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Stability of vicinal metal surfaces: From semi-empirical potentials
to electronic structure calculations
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The stability of metal vicinal surfaces with respect to faceting is investigated using pair potentials, semi-
empirical potentials, and tight-binding electronic structure calculations for several domains of orientations. It is
proven that pair potentials are not precise enough to determine the stability of these surfaces. The answer
obtained with semi-empirical potentials is shown to be quite sensitive to the cutoff distance chosen for the
interactions and may be too schematic. The results derived from electronic structure calculations open up the
possibility of a larger diversity of behaviors due to the existence of electronic step-step interactions. Finally it
is shown that the effects of temperature are quite small, at least up to room temperature.
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I. INTRODUCTION planes into(100)/(111) facets. In the present study we exam-
ine the problem in more detail and consider different do-
A vicinal surface is a surface of high Miller indices and mains of orientations.

exhibits a periodic succession of terraces and steps of mono- The paper is organized as follows. In Sec. Il the faceting
atomic height. The study of these surfaces is presently theéondition is established and the geometry of the vicinal sur-
subject of intensive investigations since they may provide af@ces involved in these domains is explained. In Sec. Il the
appropriate substrate for growing nanostructdresiow-  Stability of these vicinal surfaces is analyzed using different
ever, these surfaces are not always stable. Indeed, it might k§&mi-empirical potentials. Analytical results are first de-

energetically favorable for the system to increase its totallved for arigid lattice and an application to vicinal surfaces

area in order to expose to vacuum facets with low Miller ©f copper, |.nclud|ng SPfface rela>'<at|on', IS presented using a
indices with smaller surface energies per unit area. Thesﬁzm'(;ﬁgf'g;alhgzﬁgngﬁl tt?fe tif;:,‘ g%g;:'emﬂp ?hg?:i,tv(l)? rz dius
faceted surfaces may also be interesting to elaborate nanBF1osen for art)omic interactionrs) The results of electronic
structures since atoms deposited on these surfaces will preiiructure calculations based on .the tight-binding approxima-
erentially occupy sites in the inner edges in order to maXi'tion using as,p,d orbital basis set on a rigid lattice are then

mize their coordination. This may lead to a periodic lattice Ofdiscussed in,Séc. IV for rhodium, palladium, and copper. The
nanowires with magnetic and transport properties of highytects of temperature are studied in Sec. V for copper. Fi-

technological interest. _ nally conclusions are drawn in Sec. VI.
Up to now, in spite of the large number of experiments
carried out on these SurfaC%_g,very few theoretical works II. EACETING CONDITION OF AN INEINITE SUREACE

based on an atomistic description have been devoted to this

problem. The faceting condition implies the calculation of ~Let us consider two low index surfacg&s andX., with
the surface energy for any surface orientation. There exiglormalsn; and n,, respectively, which intersect along a
several ways of computing these energies. The most simp/@Ven row of atoms and .the §et of vicinal surfaqes with equi-
of them use potentials ranging from the crudest empiricafistant step edges which is spanned when is rotated
pair potentials to semi-empirical ofescluding anN-body ~ &round the common atomic row towarlls. Let us takeX
contribution. In the latter case the analytical expression ofiS the origin of angles and denofg the angle (1, ny).
the semi-empirical potentials attempts to mimic the results oPuring this rotation the surfaces vicinal I, are first found
more accurate methods based on the calculation of the ele@nd the number of atomic rows (including the inner edge
tronic structure such as the tight-binding approximation orOn one terrace decreases frento 2 (angleé.). The surface
first-principle methods based on the density-functionalcorresponding t@. can also be regarded as a vicinalXf
theory. The latter two methods, in which the electronic strucWith p,=2. Then for6.< 6< 6, the surfaces vicinal t&,
ture is explicitly calculated, can also be used. However, irare scanned with increasing terrace widtpg=2). An area
view of the large size of the unit cells of vicinal surfaces with S of any of these high index surfaces will transform into
wide terraces, systematic calculations can be carried out onacets of normah; (areaS;) and normah, (areaS;) while

within the tight-binding method° keeping its average orientation whéfig. 1)
The aim of this paper is to discuss the implications of
these different approaches on the stability of vicinal surfaces YS> 1St 725 @)

relative to faceting. Preliminary results of this work have (vy,vy; andy, being the surface energies per unit area of the
already been presented in Ref. 11 concerning the faceting dfigh index,>; and3, surfaces, respectivelyvith the con-
the vicinal surfaces found between tH&00 and (111 straints
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S18iN 6= 5,50, 0). ) FIG. 2. Behavior ofAf(#) when there are no interactions be-
It is easily shown that the faceting condition can be writtentween stepsz. corresponds t@;=p,=2.

