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Ab initio calculations of bulk moduli and comparison with experiment
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Bulk moduli appear readily accessible in electronic structure calculations, but the calculated values are often
substantially greater than experimental bulk moduli. This discrepancy is the result of an unfair comparison of
calculated and experimental results: many workers ignored the zero-point and finite-temperature effects that are
present in experiments but absent from most calculations. These effects can alter bulk moduli by up to 20%.
We show how good approximations to the required corrections may be obtained with little effort. We also deal
with the statistical errors and biases in quantities derived from the noisy energy-volume curves produced by
guantum Monte Carlo simulations.
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I. INTRODUCTION II. BULK MODULUS

Most DFT and quantum Monte Carl@MC) calculations

assume that the nuclei are frozen and hence that the total

electronic structure techniques such as Hartree-Fock theo%nergy is the quantum-mechanical energy of the electrons
Hohenberg-Kohn-Sham  density-functional theor§DFT) plus the Coulomb energy of the fixed lattice of the atom

within the local density or generalized gradient approxima-ores phonon zero-point and thermal effects, usually present
tion (LDA or GGA), and variational and diffusion quantum in experimental data, are absent.

Monte C_a”3_9’ MC and DMC) methods. Only a handful of " aqgitional difficulties arise because the energy versus
publications;™ however, have taken proper account ofyqyme curve is quadratic only very close to the minimum.
subtleties that cannot be |gn0r(_ad. The results Of_ 2810 DFT calculations, this problem is commonly dealt with by
temperature ground-state electronic structure calculations a{Ring a more flexible fitting function such as a quartic poly-
not directly comparable with experimental measurement$,qial or the Murnaghan EO%.In QMC calculations,

that include zero-point phonon effects, and are often taken gfhere the data are noisy, the choice of fitting function be-

room temperature. The temperature and phonon effects cgymes even more important. Furthermore, the variances and
modify the calculated bulk modulus by up to 2G%ee Table

), invalidating any comparison of theory and experiment TABLE I. This table shows the experimental bulk moduBis
that does not take them into account, and explaining the fre10'* Nm™2), its pressure derivative’ (dimensionless and the
quently reported overestimation of bulk modtiiP Although  equilibrium lattice parametea (A), of a selection of solids. After
these effects are known and have been evaluatethe removal of finite-temperature and zero-point effdstse the
Satisfactorilya,‘S they are still frequently overlooked. text), the experimental bulk modulus and lattice parameter reduce to
One of the two main aims of this paper is to show how, bythe valuesB, and ay. The results of first-principles, ground-state
generalizing the work of Ref. 10, one can deal adequatelyalculations are directly comparableBig anda,, and are therefore
with these issues in an approximate way, without having tgPresented in the same column. The experimental valud®' afre
calculate the volume dependent phonon spectrum, as necdwt adjusted and are not directly _com_pa_rable with the th_eo_retlcal
sary when using the quasiharmonic approximationvalues' Note that the VMC-4 result is within a standard deviation of
(QHA).3~5 Our approach uses measured quantities to adju&o'
the experimental bulk moduluB, isolating the underlying

Calculations of bulk moduli are often used to tabtinitio

value By. Stripped of zero-point and finite-temperature ef- B B a Bo 2o
fects, By is directly comparable to the results ab initio  Experiment
ground-state calculations with frozen ions, such as the QMG 0.759 4.27 4.050 0.813 4.022
method. This methodology becomes useful whenever the; 0.121 3.39 351 0.145 3.44
QHA is not feasiblgi.e., in complex systems or when using j; 1.86 2.90 3.52 1.91 3.51
QMC methods or where the extra effort required to imple- py, 0.448 258 495  0.473 4.91
ment the QHA is not warranted. Theo

The second aim of this paper is to address the difficulties
that arise from the anharmonicity of the equation of stateAl:LDA - [4.83] - 0.802 3.960
(EOS, and, in the case of VMC and DMC calculations, from Al:VMC-4 - [6.91.1)] - 0.6517) 3.97014)
statistical errors in the data. Previous QMC calculations ofal:vMC-2 - [-1] - 0.727) 4.03415)
bulk moduli did not take adequate account of these issues,:LDA - - - 0.151 3.37
and consequently their results are of dubious value. Throughni:GGA - - - 1.92 3.53
out this paper, we refer to our own LDA and VMC calcula- pp: DA - [5.32] - 0.487 4.99

tions of bulk aluminunt!
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FIG. 1. The energy as a function of the fractional change in the FIG. 2. The dots with error bars are VMC energies and errors.
lattice constant relative to the experimental equilibrium value. TheThe solid line is a fit to the Murnaghan equation, the dashed line is
dots are the LDA data points. The solid line is a quartic fit, thea quartic fit, and the dot-dashed line is a quadratic fit. Note that the
dot-dashed line is a cubic fit, and the dashed line is a quadratic fiMurnaghan and quartic fits, despite their similarity, give bulk

