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Interplay between quasiperiodicity and disorder in quantum spin chains in a magnetic field
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We study the interplay between disorder and a quasiperiodic coupling array in an external magnetic field in
a spiné— XXZ chain. A simple real space decimation argument is used to estimate the magnetization values
where plateaux show up. The latter are in good agreement with exact diagonalization results on faX long
chains. Spontaneous susceptibility properties are also studied, finding a logarithmic behavior similar to the
homogeneously disordered case.

DOI: 10.1103/PhysRevB.66.052419 PACS nuni®er75.10.Jm, 75.10.Nr, 75.60.Ej

Since their discovery in 1984the properties of quasic- hierarchical set of couplings well separated in strength, the
rystals have been a source of sustained interest. Many thepresence of binary disorder results in a shift on the plateaux
retical efforts on Ising models in Penrose lattfcasid XY positions as a function its strength, while for the Gaussian
Fibonacci spin chairis® have revealed interesting magnetic case the plateaux are generically wiped out. We have also
orderings associated to the quasiperiodicity of these strugtudied the effects of a binary disorder on the double fre-
tures. Such kind of spin arrays have been found in recentlgguencyXX chain studied in Ref. 9, where it turns out that the
synthesized rare-earttR) ZnMg-R quasicrystalgsee, e.g., Pplateaux structure of the pure case disappears. We have
Ref. 6§ whoseR elements have well localizedf4nagnetic ~ checked this behavior by studying numerically fairly long
moments. The study of quasiperiodic 1D chains has recentl}{ X systems. We also predict a logarithmic behavior of the
received renewed attentibfiand interesting properties have susceptibility at low fields by extending the arguments in
been elucidated. In Re¥ a system of spinless fermions in a Ref. 16 and have also verified this behavior numerically.
quasiperiodic lattice potential was studied within perturba-Other authors have also studied random spin systems
tion theory, where it was shown that its behavior is differentrecently:~*?
from both the periodic and the disordered cases: While in the Let us consider the antiferromagnetic system
case of a periodic potential one may have a metal-insulator
transition only if the potential is commensurate, in the disor- e Vs ,
dered case, the potential is relevant irrespective of the posi- HZ}ﬂ: Jn(5n5n+1+5¥5¥+1+A5n5n+1)_hzn: Shy (1)
tion of the Fermi level. In the quasiperiodic case, two differ-
ent situations arise, depending on whether the Fermi Iev%here Y

coincides with one of the main frequencies of the Fourier denote the standard spinmatrices, in a
spectrum of the quasiperiodic potential or not. In the firstmagnetIC fieldn applied along the anisotropy directiop(

case, the situation turns out to be similar to the periodic cas 1). For the pure quasiperiodic chain, the coupling modu

S . tion is parametrized asJ,=J(l+e, with €,
yvh|le in the _sgcond,_ at_ a perturbatlvg level, the met?‘l':EVaycos(an,,n), SO quasiperiodicity arises upon choos-
insulator transition point is strongly modified. These predlc—in an irrational subset of frequencies. with amplitudes
tions have been also verified numerically in Ref. 8. Moti- 9 q 5 P

vated by these studies we have recently analyzed the effect : L
of an external magnetic field in a quasiperiodic spin chain Furthermore, the couplings, are randomly distributed.

and found that the magnetization curve has a very interestin pecifically, we consider a binary dIS.tI’IbL-ItIO.n of streng’gh
=0 corresponds to the pure quasiperiodic case while

nature that could be predicted using a decimation procedu . :

and Abelian bosonizatioh For the Fibonacci case, in par- =1 corresponds to the uniform chain

ticular, one can reproduce the main plateaux within the

bosonization approach by approximating the quasiperiodic P(Jn)=ps(Jy—U)+(1-p)d[Iy—I(1+e)], (2

modulation by considering a subset of the main Fourier fre-

quencies. From the experimental point of view, interest ofwith €, defined as above, along with a Gaussian disorder

quasiperiodic systems arise from atrtificially grown quasiperi-P(Jn)ocexp—(Jn—Jn)ZIZcrﬁ. These distributions, taken with

odic heterostructure’s, quantum dot crystal$’ and magnetic ~same mean and variance, are built to enforce quasiperiodic-

multilayers®® ity. Thus, on average, is a measure of the couplings qua-
In this short paper we go one step further to analyze theiperiodicity. In what follows we assume thatis well sepa-

interplay between a quasiperiodic array of couplings and disrated from the other couplings. These assumptions are

order in aXXZ spin chain in the presence of an externalimportant for our decimation procedure to be valid. More

magnetic field. Using a simple decimation procedure we preU-general regimes would require further investigations

dict the appearance of plateaux in the magnetization curve athich are out of the scope of the present article.

values ofM which depend on both the quasiperiodicity and We will follow the decimation procedure as described in

the strength of the disorder. As in the casepafnerized Ref. 16 to obtain the value of the magnetization for the main

chains and within the same working hypothesis, i.e., for glateaux. In our problerfwhich is atT=0) the energy scale
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is provided by the magnetic field, and in order to compute ' ' ' ' ' ' '
the magnetization, decimation has to be stopped at an energy
scale of the order of the magnetic field. We assume that all
spins coupled by bonds stronger than the magnetic field form
singlets and do not contribute to the magnetization, whereas
spins coupled by weaker bonds are completely polarized.
The magnetization is thus proportional to the fraction of re-
maining spins at the step where we stop decimation. This
simple argument happens to apply well to the binary distri-
bution, provided the energy scales of the involved exchanges
are well separated.

