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Coulomb gap in one-dimensional disordered electron systems
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The density of states of one-dimensional disordered electron systems with long-range Coulomb interaction
is studied in the weak pinning limit. The density of states is found to follow a power law with an exponent
determined by localization length, and this power-law behavior is consistent with the existing numerical
results.
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Recently there has been much interest in the o
dimensional~1D! electron systems motivated by the dev
opment of carbon nanotube technology.1 In 1D electron sys-
tems electron-electron interactions play very important ro
leading to phases different from the conventional Fe
liquids.2 Repulsive short-range electron-electron interactio
cause Luttinger liquids~LL !,2 while long-range Coulomb in-
teraction~LRCI! is believed to cause a Wigner crystal.3 The
Wigner crystal phase of spinful electrons is characterized
quasi-long-range order of 4kF charge-density components,

^r4kF
~x!r4kF

~0!&;e2Aln x. ~1!

Equation~1! should be compared with the power-law depe
dencex2a of LL. Equation~1! also indicates the suppresse
quantum fluctuations of charge densities, and this featur
manifest in the density of states~DOS! D(v):3

D~v!;expF2constS ln
Ec

uvu D
3/2G , ~2!

wherev is measured from Fermi energy, andEc is a cutoff
energy. Note that the DOS of Eq.~2! decays faster than an
other power law. For LL, the DOS follows a power lawuvug
with a nonuniversal positiveg. The physics of the 1D
Wigner crystal is analogous to that of the charge-den
wave ~CDW!,4–6 apart from the presence of quantum flu
tuations and LRCI.

Impurities, either a few or many, change the physi
properties of 1D electron systems qualitatively. For a sin
impurity in an electron system with repulsive interaction, t
backscattering of electrons with the impurity becomes str
at low energy, and it effectively divides the system into tw
pieces.7,8

For noninteracting electrons in random disorder~many
impurities!, all the states are known to be localized due
repeated backscattering.9 The DOS for a disorder with a
Gaussian distribution~with zero mean! can be calculated
exactly:10,11

D~E!55
1

pA2E
for E→`,

8~2E!

3p
e21/12(28E)3/2

for E→2`.

~3!
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In the strongly localized electron systems with LRCI, whe
the overlap of wave functions can be neglected, electrons
be treated classically and the DOS exhibits a Coulomb
of the form12

D~v!;S ln
Ec

uvu D
21

. ~4!

We note that Eq.~4! has been derived under the assumpt
that the localization length is much smaller than the interp
ticle distance. Both disorder and LRCI push a 1D electr
system to the classical limit but in a different manner as
reflected in the form of DOS Eq.~2! and Eq.~4!. In this
paper we report a result on the DOS at low energy for the
disordered electron system with LRCI when the localizat
length is larger than the interparticle distance or interimp
rity distance ~more precisely, the weak pinning limit, se
below!. Following the analyses on a pinned Wigner crys
by Maurey and Giamarchi,13,14 employing a simplified
model, and using a semiclassical approximation, we find
the DOS follows apower lawat low energy:

D~v!;uvuA11h/2, ~5!

where the exponenth is basically determined by the loca
ization length @see Eq.~15!#. This power-law behavior is
consistent with the existing numerical results.15 Equation~5!
is the main result of this paper.

We consider a spinless electron system for simplic
Such a system can be realized in organic chains
quasi-1D quantum wires in strong magnetic field.16 The
Hamiltonian consists of three parts,

H5H01HCoul1H imp ,

H05vFE dx@2 icR
†]xcR1 icL

†]xcL#, ~6!

HCoul5E dxdy
V~x2y!

2
r~x!r~y!. ~7!

