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Fluctuation formulas for the elastic constants of an arbitrary system
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We derive the general fluctuation expressions for both the isothermal and adiabatic elastic constants of
systems with arbitrary interparticle interactions and under arbitrary loading. We find that the expressions for
these two kinds of elastic constants have exactly the same form though in general their values would be
different. These formulas have the advantage that all elastic constants can be calculated in a single computer
simulation run without performing any deformation on the system.
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[. INTRODUCTION the elastic constants for a system under loading, and each
physical situation may call for a different relevant
Elastic constants yield valuable dynamical and mechaniguantity>”* Consequently, under loading, the traditional
cal information about materials. For example, they provideelastic constantéwe shall refer to them as thermodynamic
information concerning their strength and stability.Fur-  stiffnesses to distinguish them from the stress-strain stiff-
thermore, the comparison between experimentally measuratesses do not describe the elastic properties of a material
and theoretically calculated elastic constants has been wideljirectly, and in the fluctuation formulas the reference param-
used as an important means of probing the interatomieters must be the ones of the curréstresseyistate3=>"11
forces? In cases where well established potentials are availThese points must become more and more important with the
able one should be able to predict the behavior of the mateapid development of high pressure techniques and for soft
rial under various conditions of normal or extreme loading. condensed matter in which the stress and elastic constants
To compare experimental results with theory, it is neceshave the same order of magnitude. We should also stress that
sary not only to have accurate experimental data, but also tthough different definitions of strains can lead to different
have a reliable method of calculation. Recent advances ifelastic constants,” the difference between the stress-strain
computer simulation techniques and formalism have madstiffness and the thermodynamic stiffnesses is not completely
this possible 2! due to such a choice. The difference comes from the nonlin-
On the other hand, a fluctuation formulation is very con-ear relationship between strains with different reference
venient in computer simulation because it avoids numericastates. !
differentiation which may require long computational times  We have recently developed the “equilibrium” fluctuation
and have low accuracy. A well-known example of a fluctua-formulas to calculate the isothermal stress strain stiffness for
tion formula is the expression for the specific heat as a fluca central force system under arbitrary stress and at any
tuation of the energy instead of a derivative of the energytemperaturé. It has a relatively simple form and has been
with respect to temperature. applied successfully to several systems, albeit care is re-
Squire, Holt, and Hoover were the first to derive thequired in the choice of algorithms to accurately reproduce
“equilibrium” fluctuation formulas for the isothermal elastic the desired ensemble when dealing with highly disordered
constant$in the stress-free state by noticing that the elasticsoft material$?~2°
constants are the second derivatives of the Helmholtz free The interatomic force, however, in a real material is in
energy. Their method was extended by many people to morgeneral noncentral. The appropriate expressions for noncen-
complex system&1°-21The expressions so obtained havetral forces would therefore have a more general applicability.
the obvious advantage that they converge rapidly for a soliExpressions for the adiabatic stress-strain stiffnesses are also
material and all elastic constants can be calculated in a singleot yet available even for a stress-free state. So we derive
run without performing any deformation. However, the defi-both in this work.
nition of elastic constants in most papésee, for instance, We derive the correct fluctuation formulas for both iso-
Refs. 15-21 uses implicitly the natura(stress-fregrefer-  thermal and adiabatic stress-strain stiffnesses with arbitrary
ence(initial) configuration, therefora priori the expressions interparticle interactions and under arbitrary loading. Our ap-
are only valid for systems up to moderate stress. They alsproach is similar, but much simpler, than the one used in Ref.
do not provide the formulas for the stress-strain stiffnesseg1. We show that the expressions for these two sets of con-
which govern stress-strain relations. Moreover, starting fronstants are exactly the same though in general their values
the stress-free configurations makes the expressions compl@ould be different.
and not easy to reproducE-?!It consequently discourages  The paper is organized as follows. We first present in Sec.
attempts to use them. We must emphasize that there are sdVsome fundamental expressions on which our discussion is
eral definitions, differing by some stress-related terms, fobased. Sec. Il derives fluctuation formulas for kether-
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mal thermodynamic stiffnesses and stress-strain stiffnessedynamic stiffnesse@&he canonical ensembler to the inter-