moduli differing by 10%.
biases of bulk moduli and other physical quantities obtained
from the fitted EOS can be large and need careful statisticahan toE(a). In addition, we find that the variance of the
analysis. distribution of VMC data points around a second- or third-
order polynomial fit is greater than the QMC error, implying
A. Equation of state that the fitting function is insufficiently flexible. By contrast,
if we use polynomials of order greater than 6, we may find
that we are fitting the noise. In practice, we prefer a quartic
S2E 9P fit, because, unlike the Murnaghan equation, it is linear in the
B=V——=—V_—, (2.1) parameters, aiding the statistical analysis.
aV? Vv Although the quadratic fi(Fig. 2 and VMC-2 in Table)l
) _ to the noisy VMC EOS of aluminum is numerically unsatis-
whereE(V) is the total ground-state energy as a function Offactory, it appears to give better results than the more realis-
volume,P is the pressure, arflis evaluated at the minimum ¢ quartic fit(VMC-4). The bulk modulus obtained from the
of E(V). more trustworthy quartic fit is not very accurate, but never-

Although the bulk modulus is essentially the curvature oftheless lies within one standard deviation of the experimental
E(V) at the equilibrium volume, it is customary, but not yg)ye.

universal®**to go beyond a simple quadratic fit. In fact, if
E is assumed to be a quadratic functiorMofor of the lattice
parameten), the pressure derivativ®’ =dB/dP is equal to
—1 (or 1). In most real solidsB’ lies between 3 and &ee A good way to account for the zero-point and finite-
Table |). Better fitting functions are higher-order polynomi- temperature effects is to evaluate the phonon spectrum and
als, the Murnaghan equation of st&tévhich is based on the its volume dependence in conjuction with the QFA,
assumption of constag’), or generalizations thereof. which, however, goes well beyond a ground-state electronic
Figure 1 shows the anharmonicity of the EOS of alumi-structure calculation. Instead, we aim for a method whereby
num as calculated within the LDA. When the EOS is calcu-we use experimental data to extrapolate the measured value
lated using QMC methodes, it is necessary to take data overaf B to zero temperature and then subtract the zero-point
wide range of lattice parameters in order to discern the uneontribution, yielding a value that is directly comparable to
derlying shape of the curve above the noise. A simple quaealculatedab initio results. One might equally well choose to
dratic fit to such data may “look” acceptabisee Fig. 2 but  adjust the computational resulsput our approach has the
produces very inaccurate numerical results. These difficultieadvantage of maintaining a clear division between experi-
may be demonstrated by fitting the almost noise-free LDAmental data and computational results derived from first
EOS over a similarly wide range of lattice parameters. Quarprinciples.
tic polynomial and Murnaghan equation fifaot shown The following analysis is based on the work of Dacorogna
work well and produce nearly indistinguishable results,et all® on adjusting bulk moduli for the effect of the zero-
while cubic and quadratic polynomial fits show serious dis-point motion of the ions. We extend Dacoragna’s analysis to
crepanciegsee Fig. 1 that are worse when fitting t&(V) include the effects of finite temperature. This is necessary if

The bulk modulusB is defined by the equation

B. Approximate adjustment
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zero-temperature data is not available, if it is too unreliable, C. Statistical analysis of Monte Carlo data
or if the material of interest does not exist at 0(&g., bcc Since QMC data foE(V) is noisy, estimates of the bulk
lithium). modulus obtained are bound to be noisy and biased too. Due

The measured fractional volume chatfgaV/V that OC- {0 frequent neglect of the statistical analysis of QMC data we
curs on heating frm 0 K toroom temperature can be viewed  ickly present what we think is an adequate analysis when
as having been brought about by applying a small negativg,e fitting function is linear in the parameters.
pressure P, which we can estimate Dby virtue of = A general least-squares fit minimizes the quantity(E
AV/V=—P,;/B. We can then use data on the pressure O f(a)|E—f(a)) with respect to the fitting parameters
volume dependence of the bulk modulus to translate th§are E is  the energy per unit cell, (x|y)
temperature-induced volume change into a predicted changgzi[x(ai)y(ai)/aiz], and the sum is over the set of lattice

in bulk modulus. The zero-point motion, which also in- F\rametersli . We write the fitting function as a linear com-
creases the volume of the unit cell, acts as another source Elnation of basis functionb; (a), which might be low-order
) . (@),
hegative pressure,, Wh'Ch can be treated analogously. teolynomials:f(a,a):EJ-aJ-bj(a). The implicit assumptions
The phonon energies are related to the elastic constan te that there exist parameter valué’sthat capture the un-

one of which is the bulk modulus. Since the frequency of an Vi h d that th q i
harmonic oscillator scales as the square root of the sprinﬁe.r ying phenomenon, an Oa € measured quantiies are
oisy realizations off(a;,a”). It follows that E(a)

tant, we dedutthat the ph -point : i
constant, we deducethat the phonon zero-point enerdy. —f(a;,a%) + 7,(0,07), (0,07 being independent Gauss-

which in the Debye theory is equal fkg®p , where® is ) ) ] ’
the Debye temperature, scales\@. The effective pressure 1 random variables with mean 0 and variange If the
's are unknown they may be set to 1, as a least-squares fit

required to mimic the effect of the zero-point energy is thus’i ; -
does not depend on a constant scaling factor in the errors.

at, &, dB P ¢ However, the statistical analysis presented below does de-
_ Y6z 52 _ 57 . 2 . .

