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Intrasite 4 f -5d electronic correlations in the quadrupolar model of theg-a phase transition in Ce
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As a possible mechanism of theg-a phase transition in pristine cerium a change of the electronic density

from a disordered state with symmetryFm3̄m to an ordered statePa3̄ has been proposed. Here we include
on-site and intersite electron correlations involving one localized 4f electron and one conduction 5d electron
per atom. The model is used to calculate the crystal field ofg-Ce and the temperature evolution of the mean
field of a-Ce. The formalism can be applied to crystals where quadrupolar ordering involves several electrons
on the same site.
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I. INTRODUCTION

Elemental solid cerium is known to undergo structu
phase transitions.1,2 In the pressure-temperature phase d
gram of Ce the puzzling long-standing problem is to und
stand the apparently isostructural transition between the
bic g anda phases.1,3 An isostructural phase transformatio
cannot be ascribed to the condensation of an order param
and therefore cannot be explained by the Landau theor
phase transitions. In the past, several models and the
have been suggested to address this problem.4–12 Among
them, a Mott-like transition for 4f electrons4,5 and a Kondo-
effect-based approach9–12 are the competing ones. Also, ne
computational schemes have been applied to the prob
using dynamical mean-field theory combined with the lo
density approximation.13

Under pressure above 5 GPaa-Ce becomes unstable an
transforms first to a crystal withC2/m or a-U space
symmetry2 (a8-Ce) and then to a body-centered-tetrago
~bct! structure (a9-Ce) above 12 GPa.14 This series of trans-
formations cannot be explained by invoking the concepts
the 4f localization-delocalization transition or Kondo vo
ume collapse models and indicates that there are anisotr
interactions present in thea phase of cerium. Such electro
interactions can be of quadrupolar origin, which are kno
to drive symmetry lowering phase transitions in many la
thanide and actinide compounds.15

Recently, the isostructural character of theg-a phase
transition has been questioned by Eliashberg
Capellmann.16 They suggest thata-Ce should have a dis
torted fcc structure. Independently, the present authors h
put forward a theory of quadrupolar ordering in cerium.17,18

There, it was proposed that theg-a transformation is not
really isostructural. Rather, it was associated with hidd
electronic degrees of freedom.19 In our previous work~Refs.
17 and 18!, we have suggested that the symmetry chang
from Fm3̄m to Pa3̄. This symmetry lowering is a specia
one. Although accompanied by a lattice contraction, it c
serves the fcc structure of the atomic center-of-mass po
~cerium nuclei! and is solely due to the orientational order
electronic densities. Such a scenario reconciles theg-a
transformation with the Landau theory of phase transitio
Our considerations for cerium have been inspired by
0163-1829/2002/66~5!/054103~12!/$20.00 66 0541
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theory20 of the orientational phase transitions in solid C60

where a similar space symmetry change (Fm3̄m→Pa3̄) oc-
curs at 255 K at room pressure.21

The present article is a continuation of our approach to
problem of theg-a transition in Ce based on the techniqu
of multipolar interactions between electronic densities
conduction and localized electrons in a crystal.17,18 Our sec-
ond motivation is to extend our initial method~Ref. 17! for
the case when two electrons (f andd) are at the same site o
cerium and all intrasite interactions~including the on-site
exchange! between them are taken into account. Our tre
ment of intrasite correlations is closely related with t
method used by Condon and Shortley for many elect
states of atoms.22 Provided that the average number of ele
trons per site is conserved this method is exact for intra
correlations and goes beyond the usual self-consistent-
approach23–25 employed by band structure calculations.

Besides the problem of theg-a phase transition in Ce, the
microscopic method can be applied further26 to describe qua-
drupolar ordering and to perform crystal field calculations
manyf electrons on the same site. There are numerous c
pounds exhibiting quadrupolar ordering at lo
temperatures15 and there is a sustained interest in understa
ing their properties. Thus, recently DyB2C2 ~Ref. 27!, DyB6
~Ref. 28!, UCu2Sn ~Ref. 29!, PrPb3 ~Ref. 30!, YbAs, ~Ref.
31!, YbSb ~Ref. 32! were reported to undergo a quadrupo
ordering.

II. MODEL

As follows from electronic band structure calculations
g-Ce there exist three conduction electrons per atom wh
form the (6s6p5d)3 metallic band and one localized 4f
electron.33,6–8 In our previous work~Ref. 18!, we have al-
ready considered electric multipole interactions betwe
conduction electrons and the localized 4f electrons. Below
we focus on the on-site and intersite correlations in the s
tem and will simplify the model. We consider the instant
neous configuration 6s25d4 f as having the largest statistica
weight on a cerium site~in comparison with other possibili
ties such as 6s6p5d4 f , 6s25d2, 6s24 f 2, etc.!. The two 6s
electrons give only a spherically symmetrical density on
©2002 The American Physical Society03-1
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cerium site and their lowest-energy state corresponds
singlet. Therefore, as a first approximation we discard th
as giving a closed shell.~Indeed, the level structure o
6s25d4 f corresponding to atomic Ce I is similar to that
5d4 f of La II.34! In fact, in doing so we omit thes-d elec-
tron transitions which can contribute to the quadrupo
density.18 We are left then with one 5d conduction electron
and one localized 4f electron. In the electronic band stru
ture calculations the charge density of the 5d electron on the
cerium site is considered as an average over all occupiekW

states@E(kW ,a)<EF , wherea is the band index andEF is
the Fermi level#. We have shown in Appendix B of Ref. 1
that the electron density is mainly spherical which cor
sponds to the standard ‘‘muffin-tin’’~MT! treatment in elec-
tronic band structure calculations. The spherical density
5d and 4f electrons will be the starting point in this work
We consider the 5d electron on a cerium center being insta
taneously coupled with the 4f electron and include in the
model all corresponding intrasite interactions, crystal elec
field effects, and intersite multipolar electric interaction
From the technical point of view, thisf d model is a many
electron generalization of the concepts of Ref. 17. We
aware that the model based on thef d configuration is incom-
plete, but it has an advantage of taking into account all
trasite interactions~often referred to as Hund’s rules! which
are usually omitted in the electron band structu
calculations.23,24Later we will briefly discuss a possibility to
refine our model with the help of the valence bond~or
Heitler-London! theory of chemical bonding.35,36

We consider a face-centered-cubic~fcc! crystal of N Ce
atoms. Each atomic site possesses one 4f and one 5d elec-
tron. The position vector of an electron near a crystal latt
site nW is given by

RW ~nW !5XW ~nW !1rW~nW !. ~2.1!

HereXW (nW ) is the lattice vector which specifies the centers
the atoms~or Ce nuclei! on a rigid fcc lattice. The radius
vector rW(nW ) is given in polar coordinates by„r (nW ),V(nW )…,
where r is the length andV5(Q,f) stands for the polar
angles. We label the two-electron basis ket vectors at a la
site nW by a single indexI f d or, alternatively, by the pair o
single-electron indices (i f ,i d):

uI f d&nW5u i f ; i d&nW . ~2.2!

