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Thermodynamics of the half-filled Kondo lattice model around the atomic limit
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We present a perturbation theory for studying thermodynamic properties of the Kondo spin liquid phase of
the half-filled Kondo lattice model. The grand partition function is derived to calculate chemical potential, spin
and charge susceptibilities, and specific heat. The treatment is applicable to the model with strong couplings in
any dimensiongone, two, and three dimensionghe chemical potential equals zero at any temperatures,
satisfying the requirement of the particle-hole symmetry. Thermally activated behaviors of thlsgige
susceptibility due to the spifquasiparticl¢ gap can be seen and the two-peak structure of the specific heat is
obtained. The same treatment to the periodic Anderson model around atomic limit is also briefly discussed.
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The Kondo lattice modelKLM ) and the periodic Ander- by three different energy scales: the spix), charge A.),
son model(PAM) are two prototype models for the heavy and quasiparticle ,,) gaps. The spin gap vanishes at the
fermion system and related materi&ié.Both models de- critical point while the other two gaps still remain finite in
scribe a band of itinerant conduction electrons interactinghe ordered phase. The finite-temperature properties of the
with a lattice of magnetic impurities. At half-filling, they are KSL phase are dominated by all three energy scales. A num-
usually viewed as standard models to understand the sder of powerful numerical methods including quantum

called Kondo insulator. The PAM is written as Monte Carlo(QMC) simulations® the density matrix renor-
malization group methddand the finite-temperature Lanczos
. 0 . . .
H S e +He)+V chf +He technlq_ué have been l_Jsed to investigate the thermodynan_mc
PAM <i,12>,s (CisCjs ) % (Cisfis ) properties of the KLM in 1D and 2D. However, less analyti-

cal work is known, especially for the higher-dimensional
f fof models.

- EfZi it UfEi MMy @ In this paper, we propose a finite-temperature perturbation
_ T o theory to study the thermodynamics of the KSL phase around
where the fermion operators, (fis) create conductiofim-  yhe atomic limitt— 0. We believe that the approach is appli-
purity) electrons and the summatidiy; ;) is taken over all  capje to the KLM in any dimensions and at any temperatures
nearest neighbors. In the Kondo linkit>V ande:> €; (e as long as the coupling is sufficiently strondst. The
is the Fermi energy the charge fluctuation dfelectrons is  mogel under consideration is a generalized KLM by intro-

suppressed and each impurity site is occupied by one ang\cing an on-site Coulomb interaction between conduction
only onef electron. Then the PAM can be simplified and gjectrons to the Hamiltoniaf®)

reduced to the KLM,

— C .C
HKLM=_t<_E> (CiTsts""H-C-)"'JE S'ch ) H HKLM+UcEi NNy - ©)
1,]).8 i

. . . The hopping term in Eq(2) is treated as a perturbation. A
W'th the.s.pln—exchange coupl|ng=§V2/gf under. symmgt- similar treatment has been applied to pure spin systems with
ric conditions. Here’=3 o707 s/ CisCis/ is the spin-density  the dimerized ground stdfeand yields good agreement with
operator of conduction electrons ai@ 25,5’%Us,s’fiTsfis’ experiment results and QMC simulatioffs.
denotes the localized spin witH, () being the pseudo-  The strong-coupling limit has been taken as a good start-
fermion operatorso, o is the Pauli matrix. ing point to understand the ground-state properties of the

The purpose of this work is mainly to consider the half- KSL phase. Various techniques based on this limit, such as
filled KLM whose ground state and finite-temperature prop-direct strong-coupling expansions, slave particle
erties have been intensively studied in recent y&atghe ~ approactt>'* and projector techniqués,are employed to
ground-state phase diagram has been now well estabfishe@alculate the ground-state energy and the excitation spectra
Owing to the Kondo screening effect, the one-dimensionafnd €ven to determine the quantum transition point of
(1D) model has a Kondo spin liquitkSL) state at all values h|gher-d|menS|o_naI KL.M’s. In the limit case, .the grou_nd
of the couplingl/t. In higher dimensions, it is suggested that State and low-lying excited states can be described by simple
competition between the Kondo screening and thevave functions and thus it is much easier to define the en-
Ruderman-Kittel-Kasuya-Yosida interaction leads to quan®rdy gaps.For each atom, the Hilbert space consists of eight
tum phase transitions from the KSL state to the antiferromagPOssible quantum statdsee Table )t a singlet statds;)
netically ordered state @t decreases, with the critical point =1/V2(c, ], —c] f1,)|0), three degenerate triplet states
(JIt)c~1.4 for two-dimensional(2D) and 2.0 for three- [tH=c/f[0), [t 1y=c] f]|0), and [t))=1/12(c] f],
dimensional3D) KLM’s. =8 The KSL phase is characterized +ciTLfiTT)|O>, two hole statesa;s)=f|0), and two double-

0163-1829/2002/66)/0524044)/$20.00 66 052404-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B56, 052404 (2002