In Sec. IV we then develop the fluctuation formulas for thenal energyE in the derivation of adiabatic thermodynamic
adiabatic thermodynamic stiffnesses and stress-strain stiffstiffnesses(the microcanonical ensembleV,, is the refer-
nesses. These sections are followed by a short presentationerice value of the volume;=0 (or h=hy) in Eq. (5) means
their zero temperature static limit and a discussion of boundthat the elastic constants are calculated for virtual infinitesi-

ary conditions. A summary concludes the paper. mal displacements from the reference configuration which
could be a stressed state. Consequently, when using “equi-
Il. FUNDAMENTAL EXPRESSIONS librium” fluctuation formulas for the calculation of elastic

) ) _ constants, the reference configuratiar., before virtual de-
Wg first pres_ent some fundamental expressions on whicfymations are applied to the systemust be the current
our discussion is based. Some of them have rarely appearggie  Note that the subscripp=0 or h=h, is often
in the literature. neglected®=2! This could lead to additional and incorrect
o o reference parameters, and make the expressions unnecessar-
A. Thermodynamic stiffnesses and stress-strain stiffnesses ily complex. We also do not distinguish between the isother-
To derive the expressions for the thermodynamic stifi-mal elastic constants and the adiabatic elastic constants in
nesses, following Ray and Rahm&nwe introduce the this paper because their expressions have exactly the same

. ~ , form.
scaled coordinates; and scaled momenta defined by We must also emphasize that for a stressed system the

xi=hg; or Xj,=h,0is, andsoq;,= h;;xiﬁr (1)  Cuapyr do not describe elasticity directly. Instead, we need to
consider the stress-strain stiffness¢also called elastic stiff-
_Th-1 _h-17 ~ ness coefficienjsvhich govern stress-strain relations and are
pi=pih™ = or pio=hg,Pig, andsop;,=hg.pig, (2) given by-5711

wherex andp are the real coordinate and momenta of the

particle.h=(a,b,c), wherea, b, andc are the three vectors 1

forming the simulation cell. Therefore for all atomswe CaﬁerCaﬁvr_§(20a65w_ 0a10p:
have—0.5<q;,<0.5. In these equations, and all subsequent

ones, the Einstein summation convention for repeated suf- = 04708, 03700y~ 0p,047). (6)

fices is followed, except where clarity requires showing ex-

plicitly the summations. We also use the convention that In thermodynamics, a thermodynamic stress tenggpis
Greek indices refer to Cartesian components while Romaintroduced’

indices to particle numbers. The volume of the system is

given byV=det(). 1 oW
The strain tensor can then be defined®y t“B:V_O WMZUW(OHCM;W?D# R (7)
1 . .
= HhaHY T hT hoho o where o,4(0) is the reference value of the applied stress
7 2[( o) 0 l @ o.p (often the opposite sign fot,; is used as in Refs.

whereh, is the reference value dfandh' the transpose of 15.18. We then have

h. hg can be either stress-free or stressedis called the
L e : . at

agrangianfinite strain tensor, which can represent any de- _| ZaB =Cyrap- (8)
formation, however large. We should recall here that in the W Nom,,) oo
present work we take eventually the linhit-hy. We should
also point out that Eq(3) is in fact valid for any simulation t,p should not be confused with the applied stress;
cell, not only for rectangular parallelepipeds. which is formally equal t6*

The Hamiltonian of an arbitrary system can be written

V’T”O

N p? 1
M= o UKD 7o)

€)