The indexi stands for the electron orbital and spin projecti
quantum numbers. The corresponding basis wave funct
are

^rW,rW8uI f d&nW5^rWu i f&nW•^rW8u i d&nW , ~2.3!

where

^rWu i f&nW5Rf~r ~nW !!^n̂u i f&, ~2.4a!

^rW8u i d&nW5Rd~r 8~nW !!^n̂8u i d&. ~2.4b!
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Here Rf and Rd are radial components of the 4f and 5d
electrons, respectively;n̂ stands forV(nW ). There are 14 ori-
entational vectors~or spin-orbitals! ^n̂u i f& for a 4f electron
( i f51 –14) and 10 orientational vectors^n̂u i d& for a 5d elec-
tron (i d51-10!. These spin-orbitals can be written as

^n̂u i f&5^n̂umf&us„sz~ f !…, ~2.5a!

^n̂u i d&5^n̂umd&us„sz~d!…. ~2.5b!

Hereus is the spin function (s56) for the spin projections
sz561/2 on the z axis. The orbital partŝ n̂umf& (mf

51 –7) and^n̂umd& (md51 –5) are expressed in terms o
spherical harmonicsYl

m(V)5^n̂u l ,m&. We find it convenient
to work with real spherical harmonics. We consider

$Y3
0 ,Y3

1c ,Y3
1s,Y3

2c ,Y3
2s,Y3

3c ,Y3
3s%5^n̂umf& ~2.6a!

for 4f electrons~corresponding tomf51 –7) and

$Y2
0 ,Y2

1c ,Y2
1s,Y2

2c ,Y2
2s%5^n̂umd& ~2.6b!

for 5d electrons~corresponding tomd51 –5). We use the
definition of real spherical harmonics of Ref. 37@see also
explicit expressions~2.1! in Ref. 17#, which is different from
the definition of Condon and Shortley.22 The advantage of
using the basis with real spherical harmonics is that the
trix elements of Coulomb and exchange interactions s
real.

The order of indices in Eqs.~2.2! and~2.3! is important if
we associate the first electron with thef state i f while the
second with thed statei d . Then in addition to the vectors
~2.2! we have to consider the states described by the vec
u i d ; i f&nW ~the first electron is in thei d state and the second i
in the i f state!. However, from the dynamical equivalence
the electrons we can permute the spin-orbitals to the stan
order, Eq.~2.2!, by using

u i d ; i f&nW52u i f ; i d&nW , ~2.7!

since it requires the interchange of the two electrons. In or
to describe the same quantum state (i f ; i d) we will use the
basis vectors~2.2! and apply Eq.~2.7! when needed.@Alter-
natively, one can use the procedure of antisymmetrization
the basis vectors~2.2! as described elsewhere.# Thus, our
basis~2.2! consists of 140 different vectorsuI f d&.

The ground-state energy of the (4f 5d) electron system,
E0, can be calculated in the local density approximati
~LDA ! with spherically symmetric Coulomb and exchan
potentials. Going beyond this model in atomic cerium, o
has to take into account multipolar on-site~also called intra-
site! Coulomb interactions and spin-orbit coupling. In sol
cerium, the interactions with conduction electrons and in
site Coulomb interactions still have to be added.

In the following we will study these effects within a un
fied formalism based on a multipole expansion of the C
lomb potential and of the systematic use of site symmetry
the crystal lattice. For the case of on-site Coulomb inter
tions between two electrons~chargee521) we have
3-2
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V~RW ~nW !,RW 8~nW !!5
1

urW~nW !2rW8~nW !u
. ~2.8!

The multipole expansion in terms of site-symmetry-adap
functions~SAF’s! SL(n̂) reads

V„RW ~nW !,RW 8~nW 8!…5(
L

vLL~r ,r 8!SL~ n̂!SL~ n̂8!,

~2.9a!

where

vLL8~r ,r 8!5S r ,
l

r .
( l 11)D 4p

2l 11
dLL8 , ~2.9b!

with r .5max(r,r8), r ,5min(r,r8), and dLL85dtt8d l l 8 .
Clearly, the last expression is site independent. The SA
are linear combinations of spherical harmonics and transf
as irreducible representations of the site point group~Ref.
37!. The indexL stands for (l ,t), with t5(G,m,k). Here l
accounts for the angular dependence of the multipolar exp
sion, G denotes an irreducible representation~in the present
case of the groupOh), m labels the representations that o
cur more than once, andk denotes the rows of a given rep
resentation.

On the other hand, the Coulomb interaction between
electrons at different sitesnW ÞnW 8 ~intersite! reads

V„RW ~nW !,RW 8~nW 8!…5
1

uRW ~nW !2RW 8~nW 8!u
. ~2.10!

The multipole expansion is given by

V„RW ~nW !,RW 8~nW 8!…5 (
LL8

vLL8~nW ,nW 8;r ,r 8!SL~ n̂!SL8~ n̂8!,

~2.11a!

where

vLL8~nW ,nW 8;r ,r 8!5E dV~nW !E dV8~nW 8!
SL~ n̂!SL8~ n̂8!

uRW ~nW !2RW 8~nW 8!u
.

~2.11b!

The intersite multipole expansion~2.11a! is anisotropic and
converges fast since38

vLL8~nW ,nW 8;r ,r 8!;
~r ! l~r 8! l 8

uXW ~nW !2XW ~nW 8!u l 1 l 811
. ~2.12!

Therefore, it is sufficient to consider it only for neare
neighbors. From the practical point of view, one can cal
late vLL8(n

W ,nW 8;r 0 ,r 08) only for two fixed radii r 0 and r 08 .

Then one obtainsvLL8(n
W ,nW 8;r ,r 8) as a function ofr andr 8

by employing the dependence~2.12!.

III. INTRASITE INTERACTIONS

The interactions which we analyze in this section a
present already in atomic cerium.22,34 We have considered
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part of these correlations in previous work,18 and here we
study all of them in the framework of thef d model. In fact,
these multipole interactions are responsible for the electro
terms of atoms.22 We will see that their combined effect low
ers the energy of the cerium atom by;1 –2 eV in compari-
son with the spherically symmetric case, yet usually they
not taken into account in the electronic band structure ca
lations in solids. Although our consideration in this section
based on the original technique for multipole interactions17

it overlaps largely with the method of Condon an
Shortley.22 However, for two reasons we have decided
briefly review it here. First, we consider below a more ge
eral case which is not limited by theLS ~Russell-Saunders!
coupling and consideration of diagonal matrix elements. S
ond, the results of this section are used to describe cry
electric field effects and the phase transition to thePa3̄
structure.

