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Thermodynamics of the half-filled Kondo lattice model around the atomic limit

Qiang Gu
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Straße 38, 01187 Dresden, Germany

~Received 5 February 2002; published 2 August 2002!

We present a perturbation theory for studying thermodynamic properties of the Kondo spin liquid phase of
the half-filled Kondo lattice model. The grand partition function is derived to calculate chemical potential, spin
and charge susceptibilities, and specific heat. The treatment is applicable to the model with strong couplings in
any dimensions~one, two, and three dimensions!. The chemical potential equals zero at any temperatures,
satisfying the requirement of the particle-hole symmetry. Thermally activated behaviors of the spin~charge!
susceptibility due to the spin~quasiparticle! gap can be seen and the two-peak structure of the specific heat is
obtained. The same treatment to the periodic Anderson model around atomic limit is also briefly discussed.
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The Kondo lattice model~KLM ! and the periodic Ander-
son model~PAM! are two prototype models for the heav
fermion system and related materials.1–3 Both models de-
scribe a band of itinerant conduction electrons interact
with a lattice of magnetic impurities. At half-filling, they ar
usually viewed as standard models to understand the
called Kondo insulator. The PAM is written as

HPAM52t (
^ i , j &,s

~cis
† cjs1H.c.!1V(

i ,s
~cis

† f is1H.c.!

1e f(
i

ni
f1U f(

i
ni↑

f ni↓
f , ~1!

where the fermion operatorscis
† ( f is

† ) create conduction~im-
purity! electrons and the summation(^ i , j & is taken over all
nearest neighbors. In the Kondo limitU f@V andeF@e f (eF
is the Fermi energy!, the charge fluctuation off electrons is
suppressed and each impurity site is occupied by one
only one f electron. Then the PAM can be simplified an
reduced to the KLM,4

HKLM52t (
^ i , j &,s

~cis
† cjs1H.c.!1J(

i
Si•si

c , ~2!

with the spin-exchange couplingJ58V2/U f under symmet-

ric conditions. Heresc5(s,s8
1
2 ss,s8cis

† cis8 is the spin-density

operator of conduction electrons andS5(s,s8
1
2 ss,s8 f is

† f is8
denotes the localized spin withf is

† ( f is) being the pseudo
fermion operators.ss,s8 is the Pauli matrix.

The purpose of this work is mainly to consider the ha
filled KLM whose ground state and finite-temperature pro
erties have been intensively studied in recent years.5–9 The
ground-state phase diagram has been now well establish5

Owing to the Kondo screening effect, the one-dimensio
~1D! model has a Kondo spin liquid~KSL! state at all values
of the couplingJ/t. In higher dimensions, it is suggested th
competition between the Kondo screening and
Ruderman-Kittel-Kasuya-Yosida interaction leads to qu
tum phase transitions from the KSL state to the antiferrom
netically ordered state asJ/t decreases, with the critical poin
(J/t)c'1.4 for two-dimensional~2D! and 2.0 for three-
dimensional~3D! KLM’s. 6–8 The KSL phase is characterize
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by three different energy scales: the spin (Ds), charge (Dc),
and quasiparticle (Dqp) gaps. The spin gap vanishes at t
critical point while the other two gaps still remain finite i
the ordered phase. The finite-temperature properties of
KSL phase are dominated by all three energy scales. A n
ber of powerful numerical methods including quantu
Monte Carlo~QMC! simulations,8 the density matrix renor-
malization group method9 and the finite-temperature Lanczo
technique10 have been used to investigate the thermodyna
properties of the KLM in 1D and 2D. However, less analy
cal work is known, especially for the higher-dimension
models.

In this paper, we propose a finite-temperature perturba
theory to study the thermodynamics of the KSL phase aro
the atomic limitt→0. We believe that the approach is app
cable to the KLM in any dimensions and at any temperatu
as long as the coupling is sufficiently strong,J@t. The
model under consideration is a generalized KLM by intr
ducing an on-site Coulomb interaction between conduct
electrons to the Hamiltonian~2!,

H5HKLM1Uc(
i

ni↑
c ni↓

c . ~3!