The operatorcR(cL) is the right-moving~left-moving! elec-
tron operator. The continuum chiral electrons and latt
electron operators are related by

c~x!5Aa@eikFxcR~x!1e2 ikFxcL~x!#, ~8!
©2002 The American Physical Society02-1
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wherea is lattice constant.
rR5:cR

†cR : is the normal ordered right-moving edg
electron density operator (rL is similarly defined!, and
r(x)5rR(x)1rL(x). V(x)5(e2/e)(1/Ax21d2) is the Cou-
lomb interaction.d is the transverse size of the quantum w
which we take to be the samea for simplicity. e is a dielec-
tric constant. The Coulomb matrix element isV(k)
5(2e2/e)K0(auku);(2e2/e)ln(1/ukua) for ukua.1 and K0
is the modified Bessel function. The impurity Hamiltonian
given by

H imp5(
x

WI~x!c†~x!c~x!5E dxWI~x!@r~x!

1e2ikFxcL
†~x!cR~x!1H.c.#, ~9!

whereWI(x) is the impurity potential. The first term in th
bracket of Eq.~9! is the forward-scattering term which ca
be neglected compared to back scattering at low energy.
impurity potentialWI(x) is chosen to be

WI~x!5(
j

V0d~x2Xj !, ~10!

whereXj ’s are the random locations of impurities. The inte
acting electron systems can be bosonized in a stan
way.2,17 The phase fields and bosonization formulas
given by

rR1rL5
1

p
]xu, rR2rL5

1

p
]xf,

cR5
eiu1 if

A2pa
, cL5

e2 iu1 if

A2pa
. ~11!

The bosonized Hamiltonian of the system is

H5E dx
vF

2p
@~]xu!21~]xf!2#

1
1

2p2E dxdy@V~x2y! ]xu~x! ]yu~y!#

1(
j

V0r0cos@2kFXj12u~Xj !#, ~12!

wherer0 is the average density of electrons.13

The pinning lengthL0 is a length scale over which th
phase fieldu(x) in the ground state varies withdu;p in
order to take advantage of the impurity potential.13,14 The
pinning length corresponds to the localization length of
electron system. The pinning length can be obtained
maximizing the energy gains from impurity, elastic, a
Coulomb energies.5,13,14 Including the effect of quantum
fluctuations using the self-consistent harmonic approxim
tion, the pinning length is given by
05220
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L05S 8e2

p2V0r0gni
1/2D 2/3

ln2/3F1

a S 8e2

p2V0r0gni
1/2D 2/3G ,

~13!

whereg is a numerical constant characterizing short-ran
interaction and quantum fluctuations andni is impurity con-
centration. The logarithmic factor is due to LRCI, which e
hances the pinning length. The enhanced pinning length
plies the more rigid system and the more difficult pinning
impurities. The system becomes much more ordered and
fluctuations around the ground state much less import
The expression for pinning length Eq.~13! has been derived
under the assumption ofweak pinning L0@ni

21 .
Beyond the pinning length scale the phase coherenceu

is lost, thus the correlation function of the CDW operator
expected to decay exponentially6 (ux2x8u.L0),

^cos@2u~x,t!#cos@2u~x8,t!#&;e2ux2x8u/L0. ~14!

Equation~14! implies that the system breaks into segme
whose typical length is given by the pinning lengthL0. Thus
at low energy we can consider a typical segment with len
L0 and calculate the DOS averaged over the segment. S
the tunneling between segments is strongly suppresse
low energy we have to fix the value ofu at the boundary of
a particular segment7 ~Dirichlet boundary condition!.

Let us construct a model for a segment which is valid
low energy. First of all the logarithmic divergence of Co
lomb matrix elementV(k) is cut byk;1/L0. Then the Cou-
lomb energy term can be expressed as

HCoul;h
vF

2p E
0

L0
dx@]xu~x!#2,

h5
2e2

vFpe
ln

L0

a
. ~15!

The effective Hamiltonian of a segment becomes

Hseg5E
0

L0
dx

vF

2p
@~]xu!2~11h!1~]xf!2#1V~u,Xj !,

~16!

whereV(u,0,Xj,L0) is some potential-energy term whic
is optimized by a certain randomaveragephase valueuopt
and it depends onu only throughe62iu @see the last line of
Eq. ~12!#. Note thatu→u1p is then a symmetry of the
system. In the weak pinning limit we consider that the pha
u varies rather smoothly in the rangeuu2uoptu<p at low
energy over a length scaleL0.