The direct matrix elements for the intrasite Coulomb
teractions are obtained if we consider only thef -f transitions
for the first electron and thed-d transitions for the second
We start from Eq.~2.9a! and obtain

^I f dunWV~RW ~nW !,RW 8~nW !!uJf d&nW
Coul

5(
L

vLL
FD cL~ i f j f !cL~ i dj d!,

~3.1!

where

vLL
FD 5E dr r 2E dr8r 82R f

2~r !R d
2~r 8!vLL~r ,r 8!

~3.2!

accounts for the average radial dependence whilevLL(r ,r 8)
is given by Eq.~2.9b!. We use the superscriptsF and D in
order to indicate that we have transitions between twof
states@F[( f , f )# and the transitions between two 5d states
@D[(d,d)#. The elementscL are defined by

cL~ i f j f !5E dV^ i f un̂&SL~ n̂!^n̂u j f&, ~3.3a!

cL~ i dj d!5E dV^ i dun̂&SL~ n̂!^n̂u j d&. ~3.3b!

The other possibility is to consider the transitionsf
→5d for the first electron and the transitions 5d→4 f for the
second. This gives the exchange interactions and then
should use Eq.~2.7! in order to return to the standard ord
of the spin-orbitals. We find

^I f dunWV„RW ~nW !,RW 8~nW !…uJf d&nW
exch

52(
L

vLL
( f d)(d f)cL~ i f j d!cL~ i dj f !, ~3.4!

where
3-3
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vL
( f d)

L
(d f)

5E drr 2E dr8r 82Rf~r !Rd~r !Rd~r 8!Rf~r 8!vLL~r ,r 8!

~3.5!

and

cL~ i f j d!5E dV^ i f un̂&SL~ n̂!^n̂u j d&, ~3.6a!

cL
d f~ i dj f !5E dV^ i dun̂&SL~ n̂!^n̂u j f&. ~3.6b!

We observe that in the basis with real orbitals, Eq.~2.6a! and
~2.6b!, and with real functionsSL the coefficientscL are real
and we get

cL~ i dj f !5cL~ j f i d!. ~3.7!

We start with the description of spherically symmet
terms (l 50) corresponding to the trivial functionS0

51/A4p. The coefficientscL in Eqs. ~3.3a! and ~3.3b! be-
come diagonal,

cl 50~ i dj d!5
1

A4p
d i dj d

, cl 50~ i f j f !5
1

A4p
d i f j f

,

~3.8!

while cl 50( i f j d)5cl 50( i dj f)50. Hence, we obtain a contri
bution to ^I uVuJ&Coul which is proportional to the unit ma
trix. Since it corresponds only to a shift of the ground-st
energy, it is irrelevant.

In considering the other contributions~with l .0) in Eqs.
~3.1! and ~3.4! we will take advantage of the selection rul
imposed by the coefficientscL , Eqs. ~3.3a!, ~3.3b! and
~3.6a!, ~3.6b!. First of all, we notice that the coefficientscL

are diagonal in terms of spin componentsus . From the
theory of addition of angular momenta~see, for example
Ref. 36! we know that nonzero coefficientscL( i f j f) can oc-
cur if l ~in L) equals to 0,1,2, . . . ,6, Eq.~3.3a!. Furthermore,
the odd values ofl are excluded due to the parity of th
integrand in Eq.~3.3a! and finally we obtain thatl 50, 2, 4,
and 6. Analogously, for thed-d transitions the allowed coef
ficients are withl 50, 2, and 4, Eq.~3.3b!. For thef -d tran-
sitions, Eq.~3.6a!, ~3.6b!, we find thatl 51, 3, and 5. Next
we notice that if the radial partsRf , Rd , are the same for al
spin-orbitals of 4f and 5d states, correspondingly, then th
integrals~3.2! and ~3.5! depend only onl. We can condense
the notation v l

FD5vLL
FD for l 50, 2, and 4 andv l 8

( f d)

5vL
( f d)

L
(d f) for l 851, 3, and 5. In fact, these integrals a

proportional toFk and Gk in the notation of Condon and
Shortley,22

v2
FD5

4p

5
F2~4 f ,5d!, v4

FD5
4p

9
F4~4 f ,5d!,

v1
( f d)5

4p

3
G1~4 f ,5d!, v3

( f d)5
4p

7
G3~4 f ,5d!,
05410
e

v5
( f d)5

4p

11
G5~4 f ,5d!. ~3.9!

~Notice, however, that our coefficientscL are different from
those of Condon and Shortley.22! We have estimated the in
tegrals in Eqs.~3.9! from the radial dependencesRf andRd
obtained from calculations on a cerium atom in the LDA. W
have found thatv2

FD585 858, v4
FD524 260, v1

( f d)583 128,
v3

( f d)526 563, andv5
( f d)512 584, in kelvin.

Finally, we rewrite expressions~3.1! and ~3.4! in matrix
form as

^I f duV~ intra!uJf d&
Coul5v2

FDc2
FD~ I f duJf d!1v4

FDc4
FD~ I f duJf d!

~3.10a!

and

^I f duV~ intra!uJf d&
exch

52@v1
( f d)c1

( f d)~ I f duJf d!1v3
( f d)c3

( f d)~ I f duJf d!

1v5
( f d)c5

( f d)~ I f duJf d!#, ~3.10b

Here the direct Coulomb matricescl
FD(I f duJf d) are defined

as

cl
FD~ I f duJf d!5S (

t
c( l ,t)~ i f j f !c( l ,t)~ i dj d! D , ~3.11a!

where l 52 and 4, and the three ‘‘exchange’’ matrice
cl

( f d)(I f duJf d) ( l 51, 3, and 5! are given by

cl
( f d)~ I f duJf d!5S (

t
c( l ,t)~ i f j d!c( l ,t)~ i dj f ! D .

~3.11b!

We solve the secular problem for the 1403140 matrix of
intrasite interactions

^I f duV~ intra!uJf d&5^I f duV~ intra!uJf d&
Coul

1^I f duV~ intra!uJf d&
exch, ~3.12!

and obtain the ten energy levelsEf d quoted in columns 2 and
3 of Table I. This term spectrum corresponds to the usualLS
~Russell-Saunders! coupling without spin-orbit interactions

TABLE I. Term energies of thef d configuration in the absenc
of spin-orbit coupling.Em andDE stand for the singlet-triplet en
ergy means and the singlet-triplet energy differences, respectiveL
is the orbital quantum number of the two electrons. The ene
corresponding to the spherically symmetric description is taken
zero. All energies are in units K.

