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Instability of a rectangular vortex lattice in a stack of two long Josephson junctions
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~Received 21 November 2001; revised manuscript received 12 April 2002; published 14 August 2002!

We investigate the stability of a rectangular Josephson vortex lattice in a stack of two long Josephson
junctions. It is shown that in an infinite stack at low velocities the lattice is unstable with respect to triangular
vortex lattice formation and at high velocities the lattice may be either stable or unstable due to parametric
resonance. This resonance may be ‘‘suppressed’’ in three ways:~i! by increase of damping in the system,~ii !
by the increase of the external magnetic field, or~iii ! by increase of the velocity of the lattice. We show that the
finineness of the stack may provide the stability of the rectangular vortex lattice.
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The idea of using Josephson junctions as sources of e
tromagnetic radiation is promising owing to their small d
mensions, good tunability, and capability of operating at f
quencies up to several hundred gigahertz.1 However, the
power of radiation available from a single junction is n
sufficient for most applications, which necessitates using
rays of junctions. A stack arrangement of long Joseph
junctions~LJJ’s! ~Ref. 2! arouses interest because of possi
improvements of the properties of LJJ oscillators in terms
impedance matching, output power, and integration le
The low-Tc superconductor thin film technology allow
growth of high-quality multilayers with many Josephson tu
nel barriers~for example, Nb/Al-AlOx /Nb stacks!. More-
over, the discovery of an intrinsic Josephson effect in so
high-Tc superconductors such as BSCCO convincin
showed that these materials are essentially natural supe
tices of LJJ’s formed on the atomic scale.3 Recent theoretica
investigations and experiments showed that the induc
coupling between adjacent junctions leads to diverse
nontrivial dynamic behavior patterns of such structures.4–7

One possible way to produce coherent radiation fr
stacks of LJJ’s is to form a regular Josephson vortex lat
~JVL! and move it by an external current. In order to produ
maximum radiation from a stack at a given lattice veloc
and external magnetic field, a rectangular arrangemen
vortices, when vortices in neighboring layers are located
over another, is most preferable. Such a lattice is feas
provided the corresponding solution is stable. In the pres
paper we show that in a two-junction stack a rectangular J
is unstable at low velocities, and stability of such a solut
can be achieved at high velocities of JVL, provided there
large external magnetic field, or large enough damping
small stack length. Specifically, the above conditions m
explain the results of numerical4–6 and experimental7 inves-
tigations in which a possibility of existence of rectangu
JVL in stacks of two and more LJJ’s is shown. There a
some articles8 where the authors analytically investigate t
stability of moving JVL. But these investigations are made
the limit of longwave perturbations at all JVL velocities. A
we show in the present paper, at low JVL velocity the sho
wave instability does not develop thus the stability analy
in the longwave limit is sufficient. However, as we show
this paper, at high JVL velocity the shortwave perturbatio
may lead to instability and should be taken into accoun
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make a conclusion if this solution stable or not. Thus,
results of Ref. 8 are correct only at low JVL velocities.

Let us consider the set of equations describing a simp
layered structure — a stack consisting of two LJJ’s w
magnetic coupling between the layers2,8,9

]x
2~w1,21hw2,1!5~] t

21g] t!w1,21sinw1,22 j . ~1!

Herew1,2, g, j are the Josephson phase difference, damp
constant, and bias current density, respectively. The magn
coupling parameter is denoted byh. It is determined by the
formula2

h5lS d sinh
t

l
12l coth

t

l D 21

, ~2!

wherel is the London penetration depth,t is the thickness of
the superconducting layer, andd is the distance between tw
superconducting layers. We start with the assumption that
system is infinite in space.

To investigate a two-junction stack it is convenient to i
troduce new variablesw65(w16w2)/2, which obey the set
of equations

c6
2 ]x

2w65~] t
21g] t!w61sinw6cosw72 j 6 , ~3!

wherec1
2 51, c2

2 5(12h)/(11h), j 15 j , j 250. We have
renormalized the coordinatexnew5xold /A11h in Eqs.~3!.

The set of Eqs.~3! has a solution describing rectangul
JVL. Assuming the external magnetic field to be high we c
write down the analytical expressions for this solution10

w1
0 5h~x2ut!1Im

eih(x2ut)

L
, w2

0 [0, ~4!

whereL52h2(12u2)1 iguh, u is the JVL velocity,h@1
is the dimensionless external magnetic field. Velocityu and
damping g are related through the energy balan
condition11 which is actually the current-voltage character
tic of the stack with the rectangular JVL

j 52guh1
1

2
Im

1

L
. ~5!