IW( 7, M)
dhl s -

aB”
N

1 - o~ The reference configuration is the system deformedh oy
Zzl Z_mi(pi'h )(pi-h™H)+U({h-q}). @ 5,).h' or 7., is the small deformation made on that sys-
tem. So it is a different reference configuration than for
The thermodynamic stiffnesses are defined by C.pv-- Anonzero appliedCauchy stress of a configuration

is given byt when and only when that configuration is cho-
sen as the reference configuratfott.Using Eq.(9), one can
(5 show that the difference between the stress-strain stiffnesses
and the traditional elastic constants comes from the nonlinear
whereW is the strain energyV can refer either to the Helm- relationship between the strains with different reference
holtz free energyF in the derivation of isothermal thermo- states.
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L
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B. Strain derivatives A(X,p) 1/ 9A IA
From e 5( IMap " ‘777/3a)
h;lhBT: 50”,22_652 —h;,(lhggl. (10) = ;( hogghg_yl (;:AV\ horq hoaghg_yl (;; h-lo-Tﬁ
we obtain =%{hoh‘1[(Dr+Dp)A](h‘l)Thg}aﬁ, (17)
jhi =h-x;8,,,and jﬁ =—h,p,. (11 where
So for an arbitrary scalak(x,p), we have d J

r = — —
Dag X“axﬁ+xﬁﬁxa’
JA(X,p) JA JA
=—nh;x,——hz;lp,, 12
e Xy PV ap, pvP (12 P P

| L R J—
Daﬁ Pa (9p3 pﬁ apa'

(18
if we use both the scaled coordinates and scaled momenta.
From Eq.(3) follows

Ill. FLUCTUATION FORMULAS FOR THE ISOTHERMAL

1

For the canonical ensemble, we followed LutSkand
Note thatdh=h—h, has nine independent components putused bqth scaled cqordinates and spgled momenta to derive
d7 has only six. This is because some changestimepre- the desired expressions. However, it is not necessary to use
sent an infinitesimal rotation of the whole system. To de-Sc@led momenta in this ensemble. It only makes the deriva-

scribe a rigid rotation we have to introduce the antisymmet—t'o_n more complex so we did not follow this procedure n
ric rotation tensdt’ this paper. To exclude the use of the scaled momenta is

equivalent to se#p/dh,z=0 andD 2,3:0. In this ensemble,
the partition function is

dw=%[(hBl)TthhhSl—(hSl)Tthhhal]- (14

_ 3Ny 3N o~ H/kgT — m /N 3N,—U/kgT
Note that only in the limit of infinitesimal deformation does z fdp dx*e =0V qu € 19

the tensorw represent an infinitesimal rotation. It follows

that a finitew, with a finite h—ho, from Eq. (14) does not where( is the constant coming from the integral oveX 3
give a pure rotation, but includes some strain. Such finitenomenta and is irrelevant in our derivation so we will omit

strain effects are often important in the theory of the elasticit from now on. The Helmholtz free enerdyis given by
ity of stressed solids. However, since we will always take the

limit of h—hg in our final results, such effects are irrelevant _

in the present work. F=—-kgTInZ=—-kgTINZ—NkgTInV, (20

From Egs.(13) and(14), we obtain immediately

do+dy=(hyHTdh"hhy* (15) with Z= f dg3Ne™ V/ksT, (21)
and
For a scalaA(x) which is not explicitly dependent on the
dA oA size of the system, the ensemble average is
dA(h)=——dh,,=Tr| —=dh
oh,, ah
1
JA AN 3Ny 3NA o= HIKgT
=Tf<hohl%h$(dn+dw)) (A)= ZJ dp*Ndx*NAe e
=hoeh;t A hg,«(d 7 +d
=Poxchzy G Nore A7t AW, 1 f dq¥NAeVlkeT, (22
(16) z
Finally from Egs.(12) and(16), one obtains It follows from Egs.(17), (18), and(22) that
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(A A 1 (/. oU .| au 1
< > = < > - k_( <A > _<A>< > ) - E(Usﬁéaf_l— 0-375113_‘— 0-78-36(11/4_ Ugvérﬁ)

&naﬁ 077701/3 BT &naﬂ (777a5

1 ~ 1 ~ ~ + nkBT( 5075BV+ 5&1/5[37')! (28)

= o~ (D"A)— = (AD'U)~(A)(D"UY)
2 sl where we have used
X(h™H)Th] (23) 1 ( v ) s 1 ( 9V )
op VO 377043 =0 a'B'VO 0777&,80771/7' =0