L Singlets Triplets Em DE

P 13 541.8 5384.5 9463.1 8157.3
D 23011.8 1951.8 2530.0 24963.5
F 2767.8 26616.1 21924.1 9383.9
G 29378.4 21485.3 25431.8 27893.1
H 12 310.8 25653.4 3328.7 17 964.2
3-4



en
ly

o

s

g
a
a

-

tio
n

op

um
h

d
u

n

n
Ce

an

e

dif-

ties
g
by

te
xt
y

bic

or

ent
e
h

l

INTRASITE 4f -5d ELECTRONIC CORRELATIONS IN . . . PHYSICAL REVIEW B 66, 054103 ~2002!
We have also checked our results by working with the eig
vectors of Eq.~3.12! which can be obtained independent
by exploiting the formulas~Table 43 of Ref. 22! of vector
addition of angular momenta (j 153 and j 252). The levels
of Table I correspond to the following parameters in the n
tations of Condon and Shortley:22 F25325.4, F4525.1,
G15567, G3547, andG557.2 ~in K!. @These parameter
should not be confused with those in Eqs.~3.9!.#

We now consider the effect of the spin-orbit couplin
Starting with the spherically symmetric LDA calculation of
cerium atom we obtain that in the one-electron approxim
tion Dso( f )5Ef(7/2)2Ef(5/2)54003.4 K and Dso(d)
5Ed(5/2)2Ed(3/2)52344.0 K. This gives for the spin
orbit coupling constantsz f51143.8 K andzd5937.6 K.
Therefore, a typical value of spin-orbit splitting is;1000 K
which shows that it cannot be treated as a small perturba
to theLS term scheme, Table I. In order to take into accou
the spin-orbit coupling exactly we have to consider the
erator

Vso5Vso~ f !1Vso~d!, ~3.13!

where

Vso~ f !5z fLW ~ f !•SW ~ f !, ~3.14a!

Vso~d!5zdLW ~d!•SW ~d!. ~3.14b!

The matrix of interactions reads

^I f duVsouJf d&5„^ i f uVso~ f !u j f&d i dj d
1^ i duVso~d!u j d&d i f j f

….
~3.15!

Since we know the matrix elementŝi f uVso( f )u j f& and
^ i duVso(d)u j d& @see, for example, the explicit Eq.~A.2! of
Ref. 17#, we can calculate the matrix elements for thef d
configuration. We now solve the secular problem for the s
of the intrasite and spin-orbit interactions, starting from t
matrix of

Uu intra5V~ intra!1Vso , ~3.16!

and obtain 20 energy levels$Ef d%. Since we are intereste
only in the lowest levels, we quote in Table II the first six o
of the 20 levels.

~The procedure of calculation of magnetic moments a
the Landeg factors is given in Appendix A.!

TABLE II. Calculated lowest term energies of thef d configu-
ration with the spin-orbit coupling and the Landeg factors~columns
2–4!, DE5Ef d2Ef d(1G4). Last two columns are experimenta
data~Ref. 34!. All energies are in units of K.

Ef d g DE Ce I La II (f d)

1G4 210 570.3 0.9323 0 0 0
3F2 29226.5 0.7030 1343.8 329.2 881.7
3H4 28155.1 0.8958 2415.2 1840.9 1764.7
3F3 27048.8 1.0825 3521.5 2393.0 2354.5
3H5 26449.4 1.0334 4120.9 3177.9 2850.7
3G3 24247.3 0.7659 6323.0 1998.5 5472.8
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Comparison with the experimental data34 on a Ce atom
shows that the order of the three lowest levels1G4 , 3F2, and
3H4 with the multiplet1G4 as the ground state is correct. O
the other hand, the experimental data show that in atomic
different levels ~such as 1G, 3F, 3H) are considerably
mixed up. Due to the strong spin-orbit coupling, there is
appreciable mixing between1G4 and 3H4, and between3F2
and 1D2. The ground state of a Ce atom has 55% of1G4 and
29% of 3H4.34 The next level which lies only 329 K abov
the ground state has 66% of3F2 and 24% of 1D2.34 In
conclusion, although the actual atomic spectra of cerium
fer somewhat from our results obtained for thef d configu-
ration, Table II, our approach captures the main proper
and we will use it for Ce in the solid state. In the followin
we will extend the calculations of the energy level scheme
including intersite interactions. We will treat separately theg
and thea phase of solid Ce.

IV. INTERSITE INTERACTIONS

In this section we will first consider the matrix of intersi
interactions for the (f d) system on a crystal in general. Ne
we will show that the interaction is largely simplified b
crystal symmetry and derive the crystal electric field~CEF!.
We calculate the energy spectrum of the (f d) system in pres-
ence of the crystal electric field in the disordered cu
phase.

We start from expression~2.11a! and write it in the space
of two-electron state vectorsuI f d&. Carrying out the angular
integrationsdV(nW ), dV8(nW ), dV(nW 8), and dV8(nW 8), we
obtain

^I f dunW^I f d8 unW 8V~RW ~nW !,RW 8~nW 8!!uJf d8 &nW 8uJf d&nW

5(
ab

(
a8b8

(
LL8

vL
aa

L8
a8a8~nW 2nW 8!

3$cL~ i a j a!d~ i b j b!%$cL8~ i a8 j a8!d~ i b8 j b8!%.

~4.1!

Here each of the indicesa, a8, b, b8 runs over the labelsf,
d. The coefficientscL are defined by Eqs.~3.6a! and~3.6b!,
while d( i b j b) stands for the Kronecker delta symbol. F
a5 f , we haveb5d and for a5d, b5 f , with a similar
correspondence betweena8 andb8. The intersite interaction

elementvL
aa

L8
a8a8 is given by

vL
aa

L8
a8a8~nW 2nW 8!

5E drr 2E dr8r 82R a
2~r !Ra8

2
~r 8!vLL8~nW ,nW 8;r ,r 8!.

~4.2!

Notice that only direct Coulomb interactions are pres
in Eq. ~4.1!, and with the help of the selection rules for th
coefficientscL we conclude that only the interactions wit
l 50, 2, 4, and 6 have to be considered.
3-5



ith
s

e

n
nt
4

t

c

of

d

ac-

ct
ear-

ly it

y an
ce

e

tion
lo-
d
ibly
u-
er-
eld
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A. crystal electric field „g phase…

In the g phase the electronic density is compatible w
the crystal structureFm3̄m. At each atomic site the CEF ha
the point group symmetryOh . In lowest approximation, the
CEF corresponds to the potential experienced by a charg
a central sitenW , when spherically symmetric (l 850) contri-
butions from charge densities at the 12 neighboring sitesnW 8
on the fcc lattice and similar terms from the electronic de
sity in the interstitial regions are taken into accou
Previously17,18 these effects were studied for a singlef
electron per Ce atom. Here we present an extension to
(4 f 5d) system.

In the crystal field approximation the functionsSL8(n
W 8) at

any of the 12 sitesnW 8 reduce toY0
051/A4p. We will write an

index 0 forL8 ( l 850,A1g). The coefficientscL8 in Eq. ~4.1!
now reduce to

c0~ i a8 j a8!5
1

A4p
d~ i a8 , j a8!. ~4.3!

At the central sitenW , the electronic density has full cubi
symmetry. We denote the corresponding SAF’s bySL1

(nW ),

L1[( l ,A1g), whereA1g stands for the unit representation
the cubic site groupOh . We retain the functions forl 54 and
l 56, which correspond to the cubic harmonicsK4 and K6.
The selection rules imply that thed-d transitions are per-
turbed byK4 only, while for thef -f transitions bothK4 and
K6 are relevant. Expression~2.11a! reduces to

V~RW ~nW !,RW 8~nW 8!!5
1

A4p
(
L1

vL10~nW ,nW 8;r ,r 8!SL1
~nW !.

