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Localized states within the gap in a two-band superconductor
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We present results for strong-coupling calculations for the density of states in the presence of magnetic
impurities in a two-band superconductor. Our calculations were done for the particular case of a MgB2

compound where two bands (s andp B-like! intersect the Fermi level. If only thep band is responsible for
superconductivity, then an impurity band will form in the energy gap of thep band. If thes band is involved,
then new features may be found in the density of states at frequencies between the superconducting gaps
corresponding top ands bands. The validity of our results can be directly verified by measuring the density
of states in the presence of magnetic impurities using tunneling experiments in MgB2. We also present
analytical results for the doping dependence of the critical temperature.
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Since the discovery of superconductivity in MgB2 by Na-
gamatsuet al.1 with a critical temperature as high asTC
539 K, a tremendous amount of experimental and theo
ical work has been initiated for giving a reasonable expla
tion of the superconducting properties of this compou
There is not yet a consensus whether the strong elect
phonon interaction2 or the hole superconductivity3 is
responsible for superconductivity in MgB2. Both scenarios
seem to be in agreement with the large amount of experim
tal data4–7 and in favor of s-wave superconductivity.
Other experiments such as tunneling8 and specific
heat9 have pointed out the presence of two gaps. The tw
band superconductivity model was first proposed by S
et al.10 in the framework of BCS theory as an academ
problem. Later the model was applied to cuprate superc
ductors by Kresinet al. in the framework of Eliashberg
theory.11

The aim of this paper is to conduct an experiment
MgB2, whose qualitative outcome can, in principle, deci
the number of the bands in MgB2 involved in superconduc
tivity. We consider the effect of paramagnetic impuritie
treated within the Shiba approximation,12 on the density of
states in MgB2. The first generalization of magnetic allo
theory to include strong-coupling effects within the Elias
berg theory was given by Schachinger13 and further devel-
oped by others.14 We generalize these results by consider
the case of two-band superconductivity.15 The Eliashberg
equations for the two-band model were solved previous16

in the case of clean superconductors and in the presenc
nonmagnetic impurities for explaining the physical prop
ties such as penetration depth and nuclear-spin relaxatio
the superconducting state. In our calculations the numer
results for the quasiparticle density of states are obtai
indirectly from the analytical continuation to the real fr
quency axis of the gap functions using a Pa´
approximation.17 We have calculated the gap functions for
large number of Matsubara frequencies~we have used 2048
Matsubara frequencies! ivn . When magnetic impurities ar
considered the perturbation potential isVI(r2RI)5U(r
2RI)1J(r2RI)sS where RI is the impurity location.U
describes the non-spin-flip interaction and the second ter
the spin-flip interaction that is considered in the classi
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limit 19 (S→`, J→0). S is the impurity spin which is a
classical vector. The interaction term is treated based o
T-matrix approximation where multiple scattering on t
magnetic impurity is considered, in contrast with Abrikoso
Gorgov theory20 where only the Born approximation wa
taken into account. Although Shiba’s theory applies to
case where higher partial wave electron-impurity scatter
is included, the papers which have been based on the th
have all assumed lower scattering waves. In our approxi
tion only thes-wave channel is considered. The derivation
the Eliashberg equations for the two-band model is simila
the case of one band.13 When magnetic impurities are in
cluded the equations are

Ds~ ivn!5
1

Zs~ ivn!
pT(

vm

@~lss~ ivn2 ivm!2mss
! !
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where we have introduced the following notations for t
functionsg and f:

gi~ ivn!5
vn

Avn
21D i

2~vn!
,

f i~ ivn!5
D i~ ivn!

Avn
21D i

2~vn!
, ~2!

and

l i j ~ ivn2 ivm!5E
0

`

dva i j
2 F~v!

2v

v21~vn2vm!2
. ~3!

In Eqs. ~1!–~3! D i( ivn) are the superconducting order p
rameters corresponding to thes ( i 5s) and thep ( i 5p)
bands andZi( ivn) are the corresponding renormalizatio
factors. The first term~sum over frequencies! in each equa-
tion is due to the intra- and interband phonon scatter
while the last two terms are due to the impurity scattering
and between the bands. The parametersG i j are defined as
2G i j

(1)51/t i j
(1)11/t i j

(2) and 2G i j
(2)51/t i j

(1)21/t i j
(2) where t i j

(1)

is the non-spin-flip scattering lifetime andt i j
(2) is the spin-flip

scattering lifetime of the magnetic impurity.G i j is propor-
tional with the impurity concentrationni . « i j are related with
the scattering phase in thes-wave channel13 « i j 5cos(d1

2d2), where tan(d6)5U6JS. In our calculations we con
sider that scattering between bands is not important so
scattering ratestps

