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Minigap in a long disordered SNS junction: Analytical results
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We review and refine analytical results on the density of states in a long disordered superconductor–normal-
metal–superconductor junction with transparent interfaces. Our analysis includes the behavior of the minigap
near phase differences zero andp across the junction, as well as the density of states at energies much larger
than the minigap but much smaller than the superconducting gap.
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A superconductor in contact with a normal metal induc
pairing correlations in the metal, a phenomenon known
the proximity effect. One of the most remarkable con
quences of such induced correlations is the appearance
gap, usually referred to as the ‘‘minigap,’’ in the electron
excitation spectrum of the normal metal; see Ref. 1 for
early introduction and Refs. 2 and 3 for a detailed derivati
A very common setup exhibiting a minigap is th
superconductor–normal-metal–superconductor~SNS! junc-
tion made of two superconducting leads connected via a
ordered normal layer. The gap in this junction is determin
by the diffusion time across the normal layer and is sensi
to the phase difference across the junction, reaching a m
mum at zero phase difference and vanishing at the ph
differencep.4

The appearance of a minigap and its phase dependen
well understood in the quasiclassical description. Provid
the scattering length is much larger than the Fermi w
length but much smaller than the coherence length in
normal metal, the motion of the electrons in the normal la
is diffusive and the proximity effect may be described by t
Usadel equations.5 These equations are nonlinear, whi
complicates their analytical treatment except for seve
simple limits. One of the cases most accessible to an ana
cal treatment is the limit of a long disordered SNS juncti
~with the minigap energy scale much smaller than the su
conducting gap! with transparent normal-metal
superconductor interfaces. The spectral properties of su
junction have been previously studied in Refs. 4 and 6,
we find it possible to further improve on those results. In t
note we revisit this problem, refining some of the existi
results and replacing numerical answers with analytical on
We design this note as a quick reference on the structur
the minigap in a long disordered SNS junction which may
useful in view of renewed interest in such systems in c
nection with problems related top-junctions7,8 and mesos-
copic fluctuations.9,10 As a byproduct, we derive two usefu
identities for solutions to Usadel equations which simpl
our analytical calculations.

Assuming a quasi-one-dimensional geometry of the c
tact, the proximity effect in the normal layer may be d
scribed via the Usadel equations~in our paper we conform to
the definitions of Ref. 4!
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]x~]xx sin2u!50, ~1!

whereu(x,«) and x(x,«) are the variables parameterizin
the zero angular momentum component of the Green’s fu
tions, g5cosu and f 5sinu exp(ix); herex is the phase of
the superconducting correlations, and the local density
statesr(x,«) ~in units of the normal electron density in th
bulk! is given by

r~x,«!5Re cosu. ~2!

Note that we measure lengths in units of the junction wid
L51 and the unit of energy« is the Thouless energyEc
5D/L2, with D the diffusion constant in the normal meta
We further assume that the Thouless energyEc , as well as
all other energy scales in the problem, are much smaller t
the superconducting gapD. In this limit, the energy scaleD
is ~to leading order! excluded from the Usadel equations. A
energies of orderEc , the relevant normal-metal coherenc
length determining the applicability of Usadel equatio
equals the junction widthL.

Within the superconducting leads,u5p/2 ~at «!D) and
x equals the phase of the superconducting order param
Inside the junction, bothu and x turn into complex func-
tions. For simplicity, we choose ideally transparent interfa
and assume the normal metal to be much more disord
than the superconductor; in this case the boundary condit
become ‘‘rigid’’9,11:

u~x50!5u~x51!5
p

2
,

x~x50!50, x~x51!5x0 . ~3!

Equations~1!–~3! form a closed set determining the de
sity of states~with x0 and« as input parameters!. They have
been analyzed in Refs. 4 and 6 and in this paper we ext
their results; we list them first and sketch their derivati
afterwards.