~4.4a!

The elements

vL10~nW ,nW 8;r ,r 8!

5
1

A4p
E dV~nW !E dV8~nW 8!

SL1
~ n̂!

uRW ~nW !2RW 8~nW 8!u
~4.4b!

have the same value for all 12 neighborsnW 8 on the fcc lattice.
In addition they are independent ofr 8, as follows from ex-
pression~2.12! for l 850. We then define the crystal fiel
operator by

VCF~RW ~nW !!5
12

A4p
(
L1

vL10~nW ,nW 8;r ,r”8!SL1
~nW !. ~4.5!

Returning to expression~4.2! we write within the crystal
field approximation

vL1

aa
0
a8a8~nW 2nW 8!5vL1

aa
0
d
•Qa8 , ~4.6a!

where
05410
at

-
.

he

vL1

aa
0
d5E dr r 2R a

2~r !vL10~nW ,nW 8;r ,r”8! ~4.6b!

and

Qa85E dr8 r 82Ra8
2

~r 8!. ~4.6c!

Notice thatQa8 stands forQf or Qd which are charges~in
units e) of the 4f or 5d electron. As before17,18 the integra-
tion is taken over 0,r 8,RMT , whereRMT is the radius of
the muffin-tin sphere. Besides 4f and 5d electrons we can
also consider similar contributions from 6s electrons and nu-
clei belonging to nearest neighbors. Notice that the inter
tion parametersvL1

f f
0
d andvL1

dd
0
d, Eq.~4.6b!, remain the same

for all these contributions and all we have to do is to colle
the charges together. Finally, after summation over 12 n
est neighbors and simplifications, we obtain

^I f dunWVCF~RW ~nW !!uJf d&nW

5(
L1

@BL1

f cL1
~ i f j f !d~ i dj d!1BL1

d cL1
~ i dj d!d~ i f j f !#,

~4.7!

where

BL1

f 5
12

A4p
Qe f fevL1

F
0
d , ~4.8a!

BL1

d 5
12

A4p
Qe f fevL1

D
0
d . ~4.8b!

Here again we writeD for (dd) andF for ( f f ). We take as
an effective chargeQe f f5QMT the total charge inside a MT
sphere. In contradistinction to our previous work17,18here we
have neglected the effect of interstitial charges. Previous
was found that ahomogeneousdistribution of negative
charge in the interstices increases the effective charge b
amount 2.85QMT . This fact is due to the angular dependen
of the leading cubic harmonicSL1

, L15( l 54,A1g), in Eq.

~4.4b!. IndeedK4(n̂) is positive and maximum along th
cubic direction @100# ~the centers of the interstices! and
negative and small along@110# ~the sitesnW 8). On the other
hand, if we consider an inhomogeneous charge distribu
where most of the electronic density in the interstices is
cated close to@110#, then the contribution to the crystal fiel
from interstitial charges can be assumed to be neglig
small. We observe that previously the inclusion of contrib
tions from a homogeneous charge distribution in the int
stices has led to an overestimation of calculated crystal fi
splitting in comparison with the experimental values.18

In practice, it is convenient to calculatevL1

aa
0
d from

vL1

aa
0
d5

vL10~nW ,nW 8;RMT ,r”8!

RMT
l

ql
a , ~4.9a!

where
3-6
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ql
a5E dr8r 8( l 12)R a

2~r 8!. ~4.9b!

Then the CEF operator~4.5!, with an effective chargeQe f f ,
can be rewritten as

VCF~RW ~nW !!5(
L1

BL1
SL1

~ n̂!r l , ~4.10a!

where39

BL1
5

12

A4p
Qe f fe

vL10~nW ,nW 8;RMT ,r”8!

RMT
l

. ~4.10b!

Our calculations forg-Ce (a59.753 a.u.) yieldQMT

510.9136ueu,40 q4
d/RMT

4 50.222 71, q4
f /RMT

4 50.036 04,
q6

f /RMT
6 50.017 39 ~in a.u.!, and B4

d51198.4, B4
f 5193.9,

andB6
f 574.4~all in K!.41 We then consider the Hamiltonia

Hg~nW !5Uu intra1VCF~nW !, ~4.11!

which we associate with theg phase of Ce. By diagonalizing
Hg we have found that in the cubic CEF the 20 atomicli
levels of cerium are split into 58 distinct sublevels which c
be labeled by single-valued irreducible representati
A1(G1), E(G3), T1(G4), and T2(G5) of Oh . In particular,
three lowest levels of cerium are split according to the f
lowing scheme:42,36

1G4→A11T11E1T2 , ~4.12a!

3F2→T21E, ~4.12b!

3H4→T21A11T11E. ~4.12c!

The calculated splittings of these levels are quoted in Ta
III. In presence of a magnetic field, there occurs an additio
splitting of the triplets. The corresponding magnetic m
ments are given in the last column of Table III.~Details of
the calculations can be found in Appendix A.! In the second
part of the present section we will study the energy levels
the ordered phase.

TABLE III. Lowest levels of the energy spectrum ofHg

5Uu intra1VCF , g-Ce. Numbers in parentheses stand for deg
eracy;D«151409.6 K,D«252499.4 K; the site group isOh .

G,m « i ~K! (« i2«1) ~K! Mz (mB)

A1, 1 ~1! 210 661.1 0.0 0
T1, 1 ~3! 210 613.7 47.4 60.4596; 0
E, 1 ~2! 210 580.9 80.2 0; 0
T2, 1 ~3! 210 505.6 155.5 62.3112; 0
T2, 2 ~3! 29251.5 D«1 60.6634; 0
E, 2 ~2! 29224.4 D«1127.1 0; 0
T1, 2 ~3! 28161.7 D«2 62.2447; 0
T2, 3 ~3! 28154.2 D«217.5 60.4503; 0
A1, 2 ~1! 28145.9 D«2115.8 0
E, 3 ~2! 28137.5 D«2124.2 0; 0
05410
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B. Quadrupolar ordering „a phase…

In the cubic phase (g-Ce) with theFm3̄m space symme-
try the nontrivial electron density distribution is given b
cubic harmonicsK4(V) and K6(V) with l 54 and 6. All
quadrupole densities withl 5 l 852 average to zero. Only
fluctuations of electric quadrupoles are allowed in the int
action, Eq.~4.1!, and those lead to an effective attractiv
interaction at theX point of the Brillouin zone.17,18 This in-
teraction drives a transition to a new phase which is cha
terized by an ordering of electric quadrupoles such that

space group symmetry isPa3̄. This order-disorder transition
is accompanied by a contraction of the crystal lattice wh
stays cubic. We have associated this phase transition with

g→a transition of Ce. In real space thePa3̄ ordering im-
plies the appearance of four distinct sublattices of sim
cubic structure~see Fig. 3 of Ref. 17!. We label these sub
lattices which contain the sites~0,0,0! (a/2)(0,1,1), (a/2)

3(1,0,1), and (a/2)(1,1,0) by$nW p%, p51 –4, respectively.
In principle, one can proceed as in Ref. 17 and derive
effective mean-field Hamiltonian. Here we will start from th
crystal in real space and consider the following four quad

polar SAF’s corresponding to the four sublattices ofPa3̄:

S$n1%~V!5
1

A3
@S1~V!1S2~V!1S3~V!#, ~4.13a!

