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Level statistics in a Heisenberg chain with random magnetic field
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Level statistics is calculated for a Heisenberg spin chain with a random magnetic field, and shown to follow
that of random-matrix theory pertaining to Gaussian orthogonal ensemble, due to nonconventional time-
reversal invariance. However, whenbana fidetime reversal violation term is added, such as three spin
interaction, the statistics follows that pertaining to Gaussian unitary ensemble.

DOI: 10.1103/PhysRevB.66.052416 PACS nunider75.10—b

The relevance of random-matrix theof®MT) to the in-  where S, is the spin operator at site, J is the nearest-
vestigation and analysis of the spectrum of numerous physieighbor exchange constafgeriodic boundary conditions
cal systems started in nuclear physié strongly correlated are assumed throughougndh,, is a random magnetic field
particle system continued in mesoscopic physiand cha- along thez direction at siten. It is assumed thah,’s are
otic dynamic$ (single particle systemsand focused re- uncorrelated random numbers with zero mean and finite fluc-
cently on strongly correlated electron and spin systéms.  tuation widthh, namely,

Ref. 4 attention was directed to the difference between inte-

grable and nonintegrable spin and strongly correlated elec- (hn)=0,
tron systems as far as the nearest level distribugits) is
concerned. Level statistics in a two-dimensional interacting (hohmy =h28, . 2

electron system was studied in Ref. 5, with special attention N . ) .
to the influence of the electron-electron interaction strengthf ZSEEnzlsn is the total spin operator then, evidently,
U on the behavior op(s). It was shown that the distribution [S™H]#0 but[S;,H]=0. Therefore, it is natural to con-
p(s) undergoes changes between Poisson and Gaussian §ider Hamiltonian(1) within a subspace corresponding to a
thogonal ensembléGOE) behavior adJ increases. given value ofSZ.. Restricting ourselves tN even, Fhe Iar-g-

In the present work we want to illuminate the role of €St subspace which correspondsSie-=0, has the dimension
RMT in random spin systems. The motivation is at least M=Cqj,. A natural basis in this subspace is constructed
three-fold (beyond curiosity. First, recalling that the level from vectors|s,;s,, ...sy,) (heres,,=+1/2 is the eigen-
statistics is intimately related to the symmetry of the Hamil-value ofS,,) in which N/2 of thes;,, are + 1/2 and the other
tonian, the system studied below has a lower rotational symN/2 are—1/2. Evidently, in this basis the Hamiltonian matrix
metry than the one studied in Ref. 4. More precisely, the totais real. Note that, unlike in the standard Heisenberg system,
spin S of the system is not conserved, but its project®n the sign of the exchange constdris irrelevant here because
remains a good quantum number. Second, the randomnessV¥¢ are interested in thehole spectrum.
introduced here by an application of a random magnetic field The fact that the Hamiltoniaii defined in Eq.(1) is
along thez direction. This is a time reversal breaking term representable by a real matrix is related to its symmetry
which, naively speaking, is expected to lead to level statisticproperties. Lefl, be the time-reversal operator. For a spin
pertaining to Gaussian unitary ensemb@UE) instead of ~ operatorS, one hasTS,T, *=—S, and therefore,
the GOE statistics. We shall see below that this is not the
case, the reason being that the Hamiltonian is still invariant .
with respect to the action of some antiunitary operator. ToHT, :nZl [ISi-Sh+1—hyShd#H, ()
Hence it can be represented by a real matrix. Finally, it is -
interesting to check the level distribution wherbana fide as expected when there is an external magnetic field. Con-
time-reversal violating interaction is added to the Hamil-sider, however, the operatdr= e“TSXTO. Application of the
tonian. Such a term can be a random field acting in all threunitary) operatore' ">x reverses the signs &, andsS,, (but
space directions but in that case ﬂézeinvariance is broken. not of Snx of COUI’SQ. HenceT is an antiunitary operator
Instead, we suggest a non-random three body force. The cofrhich commutes wittH. The existence of such an operator
responding level statistics turns out to be consistent with tha(treferred to as non-conventional time reversal in Ref. 6
of the GUE. guarantees the reality df in a proper basis. In Ref. 6 an

To begin, let us consider the one-dimensional Heisenbergxample for such an operator is given within the theory of
spin-1/2 chain containindN spins with random(on-sit§  quantum chaos. Here it is given for a spin system.

