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Instability of a rectangular vortex lattice in a stack of two long Josephson junctions
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We investigate the stability of a rectangular Josephson vortex lattice in a stack of two long Josephson
junctions. It is shown that in an infinite stack at low velocities the lattice is unstable with respect to triangular
vortex lattice formation and at high velocities the lattice may be either stable or unstable due to parametric
resonance. This resonance may be “suppressed” in three Wiaysy increase of damping in the syste(i)
by the increase of the external magnetic field(ioy by increase of the velocity of the lattice. We show that the
finineness of the stack may provide the stability of the rectangular vortex lattice.
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The idea of using Josephson junctions as sources of elemake a conclusion if this solution stable or not. Thus, the
tromagnetic radiation is promising owing to their small di- results of Ref. 8 are correct only at low JVL velocities.
mensions, good tunability, and capability of operating at fre- Let us consider the set of equations describing a simplest
quencies up to several hundred gigahértdowever, the layered structure — a stack consisting of two LJJ's with
power of radiation available from a single junction is not Magnetic coupling between the laye?s
sufficient for most applications, which necessitates using ar- 5 5 ) )
rays of junctions. A stack arrangement of long Josephson F(@1at ne2) = (i + yd) 1ot sinero—j. (1)
junctions(LJJ’s) (Ref. 2 arouses interest be'cause (_)f possibIeHerqulz, y, j are the Josephson phase difference, damping
improvements of the properties of LJJ oscillators in terms otonstant, and bias current density, respectively. The magnetic

impedance matching, output power, and integration leveleoypling parameter is denoted by It is determined by the
The low-T; superconductor thin film technology allows formuld

growth of high-quality multilayers with many Josephson tun-

nel barriers(for example, Nb/AI-AIQ/Nb stacks. More- ot t

over, the discovery of an intrinsic Josephson effect in some 7=A| dsinh=+2) coth-| 2

high-T. superconductors such as BSCCO convincingly

showed that these materials are essentially natural superlagherex is the London penetration depthis the thickness of

tices of LJJ’s formed on the atomic scélRecent theoretical the superconducting layer, adds the distance between two

investigations and experiments showed that the inductivéuperconducting layers. We start with the assumption that the

coupling between adjacent junctions leads to diverse ang@ystem is infinite in space.

nontrivial dynamic behavior patterns of such structdrés. To investigate a two-junction stack it is convenient to in-
One possible way to produce coherent radiation fromiroduce new variableg . =(¢;* ¢,)/2, which obey the set

stacks of LJJ’s is to form a regular Josephson vortex lattic@f equations

(JVL) and move it by an external current. In order to produce > > ) ) ]

maximum radiation from a stack at a given lattice velocity CLoyp.=(di+yd)e.+sinp.cospz—j., (3

and external magnetic field, a rectangular arrangement %hereci=1, c2=(1—7)/(1+ ), j. =]}, j_=0. We have

vortices, when vortices in neighboring layers are located one . . .
g gay renormalized the coordinatg .= Xqq/V1+ 7 in Egs.(3).

over another, is most preferable. Such a lattice is feasible The set of Eqs(3) has a solution describing rectangular

provided the corresponding solution is stable. In the presen . o .
paper we show that in a two-junction stack a rectangular JVL}VL' Assuming the external magnetic field to be high we can

is unstable at low velocities, and stability of such a solutionwme down the analytical expressions for this solutfon
can be achieved at high velocities of JVL, provided there is a eih(x—u

large external magnetic field, or large enough damping, or @3=h(x—ut)+|m—, ¢ =0, (4)
small stack length. Specifically, the above conditions may L

explain the results of numeri¢af and experimentalinves-  \yherel = —h2(1—u?)+iyuh, u is the JVL velocity,h>1
tigations in which a possibility of existence of rectangularis the dimensionless external magnetic field. Velocitsnd
JVL in stacks of two and more LJJ's is shown. There aregamping y are related through the energy balance

some article%vx{here the authors analytically investigate the congition which is actually the current-voltage characteris-
stability of moving JVL. But these investigations are made injc of the stack with the rectangular JVL

the limit of longwave perturbations at all JVL velocities. As

we show in the present paper, at low JVL velocity the short- _

wave instability does not develop thus the stability analysis j=—yuh+Jimr. ()

in the longwave limit is sufficient. However, as we show in

this paper, at high JVL velocity the shortwave perturbationd/Ve note that the solution in the for(d) is valid only pro-
may lead to instability and should be taken into account tovided |L Y| <1. If hy>1 the previous condition is satisfied

-1

0163-1829/2002/66)/05251@4)/$20.00 66 052510-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B6, 052510 (2002
at all velocities otherwise it breaks in a region near1.
This region corresponds to the peak in the current-voltage
characteristid5).