From Egs.(7), (17), (20), and(22), it is easy to find that
gs«(7), (17), (20) (22) y g0y BurSn— OurBsrs (29

oB=(a®) is given by

Vot = e kTaV V(t kT iad
0taB™ J nB‘?ﬂaﬁ_ 0<a,8> NKg 7]

et 24
( ) 5 .8 1 1 U 2]V ]
wheren=N/V is the number density of the system and T ap=tapln=n,= Sy PasY =5y | Xis oxi., +Xi”axiﬁ ,
L (30)
_ - - T
Votaﬁ Iap _§[h0h YD"U)(h l)Tho]aﬁ- (25 and the applied stress becomes
From Egs.(23), (24), and(25), we obtain Uaﬁzggﬁ_nkBTgaﬁ_ (31
v ataﬁ 3 MNup N ot,, With Egs.(18) and(30), a direct calculation leads to
0(7 VT 0 (977117' (97701,8
VO B VODaﬁUVT_ <D S/TU>
= 7( ((D t ,B> (<taBD U)
1< au6 . au5 . au(s
=5\ Xia 75— Xia T Xig=o—
2\ Mgy, B Magy,  TBT TRy

(DU | 1>ThT) )

7]V
—1 +Xiﬁm5av+uaﬁv7 ) (32)

1 dh, N
2 hOaKa <D§§U>(h )gﬂ Ooup
where
houh=i(pt,0y X Ve
OaK < L& >—V OupB U _ (92U n 072U
a’BVT_XianVaXi'BanT Xiaij&XiﬂaX]’V
+{exchange of « B) and(v 7) in the abovd |}
2 + Y + U (33
oV 1 oV oV XigXir T X gXjp .
—2nkgT - ) (26) T 00Xy TP X0
l977a/3(97lw \4 ‘9770(,8 5%7
Finally, combining Eqgs(28), (30), and(32), we obtain
From Egs.(10) and(16), we get
Vo ~p -p ~“B \/ B
(9h_l 1 Ca,BvT: - _(<0.a,8' o-vr>_<o-aﬁ><0.m'>)
«{ —_T(n-1 -1 kgT
( ﬁnv’]’)h h 2(hKT 5V§+hKV 5T§) (27)

- E(Uﬁyaaﬂ'_‘— Ty 5BV+ O-,Brﬁav—i_ O-avgﬁf)
Combining the results from Eg&3), (25), (26), and(27),

the isothermal thermodynamic stiffnes<gg;, . are then 1

+ Z(uaﬁm’) +n kBT( 5(1V6BT+ 5&7531/)- (34)

It op
aprr anw) The first term inC,, 5,, is the “fluctuation term.” The second
arises from the effect of the stress. The third term is referred
:—(D - +D to as the “Born term,” owing to Born and his collaborator’s
T aﬁ works on thermodynamic stiffnesses of a “static” system at
zero temperaturtAnd the last is sometimes called the “ki-
Vo ( (2, 6%)— (o8 )(52) netic term.” From Egs.(6) and (34), the stress-strain stiff-

nesses are then
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Vo 5 -g e g From the equipartition theoreft**>we obtain
CaBVT: - kB_T(< O-aB' o-VT> - <(Ta[3>< O-VT>)
oH

1 5 B B B “dpg
+ Z(Uﬂv5a7+ UB750V+ Ua75BV+ O-avéﬁfr

B. Fluctuation formulas for the adiabatic elastic constants

From Eqgs.(7), (17), (42) and (43), with both the scaled

- o - coordinates and scaled momenta, we can show that
For a pairwise central-force system, it is not difficult to show

1
—40050,)+ 7(Uapy) + ke T 30pb,.. (39

that the expressions for the elastic constants reduce to the JE
expressions given in Ref. 5. Volap=
(97]a3 S
IV. ADIABATIC ELASTIC CONSTANTS oH
To find the adiabatic elastic constants is a little more in- - < 9%3>
volved because we have to use the scaled momenta in the 1
first step of the derivation. _ _
P = 5[heh™X(D"+DP)H)(h ™) Thgl.g
A. Formulation of the microcanonical ensemble 1
The microcanonical ensemble can be defined by using the :E[hoh_1<DrU>(h_l)Thg]aﬁ
phase volume vfa*?2
—1p—1
_NkBThoaghgg h#é«hoﬁﬂ (44)

¢(E,V,N):f dpSNdx3N=f 6(H—E)dr, (36) _ o
H<E To continue the derivation, we do not need to use the

; - P —
whereE is the energydr=dp3Ndx®N and the step function scaled momenta, so we set agaidz,;=0 andD ,;=0.