21 and tsp
21 can be neglected. In order t

motivate our approximation we consider first the case of
single impurity model. In this case thepx ,py orbitals of the
s band and thepz orbitals of thep band may hybridize with
the same impurity orbital. This hybridization will lead to
finite interband scattering between bands.18 The only quali-
tative feature observed when increasing the interband s
tering was a broadening of the bound states correspondin
the s band ~transformation into a resonance with a fini
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width! while their position remained fixed. The bound stat
corresponding to thep band remain practically unchange
with modifying the interband scattering. When a finite co
centration is considered the resonances correspondin
each band transform into a impurity band.12 A large scatter-
ing between bands may lead to a broadening of the obse
features in the density of states of each band. However if
magnetic impurities are randomly distributed in the mate
the correspondings- andp-band orbitals couple with differ-
ent orbitals of the magnetic impurities so the charge tran
between the bands is very small. In our study we conside
this a good approximation, we neglected the scattering
tween bands mediated by the magnetic impurities, and c
sidered that what was responsible for interband electron
teraction are phonons only. In the case of the two-ba
model there are four Eliashberg functionsa i j

2 F(v) instead of
only one, as in the case of the single-band model. Th
frequency dependence was recently calculated in Ref. 22
it was found that all present a sharp peak at a freque
corresponding to theE2g phononic mode. In our calculation
we will use a Lorentzian form for the phonon density
states, which was demonstrated16 to model the experimenta
data for the temperature dependence of the gap functi
The Lorentzian is centered at a frequency correspondin
the E2g mode (E2g567 meV). For each band we keep th
sameF(v) constant and vary only the weighting factorsa i j
in order that the temperature dependence of the calcul
gaps fit the experimental data. The critical temperature
be defined as the highest temperature below which there
nonvanishing solutions for the gap functionsD i( ivn). In-
cluding magnetic impurity terms in Eliashberg equations h
a drastic effect on the frequency dependence of the gap f
tions D( ivn) and of the renormalization functionsZ( ivn).
In Fig. 1 we represent the frequency dependence of the
functions and the renormalization constants for thes band.
Similar results are obtained also for thep band~see also Ref.
16!. The real parts of the gap functions start to decrease
we increase the scattering rates and the imaginary parts
come negative below the leading edge gap@given by the
equation Re$D(v5D0)%5D0#. In the clean limit below the
leading edge gap the imaginary part of the gap functio
vanishes. The most important difference between alloys
the pure limit is the low-frequency behavior of the imagina
part of the renormalization constantZi( ivn) which acquires
a 1/v dependence due to the impurity scattering term.
performed numerical calculations for a large spectrum
magnetic impurity lifetimes and we found qualitatively sim
lar results for the frequency dependence of the gap funct
and for the renormalization functionsZi(v). Anisotropy of
the band structure may lead to modification of the gap fu
tion for frequencies larger than the leading edge gap ene
therefore, we did not take into account the fullk dependence
of the gap and of the renormalization function. We consid
an isotropic single-particle excitation for the two Ferm
surface sheets, which is a reasonable approximation21 for the
present problem. In Fig. 1 we present the result for the cl
limit together with the case when 1/tss

(1)53.0, 1/tss
(2)51.5,

1/tpp
(1)52.0, 1/tpp

(2)51.0, and« i j 50.85. All the other scatter-
1-2
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ing rates were considered to be zero. The scattering rate
tween the bands has no other qualitative effect except
the leading edge gaps corresponding to each band sta
converge to the same value. All these modifications in
frequency dependence of the gap functions and of the re
malization constants lead to the formation of an ‘‘impur
band,’’ within the density of states, that grows to fill the g
at a finite concentration of magnetic impurities. This effec
observed for each band separately. For the completene
our work we present also analytical results for temperat
dependence of the gap functions near the critical temp
ture, nearT50 K, and for the doping dependence of th
critical temperature. We have studied the influence of
magnetic impurities on the critical temperatureTC . The sys-
tem ~1! is not tractable analytically but a numerical solutio
is possible. In any case, considering the weak-coupling lim
it is possible to transform the Eliashberg equations into B
equations for a two-band model for which the solution
the critical temperature is known.10 The weak-coupling limit
is characterized by the following approximations:

l i j ~ ivn2 ivm!5H l i j uvnu,uvmu,vC ,

0 otherwise,
~4!

and for the gap functions,

D i~ ivn ,T!5H D i~T! uvnu,vC ,

0 uvnu.vC ,
~5!

wherevC is the frequency cutoff which is of the order of th
Debye energy and for the case of MgB2 can be considered to
be 100 meV (QD.7504880 K).23 Within these approxima-

FIG. 1. Frequency dependence of the real part~solid line! and
the imaginary part~dashed line! of the gap functions, and real pa
~solid line! and imaginary part~dashed line! of the renormalization
function for thes band in the clean limit. The same quantities a
presented in the presence of impurities. Real part of gap func
~dash-dotted line!, and imaginary part of the gap function~short
dotted line!, real part of the renormalization constant~dash-dotted
line!, and imaginary part of the renormalization function~short dot-
ted line!. The values of the scattering rates are in this case 1/tss

