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Level statistics in a Heisenberg chain with random magnetic field

Y. Avishai,1,2 J. Richert,2 and R. Berkovits3
1Department of Physics and Ilse Katz Center, Ben Gurion University, Beer Sheva, Israel

2Laboratoire de Physique Theorique, UMR 7085, CNRS/Universite Louis Pasteur, 67084 Strasbourg Cedex, France
3Minerva Center and Department of Physics, Bar Ilan University, Ramat Gan, Israel

~Received 22 February 2002; revised manuscript received 31 May 2002; published 19 August 2002!

Level statistics is calculated for a Heisenberg spin chain with a random magnetic field, and shown to follow
that of random-matrix theory pertaining to Gaussian orthogonal ensemble, due to nonconventional time-
reversal invariance. However, when abona fidetime reversal violation term is added, such as three spin
interaction, the statistics follows that pertaining to Gaussian unitary ensemble.
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The relevance of random-matrix theory~RMT! to the in-
vestigation and analysis of the spectrum of numerous ph
cal systems started in nuclear physics1 ~a strongly correlated
particle system!, continued in mesoscopic physics2 and cha-
otic dynamics3 ~single particle systems!, and focused re-
cently on strongly correlated electron and spin systems.4,5 In
Ref. 4 attention was directed to the difference between in
grable and nonintegrable spin and strongly correlated e
tron systems as far as the nearest level distributionp(s) is
concerned. Level statistics in a two-dimensional interact
electron system was studied in Ref. 5, with special atten
to the influence of the electron-electron interaction stren
U on the behavior ofp(s). It was shown that the distribution
p(s) undergoes changes between Poisson and Gaussia
thogonal ensemble~GOE! behavior asU increases.

In the present work we want to illuminate the role
RMT in random spin systems. The motivation is at lea
three-fold ~beyond curiosity!. First, recalling that the leve
statistics is intimately related to the symmetry of the Ham
tonian, the system studied below has a lower rotational s
metry than the one studied in Ref. 4. More precisely, the to
spin S of the system is not conserved, but its projectionSz
remains a good quantum number. Second, the randomne
introduced here by an application of a random magnetic fi
along thez direction. This is a time reversal breaking ter
which, naively speaking, is expected to lead to level statis
pertaining to Gaussian unitary ensemble~GUE! instead of
the GOE statistics. We shall see below that this is not
case, the reason being that the Hamiltonian is still invari
with respect to the action of some antiunitary opera
Hence it can be represented by a real matrix. Finally, i
interesting to check the level distribution when abona fide
time-reversal violating interaction is added to the Ham
tonian. Such a term can be a random field acting in all th
space directions but in that case theSz invariance is broken.
Instead, we suggest a non-random three body force. The
responding level statistics turns out to be consistent with
of the GUE.

To begin, let us consider the one-dimensional Heisenb
spin-1/2 chain containingN spins with random~on-site!
magnetic field in thez direction. The Hamiltonian is

H5 (
n51

N

@JSn•Sn111hnSnz#, ~1!
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where Sn is the spin operator at siten, J is the nearest-
neighbor exchange constant~periodic boundary conditions
are assumed throughout!, andhn is a random magnetic field
along thez direction at siten. It is assumed thathn’s are
uncorrelated random numbers with zero mean and finite fl
tuation widthh, namely,

^hn&50,

^hnhm&5h2dnm . ~2!

If S[(n51
N Sn is the total spin operator then, evidentl

@S2,H#Þ0 but @Sz ,H#50. Therefore, it is natural to con
sider Hamiltonian~1! within a subspace corresponding to
given value ofSz . Restricting ourselves toN even, the larg-
est subspace which corresponds toSz50, has the dimension
M[CN/2

N . A natural basis in this subspace is construc
from vectorsus1zs2z . . . sNz& ~heresnz561/2 is the eigen-
value ofSnz) in which N/2 of thesnz are11/2 and the other
N/2 are21/2. Evidently, in this basis the Hamiltonian matr
is real. Note that, unlike in the standard Heisenberg syst
the sign of the exchange constantJ is irrelevant here becaus
we are interested in thewholespectrum.

The fact that the HamiltonianH defined in Eq.~1! is
representable by a real matrix is related to its symme
properties. LetT0 be the time-reversal operator. For a sp
operatorSn one hasT0SnT0

2152Sn and therefore,

T0HT0
215 (

n51

N

@JSn•Sn112hnSnz#ÞH, ~3!

as expected when there is an external magnetic field. C
sider, however, the operatorT5eipSxT0. Application of the
~unitary! operatoreipSx reverses the signs ofSny andSnz ~but
not of Snx of course!. HenceT is an antiunitary operato
which commutes withH. The existence of such an operat
~referred to as non-conventional time reversal in Ref.!
guarantees the reality ofH in a proper basis. In Ref. 6 a
example for such an operator is given within the theory
quantum chaos. Here it is given for a spin system.

