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Coulomb gap in one-dimensional disordered electron systems
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The density of states of one-dimensional disordered electron systems with long-range Coulomb interaction
is studied in the weak pinning limit. The density of states is found to follow a power law with an exponent
determined by localization length, and this power-law behavior is consistent with the existing numerical
results.
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Recently there has been much interest in the oneh the strongly localized electron systems with LRCI, where
dimensional(1D) electron systems motivated by the devel-the overlap of wave functions can be neglected, electrons can
opment of carbon nanotube technoldgp 1D electron sys-  be treated classically and the DOS exhibits a Coulomb gap
tems electron-electron interactions play very important rolesof the form'?
leading to phases different from the conventional Fermi
liquids 2 Repulsive short-range electron-electron interactions o\ 7t
cause Luttinger liquidéLL ),2 while long-range Coulomb in- D (@)~ Inm : )
teraction(LRCI) is believed to cause a Wigner crys‘"tél‘he ) )
Wigner crystal phase of spinful electrons is characterized byVe note that Eq4) has been derived under the assumption

quasi-long-range order ofk4 charge-density components that the localization length is much smaller than the interpar-
" ticle distance. Both disorder and LRCI push a 1D electron

<P4kF(X)P4kF(0)>~e_“”X- (1 system to the classical limit but in a different manner as is
reflected in the form of DOS Eq2) and Eq.(4). In this

Equation(1) should be compared with the power-law depen-Paper we report a result on the DOS at low energy for the 1D
quantum fluctuations of charge densities, and this feature €ngth is larger than the interparticle distance or interimpu-

manifest in the density of stat¢é®OS) D(w):3 rity distance (more precisely, the weak pinning limit, see
below). Following the analyses on a pinned Wigner crystal

by Maurey and Giamarch?'* employing a simplified
. (20 model, and using a semiclassical approximation, we find that
the DOS follows goower lawat low energy:

E 3/2
D(w)~exr{ - const( In —C)
||

wherew is measured from Fermi energy, akd is a cutoff 0
energy. Note that the DOS of E(R) decays faster than any D(w)~|w[™" 7, ®

other power law. For LL, the DOS follows a power law|”  \here the exponen is basically determined by the local-
with a nonuniversal positivey. The physics of the 1D i 4iion length[see Eq.(15)]. This power-law behavior is

Wigner crystal is analogous to that of the charge-density,onsistent with the existing numerical resdft€quation(s)
wave (CDW),""" apart from the presence of quantum fluc- i the main result of this paper.

tuations and LRCI. _ We consider a spinless electron system for simplicity.
Impurities, either a few or many, change the physicalg,ch a system can be realized in organic chains and

propertigs of 1D electron systems qualitative_ly. For a Si”gl‘?quasi-lD quantum wires in strong magnetic fididThe
impurity in an electron system with repulsive interaction, thepysmiitonian consists of three parts

backscattering of electrons with the impurity becomes strong

at low energy, and it effectively divides the system into two H=Ho+Hcout Himp.
pieces’®
For noninteracting electrons in random disorderany
impurities, all the states are known to be localized due to Ho=va dX[ — i ydxibmt i i ], (6)

repeated backscatteriigThe DOS for a disorder with a
Gaussian distributior{with zero meah can be calculated

exactly:>* Heou= J dxdyV(XTy)p(x)p(y» @
1 for E—soo The operatoiyr(¢,) is the right-movingleft-moving elec-
m2E ' tron operator. The continuum chiral electrons and lattice
D(E)= (3)  electron operators are related by
8(—E) e 112(-88)%  for E_, — oo _ _
37 ' o(x) = Va[ e ¥ yr(x) + ey (x)], ®)

0163-1829/2002/66)/0522024)/$20.00 66 052202-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B56, 052202 (2002

wherea is lattice constant. ge? 213 1 ge2 213
pr=:Lir: is the normal ordered right-moving edge Lo=| 5——5 kP —
. . .. . 2V n: a 7TZV n;l./2
electron density operatorp( is similarly defined, and oPo YN, 0PoYN;

p(X)=pr(X) + pL(X). V()= (% €)(1/yx*+d?) is the Cou-

lomb interactiond is the transverse size of the quantum wirewhere y is a numerical constant characterizing short-range

which we take to be the sangefor simplicity. € is a dielec- interaction and quantum fluctuations amdis impurity con-

tric constant. The Coulomb matrix element (k) centration. The logarithmic factor is due to LRCI, which en-

=(2€% €)Ko(alk|)~(2e?/€)In(1/k|a) for |kla>1 andK, hances the pinning length. The enhanced pinning length im-

is the modified Bessel function. The impurity Hamiltonian is plies the more rigid system and the more difficult pinning by

given by impurities. The system becomes much more ordered and the
fluctuations around the ground state much less important.