TABLE I. Eigenstates and energies of each atbris the exter- 5 H!(7) = er(HO—un9) 1 o= 7(HO—un®) HereZ, can be inte-

nal magnetic fielda=1,0,-1 is the spinz component of triplet 45164 out in the basic set of eigenstates of the unperturbed

excitations ands=; (—3) corresponds to spin uspin down of  Pamiltoniant It contains the product afi perturbation ma-
hole and double occupancy states.

trices,
Eigenstate Spinindex  Eigenvalue  Electron numbers (4" (H") - (H")mn
|si) 0 -3 1
t) a 13-ah 1 =<i2> (iE,) <2> (Hi nkHE D= (H -
|ais> s —sh 0 1l1) {2l2 nln
|bis) s U.—sh 2 (Hij)mn=—t(m|=4(c] ¢; s+ H.c.)In) is the matrix element

of the perturbation in the Hilbert space of the atom lattice.
Nevertheless, only those terms in which all the sites
occupancy stateld;s) = c,Tc,lf,S|O> The unperturbed lattice i1,j1;i2,j2; --..in,jn are connected by the interaction are
eigenstates are simply the direct products of the atomitaken into account in the cluster functiahy, .

states; e.g/siS, - - Sy) is the ground state. The lowest spin ~ The computation of the perturbation expansions is
excitation is promoting one singlet to triplet. And the loweststraightforward but very laborious. Above all, one has to
charge excitation is to create a pair of one vacant and oneompute the perturbation matrix elementi;{jomn. It is im-
doubly occupied site, with a spin-singlet combination of theportant to note that botli; and c, are fermionic operators
two localized spins. The quasiparticle is defined as either onand the sign changes when they exchange their sites. For
vacancy or one double-occupancy configuration. One can gexample,

a qualitatively correct picture of the KSL phase for smaller

couplings from the limit case. Naturally, we expect that it is Hijlaity )y =tltay),
also an appropriate starting point for understanding thermo- | - i
dynamic properties. Hijlbiit) 5y =—t[t "bjy). (7

We use the grand canonical ensemble. First the grand p
tition function is calculated, Z(8,u)=Tr{exd —B(H
—un®)} where 8=1/kgT, u is the chemical potential, and

a\réis> and|b;s) are fermionlike states, whilg{*) and|s;) are
bosonlike states,

n¢ is the number operator of conduction electrons. Since the |laishis )= —|bigrais)
f electrons are completely localized and they have no contri- eTs e
butions to the fluctuation of the electron number in the KLM, |sit?)=|t"s). (8)

only the number of conduction electrons is considered. Per-
forming the cumulant expansion, the partition function reads(H”)mn is a real, diagonal matrix. For each nonzero element,
the final and initial stateém| and|n) differ only in the states
of the two adjacent atoms and the rest of the lattice is un-
, (4)  changed. So only 88 different states are concerned. The
interaction term just transfers an electron from one site to its
neighbors and so it makes the states of the two involved sites
definitely changed but conserves the number of electrons and
Z, thez component of spins. Taking advantage of this point, the
-, calculation of the matrix elements and the cluster functions
Zo can be greatly simplified. For example, one can easily get
that all diagonal elements of the perturbation matrix are zero.
Z; 1(21)2 To thed-dimensional cubic lattice KLM, all odd-order clus-

zw,u):zoexp[ nZl Uy

with the cluster functiorJ , defined as

Ul:

2:ZO 2 Z_O ter functions also vanish. In this paper, we only evaluate the
second-order expansiom€2).
3 Before calculating thermodynamic properties, one must
Zy 232y 1174 , . . . .
=— -4+, (5) first determine the chemical potentjalby solving the equa-
37z 2 " 3\Z :
o Z 0 tion
HereZ, is thenth-order perturbation expansion of the parti- . 1 IF(B,u)
tion function, (n)= N oa 9)
§7
where (n°) is the average number of conduction electrons
=(- 1)”[ dle dry- - per site, N is the number of sites, andF(B,u)

=(—1/B)In[Z(B,n)] is the free energy. Generally, the chemi-
n— WO ne | cal potential is a function of temperature. Neverthelgss,
XJ “dr aTrle PO (7)H! (1) - - H'(7)] should be exactly equal to zero at any temperature due to the
0 particle-hole symmetry at half filling. There is one conduc-
(6) tion electron per site on average in this case. Settinfg
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FIG. 1. Spin(a) and chargéb) susceptibilitiesys, x vs T/t for

FIG. 2. Specific hea€(T) vs T/t of the 1D KLM with (a) U,
the 1D KLM with U.=0.

=0 andJ/t=4.0,3.5,3.0,2.5(b) J/t=2.5 andU,=0,1.0,2.5.

=1 in the above equation, we obtain that the requirement i
well satisfied up to the second-order expansion.
We proceed to calculate the spin susceptibility

S,. . . o .
discuss the delicate relation between the activation energies
of xs(T) and x.(T) and the spin and quasiparticle gaps for
smaller couplings.