We note that the solution in the form~4! is valid only pro-
vided uL21u!1. If hg@1 the previous condition is satisfie
©2002 The American Physical Society10-1
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at all velocities otherwise it breaks in a region nearu51.
This region corresponds to the peak in the current-volt
characteristic~5!.

In order to investigate the stability of rectangular JVL w
search for the solution of Eq.~3! in the form w65w6

0

1dw6 wherew6
0 are given by Eq.~4! and dw6 are small

perturbations (udw6u!1). Substituting this solution into Eq
~3! and neglecting the terms nonlinear indw6 we obtain

c6
2 ]x

2dw65~] t
21g] t!dw61cosw1

0 dw6 , ~6!

where cosw1
0 'cosh(x2ut)2Re@(12e2ih(x2ut))/2L#. We

will refer to dw1 anddw2 as symmetrical and antisymmetr
cal perturbations, respectively. The set~6! is actually two
independent equations so we can analyze them separ
Thus we have divided the problem of rectangular JVL s
bility into two ones — the problems of stability with respe
to symmetrical and antisymmetrical perturbations.

We start with an analysis of the ‘‘subluminal’’ (u,1)
solution stability. The problem of a rectangular JVL stabil
with respect to symmetrical perturbations is similar to t
problem of stability of the periodical vortex chain in LJ
which was solved in Ref. 10. Thus a ‘‘subluminal’’ rectang
lar JVL is stable to symmetrical perturbations. To analyze
stability of Eq.~4! with respect to antisymmetrical perturb
tions we use Eq.~6! for dw2 . This equation is a relativistic
invariant with c2 being the characteristic velocity of ant
symmetrical perturbation. From Eq.~2! and the expression
for c2 it is seen thatc2,1 at any stack parameters. In oth
words, antisymmetrical perturbations are always slow co
pared with the symmetrical ones. Therefore, to investig
the ‘‘subluminal’’ solution stability it is necessary to distin
guish between two casesu,c2 andu.c2 .

Let us first consider the caseu,c2 . We perform the
Lorentz transformation in Eq.~6! for dw2 :

j5
x2vt

A12~v/c2!2
, t5

t2~v/c2
2 !x

A12~v/c2!2

with velocity v5u. Introducing c[dw2 we obtain the
equation

c2
2 cjj5ctt1

g

A12~u/c2!2
~ct2ucj!1cosw1

0
•c,

where the parameter depends only on the coordinatej. After
the renormalization of the coordinatehA12(u/c2)2jold

52jnew and time hA12(u/c2)2told52tnew and introduc-
tion of the small parameterm54h22(c2

2 2u2)21 we have

cjj1Gjcj5
1

c2
2 ~ctt1Gtct!1mFcos 2j2Re

12e4i j

2L Gc,

~7!

where Gj5mhug/2, Gt5mhgc2
2 /2. We look for the solu-

tion of Eq. ~7! in the form of the Fourier integralc(j,t)
5*2`

` c̃(j,v)e2 ivt(dv/2p). The equation for the Fourie
image ofc(j,t) is
05251
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c̃jj1Gjc̃j52
v21 ivGt

c2
2

c̃1mFcos 2j2Re
12e4i j

2L G c̃.

~8!

According to the Bloch theorem, the solutions of Eq.~8!

have the formc̃(j)5exp(iqj)Uq(j), whereq is the quasimo-
mentum andUq(j) is the function with the periodp. Let us
find the eigenfrequency spectrumv(q). At m50 the spec-
trum is

v~v1 iGt!5c2
2 q~q2 iGj!. ~9!

At mÞ0 the maximum perturbations of the spectrum a
achieved near the middle point (q50) and the edges (q5
61) of the first Brillouin zone. In the vicinity ofq50 we
search for the solution of Eq.~8! in the form

c̃~j!5eiqj@a01a2e2i j1a22e22i j#,

wherea0 ,a62 are constants. After substituting it into Eq.~8!
we obtain the dispersion characteristic as the condition
a0,62 at which the solution of Eq.~8! is not equal to zero:

2S q2
iGj

2 D 2

1c2
22S v1

iGt

2 D 2

2ma52
m2

8
, ~10!

wherea5Re(2L)212g2/4. Nearq51 the solution has the
form

c̃~j!5ei (q21)j@a1ei j1a21e2 i j#,

wherea61 are constants. Substitution of this expression in
Eq. ~8! gives

S v1 iGt/2

c2
2

ma

2
21D 2

2S q2
iGj

2
21D 2

5
m2

16
. ~11!