6 is There is a small difference between the method we used in
this paper and the method using the scaled momenta. We will
1 x<0, discuss this difference at the end of this section. What we
0(x)= 0 x>0 (8370 must stress here is that using the scaled quantities is only a
) mathematical trick and should have no effect on the final
The density of states(E,V,N) is defined by results, as has been confirmed for the isothermal elastic con-
Y stants.
Er) Now we introduce a new function
w=—=| S(H—E)dr, (38
JE
where § is the Dirac delta function. The normalized prob- X(Eﬂ?,N)=f th0(H—E)dr
ability densityW(x,p) is
S(H—E) =VNf tﬁﬁa(H—E)dr’, (45)
_ (39

W(x,p)=

hered7’ =dp3N.g°N. We h
The average value of any quantitgx,p) is determined from wheredr P9 e nave

(fy=[WTfdr. The entropy is equal to X\ v x+f 0t5,3 , C
S(E)=kg In 4(E) (40) ) "am T Gy, PRI
whenN is large?® We have omitted various constant factors U JE
which would render¢ dimensionless since these constant —J tEB(S(H—E) —( dr
factors would not appear in any of our final results. From Eq. v \OMua] g
(40), we obtain for the temperature B
= 8Vx+fat“'80H E)d
(s s “ T BT

V,N
. o iy —VJtBtBéH—Ed +Vo(tB )18
Assuming the Hamiltonian is dependent on an additional ex- 0] taglyrol YA+ Vo(teg) (L) o

ternal parameter, say the adiabatic theorem give¥1° .
P A 9 —NkgThg,chg hy 2o, (18 ) . (46)

JE
ay

= <2_H> ZEJ' (;_H S(H—E)dr. (42)  For a system of many degrees of freedom, the approximation
y Yy

X=(tS5) ¢ and

S,V
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atiﬁ atiﬁ ensembles, a criterion often used to determine whether a sys-
f O(H—E)dr= b, (47)  tem is large enough in computer simulatiGhg’
INyr Nz
must be very accurate, therefore we have V. ZERO TEMPERATURE AND STRESS-FREE LIMIT
A8 ) N B At T=0, we have to pay some special attention to the
¢( @B ) =n <t23)¢+ ¢>< a5> limit of the “fluctuation term.” We will not present a detailed
sl s s 97 derivation for this case since it is done in Ref. 21. The stress-

strain stiffnesses in this case are
_O)V0<t5/3t57>+on<t33><t5T>

—1p- 1 #*U 3°U
—NKgTho, ez tho (2w, (48) -~ |x XS —
- . N &0 e [l B Caﬁv‘r 4VO Xuléﬁg[?xiﬁ(?xig X|B5a§ &Xiaﬁxig
Using Eq.(27) again, it is easy to show that .
- " 9°U 5 2 s 9?U
a(hg{ h;{) R Xiy §Té, ] ] Xir v - ]
_ I Xi ¢IXi » IXi 0,
nkBThoagTw o 08u i& 197 1§0M
1 9°U 9°U
:nkBT(5a75BV+ (511115,87-)' (49) +Z XiaXiy 2 + XioXir 2
Xig Xip
Using Eqgs.(17) and(25), we can find that
+ U + 7 (53
O’)tg VO XiBXIT 2 XiBXIV 2
Vo< an"> = > {[hoh ™ X(D"tGp) (h~)ThE],, Xia Pia
L rB A b TLT Note that in the above equation, the sums do not include
+[hoh™ XD, )(h™7) Tholag! the first particle since we do not consider the motion of the
-1 center of mas$!
1 ah,; -
+§ hOaKT<D2§U>(h71)g#h0M3
Nvr VI. BOUNDARY CONDITIONS
—1\T
+hoh - HD",U) d(h g, hT (50) In the above derivation, all particles are confined in the
OarTlkf A7 L& an,, OHB| simulation cell, i.e., the cell formed by the three vectars,

