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Ab initio calculations of bulk moduli and comparison with experiment
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Bulk moduli appear readily accessible in electronic structure calculations, but the calculated values are often
substantially greater than experimental bulk moduli. This discrepancy is the result of an unfair comparison of
calculated and experimental results: many workers ignored the zero-point and finite-temperature effects that are
present in experiments but absent from most calculations. These effects can alter bulk moduli by up to 20%.
We show how good approximations to the required corrections may be obtained with little effort. We also deal
with the statistical errors and biases in quantities derived from the noisy energy-volume curves produced by
quantum Monte Carlo simulations.
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I. INTRODUCTION

Calculations of bulk moduli are often used to testab initio
electronic structure techniques such as Hartree-Fock the
Hohenberg-Kohn-Sham density-functional theory1 ~DFT!
within the local density or generalized gradient approxim
tion ~LDA or GGA!, and variational and diffusion quantum
Monte Carlo2 ~VMC and DMC! methods. Only a handful o
publications,3–5 however, have taken proper account
subtleties that cannot be ignored. The results of ze
temperature ground-state electronic structure calculations
not directly comparable with experimental measureme
that include zero-point phonon effects, and are often take
room temperature. The temperature and phonon effects
modify the calculated bulk modulus by up to 20%~see Table
I!, invalidating any comparison of theory and experime
that does not take them into account, and explaining the
quently reported overestimation of bulk moduli.6–9Although
these effects are known and have been evalua
satisfactorily,3–5 they are still frequently overlooked.

One of the two main aims of this paper is to show how,
generalizing the work of Ref. 10, one can deal adequa
with these issues in an approximate way, without having
calculate the volume dependent phonon spectrum, as ne
sary when using the quasiharmonic approximat
~QHA!.3–5 Our approach uses measured quantities to ad
the experimental bulk modulusB, isolating the underlying
value B0. Stripped of zero-point and finite-temperature e
fects, B0 is directly comparable to the results ofab initio
ground-state calculations with frozen ions, such as the Q
method. This methodology becomes useful whenever
QHA is not feasible~i.e., in complex systems or when usin
QMC methods! or where the extra effort required to imple
ment the QHA is not warranted.

The second aim of this paper is to address the difficul
that arise from the anharmonicity of the equation of st
~EOS!, and, in the case of VMC and DMC calculations, fro
statistical errors in the data. Previous QMC calculations
bulk moduli did not take adequate account of these iss
and consequently their results are of dubious value. Throu
out this paper, we refer to our own LDA and VMC calcul
tions of bulk aluminum.11
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II. BULK MODULUS

Most DFT and quantum Monte Carlo~QMC! calculations
assume that the nuclei are frozen and hence that the
energy is the quantum-mechanical energy of the electr
plus the Coulomb energy of the fixed lattice of the ato
cores. Phonon zero-point and thermal effects, usually pre
in experimental data, are absent.

Additional difficulties arise because the energy vers
volume curve is quadratic only very close to the minimu
In DFT calculations, this problem is commonly dealt with b
using a more flexible fitting function such as a quartic po
nomial or the Murnaghan EOS.12 In QMC calculations,
where the data are noisy, the choice of fitting function b
comes even more important. Furthermore, the variances

TABLE I. This table shows the experimental bulk modulusB
(1011 Nm22), its pressure derivativeB8 ~dimensionless!, and the
equilibrium lattice parametera ~Å!, of a selection of solids. After
the removal of finite-temperature and zero-point effects~see the
text!, the experimental bulk modulus and lattice parameter reduc
the valuesB0 and a0. The results of first-principles, ground-sta
calculations are directly comparable toB0 anda0, and are therefore
presented in the same column. The experimental values ofB8 are
not adjusted and are not directly comparable with the theoret
values. Note that the VMC-4 result is within a standard deviation
B0.

B B8 a B0 a0

Experiment
Al 0.759 4.27 4.050 0.813 4.022
Li 0.121 3.39 3.51 0.145 3.44
Ni 1.86 2.90 3.52 1.91 3.51
Pb 0.448 2.58 4.95 0.473 4.91
Theory

Al:LDA - @4.83# - 0.802 3.960
Al:VMC-4 - @6.9~1.1!# - 0.65~17! 3.970~14!

Al:VMC-2 - @-1# - 0.72~7! 4.034~15!

Li:LDA - - - 0.151 3.37
Ni:GGA - - - 1.92 3.53
Pb:LDA - @5.32# - 0.487 4.99
©2002 The American Physical Society04-1
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biases of bulk moduli and other physical quantities obtain
from the fitted EOS can be large and need careful statis
analysis.

A. Equation of state

The bulk modulusB is defined by the equation

B5V
]2E

]V2
52V

]P

]V
, ~2.1!

whereE(V) is the total ground-state energy as a function
volume,P is the pressure, andB is evaluated at the minimum
of E(V).

