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Interplay between quasiperiodicity and disorder in quantum spin chains in a magnetic field
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We study the interplay between disorder and a quasiperiodic coupling array in an external magnetic field in
a spin-12 XXZ chain. A simple real space decimation argument is used to estimate the magnetization values
where plateaux show up. The latter are in good agreement with exact diagonalization results on fairly longXX
chains. Spontaneous susceptibility properties are also studied, finding a logarithmic behavior similar to the
homogeneously disordered case.
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Since their discovery in 1984,1 the properties of quasic
rystals have been a source of sustained interest. Many t
retical efforts on Ising models in Penrose lattices2 and XY
Fibonacci spin chains3–5 have revealed interesting magne
orderings associated to the quasiperiodicity of these st
tures. Such kind of spin arrays have been found in rece
synthesized rare-earth~R! ZnMg-R quasicrystals~see, e.g.,
Ref. 6! whoseR elements have well localized 4f magnetic
moments. The study of quasiperiodic 1D chains has rece
received renewed attention7,8 and interesting properties hav
been elucidated. In Ref. 7 a system of spinless fermions in
quasiperiodic lattice potential was studied within perturb
tion theory, where it was shown that its behavior is differe
from both the periodic and the disordered cases: While in
case of a periodic potential one may have a metal-insul
transition only if the potential is commensurate, in the dis
dered case, the potential is relevant irrespective of the p
tion of the Fermi level. In the quasiperiodic case, two diffe
ent situations arise, depending on whether the Fermi le
coincides with one of the main frequencies of the Four
spectrum of the quasiperiodic potential or not. In the fi
case, the situation turns out to be similar to the periodic c
while in the second, at a perturbative level, the me
insulator transition point is strongly modified. These pred
tions have been also verified numerically in Ref. 8. Mo
vated by these studies we have recently analyzed the e
of an external magnetic field in a quasiperiodic spin cha
and found that the magnetization curve has a very interes
nature that could be predicted using a decimation proced
and Abelian bosonization.9 For the Fibonacci case, in pa
ticular, one can reproduce the main plateaux within
bosonization approach by approximating the quasiperio
modulation by considering a subset of the main Fourier
quencies. From the experimental point of view, interest
quasiperiodic systems arise from artificially grown quasipe
odic heterostructures,13 quantum dot crystals,14 and magnetic
multilayers.15

In this short paper we go one step further to analyze
interplay between a quasiperiodic array of couplings and
order in aXXZ spin chain in the presence of an extern
magnetic field. Using a simple decimation procedure we p
dict the appearance of plateaux in the magnetization curv
values ofM which depend on both the quasiperiodicity a
the strength of the disorder. As in the case ofp-merized
chains and within the same working hypothesis, i.e., fo
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o-

c-
ly

tly

-
t
e
or
-
si-
-
el
r
t
se
l-
-

ct
,
g
re

e
ic
-
f
i-

e
s-
l
-
at

a

hierarchical set of couplings well separated in strength,
presence of binary disorder results in a shift on the plate
positions as a function its strength, while for the Gauss
case the plateaux are generically wiped out. We have
studied the effects of a binary disorder on the double f
quencyXX chain studied in Ref. 9, where it turns out that t
plateaux structure of the pure case disappears. We h
checked this behavior by studying numerically fairly lon
XX systems. We also predict a logarithmic behavior of t
susceptibility at low fields by extending the arguments
Ref. 16 and have also verified this behavior numerica
Other authors have also studied random spin syst
recently.10–12

Let us consider the antiferromagnetic system

H5(
n

Jn~Sn
xSn11

x 1Sn
ySn11

y 1DSn
zSn11

z !2h(
n

Sn
z , ~1!

where Sx,Sy,Sz denote the standard spin-1
2 matrices, in a

magnetic fieldh applied along the anisotropy direction (uD
u<1). For the pure quasiperiodic chain, the coupling mod
lation is parametrized as Jn5J(11en) with en
5(ndn cos(2pvnn), so quasiperiodicity arises upon choo
ing an irrational subset of frequenciesvn with amplitudes
dn .

Furthermore, the couplingsJn are randomly distributed
Specifically, we consider a binary distribution of strengthp
(p50 corresponds to the pure quasiperiodic case whilep
51 corresponds to the uniform chain!

P~Jn!5pd~Jn2U !1~12p!d@Jn2J~11en!#, ~2!

with en defined as above, along with a Gaussian disor
P(Jn)}exp2(Jn2Jn)

2/2sn
2 . These distributions, taken with

same mean and variance, are built to enforce quasiperio
ity. Thus, on averageen is a measure of the couplings qu
siperiodicity. In what follows we assume thatU is well sepa-
rated from the other couplings. These assumptions
important for our decimation procedure to be valid. Mo
U-general regimes would require further investigatio
which are out of the scope of the present article.