f(7)>(1—=n/72)1(0)+ (9l n2)f(72) (4 havep, atomic rows.Eg(n;,p;) is the surface energy per
with »=tan@ and f(5)=y(6)/cosh. This condition is atom of this vicinal surface which was equivalently denoted
equivalent to the Herring construction(see Appendix A asEg(n) in Eq. (5). Finally f; is a geometrical factor which

This condition has a simple geometrical interpretation: theS €qual to the ratio of the area, projected on the terrace, of
point (77,f(7)) must be above the straight lifijoining the the unit cell of the ledge to the area of the unit cell of the
points (0,f(0)) and (7,,(7,)) or, equivalently, the sign of terrace [ f;=A,cos@,)/A, f2.= A;cos@,)/A]. Suk?stituting
the deviationAf(#) from this straight line determines the for Es(ni,p;) from Eq. (8) into AE(p,,2), for instance,
stability [Af(5)<0] or the instability[Af(7)>0] of the  Yields

vicinal surface. It can be easily showsee Appendix Bthat
y showsee Appendix B AE(P1.2) = Eqtof Ny, py)— Es(np) + EG(N) (9)

Af(n) a similar equation can be written fa&XE(2,p,) by inter-
=[Es(n)—(p;—1)Eg(ny) — (p,—1)Es(N,) 1/Ag(N), changing the indices 1 and 2 in_ the right-hand side of(BQ.
Note that, due to the continuity akf(») at . (p1=p-
®) =2), the following relation holds:
whereAy(n) is the projected area of the surface unit ¢etf
the vicinal surface of orientation on 3 ;. This formula ap- EstedN1,2) ~Ested N2,2)
lies as well in the domain€ 6= 4. with p,=2, as when _ _
gcs 0<6, with p;=2. Eg(n) is tr?e surfgzce energyper = (1 1)By(n) ~ (14 1) Bs(ny). (0
atom of the surface normal to. It is interesting to note that If we note that when, in a first approach, we assume that
the condition of instability of the surface correspondingsto  the contribution of the ledge to the surface energy of the
(normalny) is simply vicinal surface can be approximated by the corresponding

macroscopic surface energy, theg vanishes. ThuAE is a
Es(Ne)>Es(ny) +Es(n2); ©®  measure gf the deviation %g this approximation. Rigorously,

we will see below that in many cases the signAdf(7.) AE does not vanish and is a function gfsinceEgc{n;,p;)

determines the stability for the whole randkz,]. It is clear ~ depends orp; due to step-step interactions.

that the sign ofA f is independent of the origin of angles, i.e., When these interactions are neglectad(p,,2) and

if 3, is referred by the anglé,, since it is given by the sign AE(2,p,) are equal to the same consta since they must

of the expression between the square brackets in(&q. be equal forp=7.. WhenAE is not vanishingAf(#) has a

which will be denoted aaE(p;,p,) in the following. triangulgr shapeﬁgee Eq.(7)] and both quantities have the
Let us denoté\; (A,) the area of the unit cell &, (2,).  Same sign(see Fig. 2 In the particular cas@E=0, any
It is straightforward to show that vicinal surface betweel; and3, has the same energy as
the corresponding faceted surface.
AE(p1,2) Actually, this simple picture is modified by the interac-
Af(n)=F—=—"7"m O=n=n., : - :
A,sin 6, tions between steps even at 0 K. When neglecting relaxation,
(7)  stepsstartto interact when the range of the potential is large
AE(2,p,) enough. Then the two straight lines of Fig. 2 transform into
Af(p)=—F2—Q=nln2), =772 as many segmentsith discontinuities of slopeas there are
1