In order to investigate the stability of rectangular JVL we
search for the solution of Eq@) in the form ¢.=¢°
+6¢. whereo® are given by Eq(4) and 8¢.. are small
perturbations |§¢- | <1). Substituting this solution into Eq.
(3) and neglecting the terms nonlinear dp.. we obtain

(6)

where cog ~cosh(x—ut)—Re (1—e?"C~u9) /217, We
will refer to 8¢, andde_ as symmetrical and antisymmetri-
cal perturbations, respectively. The 46} is actually two 0 o~ o o6 o8 1
independent equations so we can analyze them separately. a
Th_us_we have divided the problem of rect.a}ngul_ar JVLsta- pig 1 Eigenfrequency(q) spectrum as a function of quasi-
bility into two ones — the problems of stability with respect yomentumg for antisymmetric perturbationsaseu<c_).
to symmetrical and antisymmetrical perturbations.

We start with an analysis of the “subluminalu&1)

0,02 -
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L0500 = (3 + ydy) S +cosel Se.

0,0

2 _ pdiE
solution stability. The problem of a rectangular JVL stability ”¢§§+F§T/,§: _ ﬂ"{lﬂrﬂ cos %—R 1-e 7
with respect to symmetrical perturbations is similar to the c 2L
problem of stability of the periodical vortex chain in LJJ (8)

which was solved in Ref. 10. Thus a “subluminal” rectangu-
lar JVL is stable to symmetrical perturbations. To analyze th
stability of Eq.(4) with respect to antisymmetrical perturba-
tions we use Eq(6) for ¢_ . This equation is a relativistic
invariant with c_ being the characteristic velocity of anti-
symmetrical perturbation. From E¢R) and the expression
for c_ itis seen that _<1 at any stack parameters. In other 9)
words, antisymmetrical perturbations are always slow com-
pared with the symmetrical ones. Therefore, to investigatét w#0 the maximum perturbations of the spectrum are
the “subluminal” solution stability it is necessary to distin- achieved near the middle pointj€0) and the edgesqE=
guish between two cases<c_ andu>c_. +1) of the first Brillouin zone. In the vicinity ofj=0 we
Let us first consider the case<c_. We perform the search for the solution of E@8) in the form
Lorentz transformation in E(6) for d¢_ :

According to the Bloch theorem, the solutions of E8)

%ave the formy(&) = exp(aé)Uq(é), whereq is the quasimo-
mentum andJ,(¢) is the function with the periodr. Let us
find the eigenfrequency spectrua(q). At =0 the spec-
trum is

w(o+iT,)=c2q(q—iT,).

P(&) =€ ag+ae?t+a_e %],

2
¢= o xoet ot (u/eS)X whereay,a. , are constants. After substituting it into E&)
Vi—(vic_)? 1—(vlc_)? we obtain the dispersion characteristic as the condition for

_ _ _ _ ap +» at which the solution of Eq(8) is not equal to zero:
with velocity v=u. Introducing ¢=3J8¢_ we obtain the

2 2 2

ir

equation ir -
q —(q—Tg +c % w+ 5 —,uaZ—%, (10
2 Y 0 _ “1_ .2 _ ;
Cohee= 1+ ———= (.~ Uhy) +COS@ - , wherea=Re(2L) *— y“/4. Nearq=1 the solution has the
& \/1_(U/C,)2 ¢ " form

where the parameter depends only on the coordifiaddter
the renormalization of the coordinatey1—(u/c_)%&yq
=2&new and time hy1—(u/c_)27y4=27mey and introduc-

e=e@ D aet+a e,

wherea..; are constants. Substitution of this expression into

tion of the small parametgi=4h"?(c2 —u®)~* we have  Eq.(8) gives
1 1 et o+il' 2 pa 1 2 il 1 2_ w? 11
e+ T eihg= 5 (et )+ 1 cO8 26~ Re—5— o o 2 Yol T @
. (7)  Far from the middlepoint and the edges of the first Brillouin

zone the spectrum remains unperturbed and is given by the

whereT ;= uhuy/2, T .= uhyc?/2. We look for the solu-
tion of Eq. (7) in the form of the Fourier integrajs(¢,7)
=f°fwz~p(§,w)e““"(dw/2w). The equation for the Fourier
image of (&,7) is

formula (9).