S$n2%~V!5
1

A3
@2S1~V!2S2~V!1S3~V!#, ~4.13b!

S$n3%~V!5
1

A3
@S1~V!2S2~V!2S3~V!#, ~4.13c!

S$n4%~V!5
1

A3
@2S1~V!1S2~V!2S3~V!#.

~4.13d!

Here we use the short notationSk[S( l 52,T2g ,k51 –3) for real

spherical harmonicsY2
1s , Y2

1c , and Y2
2s which belong to a

three-dimensional irreducible representationT2g of Oh .
~These spherical harmonics are proportional to the Carte
componentsyz, zx, andxy for k51 –3.!

Below we consider the intersite quadrupole interactio

VQQ(nW ,nW 8) which involve only the functions~4.13a!–
~4.13d!. @There are also SAF’s withl 54 and 6 allowed by
the Pa3̄ symmetry37 but those lead to weaker multipole in
teractions, Eq.~2.12!.# We then rewrite Eq.~4.1! for a case
whennW P$n1% andnW 8P$np8% (p852, 3, 4!:

-

3-7
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^I f dunW^I f d8 unW 8V
QQ~nW ,nW 8!uJf d8 &nW 8uJf d&nW

52(
aa8

gaaa8a8

3
$c$n1%~ i a j a!d~ i b j b!%

3$c$np8%
~ i a8 j a8!d~ i b8 j b8!%, ~4.14!

where, as before,a,a8,b,b8 run overf andd, and where the
same exclusion rules~if a5 f thenb5d and vice versa! hold
betweena and b as well as betweena8 and b8. Here we
have

gaaa8a85E drr 2E dr8r 82R a
2~r !Ra8

2
~r 8!vLL~nW ,nW 8;r ,r 8!,

~4.15!

with vLL(nW ,nW 8;r ,r 8) where nW 5(0,0,0), nW 85(a/2)(0,1,1)
and L5( l 52,T2g ,k51). The coefficientsc$np% are defined
as

c$np%~ i a j a!5^ i auS$np%u j a&. ~4.16!

We introduce the quadrupolar density operators for the (f d)
electron system on each sublattice:

raa
Q ~nW p!5(

I ,J
uI f d&c$np%~ i a j a!d i b j b

^Jf du, ~4.17!

where nW pP$np%, p51 –4. Here againa5b, b5d or a
5d, b5 f . In terms of quadrupolar density operators, t
quadrupolar interaction operator between two (f d) systems
at sitenW 1P$n1% andnW p8P$np8% reads

V~nW 1 ,nW p8!52(
aa8

gaaa8a8

3
raa

Q ~nW 1!ra8a8
Q

~nW p8!.

~4.18!

The mean-field potential at sitenW 1 is obtained by summing
V(nW 1 ,nW p8) over the 12 nearest neighborsnW p8 of nW 1 on the fcc
lattice and by approximating the quadrupolar densities
these nearest-neighbor sites by their thermal expectation
ues. The thermal expectation value ofraa

Q (nW p) does not de-
pend~i.e., is the same! on any site of a given sublattice an
from the equivalence of the four sublattices it follows tha
is the same on all sites of the fcc lattice. We then write

^raa
Q ~nW p!&5raa

Q,e , ~4.19!

where the superscripte stand for thermal expectation. Th
mean-field potential is then given by

UMF~nW 1!524(
aa8

gaaa8a8raa
Q ~nW 1!ra8a8

Q,e ~4.20a!

or, explicitly,

UMF~nW 1!52~lFFrF
Q,e1lDFrD

Q,e!rF
Q~nW 1!

2~lDDrD
Q,e1lFDrF

Q,e!rD
Q~nW 1!, ~4.20b!
05410
t
al-
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where we have definedlaaa8a854gaaa8a8 and usedF and
D for (aa), with a5 f or d, respectively. The values o
laaa8a8 have been calculated before.18 Here we use the val-
ues lFF52241 K, lDF5lFD56489 K, and lDD

518 793 K, calculated fora-Ce. Including the intrasite par
Uu intra and the crystal fieldVCF(nW 1), Eq. ~4.1!, which are
also present in the ordered phase, we obtain the full me
field Hamiltonian

HMF~nW 1!5UMF~nW 1!1VCF~nW 1!1Uu intra . ~4.21!

Finally, the expectation values~the order parameter ampli
tudes! rF

Q,e and rD
Q,e , Eq. ~4.19!, are found by solving the

following mean-field equations

rF
Q,e5

Tr$rF
Q~nW 1!exp@2HMF~nW 1!/T#%

Tr$exp@2HMF~nW 1!/T#%
, ~4.22a!

rD
Q,e5

Tr$rD
Q~nW 1!exp@2HMF~nW 1!/T#%

Tr$exp@2HMF~nW 1!/T#%
. ~4.22b!

It is convenient to rewrite these equations in the ba
uK f d&5ukfkd& whereHMF is diagonal,

rF
Q,e5

1

Z (
K f d

c$n1%
F ~kfkf !e

2eK f d
/T, ~4.23a!

rD
Q,e5

1

Z (
K f d

c$n1%
D ~kdkd!e2eK f d

/T, ~4.23b!

with

Z5(
K f d

e2eK f d
/T. ~4.23c!

Equations~4.20b!–~4.23c! are solved self-consistently. Firs
we introduce nonzero expectation valuesrF

Q,e andrD
Q,e in the

mean-field HamiltonianHMF. After this we diagonalizeHMF

and calculate new values ofrF
Q,e and rD

Q,e at a given tem-
peratureT according to Eqs.~4.22a! and ~4.22b!. Then we
use these values to improve the mean-field Hamilton
~4.21!, etc., until the input and output values ofrF

Q,e andrD
Q,e

converge. The results of the numerical calculation are sho
in Fig. 1.

The procedure outlined above converges very slowly
the vicinity of 100 K, i.e., at the phase transition point. W
have found the transition temperatureT1597 K and the or-
der parameter discontinuitiesrF

Qe(T1)520.069 56 and
rD

Qe(T1)520.038 75.~From symmetry considerations it fol
lows that the phase transition is of first order.17! At T50 the
averages in Eq.~4.19! are taken over the ground-state do
blet and we obtainrF

Qe(T50)520.154 62, rD
Qe(T50)5

20.084 85. The lowest five levels ofHMF for this case are
given in Table IV.