different step energies whgnincreases. In addition, in cal-
The expression foAE can be transformed using the for- culations based on the deter.minatio_n of the electronic. struc-
mula given by Vitoset al2 for the step energy, i.e., ture, long-range oscillatory interactions are preSefitFi- .
nally, atomic relaxation introduces step-step repulsive
Ested Ni Pi)=Es(ni,p))—(pi—1+f)Eg(n), (8  Iinteractions which tends to lowekf(#) and to give it a
positive curvature in both domains €n=<7.,7.<7
whereEg{N;,p;) is the step energyper step atormin < 7,). In the next sections the stability of vicinal surfaces is
the vicinal surface the terraces of which are normaltand  analyzed using different methods giving the total energy
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ranging from pair potentials, semi-empirical potentials in- (100
cluding anN-body contribution, and, finally, electronic struc- _
ture calculations. Then we will study the effects of tempera- (110) (110)
ture.
Let us finally remark that the curvature 6f») has the di (111
same sign ag/(6) +d?y/d6? since g
(010) (011) (011)

d?f  dy(6)/cosh] 01)

—=———————=cos0[ () +d*y/d6*] (11

dzy (dtane) ai1 (11D

(010)

with 0=6<#/2. It is well known that whenvy(6)
+d2y/d#?<0, the surface orientatiofl is unstable and will (110) (110)
minimize its energy by developing facets. Therefore in the
domain of » whered?f/d»? is negative, the corresponding
surfaces %re unstable. Otherwise they are stable or FIG. 3. Stereographic projection of the two ranges of orienta-
metastablé: tions studiedheavy line$.

(100)

Ill. STABILITY OF VICINAL SURFACES AT 0 K

the corresponding vicinal surfaces qrgl11)x (100). Note
FROM SEMI-EMPIRICAL POTENTIALS

that for »= 7. the Miller indices of the surface af811).

Empirical potentials belonging to a very large class can be The second domain that we will study is the domain of
written as a sum of contributiong; of each atomi (the vicinals between (11) and(111), i.e., p(111)X(111) [with
origin of energy being the energy of a free atom so thaMiller indices (2—p,p,p)] andp(111)x (111) [with Miller
E;<0) depending on its environment of neighbgrat the indices —2,p,p)]. The surface corresponding tg. (p
interatomic distanc&;; , i.e., =2) is(011). This domain being symmetrical with respect to
the (011) surface we take the origin of angles at this surface,
i.e., 7.=0, thuspe[ — 7,,7,] with 7,=2/2. This range
is interesting since, in particular, it will give information on
) ) the possibility of faceting of th€d11) surface into (11) and
E is the total energy of the systent @ K neglecting the  (111) facets. Indeed the missing row reconstruction which is
zero-point vibrational energy. In the following we spt  observed at thé011) surface of some fcc transition mefdls
=2i49(R;j). The first term of Eq.(12) is thus pairwise can be viewed as a “microscopic” faceting of this type. Let
while the second onén which g is a positive functionhas  ys consider in more detail the internvid,»,]: the surfaces
anN-body character. The functiohsandg are usually cutoff  that are first spanned are tp€011)x (111) vicinal surfaces
smoothly around a given radil, . This class of potentials [with Miller indices (1,2-1,2p—1)] until p=2, i.e., the
includes pair potentialgF (p;)=0], potentials based on ef- (133 surface[ .= \/2/6]. Then the surfaces betweét33)
fective medium theory(EMT),16'17 embedded atom model g,q (111 are p(111)x(011) or (p—1,p+1,p+1) which
(EAM),*® and glue modet? and potentials derived from the | " o geometry as thie1)(111)x (111) surface

tight-binding approximation in the second moment approaclgince the choice of the ledge is somewhat arbitfante that

20-23 . £ iane i g hi
[F(pi)\pil 2 *or f|tte2q/3to calculations including higher- e number of rows being increased by 1 in the last case, the

order moment§F (p;)>p{"]."*** Note that in potentials of orresponding geometrical factérshould be decreased by

the tight-binding type, thé\-body part is strictly attractive 1) Thys the study oA f(7) between 0 andy, will give the

while the pairwise part is strictly repulsive. _ stability of these vicinal surfaces with respect to faceting into
We first fix the interatomic distances to their bulk equilib- (011) and (111) facets.

rium values, i.e., atomic relaxation effects are ignored. With  The geometry of the studied surfaces being now defined,

this assumptior®;V(R;j) and2;.;g(R;j) are linear com- i is easy to determine the coordination numbgfsz,, - -

binations of the number of neighbazg of atomi in the Nth Z'N .. for the successive atomic layersf any surface. The