The dependencies of real and imaginary parts of eigenfre-
quencyw(q) are shown in Fig. 1. It is seen that at small
some roots of the dispersion equati¢tO) have positive
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imaginary parts. This means that perturbations with siall %51
will exponentially grow with time, i.e., the solutiof¥) is
unstable. We see that the instability which is obvious in the {1 Ree
case of low density chairiglue to repulsion of vortices in the
neighboring layersis not changed by stability in the case of o0

denser chains. This result is in agreement with the one ob: \\_"i:::x:::j"/ J1.0
tained in Ref. 8 and reflects the fact that the vortex chains ing L “
the neighboring layers tend to shift and form the triangular— ] e
JVL. -0,20 ;

Let us now consider the case of high velocities<u
<1.As before, we perform the Lorentz transformation in Eq.
(6) for 5¢_ but now with the velocity =c?/u. Introducing .02+
= S6¢_ we obtain the equation

— 1 0,0
0,0 02 0,4 06 08 1,0 12 1,4
C2

2., _ Y _ =
Cfl;bgf_l//rr—’_ m(wr u l/fg

where the parameter depends only on the tim€&his equa-
tion turns into It is seen from this expression that the solutidh is either

stable or unstable depending on sign of the differemcé
) 1—e 47 —uy. If huy<1 the solution(4) is parametrically unstable.
e C(¢§§+F§‘//§)_M(C°S 27— Re—— ¥ The region ofk corresponding to the growing perturbations
(120 Isequalto

where h\/uz_choleZTnew h\/uz_c—foleZSneWa M 2 % I~72_

=ah~2(u2-c2) "L, T, = puhy/2, T ;= why/2. We look for Ak~—V71s " 71" (16)
the solution of Eq(12) in the form of the Fourier integral
W&, 1)=[7 0k 7)e ké(dki2w). The equation for the

Fourier image of(¢,7) is

+coseq - ¥,

FIG. 2. Quasienergy (k) as a function of wave numbéde for
antisymmetric perturbationgasec_<u<1).

This parametric instability may be “suppressed” either by
increasing the external magnetic fidgicbr by increasing the
dampingy. We would like to emphasize that the instability
appears due to the periodicity of the solution. Therefore the

~ ~ a5 ~
Yot Uothr=—cZ(k°—1kT )y results obtained in Ref. 12 for the isolated vortices cannot be
1—e 4t applied to the case of periodic vortex chains.
— u| cos 2r— ReT . (13 It remains to investigate the stability of the “superlumi-

nal” JVL (u>1). We start with the analysis of the stability
with respect to symmetrical perturbations. Substituting the
solution (4) into Eq. (6) for ¢, and applying the Lorentz
transformation

The solution of Eq. (13) has the form ¥(7)=exp
(—ienU,(7) wheree is the quasienergy and () is the
function with the periodr. Let us find the spectrum(k) by
the scheme used above. In the vicinitysof 0 the spectrum

X—uvt t—ovXx
is = ——, = ———
1-v? V1-0v°
. 2 . 2 2
et B we (k- B b pam - gy with v=u?, we obtain
2 2 8’
and neare =1 Y= %ﬁ# lﬂT—llﬂg +coseg -, (17)
V1—(1/u)? u
ir,| pa ]? ir, \? w? . . .
c_ - +7—1 —|le+ > -1 =16 wherey= ¢, . In this equation the coefficient dtdepends

(15) only on timer and is periodical. Analyzing this equation by
the method used for the case <u<1 we arrive at the
It follows from the Eq.(15) that at certairk the roots of the conclusion that there are shortwave perturbations which de-
dispersion equation may have positive imaginary part as it ipend exponentially on time and the solution4) may be
shown in Fig. 2. Ine(k) reaches its maximum value &t  stable or unstable depending on sign of the differemcé
~c_L. At small y [Im &(K) ] ma~u/4—T /2. Therefore, the —uy. The same result is obtained also for the antisymmetric
perturbation withk~c~! depends on time as perturbations in the case>1. The main feature of this re-
sult is that the stability condition *<u+y may be achieved
w T (h™1=U7y)7oq by increase ofu. However, the alternate component of the
r . " : 1 2
i ?) Thew| = €XQ ——=H— |- elect_rlc fleld_ ¢; Of such a solution has the ordb_r _u(u
2\u"—cZ —1)"! and is small. Therefore, the power of radiation from

