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Minigap in a long disordered SNS junction: Analytical results
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We review and refine analytical results on the density of states in a long disordered superconductor—normal-
metal—superconductor junction with transparent interfaces. Our analysis includes the behavior of the minigap
near phase differences zero amdacross the junction, as well as the density of states at energies much larger
than the minigap but much smaller than the superconducting gap.
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A superconductor in contact with a normal metal induces dy(dyx SIf)=0, (1)
pairing correlations in the metal, a phenomenon known as
the proximity effect. One of the most remarkable conseiwhere 6(x,e) and x(x,e) are the variables parameterizing
guences of such induced correlations is the appearance oftlae zero angular momentum component of the Green’s func-
gap, usually referred to as the “minigap,” in the electronic tions, g=cosé and f =sin#exp(y); here y is the phase of
excitation spectrum of the normal metal; see Ref. 1 for arthe superconducting correlations, and the local density of
early introduction and Refs. 2 and 3 for a detailed derivationstatesp(x,e) (in units of the normal electron density in the
A very common setup exhibiting a minigap is the bulk) is given by
superconductor—normal-metal—supercondu¢®NS junc-
tion made of two superconducting leads connected via a dis- p(X,e)=Re coss. 2)
ordered normal layer. The gap in this junction is determined
by the diffusion time across the normal layer and is sensitivéNote that we measure lengths in units of the junction width
to the phase difference across the junction, reaching a maxi-=1 and the unit of energy is the Thouless energk.
mum at zero phase difference and vanishing at the phaseD/L?, with D the diffusion constant in the normal metal.
differencer.t We further assume that the Thouless endfgy as well as
The appearance of a minigap and its phase dependenceal other energy scales in the problem, are much smaller than
well understood in the quasiclassical description. Providedhe superconducting gap. In this limit, the energy scala
the scattering length is much larger than the Fermi wavés (to leading orderexcluded from the Usadel equations. At
length but much smaller than the coherence length in thenergies of ordeE,, the relevant normal-metal coherence
normal metal, the motion of the electrons in the normal layelength determining the applicability of Usadel equations
is diffusive and the proximity effect may be described by theequals the junction width.
Usadel equationd.These equations are nonlinear, which  Within the superconducting lead8= /2 (ate<A) and
complicates their analytical treatment except for several equals the phase of the superconducting order parameter.
simple limits. One of the cases most accessible to an analytinside the junction, bott¥ and x turn into complex func-
cal treatment is the limit of a long disordered SNS junctiontions. For simplicity, we choose ideally transparent interfaces
(with the minigap energy scale much smaller than the supefand assume the normal metal to be much more disordered
conducting gap with transparent normal-metal- than the superconductor; in this case the boundary conditions
superconductor interfaces. The spectral properties of suchgecome “rigid”®%
junction have been previously studied in Refs. 4 and 6, and
we find it possible to further improve on those results. In this -
note we revisit this problem, refining some of the existing 0(x=0)=0(x=1)= PR
results and replacing numerical answers with analytical ones.
We design this note as a quick reference on the structure of

the minigap in a long disordered SNS junction which may be x(x=0)=0, x(x=1)= xo. ()
useful in view of renewed interest in such systems in con- . o
nection with problems related to-junctions® and mesos- Equations(1)—(3) form a closed set determining the den-

copic fluctuations:'° As a byproduct, we derive two useful Sity of stategwith x, ande as input parametexsThey have

identities for solutions to Usadel equations which simplify been analyzed in Refs. 4 and 6 and in this paper we extend

our analytical calculations. their results; we list them first and sketch their derivation
Assuming a quasi-one-dimensional geometry of the conafterwards.

tact, the proximity effect in the normal layer may be de- (i) The complex integral “density of states” defined as

scribed via the Usadel equatiofis our paper we conform to

the definitions of Ref. # . fl
e)=| dxcosé(x,e 4
p(e) o (X&) (4)

1, 1
S dy0+iesing— Z(axx) sin260=0,

2 obeys the relations
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- dp B c
P 8£_| ga ( )
ap aC