. 12

E=Z E=> [;I V(Rj)+F

2 g(Rij))
J#i

coordination sphere of raditgy (Ry<R;) and Ei=E(Z1-  values off and these coordination numbers are given in
-+ Zy: ). Itis usual to taker, as the reference distance and Taples | —Vfor each surface up =5 since interactions
setg(Ry)=1. are very rapidly screened in metals. The last atomic layer of

To proceed further we must specify the set of vicinal sur-each surface refers to the first layer which has the same first
faces we want to study. We limit ourselves to fcc crystals andjye coordination numbers as a bulk atom. In the next two
consider here two domair(§ig. 3). The first domain is de- subsections we first discuss the case of pair potentials and
fined byn;=(1,0,0) andn,=(1,1,1). In this domain, when then the influence of the contribution of &hkbody term. In
0<7n<n(n.=\2/3) the crystallographic planes [§2 all cases, assuming a rigid lattice, we will determine the larg-
—1,1,1) are spanned and correspond to i200)x (111)  est rangeR,,. Of the potential for which the step energies
surfaces in Somorjai notatioftsand whenn.<7<7, (7,  remain a constant fop=2 for both types of steps involved
=/2) the crystallographic planes are€1,p—1p—1) and in the considered domain. Then we limit ourselves to ranges
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TABLE I. Coordination number<Z, in the Nth coordination TABLE Il. Same caption as Table | for the(100)Xx (111) or
sphere of atoms belonging to successive atomic layers fdiftig (2p—1,1,1) vicinal surfacesf(=1/2). n).; is the total number of
(100, and(011) fcc surfaces up to the first layer in which atoms Nth neighbors(per surface atomsuppressed by the surface. The
have the same first five coordination numbers as a bulk atomvalues ofng‘tepwhich determine the step energies in the pair poten-
nN(x) is the total number oNth neighbors(per surface atojn tial model of Vitoset al. (Ref. 14 are also given.

suppressed by the surface.

p=2, (311) surface

(111) surface Layer Z, Z, Zs Z, Zs
Layer Z, Z, Zs Z, Zs 1 . 3 " . 4
1 9 3 15 9 12 2 10 5 16 7 16
2 12 6 21 9 18 3 12 5 19 10 18
3 12 6 24 12 24 4 12 6 23 10 20
n"(e) 3 3 12 6 18 5 12 6 24 12 22
(100 surface 6 12 6 24 12 24
Layer Z, Z, Zs Z, Zs nMs, 7 5 24 14 30
1 8 5 12 8 16 Netep 1 2 0 2 6
2 12 5 20 8 20 p=3, (511 surface
3 12 6 24 12 20 Layer Zl 22 23 Z4 25
4 12 6 24 12 24 1 7 3 12 7 12
nM() 4 2 16 8 16 2 8 5 14 7 16
(011) surface 3 10 5 16 8 18
Layer Z Z, Zs Z, Zs 4 12 5 18 8 18
1 7 4 14 7 12 5 12 5 21 10 20
2 11 4 18 7 16 6 12 6 23 10 20
3 12 6 20 11 18 7 12 6 24 12 20
4 12 6 24 11 22 8 12 6 24 12 22
5 12 6 24 12 24 9 12 6 24 12 24
nN() 6 4 20 12 28 nM, 11 7 40 22 46
nsNtep 1 2 0 2 6
p=4, (711) surface

R.<Rnax In Which caseAf(#) has a triangular shape and

.max ) ) . L z z z z z
examine its sign given bAE (Fig. 2. We will end by a - 0o 71 ; 132 ; 152
numerical study of Cu vicinal surfaces using a potential of; 8 5 12 7 14
the tight-binding type, discussing the influence of reIaxation3 8 : 14 8 18
and of the position of the cutofR; .