Tp(k,r)~ex;{
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a b C d JVL at small velocities. At_<u<1 the wave numbek is
: : 7 ; > discrete with the step#/hl. At largel whenAk>4/hl at
0 c 1 (hy)_l u least one of the possible valueslofill be in the interval of

instability (16), therefore, the solution will be unstable at
FIG. 3. Stability diagram for the rectangular vortex latticase h™*>uy. The necessary condition of stability is
hy<1). Latin letters mark the regions of different behavior of |>whc (Cz _uz)
small perturbationsa) longwave instability(b) shortwave instabil- mne-te- '
ity to antisymmetric perturbations;) shortwave instability to both  This means that to provide a rectangular JVL stability at
symmetric and antisymmetric perturbationd) stability. Hatching C_<u<1 it is necessary to decrease the system lehgth
shows the region where the solutié4) is not valid. that no permitted value df is in the interval(16). At 1<u
<(hy) ! the situation is more complicated because the in-
the edge of the stack in this case is not sufficient for applistability intervals ink have different widths and are differ-
cations in spite of the fact that the JVL is rectangular. ently located for symmetrical and antisymmetrical perturba-
Combining the results obtained above we build the diations. But it is clear that the decreasel dbwers the number
gram(Fig. 3) showing the regions of stability and instability of permittedk in the instability intervals and may lead to
in terms of the lattice velocity. At 0<u<c_ the solution stability.
(4) is unstable with respect to longwave perturbations and Let us summarize the obtained results. At low velocities a
formation of the triangular JVL. At_<u<(hy) ! the so- rectangular JVL in an infinite two-junction stack is unstable
lution is unstable due to the parametric resonance and thaith respect to perturbations with scales much larger than the
instability growth rate is proportional th™*—uy. In the lattice period. The physical meaning of this is that the vortex
region nearu=1 where the conditioL ~!|<1 breaks the chains in the first and second junctions tend to shift with
solution (4) is not valid and more thorough investigation is respect to each other to compose a triangular JVL. This is in
required. Then, ati>(hy) ! the parametric resonance is agreement with the result of Ref. 8. At high but “sublumi-
“suppressed” and the solution becomes stable. The diagramal” velocities the lattice may be unstable with respect to
Fig. 3 is built for the cas@y<<1. Whenhy>1 the instabil- perturbations with scales comparable to the period of the
ity region is 0<u<(hy) 1. At last, when by) 1<c_ the JVL. The growth rate of this parametric instability is deter-
instability region is G<u<c_. mined by the differencé~1—uy and, therefore, the insta-
Consider now the case when the system is not infinite irbility may be “suppressed” by high enough external mag-
space. The simplest way to change to a finite system is to segtic field, or by the damping in the system, or by the

periodic boundary conditions increase of the lattice velocity. The existence of this instabil-
ity complements the results obtained in Ref. 8 where the
P1AX=11)= @1 Ax=0)+27N, authors did not take into account the short-wave perturba-

whereN is the number of vortices trapped in each junction ofions- In the present paper we also show that the stability of
the stack and is the length of the system. The boundary rectangular JVL at low damping is possible in a finite two-

conditions for perturbations are written as below: junction stack. Thus we argue that the formation of a rectan-
' gular JVL which is reported in Refs. 4—7 is associated either
S50+ (Enew=h112,7)= 60+ (&nen=0,7). (18)  with the finiteness of the system or with the suppression of

the instability by three ways mentioned above.
At u<c_ the conditions(18) lead to discreteness of quasi- y by 4

momentumg with the step 4r/hl. As the instability interval This work was supported by the Russian Foundation for
is located neag=0, mode withg=0 will always be in this Fundamental ResearalGrant No. 00-02-16528 The au-
interval, i.e., it will grow with time. Hence, the periodic thors are grateful to N. Gress for assistance in the preparation
boundary conditions cannot provide stability of a rectangulaiof the English version of the manuscript.
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