N

magnetic field in thez direction. The Hamiltonian is It might be of some interest to compare the sparsity of the
N Hamiltonian matrix for the spin system and, say, a particle in

H= JS.. +h , 1 a disordered potentigwithin the tight binding approxima-
nZ1 [3Sh Sh+1NnSoc] @) tion). In the latter case, the number of non-zero elements in a
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FIG. 1. Density of stategormalized by band widthfor Hamil- 0 1 2 S 3 % 2
tonian (1) for a system oN= 14 spins withh/J=4. The spectrum ) )
is not symmetric aroun@=0 since the orderedHeisenberg ex- ~ FIG. 2. Data points depict nearegeft) and next to nearest
change part is not symmetric. (right) level spacing distributionsp(s) andp,(s) respectively for

the Hamiltonian(1) for a system ofN= 14 spins withh/J=4. The
given row isb=1+2d, whered is the dimension. In the continuous lines correspond to Wigner surmizggs) and the

. . . RMT prediction forp,(s) pertaining to GOE ensemble. The agree-
Ca.lse of qne dimensional spin system véith-0, the number ment Fc;fp(s) with th%ZSN?g?]er surmgi]se seems evident. A moregstrin-
b is not fixed, and changes between 2 &hd, However, the gent testinse) compareso(s) — pw(s) With pryr(s) — Puss)
ratio b/M (whereM is the size of the matrixdecays much W RMT W=
faster withM for the spin system.

We have carried out concrete calculations on a spin chai
with N=14 (M =3432) on an ensemble of 900 matrices. By
comparing results for smaller ensembiesy., 800 matrices
it is verified that this number of realizations is sufficient.
Going beyond\ =14 is virtually out of reach since the ma-
trix dimension is the binomial coefficier@y,, which is too
large forN=16. The density of states is shown in Fig. 1.

erg spin chain with random magnetic field is encoded by
MT with symmetry corresponding to the GOE.

Having demonstrated the consistence of GOE statistics
with the spectrum of Hamiltoniafll), we now ask the ques-
tion what model of spin chain can exhibit a GUE statistics?
We have already seen that a random magnetic field along the
z direction is not enough. Naturally, one might suggest a

random magnetic field in arbitrary direction at each site, i.e.,

Since the density of states is not constant, a standard un- ..., .S, replacingh, S,,. This choice, however, has a

. . . n n zZ" ) ’
folding procedl,!re is used to reach a spect@m} with an couple of drawbacks. Firsg, is no longer a good quantum
averaged density of states equal to unity. For the main pur:

: . number, which means that the matrix to be diagonalized is
pose of the present studftesting the relevance of RMT in 9

. : .~ now much largei(for a given numbeN of sping. Second,
disordered quantum spin systgmbe nearest level spacing there are now nondiagonal random-matrix elements, which

. Cén the analogy with Hamiltonian for particl@vithin the
i){tbfl{{_rther fabndt,hfor the E{):eselnt ensfemble_, iom@;\ed thde dIStTght-binding approximationto be less transparent.

ribution of both nearest level spacings) =An.1~ Ay ant Instead, we introduce a three-site interaction, so that the
that of the next nearest level spacingg(S)=\p:2— A\, - Hamiltonian is

The resulting level distributionp(s) and p,(s) were tested

to satisfy the normalization conditions[{p(s)ds N
=Josp(s)ds=1, and [5py(s)ds=3/osp(s)ds=1. They Ho= JS.- +h.S. +J-S.- X 4
are displayed in Fig. 2. The distributign(s) is compared T nzl[ S-St nSnat IrSh [Sr41%Sh2] (@)

with the GOE Wigner surmise distributigny, S), while the
distribution p,(s) is compared with the corresponding GOE which conserves,. This Hamiltonian violates time-reversal
prediction’ The quality of agreement with the GOE statistics invariance, but, unlike the former case, this time-reversal
is quite satisfactory. To corroborate this statement we alsgiolation cannot be compensated for by the spin-reversal op-
compare (see the inset of Fig. )2the difference p(s) eratore' ™z, Hence it is represented by a complex Hermitian
— pws(S) With pryt(S) — Pws(S) Wherepry1(S) is the large  matrix® The three-spin interaction in E@) is not anad hoc
N prediction forp(s) (see Ref. 6, Fig. 4.2, and Ref).A  term. It appears in earlier essays on magnetism as one goes
glance at the figure suggests that the absolute value of tHe higher-order terms associated with interchanges of elec-
area pertaining to the data point curve is smaller than tharons belonging to different atoms. An example of an inter-
pertaining to the solid curve. In other words, our data fallaction term involving three spin operators is discussed in
betweenpy«S) and pry(S)- Ref. 10. It turns out that a very small mixture of three-site
These calculations indicate that level statistics of Heiseninteraction termsJy/J=1/140) is sufficient to drive the sys-
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1.0 that of the GUE(valid at\ =). The answer to these ques-