4 10 5 16 8 18

A. Pair potentials 2 i; : ;g g ;g
These potentials are the simplest ones which have been 12 5 21 10 20
used in the past. We will limit ourselves to the study ofg 12 6 23 10 20
unrelaxed surfaces since it is well known that they most ofg 12 6 24 12 20
ten lead to an outward relaxation instead of the inward ong 12 6 24 12 20
generally observed at metal surfaces. However, such pair iny 12 6 24 12 22
teractionsVy between an atom and one of its neighbors in,, 12 6 24 12 o

the Nth coordination shell have been used on a rigid lattice n

) 14 - . oS i 15 9 56 30 62

by Vitos et al.™* in order to estimate step energies in transi-_{ 1 5 0 2 6

tion and noble metals and study the stability of the(@dd) Nstep
surfaces’ From Eq.(8) it is seen that

N flat surface parallel to the terrace. In E3) the sign ofVy
Ested P)= 2, Nied PIV (13) s defined in such a way that the energy of a bulk atom is
RN<R¢ . b b
written Epyi=—2r <r ZNVN where Z is the number of
with Nth neighbors for a bulk atom and the surface energgds
=3 nSVy wherenY is the total number oNth neigh-
N _ AN N Ry<R.'SVN S
n =nN.(p)— (p—1+f)nN(=), 14 N=Re
ste P) = Muici(P) — (P (=) (a4 bors (per surface atojnsuppressed by the surface.
wheren'..;(p) andnMN(=) are, respectively, the total number ~ There are no interactions between steps as long as
of neighbors in theNth coordination shell suppressed by the n’s\'te[(p) does not depend op(p=2). We will see in the
vicinal surface withp atomic rows on the terraces and by the following that this condition is fulfilled only wherR; is
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TABLE lll. Same caption as Table Il for the(111)X (100) or TABLE IV. Same caption as Table Il for thg(111)x (Tll) or
(p+1p—1p—1) vicinal surfaces f(=2/3). For p=2, see the (p—2,p,p) vicinal surfaces {=1/3). The same table can be used
(312) surface in Table Il bun's\‘tepshould be replaced b2, 0, 4, 4,  for (p—1)(111)x(011) (f=4/3) (see the main text
0).

p=2, (011) surface
p=3, (211 surface

Layer Z, Z, Z3 Z, Zg
Layer Z, Z, Z3 Z, Zs
1 7 4 14 7 12
L ! 3 12 ! 12 2 11 4 18 7 16
2 o 3 16 ! 14 3 12 6 20 11 18
: > : " ; 4 12 6 24 1 22
5 12 6 21 10 18 5N 12 6 24 12 24
6 12 6 23 10 22 Muici 6 4 20 12 28
7 12 6 24 12 22 Nstep z 0 4 4 4
8 12 6 24 12 24 p=3, (133 surface
nhe 10 8 36 20 48 Layer z, Z, Zs Z, Zs
NStep 2 0 4 4 0 1 7 3 12 7 14
p=4, (533 surface 2 9 4 16 7 14
Layer z, Z, Zs Z, Zs 3 11 4 19 9 14
1 7 3 12 7 12 4 12 6 19 9 18
2 9 3 14 7 12 5 12 6 22 11 20
3 9 3 17 9 14 6 12 6 24 11 22
4 10 5 17 9 16 7 12 6 24 12 24
5 12 5 19 9 16 Nyici 9 7 32 18 42
6 12 6 21 9 16 e, 2 0 4 4 0
! 12 6 21 10 20 p=4, (122 surface
8 12 6 23 10 22 Layer 7, Z, Zs Z, A
9 12 6 24 12 22 1 7 3 12 7 12
10 12 6 24 12 24
N, 13 11 48 26 66 2 9 3 14 ! 14
nys\jtep 2 0 4 4 0 3 9 4 17 9 14
4 11 4 19 9 14
5 12 6 19 9 16
small enough. Them\f(#) is linear in both domaing0,7.] 6 12 6 21 9 20
and|[ 7., n,]. However, depending on the range of the po-7 12 6 22 11 20
tential, either these two straight lines join gt with a dis- 8 12 6 24 11 22
continuity of slope, orAf(#)=0 whenne[0,n,]. In the 9 12 6 24 12 24
former case, the sign off(7) is sufficient to know N 12 10 44 24 60
whether the vicinal surfaces are stable or not. e 2 0 4 4 0
1. p(100)X (111)-p(111) X (100) domain ) i 9252'(355) S“Zace i} i
From Tables Il and IIl it is seen thaE2(0"* " and 1ayer - N 19 Z 1
Eas* (%9 are independent gf when the pair interactions 9 3 14 7 12
do not reach the sixth neighbofactually they begin to de- 9 3 15 9 14
pend onp when the pair interactions reach the seventh ané‘i
sixth neighbors, respectivelyLet us thus assume that the o 4 L7 9 14
pair interactions are cut beyond the fifth neighbors and de= 1 4 19 9 14
termine the sign oAE from Eq.(5) and Tables | and II. We 12 6 19 9 16
find 7 12 6 21 9 18
8 12 6 21 9 20
AE=Eg(31)—E4(100 — Eg(111) = —4(V3+V5). 9 12 6 22 1 20
(15 10 12 6 24 11 22
11 12 6 24 12 24
As a conclusion, if the range of the pair potential is lim- N _ 15 13 56 30 78
ited to the first and second neighbak£ =0, so that the |~ 2 0 4 4 0