The hopping term in Eq.~2! is treated as a perturbation.
similar treatment has been applied to pure spin systems
the dimerized ground state11 and yields good agreement wit
experiment results and QMC simulations.12

The strong-coupling limit has been taken as a good st
ing point to understand the ground-state properties of
KSL phase. Various techniques based on this limit, such
direct strong-coupling expansions,5,7 slave particle
approach,13,14 and projector techniques,15 are employed to
calculate the ground-state energy and the excitation spe
and even to determine the quantum transition point
higher-dimensional KLM’s. In the limit case, the groun
state and low-lying excited states can be described by sim
wave functions and thus it is much easier to define the
ergy gaps.5 For each atom, the Hilbert space consists of ei
possible quantum states~see Table I!: a singlet stateusi&
51/A2(ci↑

† f i↓
† 2ci↓

† f i↑
† )u0&, three degenerate triplet state

ut i
1&5ci↑

† f i↑
† u0&, ut i

21&5ci↓
† f i↓

† u0&, and ut i
0&51/A2(ci↑

† f i↓
†

1ci↓
† f i↑

† )u0&, two hole statesuais&5 f is
† u0&, and two double-
©2002 The American Physical Society04-1
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occupancy statesubis&5ci↑
† ci↓

† f is
† u0&. The unperturbed lattice

eigenstates are simply the direct products of the ato
states; e.g.,us1s2•••sN& is the ground state. The lowest sp
excitation is promoting one singlet to triplet. And the lowe
charge excitation is to create a pair of one vacant and
doubly occupied site, with a spin-singlet combination of t
two localized spins. The quasiparticle is defined as either
vacancy or one double-occupancy configuration. One can
a qualitatively correct picture of the KSL phase for smal
couplings from the limit case. Naturally, we expect that it
also an appropriate starting point for understanding ther
dynamic properties.

We use the grand canonical ensemble. First the grand
tition function is calculated, Z(b,m)5Tr$exp@2b(H
2mnc)#% whereb51/kBT, m is the chemical potential, an
nc is the number operator of conduction electrons. Since
f electrons are completely localized and they have no con
butions to the fluctuation of the electron number in the KL
only the number of conduction electrons is considered. P
forming the cumulant expansion, the partition function rea

Z~b,m!5Z0expF (
n51

`

UnG , ~4!

with the cluster functionUn defined as

U15
Z1

Z0
,

U25
Z2

Z0
2

1

2 S Z1

Z0
D 2

,

U35
Z3

Z0
2

Z2Z1

Z0
2

1
1

3 S Z1

Z0
D 3

, . . . . ~5!

HereZn is thenth-order perturbation expansion of the par
tion function,

Zn5~21!nE
0

b

dt1E
0

t1
dt2•••

3E
0

tn21
dtnTr@e2b(H02mnc)HI~t1!HI~t2!•••HI~tn!#

~6!

TABLE I. Eigenstates and energies of each atom.h is the exter-
nal magnetic field.a51,0,21 is the spin-z component of triplet
excitations ands5

1
2 (2

1
2 ) corresponds to spin up~spin down! of

hole and double occupancy states.

Eigenstate Spin index Eigenvalue Electron numbe

usi& 0 2
3
4 J 1

ut i
a& a 1

4 J2ah 1
uais& s 2sh 0
ubis& s Uc2sh 2
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andHI(t)5et(H02mnc)HIe2t(H02mnc). HereZn can be inte-
grated out in the basic set of eigenstates of the unpertu
Hamiltonian.11 It contains the product ofn perturbation ma-
trices,

~HI !nk~HI !kl•••~HI !mn

5 (
^ i 1 j 1&

(
^ i 2 j 2&

••• (
^ i nj n&

~Hi 1 j 1

I !nk~Hi 2 j 2

I !kl•••~Hi nj n

I !mn .