The electron Green function in imaginary time is defin
by

GR/L~x,y,t12t2 ,WI !52^Tt cR/L~x,t1!cR/L
† ~y,t2!&

~17!

for a particular realization of impuritiesWI . After averaging
over impurities

ḠR/L~x2y,t12t2!5^GR/L~x,y,t12t2 ,WI !&WI
. ~18!
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The DOS is defined by

D~v!52
1

p
ImF E

0

b

dteivtḠR/L~0,t!G
iv→v1 id

. ~19!

The above expressions are formally exact but difficult to c
culate. Here instead we will calculate the electron Gre
function at a pointy in the segment~away from the bound-
ary! using the Hamiltonian Eq.~16!,

^GR/L~y,y,t12t2!&WI
. ~20!

For the computation of the electron Green function, the
grangian formulation is more convenient:

Sseg5E
0

L0
dxE

0

b

dt
i

p
]tu ]xf1E

0

b

dtHseg. ~21!

Using the bosonization formula,GR/L(y,t12t2) can be
expressed as

GR~y,t12t2!5

E D@u,f#e2Sseg2Sex

E D@u,f#e2Sseg

,

Sex5 i E dxdt@u~x,t!1f~x,t!#J~x,t!,

J~x,t!5d~x2y!@d~t2t1!2d~t2t2!#. ~22!

In Eq. ~22! the dual phase fieldf can be integrated ou
explicitly. @Remember that the potential termV(u,Xj ) de-
pends only onu, not on f.# The electron Green function
becomes

GR~y,t12t2!5

E D@u#e2Su2SJu2SJ

E D@u#e2Su

, ~23!

Su5
u

2pK E
0

L0
dxE

0

b

dt F 1

u2
~]tu!21~]xu!2G

1E
0

b

dt V~u,Xj !,

K5
1

A11h
, u5vFA11h, ~24!

SJu52
1

2K (
v,k

v

uk
@J~2 iv,2k!u~ iv,k!1H.c.#

1 i E dxdt u~x,t!J~x,t!, ~25!

SJ5
p

2K (
v,k

J~2 iv,2k!J~ iv,k!

uk2
. ~26!
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Because our system is in the deep classical regime the d
nant low-energy processes would come from the quan
tunneling between classical vacua. Remembering that
phase fieldu is an angular variable, the classical vacua a
characterized byuvac;$uopt1pn,n5 integer%. This is be-
cause the potentialV(u,Xj ) depends onu only through the
form e62iu, so that it possesses the symmetry

u→u1p. ~27!

Since the phase fieldu varies on the orderp in each segmen
one can expect that the most dominant process would be
quantum tunneling betweenuopt and uopt6p vacua. The
quantum tunneling processes between classical vacua ca
described by the solutions of classical equations of motion
imaginary time, which are also calledinstantons.18

Now we have to find the classical~imaginary! time-
dependentsolution which minimizesSu1SJu . SinceSJu is
linear in u it plays a role of the external source field. W
argue below that the first term ofSJu @Eq. ~25!# is the source
for the vortex and antivortex configurations of the~angular!
phase fieldu. For the moment let us neglect the potent
termV(u,Xj ). Then the phase fieldu and its dual phase field
f are related by the Cauchy-Riemann equations19 ~we set
u51 for simplicity from now on!

]mf52 i emn]nu, m,n5t,x, ~28!

whereemn is a totally antisymmetric tensor. The first term
Eq. ~25! stems from the source of dual fieldf @see Eq.~22!#.
Including only one source at (t1 ,y) the f field satisfies the
classical equation of motion,

2~]t
21]x

2!f~x,t!5 ipd~x2y!d~t2t1!. ~29!

Combining Eq.~28! and Eq.~29! we deduce

pd~x2y!d~t2t1!5emn]m]nu~x,t!. ~30!