In studying irrational frequencies or other quasiperiodic
modulations, it is natural to analyze the case of the Fibonacci Y Y
chain, a coupling array,=J(1+ 6), Jg=J(1— ) gener-
ated by iterating the substitution rule8—A and hiJ
A—AB,>"%17 with the distribution P(J,)=pd&(J,— V)
+(1-p)6(In—Jap)-

(i) Decimation procedureWe evaluate by decimation the
magnetization of the widest plateaux in theong coupling
limit (6— *=1). There are two different cases to consider
according tos~ —1, i.e.,Jg>J, and the opposite situation
for 6~1.

Starting from saturation, in the first case the magnetic
field is lowered until it reaches the valhg~ Jg at which the (M)y=(M);—2
typeB bonds experience a transition from the state of maxi-
mum polarization to the singlet state. The magnetization at

this plateau is then obtained by decimating tBebonds, ) 1
which yields +p (1—p); : (5

FIG. 1. Magnetization curves of modulatéX Fibonacci spin
chains, immersed in disordered binary backgrounds of stremgth
after averaging over 810" samples withf(18)=2584 sites,s
=0.95,U=0.2 andp=0, 0.2, 0.4, 0.6, 0.8, 1 in ascending order.
"The left and rightmost lines denote, respectively, the pure uniform
and pure Fibonacci cases.

1 1
(1-p)®—+2p(1-p)°
Y Y

Again, we recover our results in Ref. 9 fpr=0.
Ng 1 With this simple technique, one can predict the presence
(M)=1-2~=1-2(1-p)—, (3 and position of the plateaux, provided that there is a finite
T 4 difference between the highest values of the couplings in the
inequivalent sites.

Since the decimation procedure applies for gen¥iczZ
chainst®!® we conclude that the emergence of these strong
coupling plateaux is a generic feature, at least with an anti-
ferromagnetic anisotropy parameterk@ <1, and within
the range of couplings discussed above.

(i) Exact diagonalization To enable an independent
check of these assertions, we turn to a numerical diagonal-
ization of the Hamiltoniar(1) contenting ourselves with the
analysis of the particular cage=0. This allows us to ex-
plore rather long chains using a fair number of disorder re-

be readily checked that when lowering the magnetic fieloﬁ!f%t'c:;z é‘g’n?;vee r:?ﬂ?gr?tllzziatlgr\]/v e[:)rsci]p())?’cmraess oenC tit/k: (i';‘heer
from saturation the first spins to be decimated correspond to, |’ 9 9- » resp Y

those forming trimers. We then have a platédue nearest to whole magnehz_atlon curves obtained for various o_llsorder
saturation at concentrationp=0, 0.2, 0.4, 0.6, 0.8 and 1 averaging on

5x 10* samples of. = f(18)=2584 sites under the exchange
disorder (2), with §=0.95 andU=0.2. It can be readily
verified that a set of robust plateaux emerges quite precisely
(M),= 1_2% =1-2(1- p)zi (4) at the critical magnetizations given by Hd) for the plateau
T 3’ closest to saturation and by E@) for the second one.
It is important to stress that the derivation of our results
for the quantization conditions Eg&)—(5) rely strongly on
whereNja refers toA pairs. The second plateau is obtainedthe discreteness of the probability distribution and would not
after decimation the typé- bonds, and then we must con- to be applicable to an arbitrary continuous exchange disor-
sider all the sequencek, between the others bonds. That der. In accordance to this observation, for sufficiently strong
gives for the second plateau Gaussian disorder it turns out that no traces of plateaux can

whereN+= Ny + N+ Ng denotes the total number of bonds,
Na g the number ofA and B bonds, respectively, ang?
=(Na+Ng)/Ng. For a large iteration number of the rules
referred to aboveNt—=), No/Ng approaches the golden
mean y=[(1+/5)/2]. In the p=0 limit, we recover the
results in Ref. 9 and a nonvanishipgesults in a shift of the
position of the plateau.

In the second casé,>Jg we have to distinguish two
different unit cells since typé- bonds can appear either in
pairs (forming trimers or isolated(forming dimers. It can
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FIG. 2. Magnetization curves of modulat&X Fibonacci spin
chains, immersed in Gaussian exchange distributions, after avera
ing over 4x 10* samples withf (18)=2584 sites,6=0.95 and in-
creasing standard deviation from left to righbte that the leftmost
is practically the pure Fibonacci case

_ FIG. 4. Magnetic susceptibility of modulatédX Fibonacci spin
ghains, immersed in a Gaussian exchange distributiony), after
averaging over X 10 samples withf (18)=2584 sites,6=0.95.
The inset show the susceptibility behavior at low magnetic fields
which follows closely the logarithmic regime predicted in the text.