~i! The complex integral ‘‘density of states’’ defined as

r̂~«!5E
0

1

dx cosu~x,«! ~4!

obeys the relations
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r̂12«
]r̂

]«
5 i

]B

]«
, ~5!

2
]r̂

]x0
52 i

]C

]«
, ~6!

whereB(«,x0) andC(«,x0) are integrals of Eq.~1!;

B5
1

4
~]xu!22 i« cosu1

C2

4 sin2u
, ~7!

C5~]xx!sin2u. ~8!

~ii ! Nearx0→0 andx0→p, the phase dependence of th
minigapEg(x0) ~in units of Ec) involves the leading terms

Eg~x0!5C2~12C1x0
2!, x0!p, ~9!

Eg~x0!5C3~p2x0!, p2x0!p. ~10!

The value ofC2 was derived in Ref. 4,

C25Fmax
q0

E
0

q0 dq

~sinhq02sinhq!1/2G 2

'3.122, ~11!

with the maximum attained atq̂0'1.421. The value ofC1
reported in Ref. 4 is incorrect by an order of magnitude a
we find the correct value

C15

E
0

q̂0
dq~sinhq̂01sinhq!

~sinhq̂02sinhq!1/2cosh2q cosh2q̂0

4AC2F E
0

q̂0
dq

~sinhq̂02sinhq!1/2cosh2q
G 2 '0.0921.

~12!

For C3 we find the analytic result close to the numeric
value reported in Ref. 4,

C35
p2

4
'2.467. ~13!

~iii ! The integral density of statesr(«)5Rer̂(«) has a
square-root singularity at«5Eg ,4

r~«!;C4~x0!S «2Eg

Eg
D 1/2

, ~14!

with the coefficientC4 diverging atx0→p as

C4~x0!5a~p2x0!22/3. ~15!

This asymptotic form has been found numerically in Refs
and 6 and we confirm it here analytically, together with t
value fora:

a5
1

pA6
S 1

2p
2

3p

64D 22/3

'2.494. ~16!
05250
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~iv! At energies« much higher thanEc but much lower
than the superconducting gap, the leading corrections to
~integral! density of states are

r~«,x0!'12
C5

A«
1e2A«C6~«!cos~x0!, ~17!

where

C5522A2'0.586, ~18!

C6~«!516 tan2
p

8F2cosA«1
cosA«2sinA«

2A«
G . ~19!

The verification of~i! is straightforward: We integrate th
Usadel equations~1! once and denote the coordinat
independent integrals byB and C as in Eqs.~7! and ~8!.
Relations~5! and ~6! are then obtained via integration b
parts inx and repeated use of the Usadel equations; see
Appendix for details. Relation~5! expresses the conservatio
of the total number of states as a function ofx0; indeed, Eq.
~5! implies that r̂(«) is a total derivative in energy of the
expression (2«r̂2 iB) which is independent ofx0 at large
energies@this follows from our discussion of the result~iv!

below#; therefore, the integral ofr̂(«) over energies is inde
pendent ofx0. Identity ~6! follows from the fact that the
supercurrent~which equals ImC in appropriate units5! can
be expressed as the derivative of the free energy with res
to x0; we verify Eq.~8! directly on the level of Usadel equa
tion in the Appendix.

To obtain the results of paragraph~ii ! we follow the usual
procedure in integrating the Usadel equations: below the g
u(x) takes the formu5p/21 iq, whereq(x) is real and
varies from 0 at theN–S interface to its maximal valueq0
in the middle of the normal layer. From Eqs.~7! and~8! we
obtain the differential equations

]xq5Af ~q0!2 f ~q!/A«, ]xx5C cosh22q, ~20!

where f (q)5sinh(q)2(C2/4«)cosh22q. Their integration
over half the junction provides us with the solutions of t
Usadel equations in the forms

A«5E
0

q0 dq

@ f ~q0!2 f ~q!#1/2
,

x05
C

A«
E

0

q0 dq

cosh2q@ f ~q0!2 f ~q!#1/2
, ~21!