Naively the right-hand side of Eq.~30! vanishes but this is
not necessarily true for the topologically singular configu
tion such as the vortex. The vortex nature ofu is demon-
strated by the calculation of vorticity using Eq.~30! and the
Stokes theorem,

R dxm ]mu5E d2xemn ]m]nu5
1

2
2p, ~31!

which characterizes the vortex nature ofu.20 The unusual
factor of 1/2 is due to the aforementioned symmetryu→u
1p. Remembering that we have another source at (t2 ,y)
with a charge opposite to that at (t1 ,y) @see the last line of
Eq. ~22!#, we conclude that the vortex-antivortex configur
tion of the u phase field will dominate the electron Gree
function for a long time in the classical regime. Before pr
ceeding to the explicit vortex-antivortex instanton solutio
let us discuss other classical field configurations genera
by the second source term of Eq.~25!. It satisfies the stan-
dard Laplace equation in two dimension with delta functi
sources, and its explicit form is given by
2-3
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u0~t,x!;
K

4
ln

~x2y!21~t2t1!2

~x2y!21~t2t2!2
. ~32!

In the configuration of Eq.~32! the range of variation of
phase fieldu is much large thanp for the long-time limit
ut12t2u→`. Thus the configurationu0(x) is suppressed by
the potential termV(u,Xj ), and it also does not exhibit th
angular nature of phase fields. This is an analog of the s
wave degrees of freedom of theXY model.18 Thus, the con-
figuration of Eq. ~32! does not contribute to the electro
Green function in the long-time limit.

The explicit vortex-antivortex solution in complex coo
dinates is given by18

ei2u(z)5
z2~t11 iy !

z2~t21 iy !
, z5t1 ix. ~33!

Substituting Eq.~33! into the action,Su , we obtain

GR~y,t12t2!;expF2
1

2K
ln

ut12t2u
t0

G ,5F ut12t2u
t0

G21/2K

,

~34!

wheret0 is the short-time cutoff provided by the contribu
tions from the vortex cores. Equation~34! implies Eq.~5!.

To complete our analysis let us computeSJ , Eq.~26!. The
divergentk summation at smallk should be cut by 1/L0. The
frequency summation diverges at large frequency~short
time! which is cut by some high-energy scale such asvFni .8

Thus,SJ does not contribute to the electron Green functi
in the long-time limit.

According to Eq.~5! the exponent of the DOS is larger fo
the longer localization length, which is consistent with t
numerical results by Jeonet al.15 The exponenth can be
expressed as
05220
n-

n

h5
1

137
3

2c

vF
3

1

e
3 ln

L0

a
, ~35!

wherec is the speed of light. In the weak pinning limit it i
reasonable to take lnL0 /a to be 4–6. Choosing a typica
Fermi velocity near 107 cm/sec ande;1 –5 for a quantum
wire, we can estimate the exponent of the DOSA11h/2 to
be around 3–6 which is also consistent with the expone
obtained from the numerical studies.15

More precisely Eq.~34! should be averaged over the im
purity configurations in thesegment. Inside the segment the
phase field varies smoothly in space and the impurity av
age is not expected to bring any singular effects which wo
invalidate Eq.~34!, since no infrared divergence can occ
through impurity averages for a finite segment.

Sufficiently strong short-range interaction can also pu
the system to a classical regime (K!1), where the result of
Eq. ~5! is applicable. On the contrary, the result of Eq.~5! is
not applicable to the case of noninteracting disordered e
trons (K51) since the condition of the classical limit (K
!1) is not met. Indeed the DOS of noninteracting diso
dered electrons is finite at the Fermi level@see Eq.~3!# con-
trary to Eq.~5!.

We have studied analytically the DOS of the disorder
1D electron system interacting via long-range Coulomb
teraction employing a simplified model and semiclassical
proximation. The DOS is found to follow a power law with
nonuniversal exponent which is basically determined by
calization length. The power-law dependence is also con
tent with the existing numerical result.
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