The expression for pinning length E{.3) has been derived
Himng WI(X)CT(X)C(X)ZJ dxW (x)[ p(X) under the assumption efeak pinning l,>n; *.
Beyond the pinning length scale the phase coherenée of
+e?* Pyl (x) hr(x) +H.cl, (9) s lost, thus the correlation function of the CDW operator is

expected to decay exponentidlifix—x'|>L,),
whereW,(x) is the impurity potential. The first term in the ,
bracket of Eq.(9) is the forward-scattering term which can (co§26(x,7)]cog20(x',7)]y~e Xlo (14
be neglected compared to back scattering at low energy. T

impurity potentialW,(x) is chosen fo be I~\?quatlon(14) implies that the system breaks into segments

whose typical length is given by the pinning lendgth Thus
at low energy we can consider a typical segment with length
WI(X):E Vod(x— X)), (10) Lo and cal_culate the DOS average(_j over the segment. Since
] the tunneling between segments is strongly suppressed at
low energy we have to fix the value éfat the boundary of
whereX;’s are the random locations of impurities. The inter- a particular segmehtDirichlet boundary condition
acting electron systems can be bosonized in a standard Let us construct a model for a segment which is valid at
way?!” The phase fields and bosonization formulas ardow energy. First of all the logarithmic divergence of Cou-
given by lomb matrix elemenV(k) is cut byk~1/L,. Then the Cou-
lomb energy term can be expressed as

1 1
+ =—4 0, - =—4 ’ UF LO
PRT PL - Ox PR™ PL p <@ H00u|~77% JO dx[(?xe(x)]z,
P R (12) 26" | Lo (15
— ’ = _ = n—.
R ona L 2ma K VETE a

. I . The effective Hamiltonian of men m
The bosonized Hamiltonian of the system is e effective Hamiltonian of a segment becomes

L
Haag | "IXSE1(0,07(0+ m)+ (0,)74V(0.X)),

[ VR o 2
H_f AX 5= [(340)%+ (3,)?] (16)

1 whereV(60,0<X;<L,) is some potential-energy term which
+ —2f dxdy[V(X—y) dx0(x) dy6(y)] is optimized by a certain randoaweragephase value
2m and it depends o only throughe™?'? [see the last line of
Eqg. (12)]. Note that6— 6+ 7 is then a symmetry of the
+ 2 Vopocog 2KeX;+20(X;) ], 12 system. In the weak pinning limit we consider that the phase
! ¢ varies rather smoothly in the rangé— 6,,<= at low
energy over a length scalg,.

wherep, is the average density of electros. _ The electron Green function in imaginary time is defined
The pinning lengthL, is a length scale over which the by

phase fieldd(x) in the ground state varies with6~ 1 in
order to take advantage of the impurity potentil? The GriL (XY, 71— T2, W) = —(T thy (X, 71) b (Y, 72))
pinning length corresponds to the localization length of the (17
electron system. The pinning length can be obtained b
maximizing the energy gains from impurity, elastic, and
Coulomb energie3!** Including the effect of quantum

fluctuations using the self-consistent harmonic approxima- —
tion, the pinning length is given by Gri(X—Y, 71~ 72) =(Gri (XY, 71~ 72, Wi)w;- (18)

¥0r a particular realization of impuritied/, . After averaging
over impurities
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The DOS is defined by Because our system is in the deep classical regime the domi-
nant low-energy processes would come from the quantum
tunneling between classical vacua. Remembering that the
phase fieldd is an angular variable, the classical vacua are

characterized byf,,c~{60opt+ 7n,n=intege}. This is be-

The above expressions are formally exact but difficult to calcause the potential(6,X: ;) depends org only through the
culate. Here instead we will calculate the electron Greefform e*2¢ so that it possesses the symmetry

function at a pointy in the segmentaway from the bound-
ary) using the Hamiltonian Eq.16), 60— 0+ 7. (27

D(w)=— %Im J:dTeWER,L(o,r) (19)

io—wt+id

(GrL(Y.Y:T1— T2))w;- (200 since the phase fielé varies on the ordetr in each segment
one can expect that the most dominant process would be the
guantum tunneling betweef,, and 6,,= 7 vacua. The
quantum tunneling processes between classical vacua can be
Lo B i B described by the solutions of classical equations of motion in
Sseng dxf dr—a,0 ax¢+f drHsq (21)  imaginary time which are also callethstantons™®
0 0 m 0 Now we have to find the classicdlmaginary time-
dependensolution which minimizesS,+S;,. SinceS;, is
linear in @ it plays a role of the external source field. We
argue below that the first term &, [Eq. (25)] is the source
for the vortex and antivortex configurations of tf@gulaj

For the computation of the electron Green function, the La-
grangian formulation is more convenient:

Using the bosonization formul&g, (y,7,— 75) can be
expressed as

D[ 6, e SseqSex phase fieldd. For the moment let us neglect the potential
Gr(Y, 71— T9)= , termV(6,X;). Then the phase field and its dual phase field
J D[ 6, ple Ssey ¢ are related by the Cauchy-Riemann equatidree set
u=1 for simplicity from now on
SexziJ dxd[ 6(x,7) + B(x,7)]I(X, 7, Iub=—l€u0,0, pv="1X (28)

wheree,,, is a totally antisymmetric tensor. The first term of
J(X,7)=0(X=Y)[6(7—T11) = (7= 73)]. (22 Eq.(25) stems from the source of dual fieftl[see Eq(22)].
Including only one source atr(,y) the ¢ field satisfies the

