(Q;) and Y5 3(Q}) and form the two-

which facilitates the calculation of the mean-field interactionelectron functionsy[":L;5 and y'ﬁ";;fs, Egs. (B3a and

UMF(n,), Eq.(4.20. In this appendix we show that“F is
minimized for the following two functions:

W P=Y30)) - Y4Q)), (B3a)
WL P=v530)) - Y5 (0, (B3b)

(B3b). Therefore, the resulting doubly degenerate states are
in fact two-electron band states with energy(k) = &_ (k)

(the sign+ or — here stands for two-electron time-reversed
band states In the magnetic field these two bands become
split, £.(k)#&_(k), and this leads to a temperature-
independent Pauli paramagnetism.
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