It might be of some interest to compare the sparsity of
Hamiltonian matrix for the spin system and, say, a particle
a disordered potential~within the tight binding approxima-
tion!. In the latter case, the number of non-zero elements
©2002 The American Physical Society16-1
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given row is b5112d, whered is the dimension. In the
case of one dimensional spin system withSz50, the number
b is not fixed, and changes between 2 andN/2, However, the
ratio b/M ~whereM is the size of the matrix! decays much
faster withM for the spin system.

We have carried out concrete calculations on a spin ch
with N514 (M53432) on an ensemble of 900 matrices. B
comparing results for smaller ensembles~e.g., 800 matrices!
it is verified that this number of realizations is sufficien
Going beyondN514 is virtually out of reach since the ma
trix dimension is the binomial coefficientCN/2

N which is too
large forN516. The density of states is shown in Fig. 1.

Since the density of states is not constant, a standard
folding procedure is used to reach a spectrum$ln% with an
averaged density of states equal to unity. For the main
pose of the present study,~testing the relevance of RMT in
disordered quantum spin systems! the nearest level spacin
criteria might seem adequate. Nevertheless, we have go
bit further and, for the present ensemble, computed the
tribution of both nearest level spacingsp(s)5ln112ln and
that of the next nearest level spacingsp2(s)5ln122ln .8

The resulting level distributionsp(s) andp2(s) were tested
to satisfy the normalization conditions*0

`p(s)ds
5*0

`sp(s)ds51, and*0
`p2(s)ds5 1

2 *0
`sp2(s)ds51. They

are displayed in Fig. 2. The distributionp(s) is compared
with the GOE Wigner surmise distributionpWS(s), while the
distributionp2(s) is compared with the corresponding GO
prediction.7 The quality of agreement with the GOE statisti
is quite satisfactory. To corroborate this statement we a
compare ~see the inset of Fig. 2! the difference p(s)
2pWS(s) with pRMT(s)2pWS(s) wherepRMT(s) is the large
N prediction for p(s) ~see Ref. 6, Fig. 4.2, and Ref. 9!. A
glance at the figure suggests that the absolute value o
area pertaining to the data point curve is smaller than
pertaining to the solid curve. In other words, our data f
betweenpWS(s) andpRMT(s).

These calculations indicate that level statistics of Heis

FIG. 1. Density of states~normalized by band width! for Hamil-
tonian~1! for a system ofN514 spins withh/J54. The spectrum
is not symmetric aroundE50 since the ordered~Heisenberg ex-
change! part is not symmetric.
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berg spin chain with random magnetic field is encoded
RMT with symmetry corresponding to the GOE.

Having demonstrated the consistence of GOE statis
with the spectrum of Hamiltonian~1!, we now ask the ques
tion what model of spin chain can exhibit a GUE statistic
We have already seen that a random magnetic field along
z direction is not enough. Naturally, one might sugges
random magnetic field in arbitrary direction at each site, i
a termhn•Sn replacinghnSnz . This choice, however, has
couple of drawbacks. First,Sz is no longer a good quantum
number, which means that the matrix to be diagonalized
now much larger~for a given numberN of spins!. Second,
there are now nondiagonal random-matrix elements, wh
turn the analogy with Hamiltonian for particle~within the
tight-binding approximation! to be less transparent.

Instead, we introduce a three-site interaction, so that
Hamiltonian is

HT5 (
n51

N

@JSn•Sn111hnSnz1JTSn•@Sn113Sn12#, ~4!

which conservesSz . This Hamiltonian violates time-reversa
invariance, but, unlike the former case, this time-rever
violation cannot be compensated for by the spin-reversal
eratoreipSz. Hence it is represented by a complex Hermiti
matrix.9 The three-spin interaction in Eq.~4! is not anad hoc
term. It appears in earlier essays on magnetism as one
to higher-order terms associated with interchanges of e
trons belonging to different atoms. An example of an int
action term involving three spin operators is discussed
Ref. 10. It turns out that a very small mixture of three-s
interaction terms (JT /J51/140) is sufficient to drive the sys

FIG. 2. Data points depict nearest~left! and next to neares
~right! level spacing distributions (p(s) andp2(s) respectively! for
the Hamiltonian~1! for a system ofN514 spins withh/J54. The
continuous lines correspond to Wigner surmisepWS(s) and the
RMT prediction forp2(s) pertaining to GOE ensemble. The agre
ment ofp(s) with the Wigner surmise seems evident. A more str
gent test~inset! comparesp(s)2pWS(s) with pRMT(s)2pWS(s).
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tem statistics from a GOE to a GUE, while the density
states~Fig. 3! is virtually unchanged.