) and c, with h=(a,b,c). As usual, our expressions should
Now we put together Eq¢44), (48), (49), and(50) (with the i \yell for a large system or in the thermodynamic limit,

exchange ofa, 8} and{v,7} in Eq. (50) to keep the sym- o " \yith N0, V-0, but with n=N/V,, finite. In this
metry ofC,,,). And then lettingn=0 orh=ho, and using  .4qe the boundary effects are irrelevant. However, in prac-

Egs. (17), we recover Eq(28) exactly, as well as Eq$34)  jce one has to deal with boundary conditions since the size
and(35). Therefore, the fluctuation formulas for the adiabatic ¢ 5 simulated system is in general quite limited. Periodic

elastic constants have exactly the same form as those for t'?ﬁ)undary conditionéPBO)? are the most commonly used in
isothermal elastic constants. o _ simulations, and it is not difficult to show that they are au-

It is interesting to note, that if we insist on using the (omarically satisfied in our formulation. With PBC we have a
scaled momenta to derive the final expressions, after gqniinyous infinite system with no boundaries. The particles
lengthy calculation, we will find that there is an extra term ;. e primary cell given by =hg;, wherei=1,N, and

1 [l L] )
1 —0.5=q;,<0.5 («¢=1,2,3) are repeated into image cells by

+ - > pl )5a,85ﬁvavra (51)  translationsR,=n,a+n,b+nsc, wheren,(a«=1,2,3) are

kg TV i arbitrary positive and negative integers. Scalar functions

h h ial i fi i
different from Egs.(34) and (35 for the adiabatic elastic ELJ(?{X a}s) \tNﬁerpeotentla energy can be viewed as functions
,n

constants. This is the main reason why we do not use the

3NKgT
Y

scaled momenta !n this paper, except for the derivation of Xi n=ha; »=h(q; o+ Ry), (54)
Eq. (44). The equivalence of the two approaches therefore
requires that the identity and the components @f , are no longer constrained by the

limits [ — 1/2,1/2) but extend over all real numbers. With this
1 extended zone scheme the basic relation given by(E).
> b, ) =3N(ksT)? (52 sill holds and there is no explici i
~ 2 Pia plicit dependence of physical
quantities orh. The integrals ovedx®N or dg®N extend now
should also be valid for the microcanonical ensemble. In th@ver (—«,»). By symmetry the average value of any quan-
canonical ensemble it is rather simple to get E5p). This  tity in an image cell is exactly the same as in the primary
result provides one more evidence of the ensemble equivaell.
lence for a large systefi.e., the velocities obey the Max- In contrast, for a finite system without PBC, it is indeed
well distribution in both the canonical and microcanonicalnecessary to introduce explicitly the dependencé afn h,
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such adJ({x;},h), since the boundary conditions have to bekinds of coefficients are exactly the same, although, in gen-
realized by some extra terms, in addition to the interparticleeral, their values will be different. We should point out that
interactions and the external fields. These terms would havihese expressions are also valid for a two-dimensional sys-
a complicated dependence on the size and shape of the syem though our derivation in this paper is based on the three-
tem. The partialgU ({x},h)/ 97,z become much more com- dimensional system. Moreover, they are valid for both Monte
plex. We do not present expressions for these partials in thi€arlo and molecular dynamics computer simulations. These
work since there is no general way to calculate them. Wdormulas have the advantage that all elastic constants are
should also note that in this case, the shape of the systenalculated in a single run without performing any deforma-
may not even be a parallelepiped, so our derivation would n¢ion. They may be especially useful in molecular dynamics
longer be valid. Finally, it is interesting to note that althoughsimulations because they require little additional computer
the derivation seems to require that the deformations be hdime. They may also permit the derivation of exact formulas
mogeneous, by taking the limit to infinitesimal strain, what isfor stress-strain stiffnesses at zero temperature for some
calculated is the linear response of the system valid also faggimple inter-particle interactions in a perfect lattice.
inhomogeneous deformations.
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