In Eq. (22) the dual phase fieldb can be integrated out classical equation of motion,

explicitly. [Remember that the potential ter(6,X;) de-

pends only ond, not on ¢.] The electron Green function (P4 B (X, T =i mSX—y) (7 77). 29)

becomes
Combining Eq.(28) and Eq.(29) we deduce
D[ 6]e So~ S~
GrlY,m1— 75) = , (23 TO(X—Y) (7= T1)=€,,d,0,0(X,7). (30
f D[6]e” > Naively the right-hand side of Eq30) vanishes but this is
not necessarily true for the topologically singular configura-
Lo tion such as the vortex. The vortex nature ébfs demon-
Sy= 5K J f dr | —=(9,.0)%+(9,0)? strated by the calculation of vorticity using E@O) and the
m Stokes theorem,
- f Pdr V(o X;) 1
o 47 VI3, 3‘; dx, a,Le:f d’xe,, 9,0,0=52m, (31
1 o which characterizes the vortex nature @f° The unusual
K= i+qy U=veVl+ 7, (4 factor of 1/2 is due to the aforementioned symmetry: 6
+ . Remembering that we have another sourceraty)
1 with a charge opposite to that at;(y) [see the last line of
Sie=— 5 [J(—Iw —k)O(iw,k)+H.c] Eqg. (22)], we conclude that the vortex-antivortex configura-
2K k uk

tion of the # phase field will dominate the electron Green
function for a long time in the classical regime. Before pro-
+if dxdr 6(x,7)I(X,7), (25  ceeding to the explicit vortex-antivortex instanton solution,
let us discuss other classical field configurations generated
- I —iw—K)I(iw k) by the second source term of E@5). It satisfies the stan-
Sy==— >, ’ i (26)  dard Laplace equation in two dimension with delta function
2K ok uk? sources, and its explicit form is given by
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K (x=y)*+ (1= 7)° LR e
bo(7,X)~ —In : 32 n= 755X —X—-XIn—, (35
O(T ) 4 (X_y)2+(7'_ 7_2)2 ( ) 137 v €

In the configuration of Eq(32) the range of variation of
phase fieldd is much large thanr for the long-time limit

| 71— 75| —¢. Thus the configuratiody(x) is suppressed by . ;
; ; > wire, we can estimate the exponent of the DJB+ 7/2 to
the potential termvV(6,X;), and it also does not exhibit the he 560 3-6 which is also consistent with the exponents

angular nature of phase fields. This is a?8 analog of the spinspiained from the numerical studits.
wave degrees of freedom of théf model:* Thus, the con- More precisely Eq(34) should be averaged over the im-

wherec is the speed of light. In the weak pinning limit it is
reasonable to take lp/a to be 4—6. Choosing a typical
Fermi velocity near 10cm/sec ande~1-5 for a quantum

Green function in the long-time limit. phase field varies smoothly in space and the impurity aver-
~ The explicit vortex-antivortex solution in complex coor- age is not expected to bring any singular effects which would
dinates is given b} invalidate Eq.(34), since no infrared divergence can occur

through impurity averages for a finite segment.

Sufficiently strong short-range interaction can also push
the system to a classical regim€<€1), where the result of
Eq. (5) is applicable. On the contrary, the result of E5). is
not applicable to the case of noninteracting disordered elec-
—1/2K trons (K=1) since the condition of the classical limiK(
<1) is not met. Indeed the DOS of noninteracting disor-
dered electrons is finite at the Fermi leysée Eq(3)] con-

(349 trary to Eq.(5).
where 7, is the short-time cutoff provided by the contribu- _We have studied analytically the DOS of the disordered
tions from the vortex cores. Equati¢4) implies Eq.(5). 1D electron system interacting via long-range Coulomb in-

To complete our analysis let us comp@g Eq.(26). The teraqtlon_employlng a s_lmpllfled model and semlcla55|c_al ap-
divergentk summation at smak should be cut by 1/,. The ~ Proximation. The DOS is found to follow a power law with a
frequency summation diverges at large frequerisiiort nor_1un|_versal exponent which is basically dete_rmlned by Iq—
. 7 : g  calization length. The power-law dependence is also consis-
time) which is cut by some high-energy scale such as; .

Thus, S; does not contribute to the electron Green functiontent with the existing numerical result.
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eiZG(Z):Z_(TlJ’_iy)
z—(7ptiy)’
Substituting Eq(33) into the action,S,, we obtain

Z=T7+IiX. (33

1 |7'1_Tz| |7'1—Tz|

Ggr(Y, 71— 72)~ex;{ BT In

70 70
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