Far from the middlepoint and the edges of the first Brillou
zone the spectrum remains unperturbed and is given by
formula ~9!.

The dependencies of real and imaginary parts of eigen
quencyv(q) are shown in Fig. 1. It is seen that at smallq
some roots of the dispersion equation~10! have positive

FIG. 1. Eigenfrequencyv(q) spectrum as a function of quas
momentumq for antisymmetric perturbations~caseu,c2).
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imaginary parts. This means that perturbations with smaq
will exponentially grow with time, i.e., the solution~4! is
unstable. We see that the instability which is obvious in
case of low density chains~due to repulsion of vortices in th
neighboring layers! is not changed by stability in the case
denser chains. This result is in agreement with the one
tained in Ref. 8 and reflects the fact that the vortex chain
the neighboring layers tend to shift and form the triangu
JVL.

Let us now consider the case of high velocitiesc2,u
,1. As before, we perform the Lorentz transformation in E
~6! for dw2 but now with the velocityv5c2

2 /u. Introducing
c[dw2 we obtain the equation

c2
2 cjj5ctt1

g

A12~c2 /u!2 S ct2
c2

2

u
cjD 1cosw0

1
•c,

where the parameter depends only on the timet. This equa-
tion turns into

ctt1Gtct5c2
2 ~cjj1Gjcj!2mS cos 2t2Re

12e24i t

2L Dc,

~12!

where hAu22c2
2 told52tnew, hAu22c2

2 jold52jnew, m
54h22(u22c2

2 )21, Gt5muhg/2, Gj5mhg/2. We look for
the solution of Eq.~12! in the form of the Fourier integra
c(j,t)5*2`

` c̃(k,t)e2 ikj(dk/2p). The equation for the
Fourier image ofc(j,t) is

c̃tt1Gtc̃t52c2
2 ~k22 ikGj!c̃

2mS cos 2t2Re
12e24i t

2L D c̃. ~13!

The solution of Eq. ~13! has the form c̃(t)5exp
(2i«t)U«(t) where « is the quasienergy andU«(t) is the
function with the periodp. Let us find the spectrum«(k) by
the scheme used above. In the vicinity of«50 the spectrum
is

2S «1
iGt

2 D 2

1c2
2 S k2

iGj

2 D 2

1ma52
m2

8
, ~14!

and near«51

Fc2S k2
iGj

2 D1
ma

2
21G2

2S «1
iGt

2
21D 2

5
m2

16
.

~15!

It follows from the Eq.~15! that at certaink the roots of the
dispersion equation may have positive imaginary part as
shown in Fig. 2. Im«(k) reaches its maximum value atk
'c2

21. At small g @ Im «(k)#max'm/42Gt/2. Therefore, the
perturbation withk'c2

21 depends on time as

c̃~k,t!;expF S m

4
2

Gt

2 D tnewG5expF ~h212ug!told

2Au22c2
2 G .
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It is seen from this expression that the solution~4! is either
stable or unstable depending on sign of the differenceh21

2ug. If hug,1 the solution~4! is parametrically unstable
The region ofk corresponding to the growing perturbation
is equal to

Dk'
2

c2

Am2

16
2

Gt
2

4
. ~16!

This parametric instability may be ‘‘suppressed’’ either
increasing the external magnetic fieldh or by increasing the
dampingg. We would like to emphasize that the instabili
appears due to the periodicity of the solution. Therefore
results obtained in Ref. 12 for the isolated vortices canno
applied to the case of periodic vortex chains.