(Hi j
I )mn52t^mu(s(ci ,s

† cj ,s1H.c.)un& is the matrix element
of the perturbation in the Hilbert space of the atom lattic
Nevertheless, only those terms in which all the si
i 1 , j 1 ; i 2 , j 2 ; . . . ,i n , j n are connected by the interaction a
taken into account in the cluster functionUn .

The computation of the perturbation expansions
straightforward but very laborious. Above all, one has
compute the perturbation matrix elements (Hi j

I )mn . It is im-
portant to note that bothf s and cs are fermionic operators
and the sign changes when they exchange their sites.
example,

Hi j
I uai↑t j

11&5tut i
11aj↑&,

Hi j
I ubi↑t j

11&52tut i
11bj↑&. ~7!

uais& and ubis& are fermionlike states, whileut i
a& and usi& are

bosonlike states,

uaisbjs8&52ubjs8ais&,

usi t j
a&5ut j

asi&. ~8!

(Hi j
I )mn is a real, diagonal matrix. For each nonzero eleme

the final and initial stateŝmu andun& differ only in the states
of the two adjacent atoms and the rest of the lattice is
changed. So only 838 different states are concerned. Th
interaction term just transfers an electron from one site to
neighbors and so it makes the states of the two involved s
definitely changed but conserves the number of electrons
thez component of spins. Taking advantage of this point,
calculation of the matrix elements and the cluster functio
can be greatly simplified. For example, one can easily
that all diagonal elements of the perturbation matrix are ze
To thed-dimensional cubic lattice KLM, all odd-order clus
ter functions also vanish. In this paper, we only evaluate
second-order expansion (n52).

Before calculating thermodynamic properties, one m
first determine the chemical potentialm by solving the equa-
tion

^nc&52
1

N

]F~b,m!

]m
, ~9!

where ^nc& is the average number of conduction electro
per site, N is the number of sites, andF(b,m)
5(21/b)ln@Z(b,m)# is the free energy. Generally, the chem
cal potential is a function of temperature. Neverthelessm
should be exactly equal to zero at any temperature due to
particle-hole symmetry at half filling. There is one condu
tion electron per site on average in this case. Setting^nc&
4-2
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51 in the above equation, we obtain that the requiremen
well satisfied up to the second-order expansion.

We proceed to calculate the spin susceptibility

xs~T!52
1

N S ]2F

]h2 D
h50

,

charge susceptibility

xc~T!52
]nc

]m
,

and specific heat

C~T!52
1

N
b2

]2~bF !

~]b!2
.

All the thermodynamic quantities are derived from the fr
energy by a standard procedure. Figure 1 shows nume
results of spin and charge susceptibilities for the 1D KL
Raising temperature from zero, bothxs(T) and xc(T) rise
exponentially, indicating the existence of the spin and qu
particle gaps, and then they reach a maximum. The peak
xs(T) and xc(T) move to lower temperatures withJ/t de-
creasing, suggesting that theDs and Dqp diminish corre-
spondingly. As discussed by Shibataet al.9 and Haule
et al.,10 bothDs andDqp are responsible for the spin susce
tibility but mainly the lower one dominates the low
temperature behaviors. In contrast,xc is governed byDqp
only. SinceDqp,Ds near the atomic limit, bothxs(T) and
xc(T) are dominated by the quasiparticle gap. We find t
the activation energies estimated by fitting the spin a
charge susceptibilities are similar whenJ/t.4, consistent
with the conclusion of the numerical results.9,10 However the
second-order perturbation result is not accurate enoug

FIG. 1. Spin~a! and charge~b! susceptibilitiesxs ,xc vs T/t for
the 1D KLM with Uc50.
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discuss the delicate relation between the activation ener
of xs(T) andxc(T) and the spin and quasiparticle gaps f
smaller couplings.