Although the bulk modulus is essentially the curvature
E(V) at the equilibrium volume, it is customary, but n
universal,13,14 to go beyond a simple quadratic fit. In fact,
E is assumed to be a quadratic function ofV ~or of the lattice
parametera), the pressure derivativeB85dB/dP is equal to
21 ~or 1!. In most real solids,B8 lies between 3 and 5~see
Table I!. Better fitting functions are higher-order polynom
als, the Murnaghan equation of state12 ~which is based on the
assumption of constantB8), or generalizations thereof.

Figure 1 shows the anharmonicity of the EOS of alum
num as calculated within the LDA. When the EOS is calc
lated using QMC methods, it is necessary to take data ov
wide range of lattice parameters in order to discern the
derlying shape of the curve above the noise. A simple q
dratic fit to such data may ‘‘look’’ acceptable~see Fig. 2!, but
produces very inaccurate numerical results. These difficu
may be demonstrated by fitting the almost noise-free L
EOS over a similarly wide range of lattice parameters. Qu
tic polynomial and Murnaghan equation fits~not shown!
work well and produce nearly indistinguishable resu
while cubic and quadratic polynomial fits show serious d
crepancies~see Fig. 1! that are worse when fitting toE(V)

FIG. 1. The energy as a function of the fractional change in
lattice constant relative to the experimental equilibrium value. T
dots are the LDA data points. The solid line is a quartic fit, t
dot-dashed line is a cubic fit, and the dashed line is a quadrati
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than toE(a). In addition, we find that the variance of th
distribution of VMC data points around a second- or thir
order polynomial fit is greater than the QMC error, implyin
that the fitting function is insufficiently flexible. By contras
if we use polynomials of order greater than 6, we may fi
that we are fitting the noise. In practice, we prefer a qua
fit, because, unlike the Murnaghan equation, it is linear in
parameters, aiding the statistical analysis.

Although the quadratic fit~Fig. 2 and VMC-2 in Table I!
to the noisy VMC EOS of aluminum is numerically unsati
factory, it appears to give better results than the more rea
tic quartic fit ~VMC-4!. The bulk modulus obtained from th
more trustworthy quartic fit is not very accurate, but nev
theless lies within one standard deviation of the experime
value.

B. Approximate adjustment

A good way to account for the zero-point and finit
temperature effects is to evaluate the phonon spectrum
its volume dependence in conjuction with the QHA,3–5

which, however, goes well beyond a ground-state electro
structure calculation. Instead, we aim for a method wher
we use experimental data to extrapolate the measured v
of B to zero temperature and then subtract the zero-p
contribution, yielding a value that is directly comparable
calculatedab initio results. One might equally well choose
adjust the computational results,15 but our approach has th
advantage of maintaining a clear division between exp
mental data and computational results derived from fi
principles.

The following analysis is based on the work of Dacorog
et al.10 on adjusting bulk moduli for the effect of the zero
point motion of the ions. We extend Dacoragna’s analysis
include the effects of finite temperature. This is necessar

e
e

t.

FIG. 2. The dots with error bars are VMC energies and erro
The solid line is a fit to the Murnaghan equation, the dashed lin
a quartic fit, and the dot-dashed line is a quadratic fit. Note that
Murnaghan and quartic fits, despite their similarity, give bu
moduli differing by 10%.
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zero-temperature data is not available, if it is too unreliab
or if the material of interest does not exist at 0 K~e.g., bcc
lithium!.

The measured fractional volume change16 DV/V that oc-
curs on heating from 0 K to room temperature can be viewe
as having been brought about by applying a small nega
pressure Pt , which we can estimate by virtue o
DV/V52Pt /B. We can then use data on the pressure
volume dependence of the bulk modulus to translate
temperature-induced volume change into a predicted cha
in bulk modulus. The zero-point motion, which also i
creases the volume of the unit cell, acts as another sourc
negative pressurePz , which can be treated analogously.

The phonon energies are related to the elastic consta
one of which is the bulk modulus. Since the frequency of a
harmonic oscillator scales as the square root of the sp
constant, we deduce10 that the phonon zero-point energyzz ,
which in the Debye theory is equal to98 kBQD , whereQD is
the Debye temperature, scales asAB. The effective pressure
required to mimic the effect of the zero-point energy is th

Pz5
]zz

]V
5

zz

2B

]B

]P

]P

]V
52

zz

2V
B8. ~2.2!

The increase in the lattice constant caused by the zero-p
motion may be obtained fromPz as follows:

DV

V
52

Pz

B0
5

zzB8

2VB0
. ~2.3!

Finite-temperature and zero-point motion effects push
ions apart, soPt and Pz are both negative. UsingDB
5B8(Pt1Pz), we find the change inB induced by these
effects. SinceDB,0, the underlying electronic bulk modu
lus is larger than the experimental one.

Table I shows adjusted and unadjusted experimental
for several different materials~fcc aluminum, nickel, lead,
and bcc lithium!, as well as computational results. The e
perimental bulk moduli are room-temperature values
tracted from the single-crystal elastic constants17 given in the
CRC Handbook of Chemistry and Physics; B8 is estimated
using Gschneider’s18 data; and all other input variables a
taken from Ref. 16. The DFT/LDA and VMC results for A
are taken from Gaudoinet al.,11 the DFT/GGA results for Ni
from Choet al.,19 the DFT/LDA results for Li from Sigalas
et al.,21 and the DFT/LDA for lead were generated usi
ABINIT .20 Entries marked VMC-2 or VMC-4 are obtaine
using a quadratic fit to the VMC data forE(V) or a quartic fit
to the VMC data forE(a), respectively. The results emph
size that calculations appearing out of step with experime
data may turn out to be quite accurate once zero-point
finite-temperature corrections have been applied.