expressing« and x0 in terms of the new parametersC/A«
andq0. The minigapEg(x0) is defined as the maximal en
ergy « compatible with this solution@with a real q(x)#.
Equation ~12! is now easily obtained by expanding inC,
which is the small parameter nearx050, while result~13! is
obtained from an expansion in«, the small parameter clos
to x05p where the minigap vanishes~also see the deriva
tion below!.
7-2
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A more accurate expansion in small« is necessary to
obtain the results of paragraph~iii !. The density of states
near the gap edge@Eq. ~14!# is derived with the help of
relation ~5!. The key idea of the calculation is that mo
quantities are regular functions of the parametersq0 and
«/C2 ~except for the pointx05p, where the minigap van
ishes!. The square-root singularity~14! appears when invert
ing regular functions at the extremal point. Remarkably,
this way we can compute the density of states at the gap e
using the solutions to the Usadel equationsbelow the gap
and analytically continuing them to energies above the g

Close tox05p the energy« is small and we can expan
Eq. ~21! in the small parameterd5«/C2:

«5~p2cosh2q0!d2pS 1

2
2

p

8 De5q0d21•••, ~22!

x05p2
4 cosh3q0

sinhq0
d1S 3p

16
2

1

2De5q0d21•••. ~23!

We will show below that the solutions at the gap edge n
x05p involve a large parameterq0@1, and hence we may
keep only the leading terms ineq0 in the coefficients ofd2.
Next we invert Eq.~23! to find

d'
sinhq0

4cosh3q0
~p2x0!1F3p

16
2

1

2Ge2q0~p2x0!2,

~24!

and substitute the result into Eq.~22! to express the energy«
as a power series in (p2x0) and as a function ofq0:

«'
p2

4
~p2x0!tanhq02Fp2 2

3p3

64 Geq0~p2x0!2.

~25!

The gap edge is given by maximizing« in Eq. ~25! as a
function ofq0; the corresponding valueq̄0 maximizing« is

q̄05
1

3
ln

xc

p2x0
, xc5S 1

2p
2

3p

64D 21

'84.08; ~26!

we see thatq̄0 is indeed large at the gap edge~for small p
2x0), albeit only logarithmically and with a small prefacto
1/3. Upon substitution into Eq.~25!, this result also gives us
the next-order correction to Eq.~10!:

Eg~x0!5
p2

4
~p2x0!F126S p2x0

xc
D 2/3G . ~27!

We are now prepared to derive the density-of-states
gularity at the gap edge@Eqs. ~14!–~16!#. The maximum of
the function«(q0) at q̄0 is expressed in the relation«(q0)
'Eg2u]q0

2 «uq̄0
@q̄02q0#2/2; its inversion produces a

square-root singularity at the gap edge in the functionq0(«),

q0~«!5q̄06 iA2~«2Eg!

u]q0

2 «uq̄0

, ~28!
05250
ge

.

r

n-

and henceq0 develops an imaginary part at energies«
.Eg . The singularity inq0(«) translates into a square-roo
singularity inB(«); evaluating Eq.~7! in the junction middle
and expressingC with the help of Eq.~24!, we obtain

B5«Fcothq0

p2x0
2

3p

16
eq0G

'ReB6 i«A2~«2Eg!

u]q0

2 «uq̄0

@~p2x0!21sinh22q̄0

13peq̄0/16#. ~29!

This singularity inB further translates, via Eq.~5!, into a
square-root singularity in the density of statesr(«). Evalu-
ating the coefficient in Eq.~29! with the use of Eq.~25! for
«(q0) and of Eq.~26! for q̄0, we arrive at the final results
@Eqs. ~14!–~16!#. The coefficient~16! agrees with the nu-
merical findings in Ref. 4.