Notice, however, that unlike the crystal fieldVCF the
mean-field potentialUMF, Eq. ~4.20b!, and the Hamiltonian
HMF depend implicitly on temperatureT since the order pa-
rameter amplitudesrF

Qe and rD
Qe change with temperature
3-8
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Fig. 1, and the energy splittings (e i2e1) decrease with in-
creasingT up to T1. Above the phase transition point th
spectrum transforms discontinuously to that ofg-Ce, Table
III. The double degenerate states~the representationsE in
Table IV! are due to time-reversal symmetry.36 For a further
discussion of the energy spectrum ofHMF we refer to Ap-
pendix A, where we study the magnetic moments of the t
electrons.

V. DISCUSSION AND CONCLUSIONS

This work is an extension of our previous model of t
g-a phase transition in Ce based on the idea of quadrup
ordering.17,18 In addition to the intersite quadrupolar co
plings here we consider the multipolar intrasite~direct Cou-
lomb and exchange! interactions between one localized 4f
electron and one delocalized 5d electron taken instanta
neously at a same cerium site. The intrasite interactions
treated exactly in the adopted 4f 5d model. Ing-Ce we have
calculated and analyzed the crystal electric field excitatio
Table III. In a-Ce thePa3̄ quadrupolar ordering sets in an
drives theg-a phase transition. The quadrupolar order h
been studied in the mean-field approximation, Eqs.~4.20b!–
~4.23c!. We have calculated the phase transition tempera
(T1597 K) and the evolution of the order parameter amp
tudes (rF

Qe andrD
Qe ; see Fig. 1! by solving self-consistently

the mean-field equations~4.20b!–~4.23c!. We have shown
before17,18 that quadrupolar ordering in thePa3̄ structure

FIG. 1. Calculated evolution of the order parameter amplitu
rF

Q,e andrD
Q,e with temperature.

TABLE IV. Lowest levels of the energy spectrum ofHMF at T
50 and magnetic momentsMz for a-Ce. Numbers in parenthese
stand for degeneracy; the site group isS65C33 i .

G,m e i ~K! (e i2e1) ~K! Mz (mB)

E, 1 ~2! 210 888.5 0.0 62.0683
A, 1 ~1! 210 721.4 167.1 0
A, 2 ~1! 210 699.7 188.8 0
E, 2 ~2! 210 542.2 346.3 61.0116
E, 3 ~2! 210 427.1 461.4 60.4882
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leads to a uniform lattice contraction conserving the cu
symmetry of the lattice.

The change of the energy spectrum at the transition
plies a change of the magnetic susceptibility. Indeed,
have found that the calculated magnetic moments are di
ent in g- and a-Ce. Moreover, in the ground state ofa-Ce
the magnetic moment of the 4f electron is bound to the
magnetic moment of the 5d electron~a qualitative origin of
this correlation is given in Appendix B!. The lowest mag-
netic excited state (E, 2 in Table IV! is separated from the
ground state by an energy gapDe;350 K which is much
larger than a typical crystal field excitation in theg phase,
Table III. However, here our treatment is incomplete. A
though the present model carefully takes into account
intrasite interactions, it does not describe properly the me
lic bonding in Ce.

The question of correspondence between our appro
and electron band structure calculations deserves a sp
attention. As we have discussed in Sec. II, in the ‘‘muffi
tin’’ approximation a localized 4f electron experiences onl
a field of spherical symmetry and occupies a 14-fold deg
erate level. The localized states of the 4f electron then are
uncorrelated with the states of conduction electrons, beca
the spherical component of the 4f density is independent o
its spin (sz) and orbital (mf) projections. In our study we
show that this simple picture is not correct and there e
strong local correlations between localized 4f and delocal-
ized 5d electrons omitted in a conventional band structu
calculation. These correlations arise due to the Coulomb
site repulsion and reflect the electronic term structure
atomic cerium, Sec. III. We show that the excitations of t
4 f electron are combined with those of 5d electron in a
single spectrum, which is sensitive to crystal site symme
because of intersite interactions, Sec. IV.

In principle, band structure calculations with the full p
tential ~FP! extension @so-called FP-linear muffin-tin
orbital25 ~FLMTO! and FP-linear augmented plane-wave23

~FLAPW! methods# are capable of dealing with nonspheric
contributions of density and potential. Provided that the s
symmetry is introduced explicitly, calculations with the fu
potential option can describe some, but not all, structu
properties associated with theFm3̄m→Pa3̄ transformation.
The reason is that the band structure calculations are b
on the single-determinant Hartree-Fock method. In our tre
ment each local two-electron basis function, Eqs.~2.2!–
~2.6!, corresponds to a Slater determinant@with the permuta-
tion property ~2.7!#. The solutions are expressed as line
combinations of all these functions~determinants!. As such,
our method corresponds to a many-determinant treatmen
configurational interaction~CI!. Clearly, it is not the case
with the band structure approach. This explains why the c
ventional band structure treatment is missing some intra
and intersite correlations which are taken into account in
approach.

The other drawback of the FP electronic band struct
calculations is connected with the LDA. In the LDA the e
change potential is a function of density and has the
~unit! symmetry of the crystal. This implies that the dens

s
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A. V. NIKOLAEV AND K. H. MICHEL PHYSICAL REVIEW B 66, 054103 ~2002!
and the LDA exchange potential are invariant under inv
sion in both phases. Expanding the exchange potentia
terms of spherical harmonics on a cerium site we find t
only harmonics with evenl are allowed by the inversion
symmetry, i.e.,l 52,4, etc. However, as we observe from E
~3.10b! the contributions withoddvalues ofl are relevant for
the exchange between 4f and 5d electrons, namely,l 51, 3,
and 5. Thus, these terms are washed away by the LDA tr
ment.

On the other hand, the present method should be exten
to include the metallic bonding in Ce explicitly. In our opin
ion, a combination of the local correlations with the ba
structure approach constitutes a challenge for further stud
We are presently working on the problem and hope
achieve this by employing the valence bond~VB! or Heitler-
London approach. The VB method is more difficult to impl
ment, but usually it gives a better description of chemi
bonding than the method of molecular orbitals.36,43 The al-
ternative approach is a merger with one of the existing b
structure methods and introducing in some way a CI tre
ment.

Finally, we would like to mention again that we are awa
of the fact that our approach is not complete, but it certai
underlines the importance of the structural factors and
local correlations for this long-standing problem. We ha
shown that the local electronic interactions can trigger
g→a phase transition in Ce, but other aspects of the pr
lem ~in particular, chemical bonding, etc.! should also be
taken into account. As before,17,18 we suggest synchrotro
radiation experiments in order to check the appearanc
weak superstructure reflections in thePa3̄ structure (a-Ce)
and to study diffuse scattering ing- anda-Ce.