Note that many substances, including bcc lithium, cha
crystal structure as they are cooled. In such cases, the
justed experimental data ought to be compared with the
sults of zero-temperature electronic structure calculations
the room-temperature crystal structure. Also note that des
not beingab initio, the scheme presented here is sound
easy to apply.
05210
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C. Statistical analysis of Monte Carlo data

Since QMC data forE(V) is noisy, estimates of the bulk
modulus obtained are bound to be noisy and biased too.
to frequent neglect of the statistical analysis of QMC data
quickly present what we think is an adequate analysis w
the fitting function is linear in the parameters.

A general least-squares fit minimizes the quantityd5^E
2 f (a)uE2 f (a)& with respect to the fitting parametersa,
where E is the energy per unit cell, ^xuy&
ª( i@x(ai)y(ai)/s i

2#, and the sum is over the set of lattic
parametersai . We write the fitting function as a linear com
bination of basis functionsbj (a), which might be low-order
polynomials:f (a,a)5( ja jbj (a). The implicit assumptions
are that there exist parameter valuesa j

0 that capture the un-
derlying phenomenon, and that the measured quantities
noisy realizations of f (ai ,a0). It follows that E(ai)
5 f (ai ,a0)1h i(0,s i

2), h i(0,s i
2) being independent Gauss

ian random variables with mean 0 and variances i
2 . If the

s i
2’s are unknown they may be set to 1, as a least-square

does not depend on a constant scaling factor in the err
However, the statistical analysis presented below does
pend on the magnitude ofs2, which can be estimatedpost
hoc from the distribution of data points relative to the fitte
curve. As a consistency check, it is advisable to perform s
an estimate in any case. In Fig. 2 for example, as expec
five of the 16 data points lie more than one error bar from
fitted curve.

In order to simplify the statistical analysis, we use a mo
fied Gram-Schmidt method to generate linear combinati
b̃i of the original bi ’s such that^b̃i ub̃ j&5d i , j . Any basis
function that turns out to be~nearly! linearly dependent on
the others should be discarded~cf. the singular value
decomposition22!. The parameters are now simple proje
tions,a i5^b̃i uE&, and the fitted parameters have particula
simple statistics:Da i50 and Da iDa j5d i , j with Da i5a i

2a i
0 .

The fitted bulk modulus is a function of the parametersa j
and may be expanded as follows:

B~a!5B~a0!1(
k

]B

]ak
U

a0

Dak

1
1

2 (
k,l

]2B

]ak]a l
U

a0

DakDa l1•••. ~2.4!

After averaging, this yields an expression for the leadin
order contribution to the bias: DB5B(a)2B(a0)
5 1

2 (k(]
2B/]ak

2)ua0. As a0 is unknown, the derivatives hav
to be evaluated ata, giving DB5 1

2 (k(]
2B/]ak

2)ua to lead-
ing order. Similarly, for the variance, we get varB
5@B(a)2B(a0)#25(k@(]B/]ak)ua#2. Averaging over 106

random samples using typical QMC values has shown
the second-order expansion@Eq. ~2.4!# is sufficient.

Given the implicit definition of the minimumam ,

05 f 8~am ,a!5(
j

a j b̃ j8~am!, ~2.5!
4-3
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where the primes signify differentiation with respect to thea,
it is possible to derive statistics foram . That is, differentiat-
ing Eq. ~2.5!, with respect toak , yields ]am /]ak . Other
derivatives can be obtained similarly.

A note of caution: In order to obtain the statistics of t
bulk modulus, one might consider taking the calculated
ergiesE(ai) and adding additional random errors of varian
s i

2 to each of them~cf. Yao et al.14!, thus producing many
‘‘dummy’’ data sets from the original data set. This proc
dure, however, adds another bias term to already biased
therefore doubling the bias.

III. CONCLUSIONS

When using QMC simulations, where the statistical err
force the use of a wide range of lattice parameters, i
necessary to go beyond a quadratic fitting function for
d

ro

on

nd

p
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EOS and to perform a rigorous statistical analysis. We h
included a brief account of how to analyze the statisti
errors and biases that arise when the values of the energ
a function of lattice parameter are noisy.

We have also shown how simple but adequate estim
of the finite-temperature and zero-point corrections requi
to align experimental and computational values ofB may be
obtained by extending Dacorogna’s10 method. This avoids
more elaborate calculations,3–5 which may not always be
feasible or warranted.

We apply this methodology to a calculation of the bu
moduli of several materials, and find that our results ag
well with more elaborate calculations.3–5 Zero-point and
finite-temperature contributions to bulk moduli can be
large as 20%, explaining the discrepancy in many repor
DFT calculations.6–9 Our work provides a simple and ye
effective method for estimating these frequently overlook
corrections.
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