Another regime where the density of states is amenabl
a simple analytic solution is at energies much larger thanEc
but much smaller thanD. In this limit, the coupling between
the superconducting leads is weak, which allows us to de
the results of paragraph~iv!. In Eq. ~17!, the term propor-
tional to «21/2 is due to the suppression of the density
states near the interfaces, and the exponentially small t
proportional to cosx0 results from the Josephson coupling

At «@1, the Usadel equations may be solved by match
the solutions for the two semi-infiniteN–S systems; such a
solution takes the form9

uNS~x,«!54 arctanS e2kxtan
p

8 D , ~30!

where k5A22i« (Rek.0) and the normal layer is atx
.0. Matching of such solutions was performed in Ref. 12
observing that foruuu!1 ~i.e., everywhere in the junction
except for the very thin layers at the interfaces! the Usadel
equations become linear in the variablesf 5ueix and f̄
5ue2 ix. Therefore the solution near the middle of the jun
tion is given through the simple sums

f ~x!5uNS~x!1eix0uNS~12x!,

f̄ ~x!5uNS~x!1e2 ix0uNS~12x!. ~31!

From this solution we easily find, using Eqs.~7! and ~8!,

C~«!532 tan2
p

8
ke2ksinx0 , ~32!

B~«!52 i«F1232 tan2
p

8
e2kcosx0G . ~33!

With the help of identities~5! and ~6! this immediately im-
plies results~17! and ~19!. The value ofC5 is left undeter-
mined by this method but may easily be obtained from
7-3
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rectly integrating the local density of states~2!
corresponding to theN–S solutions~30!, which leads to re-
sult ~18!.

We thank Urs Ledermann for discussions and for draw
our attention to Ref. 12 and Swiss National Foundation
financial support.

APPENDIX

In order to verify Eq.~5! we use definition~7! of B to
re-express

]

]«
~ iB22«r̂!5

]

]«E0

1

dxF i

4
~]xu!22« cosu

1
i

4
~]xx!2sin2uG

5E
0

1

dxF i

2
~]xu!]xS ]u

]« D2cosu1« sinu
]u

]«

1
i

2
~]xx!]xS ]x

]« D sin2u

1
i

2
~]xx!2sinu cosu

]u

]«G . ~A1!

The last integral contains five terms. After integrating t
first term by parts inx ~separating]u/]«), it vanishes agains
the third and fifth terms by virtue of the first Usadel equati
~1!. Integrating the fourth term in Eq.~A1! by parts inx
annihilates it due to the second Usadel equation; we t
arrive at

]

]«
~ iB22«r̂!52 r̂, ~A2!

which is equivalent to Eq.~5!.
p

,

05250
g
r

s

In order to verify Eq. ~6! we use the identity
]x0

*0
1dx(]xx)2sin2u52C1*0

1dx(]xx)2]x0
sin2u to re-express

]C/]« as

2 i
]C

]«
52

i

2

]

]«

]

]x0
E

0

1

dx~]xx!2sin2u

1
i

2

]

]«E0

1

dx~]xx!2sin 2u
]u

]x0
. ~A3!

We use the second Usadel equation to differentiate the
of the two terms in«;

]

]«E0

1

dx~]xx!2sin2u52E
0

1

dx]xS ]x

]« D ~]xx!sin2u

1E
0

1

dx~]xx!2sin 2u
]u

]«
. ~A4!

On the right-hand side of Eq.~A4!, the first term is annihi-
lated after integration by parts, and we finally arrive at

2 i
]C

]«
52

i

2

]

]x0
E

0

1

dx~]xx!2sin 2u
]u

]«

1
i

2

]

]«E0

1

dx~]xx!2sin 2u
]u

]x0

52 i
]

]x0
E

0

1

dx~]x
2u12i«sinu!

]u

]«

1 i
]

]«E0

1

dx~]x
2u12i« sinu!

]u

]x0

522E
0

1

dx sinu
]u

]x0
52

]

]x0
r̂, ~A5!

where we have used the first Usadel equation.
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