It remains to investigate the stability of the ‘‘superlum
nal’’ JVL ( u.1). We start with the analysis of the stabilit
with respect to symmetrical perturbations. Substituting
solution ~4! into Eq. ~6! for dw1 and applying the Lorentz
transformation

j5
x2vt

A12v2
, t5

t2vx

A12v2

with v5u21, we obtain

cjj5ctt1
g

A12~1/u!2 S ct2
1

u
cjD1cosw0

1
•c, ~17!

wherec[dw1 . In this equation the coefficient atc depends
only on timet and is periodical. Analyzing this equation b
the method used for the casec2,u,1 we arrive at the
conclusion that there are shortwave perturbations which
pend exponentially on timet and the solution~4! may be
stable or unstable depending on sign of the differenceh21

2ug. The same result is obtained also for the antisymme
perturbations in the caseu.1. The main feature of this re
sult is that the stability conditionh21,ug may be achieved
by increase ofu. However, the alternate component of th
electric field w t of such a solution has the orderh21u(u2

21)21 and is small. Therefore, the power of radiation fro

FIG. 2. Quasienergy«(k) as a function of wave numberk for
antisymmetric perturbations~casec2,u,1).
0-3
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the edge of the stack in this case is not sufficient for ap
cations in spite of the fact that the JVL is rectangular.

Combining the results obtained above we build the d
gram~Fig. 3! showing the regions of stability and instabilit
in terms of the lattice velocityu. At 0,u,c2 the solution
~4! is unstable with respect to longwave perturbations a
formation of the triangular JVL. Atc2,u,(hg)21 the so-
lution is unstable due to the parametric resonance and
instability growth rate is proportional toh212ug. In the
region nearu51 where the conditionuL21u!1 breaks the
solution ~4! is not valid and more thorough investigation
required. Then, atu.(hg)21 the parametric resonance
‘‘suppressed’’ and the solution becomes stable. The diag
Fig. 3 is built for the casehg,1. Whenhg.1 the instabil-
ity region is 0,u,(hg)21. At last, when (hg)21,c2 the
instability region is 0,u,c2 .

Consider now the case when the system is not infinite
space. The simplest way to change to a finite system is to
periodic boundary conditions

w1,2~x5 l ,t !5w1,2~x50,t !12pN,

whereN is the number of vortices trapped in each junction
the stack andl is the length of the system. The bounda
conditions for perturbations are written as below:

dw6~jnew5hl/2,t!5dw6~jnew50,t!. ~18!

At u,c2 the conditions~18! lead to discreteness of quas
momentumq with the step 4p/hl. As the instability interval
is located nearq50, mode withq50 will always be in this
interval, i.e., it will grow with time. Hence, the periodi
boundary conditions cannot provide stability of a rectangu

FIG. 3. Stability diagram for the rectangular vortex lattice~case
hg,1). Latin letters mark the regions of different behavior
small perturbations:~a! longwave instability,~b! shortwave instabil-
ity to antisymmetric perturbations,~c! shortwave instability to both
symmetric and antisymmetric perturbations,~d! stability. Hatching
shows the region where the solution~4! is not valid.
-
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C
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JVL at small velocities. Atc2,u,1 the wave numberk is
discrete with the step 4p/hl. At large l whenDk.4p/hl at
least one of the possible values ofk will be in the interval of
instability ~16!, therefore, the solution will be unstable
h21.ug. The necessary condition of stability is

l .phc2~c2
2 2u2!.

This means that to provide a rectangular JVL stability
c2,u,1 it is necessary to decrease the system lengthl so
that no permitted value ofk is in the interval~16!. At 1,u
,(hg)21 the situation is more complicated because the
stability intervals ink have different widths and are differ
ently located for symmetrical and antisymmetrical pertur
tions. But it is clear that the decrease ofl lowers the number
of permittedk in the instability intervals and may lead t
stability.

Let us summarize the obtained results. At low velocitie
rectangular JVL in an infinite two-junction stack is unstab
with respect to perturbations with scales much larger than
lattice period. The physical meaning of this is that the vor
chains in the first and second junctions tend to shift w
respect to each other to compose a triangular JVL. This i
agreement with the result of Ref. 8. At high but ‘‘sublum
nal’’ velocities the lattice may be unstable with respect
perturbations with scales comparable to the period of
JVL. The growth rate of this parametric instability is dete
mined by the differenceh212ug and, therefore, the insta
bility may be ‘‘suppressed’’ by high enough external ma
netic field, or by the damping in the system, or by t
increase of the lattice velocity. The existence of this insta
ity complements the results obtained in Ref. 8 where
authors did not take into account the short-wave pertur
tions. In the present paper we also show that the stability
rectangular JVL at low damping is possible in a finite tw
junction stack. Thus we argue that the formation of a rect
gular JVL which is reported in Refs. 4–7 is associated eit
with the finiteness of the system or with the suppression
the instability by three ways mentioned above.
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