=57 2B aP av _ZVB . (2.2 pend on the magnitude @f?, which can be estimateplost

hoc from the distribution of data points relative to the fitted

The increase in the lattice constant caused by the zero-poigtirve. As a consistency check, it is advisable to perform such

motion may be obtained frorR, as follows: an estimate in any case. In Fig. 2 for example, as expected,
five of the 16 data points lie more than one error bar from the
AV P, (B’ fitted curve.
v B_o =ov By’ 2.3 In order to simplify the statistical analysis, we use a modi-

fied Gram-Schmidt method to generate linear combinations

Finite-temperature and zero-point motion effects push thé; of the original b;’s such that(b;|b;)= 5, ;. Any basis
ions apart, soP, and P, are both negative. UsingaB  function that turns out to bénearly linearly dependent on
=B'(P,+P,), we find the change iB induced by these the others should be discarde@f. the singular value
effects. SinceAB<0, the underlying electronic bulk modu- decompositioff). The parameters are now simple projec-

lus is larger than the experimental one. tions, a; = (b;|E), and the fitted parameters have particularly
Table | shows adjusted and unadjusted experimental dat@mple statisticsA ;=0 andAa;Aa;=6; ; with Aa;=o,
for several different materialéfcc aluminum, nickel, lead, — 0. '

bt . 1
perimental bulk moduli are room-temperature values exznd may be expanded as follows:

tracted from the single-crystal elastic constahggven in the

CRC Handbook of Chemistry and Physi& is estimated 0 JB

using Gschneider'§ data; and all other input variables are B(a)=B(a )+§k: EP Aay

taken from Ref. 16. The DFT/LDA and VMC results for Al “lao

are taken from Gaudoiet al.,"* the DFT/GGA results for Ni 1 7B

from Choet al.!® the DFT/LDA results for Li from Sigalas = Ao Ao+ -. (2.9
et al.?! and the DFT/LDA for lead were generated using 2% daday]

20 ; ;
ABINIT.“" Entries marked VMC-2 or VMC-4 are obtained . . ; ;

. L =7 After averaging, this yields an expression for the leading-
using a quadratic fit to the VMC data f&(V) or a quartic fit order contribution to  the bias:AB=—B(a)—B(a°)

to the VMC data forE(a), respectively. The results empha- =~ 5 5 0: K h o h
size that calculations appearing out of step with experimental” 2 >k(9°B/daj)[40. As @” is unknown, the derivatives have

data may turn out to be quite accurate once zero-point anfp be evaluated ai, giving AB=3X(9”B/day)|, to lead-

finite-temperature corrections have been applied. ing order. Similarly, for the variance, we get \Br
Note that many substances, including bcc lithium, change=[B(a) —B(a®)1°=3[ (9B/day)| ,]%. Averaging over 10

crystal structure as they are cooled. In such cases, the atRndom samples using typical QMC values has shown that

justed experimental data ought to be compared with the rethe second-order expansipq. (2.4)] is sufficient.

sults of zero-temperature electronic structure calculations for Given the implicit definition of the minimuna,,,

the room-temperature crystal structure. Also note that despite

not beingab initio, the scheme presented here is sound and 0=f'(am,a’)=2 ab! (ay), (2.5

easy to apply. ]
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where the primes signify differentiation with respect to éhe EOS and to perform a rigorous statistical analysis. We have
it is possible to derive statistics far,. That is, differentiat- included a brief account of how to analyze the statistical
ing Eq. (2.5, with respect toay, yields da,/da,. Other  errors and biases that arise when the values of the energy as
derivatives can be obtained similarly. a function of lattice parameter are noisy.

A note of caution: In order to obtain the statistics of the ~We have also shown how simple but adequate estimates
bulk modulus, one might consider taking the calculated enOf the finite-temperature and zero-point corrections required

ergiesE(a;) and adding additional random errors of variance!© align experimental and compu:%tional valueahay be
Uiz to each of them(cf. Yao et al*4), thus producing many obtained by extending Dacorogna'smethod. This avoids

. 5 .
“dummy” data sets from the original data set. This proce—more elaborate calculatioris; which may not always be

. . easible or warranted.
dure, however, adds another bias term to already biased data, We apply this methodology to a calculation of the bulk

therefore doubling the bias. moduli of several materials, and find that our results agree
well with more elaborate calculatiois® Zero-point and
IIl. CONCLUSIONS finite-temperature contributions to bulk moduli can be as
large as 20%, explaining the discrepancy in many reported
When using QMC simulations, where the statistical errorsDFT calculation€° Our work provides a simple and yet
force the use of a wide range of lattice parameters, it i®ffective method for estimating these frequently overlooked
necessary to go beyond a quadratic fitting function for thecorrections.
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