We will follow the decimation procedure as described
Ref. 16 to obtain the value of the magnetization for the m
plateaux. In our problem~which is atT50) the energy scale
©2002 The American Physical Society19-1
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is provided by the magnetic field, and in order to comp
the magnetization, decimation has to be stopped at an en
scale of the order of the magnetic field. We assume tha
spins coupled by bonds stronger than the magnetic field f
singlets and do not contribute to the magnetization, wher
spins coupled by weaker bonds are completely polariz
The magnetization is thus proportional to the fraction of
maining spins at the step where we stop decimation. T
simple argument happens to apply well to the binary dis
bution, provided the energy scales of the involved exchan
are well separated.

In studying irrational frequencies or other quasiperio
modulations, it is natural to analyze the case of the Fibona
chain, a coupling arrayJA5J(11d), JB5J(12d) gener-
ated by iterating the substitution rulesB→A and
A→AB,5,7,9,17 with the distribution P(Jn)5pd(Jn2U)
1(12p)d(Jn2JA,B).

(i) Decimation procedure. We evaluate by decimation th
magnetization of the widest plateaux in thestrongcoupling
limit ( d→61). There are two different cases to consid
according tod'21, i.e.,JB@JA , and the opposite situatio
for d'1.

Starting from saturation, in the first case the magne
field is lowered until it reaches the valuehc'JB at which the
type-B bonds experience a transition from the state of ma
mum polarization to the singlet state. The magnetization
this plateau is then obtained by decimating theB bonds,
which yields

^M &5122
NB

NT
5122~12p!

1

g2
, ~3!

whereNT5NU1NA1NB denotes the total number of bond
NA,B the number ofA and B bonds, respectively, andg2

5(NA1NB)/NB . For a large iteration number of the rule
referred to above (NT→`), NA /NB approaches the golde
meang5@(11A5)/2#. In the p50 limit, we recover the
results in Ref. 9 and a nonvanishingp results in a shift of the
position of the plateau.

In the second caseJA@JB we have to distinguish two
different unit cells since type-A bonds can appear either i
pairs ~forming trimers! or isolated~forming dimers!. It can
be readily checked that when lowering the magnetic fi
from saturation the first spins to be decimated correspon
those forming trimers. We then have a plateau~the nearest to
saturation! at

^M &15122
NAA

NT
5122~12p!2

1

g3
, ~4!

whereNAA refers toA pairs. The second plateau is obtain
after decimation the type-A bonds, and then we must con
sider all the sequencesJA between the others bonds. Th
gives for the second plateau
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^M &25^M &122F ~12p!3
1

g4
12p~12p!2

1

g2

1p2~12p!
1

gG . ~5!

Again, we recover our results in Ref. 9 forp50.
With this simple technique, one can predict the prese

and position of the plateaux, provided that there is a fin
difference between the highest values of the couplings in
inequivalent sites.

Since the decimation procedure applies for genericXXZ
chains,16,18 we conclude that the emergence of these stro
coupling plateaux is a generic feature, at least with an a
ferromagnetic anisotropy parameter 0,D,1, and within
the range of couplings discussed above.

(ii) Exact diagonalization. To enable an independen
check of these assertions, we turn to a numerical diago
ization of the Hamiltonian~1! contenting ourselves with the
analysis of the particular caseD50. This allows us to ex-
plore rather long chains using a fair number of disorder
alizations ~whose magnetization properties on the oth
hand, are self-averaging!. In Fig. 1 we show, respectively, th
whole magnetization curves obtained for various disor
concentrationsp50, 0.2, 0.4, 0.6, 0.8 and 1 averaging o
53104 samples ofL5 f (18)52584 sites under the exchang
disorder ~2!, with d50.95 andU50.2. It can be readily
verified that a set of robust plateaux emerges quite preci
at the critical magnetizations given by Eq.~4! for the plateau
closest to saturation and by Eq.~5! for the second one.

It is important to stress that the derivation of our resu
for the quantization conditions Eqs.~3!–~5! rely strongly on
the discreteness of the probability distribution and would
to be applicable to an arbitrary continuous exchange dis
der. In accordance to this observation, for sufficiently stro
Gaussian disorder it turns out that no traces of plateaux

FIG. 1. Magnetization curves of modulatedXX Fibonacci spin
chains, immersed in disordered binary backgrounds of strengp
after averaging over 53104 samples withf (18)52584 sites,d
50.95, U50.2 andp50, 0.2, 0.4, 0.6, 0.8, 1 in ascending orde
The left and rightmost lines denote, respectively, the pure unifo
and pure Fibonacci cases.
9-2
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be observed. This is corroborated in Fig. 2, where we see
the plateaux structure is smoothed when the standard de
tion is increased. Here we averaged on 43104 samples with
L5 f (18). However, preliminary computations using larg
chains yielded no substantial differences. Our data stron
suggest that there is a threshold value ofs.0 below which
the Fibonacci plateau structure remains basically unalte
This is particularly noticeable~see Fig. 2!, as d→1, i.e.,
within the regime in which our decimation procedure b
comes most reliable. The understanding of this feature
awaits further investigations.