=i ®)
IXo de
whereB(e, xo) andC(e,x,) are integrals of Eq(l);
B= ! 2| ¢ 7
—Z((?XB) _|8C030+m, ( )
C=(dyx)Sirto. (8)

(ii) Nearyo— 0 andyo,— , the phase dependence of the

minigap E4(xo) (in units of E;) involves the leading terms

Eg(x0)=C2(1-Cixp), xo<m, ©)
Eg(x0)=Cs(m—x0), 7 xo<m. (10
The value ofC, was derived in Ref. 4,
c f Yo dv 2 3.122, (11)
=| max ~3.122,
20, Jo (sinhy—sinh)2

with the maximum attained a50m1.421. The value o€,
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(iv) At energiese much higher tharE, but much lower
than the superconducting gap, the leading corrections to the
(integra) density of states are

c _
p(e.x0)~1- T:W FC(e)cosxo),  (17)

where
Cs=2—/2~0.586, (18)
C6(8)=16taﬁg —cosye + w . (19

The verification of(i) is straightforward: We integrate the
Usadel equations(l) once and denote the coordinate-
independent integrals bB and C as in Egs.(7) and (8).
Relations(5) and (6) are then obtained via integration by
parts inx and repeated use of the Usadel equations; see the
Appendix for details. Relatiofb) expresses the conservation
of the total number of states as a functiom@f indeed, Eq.
(5) implies thatp(e) is a total derivative in energy of the
expression (Qﬁ—iB) which is independent of, at large
energieqthis follows from our discussion of the resulv)
below]; therefore, the integral gi(¢) over energies is inde-

reported in Ref. 4 is incorrect by an order of magnitude ande€ndent ofy,. Identity (6) follows from the fact that the

we find the correct value

jg,o d9(sinhdy+sinhd)
0 (sinhd,—sinh®)Y2cosiH9 costtd,
C,= > ~0.0921.
3 dd
a\c, f ’ . : 12
0 (sinhdy—sinh9¥)Y?cositd
(12)

For C; we find the analytic result close to the numerical

value reported in Ref. 4,

2

™
C3=T~2.467. (13

(i) The integral density of statgs(s)=Rep(e) has a
square-root singularity at=Eg4 A

c—E 1/2
p<e>~c4<xO)( = g) : (14
g
with the coefficientC, diverging aty,— 7 as
Cualxo)=a(m—xo) 2", (15

This asymptotic form has been found numerically in Refs.

and 6 and we confirm it here analytically, together with the

value fora:

—

™6

1 3T

—2/3
—- —) ~2.494.

27 64 (16)

4

supercurren{which equals InC in appropriate unif§ can

be expressed as the derivative of the free energy with respect
to xo; we verify Eq.(8) directly on the level of Usadel equa-
tion in the Appendix.

To obtain the results of paragrafih we follow the usual
procedure in integrating the Usadel equations: below the gap,
0(x) takes the formoé=m/2+i39, where J(x) is real and
varies from O at théN-S interface to its maximal valué,
in the middle of the normal layer. From Eq§) and (8) we
obtain the differential equations

0= () — F (NI e, (20)

where f(9)=sinh@®)—(C%4e)cosh 29. Their integration
over half the junction provides us with the solutions of the
Usadel equations in the forms

d.x=C cosh 29,

o

=),

c 00
Xo™ Jelo cosRo[f(9y) —f(9)]¥2

dd
[f(00)— ()Y

B9

(21)

expressinge and , in terms of the new paramete@ \s
and d,. The minigapEg(x,) is defined as the maximal en-
ergy ¢ compatible with this solutiofwith a real 9(x)].
Equation (12) is now easily obtained by expanding @,
which is the small parameter negg= 0, while result(13) is
obtained from an expansion ¥ the small parameter close
to xo=m where the minigap vanishdgalso see the deriva-
tion below.
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A more accurate expansion in smallis necessary to and henced, develops an imaginary part at energies
obtain the results of paragragfii). The density of states >Eg. The singularity indy(e) translates into a square-root
near the gap edggEq. (14)] is derived with the help of singularity inB(e); evaluating Eq(7) in the junction middle
relation (5). The key idea of the calculation is that most and expressin@ with the help of Eq.(24), we obtain
guantities are regular functions of the parametégsand