energy of any vicinal surface is equal to the energy of the*'*"

faceted(100/(112) surface. If the range is extended to fifth
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TABLE V. Same caption as Table Il for thg(011)x(111) or AE=Eg4011)—2E¢(111)>0, (16)
(1,2p0—1,2p—1) vicinal surfacesf(=1/2). Forp=2, see Table IV
for the (133 surface, bun's“tep should be replaced by (0,1,2,0,0). i.e., whenV,+2V3<0 and stable otherwise. Note that in
the former case, the step energy,{2V3) of the

p=3, (155 surface p(011)x(111) is negative and th€01l) surface is less

Layer Z, Z, Z;3 Z, Zs stable than the missing row reconstructed (011X @39
surface'®*All these findings are consistent with an instabil-

L ! 3 12 ! 12 ity of the (011) surface wherV,+2V3<0. The latter condi-
2 7 4 14 7 14 tion is not fulfilled for the fcc elements of thed3and 4
3 9 4 16 7 14 transition-metal series when using the pair interactions given
4 1 4 18 7 14 by Vitos et al, in accordance with the stability of th@11)
5 1 4 19 9 16 surface of these elements. For Pt and ¥y;+ 2V is nega-
6 12 6 19 9 18 tive and this would be consistent with the missing row re-
7 12 6 20 1 18 construction occurring for both elements. However, we must
8 12 6 22 1 20 note that the condition16) is not really applicable for
9 12 6 24 11 22 Au(111) since this surface is reconstructed. The case of
10 12 6 24 11 22 Ir(011) is still under debate sinc¥,+2V; is positive ac-
11 12 6 24 12 24 cording to Ref. 14 and very close to 0 from Ref. 27.
nh 15 11 52 30 70
n’s\‘tep 0 1 2 0 0 3. p(011) X (11)-p(112) X (011) domain

p=4, (177 surface This domain is defined by;e[0,/2/2]. The surfacep
Layer Z, Z, Z3 Z, Zs =2 corresponding toy.= /2/6 is the(133 crystallographic
1 7 3 12 7 12 plane. From Tables IV and V we see that, wHRr< Rg at
2 7 4 14 7 12 least, the step energi&@{ot?* Y and RGO are in-
3 7 4 14 7 14 dependent ofp (actually, steps begin to interact whéd,
4 9 4 16 7 14 >R, for the first ones, an®,> Ry for the second oned.
5 11 4 18 7 14 From Eq.(6) these vicinal surfaces are unstable with respect
6 11 4 18 7 16 to faceting into(011)-(112) facets when
7 11 4 19 9 16
8 1 6 10 9 18 E<(133)>Eg(011) +Eg(111). (17)
9 12 6 20 11 18 This inequality is fulfiled wherVs<0 if R,<Rg. As a
10 12 6 20 11 18 consequence wheR.<Rs, all vicinal surfaces in this do-
11 12 6 22 11 20 main are degenerate with the faceted oneR M Ry and
12 12 6 24 11 22 Vs#0, Af(#n) has the triangular shapes shown in Fig. 2 with
13 12 6 24 11 22 AE>0 (V5<0) andAE<0 (V5>0).
14 12 6 24 11 22 Let us now summarize our results. We have found that the
15 12 6 24 12 24 faceted surface is nondegenerate with the vicinal one when
Nyici 21 15 72 42 98 the pair potential includes third neighbors for (1€0)-(111)
Natep 0 1 2 0 0 domain, second neighbors for thel()<(111) domain, and

fifth neighbors for the(011)-(111) domain. However, we

neghtors the surface is siable Vi V<0 and unsable 151° SHOu 11 & fecers il b poenials derhed
otherwise. Them\f(») behaves as shown in Fig. 2. If we 9 y