The present model generalizes our initial approach~Ref.
17! for a many-electron case. The method can be applied~as
has been done for TmTe in Ref. 26! to study quadrupole
orderings15 in lanthanides and their compounds@DyB2C2
~Ref. 27!, DyB6 ~Ref. 28!, UCu2Sn ~Ref. 29!, PrPb3 ~Ref.
30! YbAs ~Ref. 31!, YbSb~Ref. 32!# where a fewf electrons
at each site are involved in the process of ordering.
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APPENDIX A

In order to calculate the effective magnetic moments a
the Landeg factors we study the polarization of electron
states in a small external magnetic fieldH. In such case we
add to the HamiltonianH @that is,Uu intra , Eq.~3.16!, for the
atomic case,Uu intra1VCEF , Eq. ~4.11!, for g-Ce, and
Uu intra1VCEF1UMF, Eq. ~4.21!, for a-Ce] a magnetic term

Vmag52Mz•H. ~A1a!

Here

Mz5@Mz~ f !1Mz~d!#, ~A1b!
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with

MW ~ f !5mB@LW ~ f !12SW ~ f !#, ~A2a!

MW ~d!5mB@LW ~d!12SW ~d!#, ~A2b!

mB being the Bohr magneton. The matrix elements ofVmag
read

^I f duVmaguJf d&5~^ i f uMz~ f !u j f&d i dj d

1^ i duMz~d!u j d&d i f j f
!•H, ~A3!

where ^ i f uMz( f )u j f& and ^ i duMz(d)u j d& are one-particle
matrix elements which can be easily computed. If we dia
onalize the matrix of (H1Vmag), then the degeneracies o
the energy terms are lifted and the magnetic moment of e
subleveln is given by

Mz~en!5^enuMzuen&, ~A4!

where$en% stands for the energy levels$Ef d% or $e i% given in
Tables II or III and IV, for the atomic case~intrasite!, theg
phase, and thea phase, respectively. The results forMz for
the solid-state phases are quoted in Tables III and IV. T
Landeg factors are obtained from

Mz~en , j !5mBg~en! j , ~A5!

where j is the z projection of a total angular moment:j
52J,2J11, . . . ,1J. The calculatedg factors for the
atomic case, Table II, are close to the experimental value34

In case ofg-Ce anda-Ce thez axis is the@001# axis of
the cubic crystal. Forg-Ce only triply degenerate levels o
T1 or T2 symmetry have nonzero magnetic moments wh
are 2M(t), 0 and 1M(t), where M(t).0 and t
5(T1 ,m) or t5(T2 ,m), Table III. For a-Ce only doubly
degenerate levels ofE symmetry have nonzero magnetic m
ments which are2M(e) and 1M(e), where M(e).0
and e5(E,m), Table IV. The doubly degenerate states a
due to time-reversal symmetry.36 It is worth noting that in the
ground state (E,1! the magnetic moment of the localized 4f
electron is not independent. It is attached to the magn
moment of the 5d conduction electron. The change of sig
of the magnetic moment of the 5d electron under time-
reversal symmetry now requires the concomitant change
the sign of the magnetic moment of the localized 4f electron.
We discuss the origin of this correlation in Appendix B
Since the 5d electron belongs to the conduction band, t
ground state (E,1! gives rise to a Pauli paramagnetism. T
other levels given in Table IV represent excited states
a-Ce. However, we observe that the first~representationA,1
of Table IV! and the second state (A,2! are nonmagnetic. The
first magnetic excited state (E,2! is separated from the
ground state by an energy gap ofDe;350 K. This observa-
tion could explain the absence of a Curie-Weiss contribut
to the magnetic susceptibilityxa at temperaturesT,T1.
3-10
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We consider the functionS$n1%(V), Eq. ~4.13a!, in a new

coordinate system of axes$x8,y8,z8% where thez8 axis cor-
responds to the cubic@111# axis, Fig. 2.

Then

S$n1%~V!5Yl 52
m50~V8!, ~B1!

whereV8 stands for the polar angles (Q8,f8) in the new
system of axes. The coefficientsc$n1%

F ( i f j f) and c$n1%
D ( i dj d),

Eq. ~4.16!, become diagonal in the new basis,

c$n1%~ i a j a!5^ i auY2
0u i a&d i a j a

, ~B2!

which facilitates the calculation of the mean-field interacti
UMF(nW 1), Eq. ~4.20b!. In this appendix we show thatUMF is
minimized for the following two functions:

YL55
ML55

5Y3
3~V f8!•Y2

2~Vd8!, ~B3a!

YL55
ML525

5Y3
23~V f8!•Y2

22~Vd8!, ~B3b!

FIG. 2. The transformation$x,y,z%→$x8,y8,z8% @the Euler
angles area5p/4, b5arccos(1/A3), g50 for passive and
(g,b,a) for active rotations# and the functionS$n1% , Eq. ~4.13a!.
L.

05410
whereV f8 andVd8 refer to the polar coordinates of 4f and 5d
electrons, respectively.

Indeed, there are 11 functionsYL55
ML (ML525,

24, . . . ,5),which form a basis of the two-particle irreduc
ible representationH of the group SO~3! of three-
dimensional rotations.@In Eq. ~B3! we quote only two func-
tions; the others can be obtained from Table 43 of Ref. 22.#
In the LS ~Russel-Saunders! coupling the triplet 3H lies
lower in energy than the singlet1H, Table I. If now we
include the diagonal mean-field couplingUMF, we obtain
that the six states with the orbital componentsY 5

5 andY 5
25

and with the spin componentsMS521, 0, 1 ~originating
from the 3H triplet! go down in energy. These six states a
further split by the spin-orbit coupling in three magnetic do
blets ofE symmetry of the site groupS65C33 i . Finally, in
the full treatment~Sec. IV B! the middle doublet is split by
the crystal field in two nonmagnetic components ofA sym-
metry. This explains qualitatively the origin of the four low
est levels of thePa3̄ structure ofa-Ce, Table IV. The real
situation is more complex since there is a mixing of differe
configurations in atomic cerium. Nevertheless, a consid
able admixture of the3H configuration~29%! is found in the
ground state of atomic cerium34 and it is very likely to occur
in g-Ce.

In a-Ce orbital functions of 5d electrons on neighboring
sites overlap, giving rise to band structure effects. Here
consider these effects only as a perturbation to the gro
stateE,1, Table IV. Then in the tight-binding approximatio
a band state with wave vectorkW is a mixture of thed func-
tions Y2

2(Vd8) andY2
22(Vd8). However, as we have seen ea

lier, these electronic 5d states are bound to the two
4 f -electron statesY3

3(V f8) andY3
23(V f8) and form the two-

electron functionsYL55
ML55 and YL55

ML525, Eqs. ~B3a! and
~B3b!. Therefore, the resulting doubly degenerate states
in fact two-electron band states with energyE1(kW )5E2(kW )
~the sign1 or 2 here stands for two-electron time-revers
band states!. In the magnetic field these two bands becom
split, E1(kW )ÞE2(kW ), and this leads to a temperatur
independent Pauli paramagnetism.
.
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