&/C? (except for the poinj,= 7, where the minigap van- cothdy 3m
ishes. The square-root singularifyl4) appears when invert- B=¢ — Xo - 1_68 0
ing regular functions at the extremal point. Remarkably, in
this way we can compute the density of states at the gap edge 2(s—Ey) _
using the solutions to the Usadel equatidredow the gap ~ReB*isg T[(w—XO)‘lsinh‘zﬂo
and analytically continuing them to energies above the gap. |‘7ﬂ08|ﬂ0
Close toyxo= 7 the energy is small and we can expand 5
Eq. (21) in the small parametef=&/C?: +3me’0/16]. (29

1 This singularity inB further translates, via Eq5), into a
5= §) e®%5%+.... (22  square-root singularity in the density of stajgs). Evalu-
ating the coefficient in Eq29) with the use of Eq(25) for
4 coshi ¥, 37 1 e(9) and of Eq.(26) for 9y, we arrive at the final results
Xo=T— ———— +(—— —) eSs?+.... (23) [Egs.(14—(16)]. The coefficient(16) agrees with the nu-
sinh#, 16 2 merical findings in Ref. 4.
We will show below that the solutions at the gap edge near Another regime where the density of states is amenable to
Xo= involve a large paramete¥,>1, and hence we may & simple analytic solution is at energies much larger tan
keep 0n|y the |eading terms &0 in the coefficients ofs2. but much smaller thad. In this limit, the Coupling between
Next we invert Eq(23) to find the superconducting leads is weak, which allows us to derive
the results of paragraptiv). In Eq. (17), the term propor-
L ) tional to £ 2 is due to the suppression of the density of
e "o(m—xo)%, states near the interfaces, and the exponentially small term
(24) proportional to cogg results from the Josephson coupling.

. ) At ¢>1, the Usadel equations may be solved by matching
and substitute the result into E@2) to express the energy  the solutions for the two semi-infinitd—S systems; such a
as a power series inm(— x,) and as a function ofy: solution takes the forfh

e=(m?costtdy)6— 77'(

5 sinhd 37 1
~4cosﬁﬂ0(w X0t 7673

2

- 3
e~ T(W—Xo)tanhﬂo—

2 64

e?o(m— xo)2.
(25

The gap edge is given by maximizing in Eq. (25) as a Where sz'/—Zis (ReK>O) and the normal Iayer is at
function of 9; the corresponding valug, maximizinge is ~ — 0- Matching of such solutions was performed in Ref. 12 by
observing that fof§|<1 (i.e., everywhere in the junction,

-1 except for the very thin layers at the interfacése Usadel

~84.08; (26) equations become linear in the variablés ge'* and f

= ge”'X. Therefore the solution near the middle of the junc-

we see thatd, is indeed large at the gap ed@er small =  tion is given through the simple sums
— Xo), albeit only logarithmically and with a small prefactor

: (30)

a
Ong(X,8)=4 arctarE e than8—

— 1 xc 1 37
Y=z X l2x 6a

1/3. Upon substitution into Eq25), this result also gives us f(X) = Os(X) + €00y (1 —X),
the next-order correction to ELO):
72 = o) 22 f(X) = Ons(X)+e~X0gyg(1-X). (31
Eg(X0)= T(W_XO)[1_6( . ) } @D Erom this solution we easily find, using Eq3) and (8),

We are now prepared to derive the density-of-states sin- T _
gularity at the gap edggEqgs. (14)—(16)]. The maximum of C(e)=32 taﬁgKe_ “sinxo, (32
the functiong(z‘}g) at 9, is expressed in the relatias(9)
~Eg—|a§08|50[1‘}0—1?0]2/2; its inversion produces a

square-root singularity at the gap edge in the functigte), B(e)=—ie|1-32 tar?ge COSXo |- (33)
— 2(e—Ey) With the help of identitieg5) and (6) this immediately im-
Fo(e)=Fpxi e (28)  plies results(17) and (19). The value ofCs is left undeter-

| ’908|‘30 mined by this method but may easily be obtained from di-

052507-3



BRIEF REPORTS

rectly integrating the local density of state$2)
corresponding to th&l—S solutions(30), which leads to re-
sult (18).