For J/t&2.5, there appears an unphysical protrusion
the peak ofxc(T). This value is an approximate lower lim
of the J/t range for which the perturbation theory is reaso
able for all temperatures. Within the second-order pertur
tion theory, the lower limit ofJ/t is about 2.5, 3.0, and 4.0
for 1D, 2D, and 3D KLM’s respectively. This is consiste
with the zero-temperature strong-coupling expansions
which the spin gap within second order is given asDs

(2)5J
220dt2/3J.5 Here Ds

(2) tends to zero quickly atJ/t
'2.58, 3.65, and 4.47 ford51, 2, and 3. Considering
higher-order expansions is expected not only to improve
accuracy of the result, also to reduce the lower limit ofJ/t.
This task might be achieved by the high-order series exp
sion technique16 which has been successful in explaining t
ground-state properties of the KLM.7 The methodology for
carrying out high-order expansions at finite temperature
spin systems has been developed recently.17

Results of the specific heat for 1D and 3D KLM’s a
presented in Figs. 2 and 3. The specific heat contains in
mation on both the spin and charge degrees of freedom.
charge fluctuation originates from the movement of cond
tion electrons. Moving an electron from one site to its neig
bors on the ground-state background creates a pair of
vacant and one doubly occupied site. The energy cost ju
the charge gap. The charge fluctuation is greatly suppre
due to the large charge gap near the atomic limit, so only
peak attributed to the spin excitations can be seen. The l
tion of the peak depends on the spin gap which varies witJ.
The hopping term stirs up the charge fluctuations. The
new peak originating from the charge degree of freedom
gins to be visible asJ/t is reduced to 3.0, as shown in Fig

FIG. 2. Specific heatC(T) vs T/t of the 1D KLM with ~a! Uc

50 andJ/t54.0,3.5,3.0,2.5;~b! J/t52.5 andUc50,1.0,2.5.
4-3
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2~a!. The new peak corresponds to the specific heat of
free conduction electrons and is independent ofJ. The on-
site Coulomb repulsion in the conduction electron band w
enhance the charge gap and so it suppresses the charge
tuation. As shown in Fig. 2~b!, the second peak inC(T) will
vanish with increasingUc . Comparing Figs. 3 and 2, th
results for the 3D KLM exhibit similar features to those f
the 1D case. As theT50 perturbation theory shows, variou
properties, including the characteristic energy gaps, of

FIG. 3. Specific heat of the 3D KLM.
.
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KSL phase are mainly determined by the local dimers in
atomic limit,5 so the dimensionality does not make mu
difference in thermodynamic properties. This point is a
indicated in numerical results for the 2D KLM.10

At last, we notice that the above treatment can be a
applied to deal with the PAM, but with more complexit
Contrary to the KLM, the charge degrees of freedom of
electrons must be considered in the PAM. The vacancy
double occupancy of the impurity site are possible and t
the Hilbert space of each atom is greatly enlarged. In gen
case each atom has 16 quantum states. The atomic lim
the PAM has been investigated by many authors.18–21Choos-
ing the atom Hamiltonian as the unperturbed Hamiltoni
we can evaluate the thermodynamics near the atomic limi
perturbation theory as above. The physical properties of
PAM are more complicated than those of the KLM. For e
ample, the specific heat will exhibit two peaks even in t
atomic limit.22 More recently, Moskalenkoet al. calculated
the one-particle Green’s function of the PAM by the hoppi
perturbation treatment.23

In summary, we have studied thermodynamic proper
of the Kondo spin liquid phase of the half-filled Kondo la
tice model by a finite-temperature perturbation theory. T
chemical potential, spin and charge susceptibilities, and s
cific heat are calculated. The results are consistent qua
tively with those obtained by numerical methods. It prov
that the strong-coupling limit is a reasonable starting poin
study thermodynamics of the Kondo spin liquid phase. T
accuracy of the results obtained is expected to be impro
by taking higher-order expansions into account.

The author would like to thank P. Thalmeier for helpf
discussions.
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