In a previous work,9 we have observed that the magne
zation curve for the Fibonacci chain, could be well appro
mated by considering a rather small subset of the main
quencies in its Fourier spectrum. Here we study a tw
frequency case, forv155/8 andv257/8, in the presence o

FIG. 2. Magnetization curves of modulatedXX Fibonacci spin
chains, immersed in Gaussian exchange distributions, after ave
ing over 43104 samples withf (18)52584 sites,d50.95 and in-
creasing standard deviation from left to right~note that the leftmost
is practically the pure Fibonacci case!.

FIG. 3. Double frequency magnetization curves of theXX chain
for v155/8 and v257/8 with amplitudesd150.2 andd250.3,
with U50.1 and 104 spins over 100 samples, immersed in dis
dered binary backgrounds of strengthp50, 0.2, 0.4, 0.6, 0.8, and 1
in ascending order.
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disorder, where it is observed that the plateaux are era
even by small disorder~see Fig. 3!. It is interesting to ob-
serve that in contrast to the Fibonacci situation stud
above, in which the plateaux structure is robust and j
shifts with the strength of the disorder, here the platea
seem to smear out even for a small value ofp. We have
further checked that a model with a finite subset of the m
~now irrational! frequencies of the Fourier spectrum of th
Fibonacci, is also unstable to disorder. This is surpris
since in the absence of disorder, this approximate mo
turned out to lead to a good approximation to the magn
zation curve of the real Fibonacci chain.9 From the bosoniza-

g-
FIG. 4. Magnetic susceptibility of modulatedXX Fibonacci spin

chains, immersed in a Gaussian exchange distribution (s51), after
averaging over 43104 samples withf (18)52584 sites,d50.95.
The inset show the susceptibility behavior at low magnetic fie
which follows closely the logarithmic regime predicted in the te
The bold line corresponds to the theoretical prediction.

FIG. 5. Magnetic susceptibility of modulatedXX Fibonacci spin
chains, immersed in a binary exchange disorder of strengtp
50.6 and U50.2, averaged over 53104 samples with f (18)
52584 sites,d50.95. The inset show the susceptibility behavior
low magnetic fields that similar to the Gaussian disorder follo
closely the logarithmic regime. The bold line corresponds to
theoretical prediction.
9-3
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tion point of view one should expect no substantial diffe
ence between the real Fibonacci chain and the approxim
one, so this issue deserves further investigations. Howe
this is out of the scope of the present paper, and we hop
discuss this issue elsewhere.

(iii) Low field susceptibility. For homogeneously disor
dered chains, one can use the decimation procedure of
16 along with the universality of the fixed point, to show th
either for discrete or continuous distributions the low fie
magnetic susceptibility behaves according to

xz}
1

h@ ln~h2!#3
. ~6!

Following a simple argument based on random walk m
tion used in Ref. 19, it can be readily shown that forD50
~or XX chains!, these arguments can be extended to the c
of a disordered Fibonacci chain. The singularity in Eq.~6!, as
in the case of aXXZ disordered chain, cannot be explain
by simple perturbative arguments~see Ref. 19 for details!. It
is interesting to note that the effect of the disorder is cruc
since it changes the power law behavior of the free Fibona
chain obtained in Ref. 4 to a logarithmic one. This can
clearly observed in the insets of Figs. 4 and 5 where
validity of these arguments seem to apply over more t
two decades. However, care must be taken when analy
smaller field scales. Notice that the smallest accessible c
e
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cal fields are given by the level spacings of the Hamiltoni
which in turn depend on the chain length. Thus, deviatio
from the expected exponent can occur on finite samples
fact, this is reflected by the slight though progressive dep
tures observed belowh/J;1025.

To summarize, we have studied the effect of disorder
the plateaux structure in quasiperiodicXXZ chains under an
external magnetic field. By means of a simple real sp
decimation procedure we found the values of the magnet
tion for which the main plateaux emerge, Eqs.~3!–~5!. This
was tested by numerical diagonalizations of largeXX chains
finding a remarkable agreement with the quantization con
tions in a variety of scenarios. Since the decimation sche
applies for genericXXZ chains,18 we conclude that the ap
pearance of these plateaux is a generic feature, at least
an antiferromagnetic anisotropy parameter 0,D,1. This is-
sue still awaits numerical confirmation on sufficiently lon
chains using state of the art methodologies such as den
matrix renormalization group.20 Finally, we have also studied
the low magnetic field susceptibility which exhibits a cle
logarithmic behavior, Eq.~6!. We trust this work will convey
a motivation for both experimental and numerical studies
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