We thank Urs Ledermann for discussions and for drawing
our attention to Ref. 12 and Swiss National Foundation for

financial support.

APPENDIX

In order to verify Eq.(5) we use definition(7) of B to
re-express

d

~ Jd (1 i
_(iB— - _ 2_
(iB—2¢ep) P fo dx 4(8)(0) £ cosd

de

+ iz(axx)zsinze

1
fdx
0

+ = (axx)a( )smza

io70(9 7 0+ '0(90
Z(X)Xas COSf+ e sin e

(A1)

+i dyx)?sin@ 0(76
2( X)“Sin6 cos el
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In order to verify Eq. (6) we use the identity
JyoJ 00X(3xx) *Si?6=2C+ [5dX(x) 0, SIN6 o re-express
dClde as

ac i 9 9 1d o sire
95 2 0s dxoJto X(9ux)"S
i 9 a0
+—— dx( dyx)?sin 29—. (A3)
2 de X0

We use the second Usadel equation to differentiate the first
of the two terms irg;

%f:dx( Ay x) 2SIt =2 foldxax( Z—:) (dyx)sSinto

1 L
+f dX(dyx)?sin20—. (A4)
0 de

On the right-hand side of EqA4), the first term is annihi-
lated after integration by parts, and we finally arrive at
[

2 dxo

(9C

a0
o= f dx(dyx)?sin 20—

’ (oo
2 75 ), AX(@0)*sin20 5

The last integral contains five terms. After integrating the

first term by parts irx (separating 6/ d¢), it vanishes against
the third and fifth terms by virtue of the first Usadel equation
(1). Integrating the fourth term in EqAl) by parts inx

annihilates it due to the second Usadel equation; we thus

arrive at
—(iB 28;) = A2

which is equivalent to Eq(5).

2 fld 20+ 2issing)o
IﬂXo . X( 5 iesin )88

+i afld 20+ 2ie sind o6

= . X( 95 iesin )r?Xo
00 0

fdxsma——z—p,

0)

where we have used the first Usadel equation.

IXo (A%)

IW.L. McMillan, Phys. Rev175, 537 (1968.

2AA. Golubov and M.Yu. Kupriyanov, J. Low Temp. Phy&0, 83
(1988; Zh. Eksp. Teor. Fiz96, 1420(1989 [Sov. Phys. JETP
69, 805(1989].

SW. Belzig, C. Bruder, and G. Scho Phys. Rev. B54, 9443
(1996.

4F. Zhou, P. Charlat, B. Spivak, and B. Pannetier, J. Low Temp.

Phys.110 841(1998; cond-mat/9707056unpublishedl

SK.D. Usadel, Phys. Rev. Let®5, 507 (1970.

8p. Charlat, Ph.D. thesis, Universittoseph Fourier, Grenoble,
1997. )

7L.N. Bulaevskii, V.V. Kuzii, and A.A. Sobyanin, Pis’'ma Zhkgp.
Teor. Fiz. 25, 314 (1977 [JETP Lett.25, 290 (1977]; A.l

05250

Buzdin and M.Yu. Kupriyanovjbid 53, 308 (1997 [ibid. 53,
321(199D)].

8\.V. Ryazanov, V.A. Oboznov, A.Yu. Rusanov, A.V. Veretennikov,
A.A. Golubov, and J. Aarts, Phys. Rev. Le®6, 2427 (2002);
cond-mat/0008364unpublishegl

9A. Altland, B.D. Simons, and D. Taras-Semchuk, Adv. PHS.
321 (2000; cond-mat/980737 lunpublishel

1p M. Ostrovsky, M.A. Skvortsov, and M.V. Feigel'man, Phys.

Rev. Lett.87, 027002(2001); cond-mat/0012478unpublishegl

1M.Y. Kupriyanov and V.F. Lukichev, Zh. I&p. Teor. Fiz94, 139

(1988 [Sov. Phys. JETB7, 1163(1988].
2A.D. Zaikin and G.F. Zharkov, Fiz. Nizk. Temp, 375 (1981
[Sov. J. Low Temp. Phys, 184 (1981)].

7-4