] tions is provided by Dyson’s Brownian-motion motiehich

o ..I"--.-"h shows thatP(H,\) satisfies a certain Fokker-Planck equa-
L tion. The solution of this equatiofsee Ref. 6, equation
6.15.12 shows that the crossover occurs\dt1. Compar-
ing the separate spectra of the GOE and GUE parts of Hamil-
tonian (4), the parameten in our case is\~0.8, which
evidently does not satisfy the condition above. It should be
kept in mind, however, that in our case the time-reversal
- violating matrix isdeterministic Combined with the fact that
0.2 _' " Hamiltonian (4) is a sparse matrix and not a fully random

; r matrix in the sense of RMT, the application of Dyson’s

004 j —— Brownian-motion modeélin the present case should be ex-
amined with care. Investigation of ensembles containing ran-
40 05 o0 o5 1o dom a_nd deltermi_nistic parts has been carried out by Br_e_zin
E(bandwidth) and H|k§1m? ) but it does not cover the present case specified
by Hamiltonian(4).

FIG. 3. Density of stategnormalized by the bandwid}hfor Let us then present some heuristic arguments about the
Hamiltonian (4) for a system ofN=14 spins withh/J=4 and  minimum value ofJ; for which the GUE statistics emerges.
J1/J=1/140. The addition of the weak time breaking term does notComparing the forms of spin and tight-binding modéist
affect the density of stategompared with Fig. L in the rigorous Holstein Primakoff sensiae Heisenberg in-

teraction can be thought of as a hopping term while the ran-
tem statistics from a GOE to a GUE, while the density ofdom field term can be considered as a site energy contribu-
states(Fig. 3 is virtually unchanged. tion. Of course, the spin operators are not particle operators

The corresponding level spacing distribution is shown inpyt still, a term likeS;'S;, ; can be interpreted as “destroy-
Flg 4. This time, the ConSiStency with GUE statistics is eX'ing a partide" in siten+ 1 and “Creating a partic]e” at sita.

cellent. _ The three spin term can be written as
There is a considerable amount of work on the problem of

mixture of ensembles with two different symmetries. The
one relevant for our case is that represented by an ensemble
of matricesHy+\V whereH, andV are both randomma-
trices such thaH is time-reversal invariant whil¥ is not®
Here\ is a real parameter, and the two matrices are assum
to have the same mean level spacing. The main goal is t
determine the distributio®(H,\)=(8(H—Hy—\V) (aver-
aging over the GOE foH, and the GUE foV). In a less
rigorous sense, the question is at which value dhe level
statistics crosses from the GQ&hich is exact forn=0) to

JTSn'[3q+1xsn+2]:iJTszsjk|Sl:rS|_’ ®)

wherejkl run onn,n+1n+2 and the summation conven-
é&)n applies. Together with the Heisenberg tedi®,- S, 1

e can think of it as a deterministic hopping with coefficient

+iaJ; wherea takes into account the number of hopping
terms in equation 5 and their rangeearest and next nearest
ones, as well as some mean-field valuesQf. There are
three terms in the scalar product; each one multiplies two
terms in the vector product. Such very rough estimates sug-
: gests 5<=a<10. Thus, each hopping carries a phage
104 which, for smallJ{/J is equal toaJ;/J. It is then expected
that the crossover region from the GOE to the GUE statistics
occurs when the overall phade=NaJd;/J~27.

In conclusion, we have demonstrated the relevance of

random-matrix theory for disordered quantum spin systems,

0.8

0.6 manifested through the distribution of nearest level spacings.
C For the Heisenberg spin chain with random magnetic field
8 04 along thez direction Hamiltonian(1) breaks time reversal
] but there is still an antiunitary operator with which it com-
o2 mutes, leading to a real matrix representation and GOE sta-

tistics. Adding a small three site term to Hamiltoniéh
leads to the Hamiltoniart4) which generically breaks the

0.0 time-reversal invariance. Whereas the density of states re-
F— r— & 1+ &+ T 1T+ 1 mains virtually intact, the nearest level spacing distribution
0.0 0.5 1.0 15 2.0 25 3.0 3.5 .
5 shifts from the GOE to the GUE.
FIG. 4. Nearest level spacing distribution for Hamiltoniah Discussions with B. L. Altshuler and D. Cohen are highly

for a system ofN=14 spins withh/J=4 andJ;/J=1/140. The acknowledged. This work was partially supported by ISF,
continuous lines correspond to Poisson, GOE, and GUE statistic®SF, DIP and Minerva grants. One of (¥.A.) acknowl-
The agreement with the GUE statistics is evident. edges a visitor grant from the CNRS.
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