The corresponding level spacing distribution is shown
Fig. 4. This time, the consistency with GUE statistics is e
cellent.

There is a considerable amount of work on the problem
mixture of ensembles with two different symmetries. T
one relevant for our case is that represented by an ense
of matricesH01lV whereH0 andV areboth randomma-
trices such thatH0 is time-reversal invariant whileV is not.6

Herel is a real parameter, and the two matrices are assu
to have the same mean level spacing. The main goal i
determine the distributionP(H,l)[^d(H2H02lV& ~aver-
aging over the GOE forH0 and the GUE forV). In a less
rigorous sense, the question is at which value ofl the level
statistics crosses from the GOE~which is exact forl50) to

FIG. 3. Density of states~normalized by the bandwidth! for
Hamiltonian ~4! for a system ofN514 spins withh/J54 and
JT /J51/140. The addition of the weak time breaking term does
affect the density of states~compared with Fig. 1!.

FIG. 4. Nearest level spacing distribution for Hamiltonian~4!
for a system ofN514 spins withh/J54 and JT /J51/140. The
continuous lines correspond to Poisson, GOE, and GUE statis
The agreement with the GUE statistics is evident.
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that of the GUE~valid at l5`). The answer to these ques
tions is provided by Dyson’s Brownian-motion model1 which
shows thatP(H,l) satisfies a certain Fokker-Planck equ
tion. The solution of this equation~see Ref. 6, equation
6.15.12! shows that the crossover occurs atl2@1. Compar-
ing the separate spectra of the GOE and GUE parts of Ha
tonian ~4!, the parameterl in our case isl'0.8, which
evidently does not satisfy the condition above. It should
kept in mind, however, that in our case the time-rever
violating matrix isdeterministic. Combined with the fact tha
Hamiltonian ~4! is a sparse matrix and not a fully rando
matrix in the sense of RMT, the application of Dyson
Brownian-motion model1 in the present case should be e
amined with care. Investigation of ensembles containing r
dom and deterministic parts has been carried out by Bre
and Hikami11, but it does not cover the present case specifi
by Hamiltonian~4!.

Let us then present some heuristic arguments about
minimum value ofJT for which the GUE statistics emerge
Comparing the forms of spin and tight-binding models~not
in the rigorous Holstein Primakoff sense! the Heisenberg in-
teraction can be thought of as a hopping term while the r
dom field term can be considered as a site energy contr
tion. Of course, the spin operators are not particle opera
but still, a term likeSn

1Sn11
2 can be interpreted as ‘‘destroy

ing a particle’’ in siten11 and ‘‘creating a particle’’ at siten.
The three spin term can be written as

JTSn•@Sn113Sn12#5 iJTSjz« jklSk
1Sl

2 , ~5!

where jkl run on n,n11,n12 and the summation conven
tion applies. Together with the Heisenberg termJSn•Sn11
we can think of it as a deterministic hopping with coefficie
J1 iaJT wherea takes into account the number of hoppin
terms in equation 5 and their range~nearest and next neare
ones!, as well as some mean-field values ofSjz . There are
three terms in the scalar product; each one multiplies
terms in the vector product. Such very rough estimates s
gests 5<a<10. Thus, each hopping carries a phasef
which, for smallJT /J is equal toaJT /J. It is then expected
that the crossover region from the GOE to the GUE statis
occurs when the overall phaseF5NaJT /J'2p.

In conclusion, we have demonstrated the relevance
random-matrix theory for disordered quantum spin syste
manifested through the distribution of nearest level spacin
For the Heisenberg spin chain with random magnetic fi
along thez direction Hamiltonian~1! breaks time reversa
but there is still an antiunitary operator with which it com
mutes, leading to a real matrix representation and GOE
tistics. Adding a small three site term to Hamiltonian~1!
leads to the Hamiltonian~4! which generically breaks the
time-reversal invariance. Whereas the density of states
mains virtually intact, the nearest level spacing distributi
shifts from the GOE to the GUE.

Discussions with B. L. Altshuler and D. Cohen are high
acknowledged. This work was partially supported by IS
BSF, DIP and Minerva grants. One of us~Y.A.! acknowl-
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