(1)

53.0, 1/tss
(2)51.5, 1/tpp

(1)52.0, 1/tpp
(2)51.0, and« i j 50.85. All the

other scattering rates were considered to be zero.
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tions the renormalization functions becomeZs( ivn)51
1lss1lsp , andZp( ivn)511lpp1lps . By introducing
the notationsVi j 5(l i j 2m i j

! )/(11l is1l ip), it is possible
to simplify the analytical solution of the gap equations.
particular we have reobtained the gap equations first der
by Suhl et al. and the critical temperature expression.10 We
have also calculated the ratio 2D i /TC which was found to be
2D i /TC52e2gpeBi where

Bi511
Vii Vj j 2Vi j Vji 12~Vii 2Vj j !14Vi j

2A~Vii 2Vj j !
214Vi j Vji

. ~6!

An interesting result emerges from these calculations reg
ing the value of 2D i /TC which was found to be nonuniversa
in contrast with the BCS theory where this value is univer
and equal to 2D i /TC53.52. In the case when the impuritie
are considered we have an extra term for the renormaliza
constantZi due to the scattering on the impurities. In th
case we reobtained the results of Ref. 24, which were wri
here for completeness:

ln
TC

TC0
5 f 11

AA2AA0

2~VssVpp2VspVps!
, ~7!

where A5(Vss1Vpp)214@ f 2
2 (VssVpp2VspVps)

1 f 2(Vss2Vpp)21#(VssVpp2VspVps), and A05(Vss

2Vpp)214VspVps . The coefficientsf 6 are given by the
following relations: f 151/2@C(1/21rs)1C(1/21rp)#
2C(1/2), and f 251/2@C(1/21rs)2C(1/21rp)#. In the
last two equationsr i5(G is

(1)1G ip
(1))/2pT. Solving Eq.~7! it

is found that the critical temperature starts to decrease as
increase the doping, and at a critical doping the critical te
perature goes to zero. The analytical results of Eqs.~6! and
~7! were obtained in the weak-coupling theory and should
considered qualitatively for comparison with similar resu
for the one-band model24 where only one interaction term
exists in contrast with four interaction terms considered
the two-band model.

The quasiparticle density of states can be measured
rectly by tunneling experiments. It is related only to the g
functions and can be calculated directly from the solutions
Eliashberg equations:

NS
( i )~v!5ReF v

Av22D2~v!
G . ~8!

This result is valid for the case of the clean limit and for t
case of alloys also. In Fig. 2 we have represented the ca
lated frequency dependence of the density of states in
presence of magnetic impurities. The main figure prese
the density of states for each band. The Shiba bound st
which correspond to the case of a single impurity,18 trans-
form into impurity bands which start to grow with increasin
doping. At the same time the critical temperature decrea
The qualitative behavior presented in Fig. 2 occurs fo
large range of scattering rates and for different values of
impurity parameter« i j . The left inset shows the total densit
of states calculated as a weighted sum with a 10% contr
tion from the s band and a 90% contribution from thep
band. If both bands give a contribution to the measured d
sity of states a bias dependence conductance is expected

n
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FIG. 2. Density of states fors andp bands in
the presence of the magnetic impurities. The rig
inset shows the density of states in the cle
limit. The left inset represents the total density
states as a weighted average of the densities
each band. The values for the scattering rates
similar to those in Fig. 1.
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or
tunneling experiment in the presence of magnetic impurit
This may help find which band gives a contribution to t
total density of states in the presence of magnetic impuri
so it is possible to find the number of bands which are
sponsible for the superconductivity in MgB2. If the small
feature at the energy between the gaps presented in the
inset of Fig. 2 is not observed, two possibilities may prov
an explanation. The first is that thes band gives no contri-
bution to the total density of states and the second is tha
s- and p-band orbitals hybridize with the same impuri
orbital, which in the case of random impurities is impro
able. These features calculated theoretically in the densit
states we believe can be observed experimentally in tun
ing experiments when doping MgB2 with a finite concentra-
tion of magnetic impurity.

In conclusion we have studied the influence of magne
impurity on the density of states of a two-band superc
ductor. We have found that there is a measurable effec
both densities of states corresponding to thes andp bands
tt
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for frequencies below the gap energy corresponding to e
band. In break junction tunneling experiments of Ref. 6 o
the p band gives a contribution to the tunneling current d
to its three-dimensional nature while the other band, due
its quasi-two-dimensional nature, does not contribute to
tunneling current. The effect that we observed in density
states can be experimentally measured by magnetically d
ing MgB2. Using break junctions techniques the bulk pro
erties of the system can be investigated in this limit. W
think that the predominant contribution to the tunneling c
rent will be fromp band while thes will contribute less due
to its 2D nature. Using scanning-tunneling microscopy it
also possible to measure the density of states in the pres
of magnetic impurities and check the validity of our theor
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