1/ o%F For J/t<2.5, there appears an unphysical protrusion on
xs(T)=— N —2) , the peak ofy.(T). This value is an approximate lower limit
h h=0 of the J/t range for which the perturbation theory is reason-
e able for all temperatures. Within the second-order perturba-
charge susceptibility tion theory, the lower limit ofl/t is about 2.5, 3.0, and 4.0
anc for 1D, 2D, and 3D KLM'’s respectively. This is consistent
Xo(T)=— P with the zero-temperature strong-coupling expansions by
K which the spin gap within second order is givendg)=1J
and specific heat —20dt?/31.° Here A tends to zero quickly atd/t
~2.58, 3.65, and 4.47 fod=1, 2, and 3. Considering
C(T)= 1 202(,3':) higher-order expansions is expected not only to improve the
(M= NB (8B)2 ' accuracy of the result, also to reduce the lower limiJ4f.

This task might be achieved by the high-order series expan-
All the thermodynamic quantities are derived from the freesjon techniqu¥ which has been successful in explaining the
energy by a standard procedure. Figure 1 shows numericground-state properties of the KLMThe methodology for
results of spin and charge susceptibilities for the 1D KLM.carrying out high-order expansions at finite temperature for
Raising temperature from zero, bogh(T) and x.(T) rise  spin systems has been developed recéﬁtly.
exponentially, indicating the existence of the spin and quasi- Results of the specific heat for 1D and 3D KLM’s are
particle gaps, and then they reach a maximum. The peaks @fresented in Figs. 2 and 3. The specific heat contains infor-
Xs(T) and x.(T) move to lower temperatures with't de-  mation on both the spin and charge degrees of freedom. The
creasing, suggesting that thies; and A, diminish corre-  charge fluctuation originates from the movement of conduc-
spondingly. As discussed by Shibatt al® and Haule tion electrons. Moving an electron from one site to its neigh-
et al,'” both A andA ,, are responsible for the spin suscep- bors on the ground-state background creates a pair of one
tibility but mainly the lower one dominates the low- vacant and one doubly occupied site. The energy cost just is
temperature behaviors. In contragt, is governed byA,,  the charge gap. The charge fluctuation is greatly suppressed
only. SinceA,,<Ag near the atomic limit, bottys(T) and  due to the large charge gap near the atomic limit, so only one
xc(T) are dominated by the quasiparticle gap. We find thapeak attributed to the spin excitations can be seen. The loca-
the activation energies estimated by fitting the spin andion of the peak depends on the spin gap which varies With
charge susceptibilities are similar whéit>4, consistent The hopping term stirs up the charge fluctuations. Then a
with the conclusion of the numerical result® However the  new peak originating from the charge degree of freedom be-
second-order perturbation result is not accurate enough tgins to be visible ad/t is reduced to 3.0, as shown in Fig.
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FIG. 3. Specific heat of the 3D KLM.
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KSL phase are mainly determined by the local dimers in the
atomic limit> so the dimensionality does not make much
difference in thermodynamic properties. This point is also
indicated in numerical results for the 2D KLH.

At last, we notice that the above treatment can be also
applied to deal with the PAM, but with more complexity.
Contrary to the KLM, the charge degrees of freedonf of
electrons must be considered in the PAM. The vacancy and
double occupancy of the impurity site are possible and thus
the Hilbert space of each atom is greatly enlarged. In general
case each atom has 16 quantum states. The atomic limit of
the PAM has been investigated by many autht8ré!Choos-
ing the atom Hamiltonian as the unperturbed Hamiltonian,
we can evaluate the thermodynamics near the atomic limit by
perturbation theory as above. The physical properties of the
PAM are more complicated than those of the KLM. For ex-
ample, the specific heat will exhibit two peaks even in the
atomic limit?? More recently, Moskalenket al. calculated
the one-particle Green’s function of the PAM by the hopping
perturbation treatment.

In summary, we have studied thermodynamic properties
of the Kondo spin liquid phase of the half-filled Kondo lat-
tice model by a finite-temperature perturbation theory. The
chemical potential, spin and charge susceptibilities, and spe-

2(a). The new peak corresponds to the specific heat of th@jic heat are calculated. The results are consistent qualita-

free conduction electrons and is independentl.oThe on-

tively with those obtained by numerical methods. It proves

site Coulomb repulsion in the conduction electron band willy, o+ the strong-coupling limit is a reasonable starting point to
enhance the charge gap and so it suppresses the charge flf;qy thermodynamics of the Kondo spin liquid phase. The

tuation. As shown in Fig. ®), the second peak i€ (T) will

accuracy of the results obtained is expected to be improved

vanish with increasingJ.. Comparing Figs. 3 and 2, the by taking higher-order expansions into account.

results for the 3D KLM exhibit similar features to those for
the 1D case. As th&=0 perturbation theory shows, various

The author would like to thank P. Thalmeier for helpful

properties, including the characteristic energy gaps, of théeiscussions.
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