. - The bold line corresponds to the theoretical prediction.
be observed. This is corroborated in Fig. 2, where we see that

the plateaux structure is smoothed when the standard devi
tion is increased. Here we averaged oxn 40* samples with
L=1(18). However, preliminary computations using larger
chains yielded no substantial differences. Our data strong|
suggest that there is a threshold valuesof O below which
the Fibonacci plateau structure remains basically unaltere
This is particularly noticeablésee Fig. 2, as 6—1, i.e.,
within the regime in which our decimation procedure be-
comes most reliable. The understanding of this feature stil
awaits further investigations.

gisorder, where it is observed that the plateaux are erased
even by small disordefsee Fig. 3. It is interesting to ob-
erve that in contrast to the Fibonacci situation studied
bove, in which the plateaux structure is robust and just
ghifts with the strength of the disorder, here the plateaux
seem to smear out even for a small valuepofiWe have
further checked that a model with a finite subset of the main
now irrationa) frequencies of the Fourier spectrum of the
ibonacci, is also unstable to disorder. This is surprising
since in the absence of disorder, this approximate model

In a previous work, we have observed that the magneti—t d out 1o lead t d imation to th .
zation curve for the Fibonacci chain, could be well approxi- urned out to lead 1o a good approximation to th€ magneti-
zation curve of the real Fibonacci chdiffrom the bosoniza-

mated by considering a rather small subset of the main fre-
qguencies in its Fourier spectrum. Here we study a two-

frequency case, fap;=5/8 andw,=7/8, in the presence of ' ' '
T T T T T 4 = 12 L
10} 4 5
L 10 . .
08} 1 g *
=8
s £
06} - 2 6 |
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0.0 . 0.5 ‘ 1.0 ‘ 1.5 ‘ 2.0 ‘ 25 h/J
hi/dJ FIG. 5. Magnetic susceptibility of modulatédX Fibonacci spin
chains, immersed in a binary exchange disorder of strempgth
FIG. 3. Double frequency magnetization curves ofX¥chain =06 and U=0.2, averaged over %10* samples withf(18)
for w;=5/8 and w,=7/8 with amplitudess;=0.2 and5,=0.3,  =2584 sites5=0.95. The inset show the susceptibility behavior at

with U=0.1 and 10 spins over 100 samples, immersed in disor- jow magnetic fields that similar to the Gaussian disorder follows
dered binary backgrounds of strength0, 0.2, 0.4, 0.6, 0.8,and 1 closely the logarithmic regime. The bold line corresponds to the
in ascending order. theoretical prediction.
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tion point of view one should expect no substantial differ-cal fields are given by the level spacings of the Hamiltonian,
ence between the real Fibonacci chain and the approximatghich in turn depend on the chain length. Thus, deviations
one, so this issue deserves further investigations. Howevefiom the expected exponent can occur on finite samples. In
this is out of the scope of the present paper, and we hope fact, this is reflected by the slight though progressive depar-
discuss this issue elsewhere. tures observed below/J~ 105,

(iii) Low field susceptibility For homogeneously disor-  To summarize, we have studied the effect of disorder on
dered chains, one can use the decimation procedure of Rghe plateaux structure in quasiperio& Z chains under an
16 along with the universality of the fixed point, to show that oyternal magnetic field. By means of a simple real space
either for discrete or continuous distributions the low field 4o cimation procedure we found the values of the magnetiza-
magnetic susceptibility behaves according to tion for which the main plateaux emerge, Eq3—(5). This
was tested by numerical diagonalizations of laxgé chains
finding a remarkable agreement with the quantization condi-
tions in a variety of scenarios. Since the decimation scheme
applies for generi&XZ chains'® we conclude that the ap-
‘pearance of these plateaux is a generic feature, at least with
an antiferromagnetic anisotropy parameter®<1. This is-
Sue still awaits numerical confirmation on sufficiently long

. . : . chains using state of the art methodologies such as density
Ik:] th_e c?se eot[ a(bX§ (Zsorderedr(;zglr;i (]Za?git bg etx]plalltlned matrix renormalization grouf. Finally, we have also studied
y SImpl€ perturbative argume el. or aetalls fhe low magnetic field susceptibility which exhibits a clear

is interesting to note that the effect of the disorder is crucia ogarithmic behavior, Eq(6). We trust this work will convey
since it changes the power law behavior of the free Fibonac% o

chain obtained in Ref. 4 to a logarithmic one. This can be
clearly observed in the insets of Figs. 4 and 5 where the It is a pleasure to acknowledge useful discussions with
validity of these arguments seem to apply over more thal.C. Cabra and M.D. Grynberg. Financial support from Fun-
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Following a simple argument based on random walk mo
tion used in Ref. 19, it can be readily shown that for 0
(or XX chaing, these arguments can be extended to the ca
of a disordered Fibonacci chain. The singularity in B, as

motivation for both experimental and numerical studies.

two decades. However, care must be taken when analyzingacion Antorchas, ArgentindGrant No. A-13622/1-106is
smaller field scales. Notice that the smallest accessible critecknowledged.
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