look at the numerical values of; given by Vitos et al2 pendent of the used data base, in particular even the sign of
when Ry<R,<R,, the only elem?ént for whichVs is neéa- V, is uncertain. Thus the use of pair potentials to study the
C L]

tive is Au, but it is well known that A(LO0O and Au111) faceting of metal surfaces is questionable.
reconstruct and thus the present analysis, which assumes un-

reconstructed flat surfaces, cannot be applied. B. N-body semi-empirical potentials
_ _ _ Let us now examine the case of semi-empirical potentials
2. p(11) X (111)-p(11)X(111) domain including an N-body contribution. We will first neglect

In this domain, as already stated, we chogseas the atomic relaxation and derive general trends for potentials of
origin of angles (.=0) and ne[—7,,7,] with 7, type (1_2). Th_e_n we will present examples of th_e_use of such
= J2/2. In these condition® is the horizontal line at ordi- a_sem|—emp|r|c_;al potentlfil in the case of Cu vicinal surfaces
natef(7,)=y(111)/cosf,. The corresponding steps do not Without and with relaxation.
interact as long aR. <Ry (see Table IV. ThenAf(#%) has a
triangular shape and the position of its apex relative tosthe
axis determines the stability of the vicinal surfaces. From Eq. Here the interatomic distances are fixed to their bulk equi-
(6) they are unstable when librium values and, as stated above, the energy of an atom

1. Case of rigid lattices
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is completely determined by its coordination numbers up tdribute to AE which can be written as a function of the

the cutoff radius, i.e.E;=E(Z},---Z})- N-body part of the potential only. Noting that, singéR,)
(a) p(100)x (111)p(111)X (100) domain.We limit our- =1, p;==;.;9(R;;)=Z1+Z59, with g,=9g(R;), AE is fi-

selves to values dR; such thalR.<R, since, as we will see nally given by

below, Af(%) deviates from the triangular shape as soon as

Rc(lrc?o&)lc(q?f) the third neighbors. Let us first examine when AE=[F(7+392) —F(9+39,)]

EPian ) is independent op. Using Tables I, II, and IlI B _

ars1t§qu.(8) we find [F(8+50,)—F(10+5g,)]. (24

For all the existing potentials of the forfil2) F”
Edlep " "=E(73,14~3E(85,12/2+E(10,5,16 =d?F/dp? is positive.gAga consequenEe(p—g;L—)F(pgpi)s

+E(12,5,19 - 3E(12,5,20/2+E(12,6,23 a decreasing function ¢f, thereforeAE [and thusAf(7)]is
always positive in the whole domain. This common property

—E(12,6,29 (18 of this class of potentials has a clear physical origin: the
and energy E; of an atomi should decrease more and more
slowly when its coordination increases towards the bulk

Edan ) (MD=E(7,3,12 - 5E(8,5,12/2+E(8,5,14 coordination'>2?° This clearly implies that="(p) must be

positive. We have then proved that fany empirical poten-
+E(10,5,16 +E(12,5,18 - 5E(12,5,20/2 tial of the general forn(12) on a rigid lattice at 0 K and a

cutoff radiusR.< R, anyvicinal surface from(100) to (111)
+E(12,523+E(12,6,23-E(12,6,29. is unstablewith respect to faceting.
(19 (b) p(111)x (111)p(111)x (111) domain.We will limit
ourselves to the values &; such thaR.<Rj since the step
energies cease to be a constant wRerR;. Indeed forp
=2 and 3 they are not equal:

It is easily seen that, wheR;<R.<R, these two steps
energies are different but become equal wRgrt R, <R3 in

which case
E2(00% (111~ 3100 (11) Elas M=E(7,4 - 4E(9,3)/3+E(11,4 - 2E(12,6)(/235)
=E(7,3 +E(10,5 —3E(8,5/2— E(12,5/2. g
an
(20 -
For thep(111)X (100) vicinal surfaces a similar calcula- EdeyY MD=E(7,4-7E(9,9/3

tion shows also that the two step energies are different when

R3<R.<R, but are equal wheR,<R.<Rj: TEO.4H+E(11,4-2B(12,6/3. (26

E2{at (100 g3(111<(100) It is easily shown thaEREEY* ™™ remains constant for
p=3 when first- and second-nearest neighbors are included
=E(7,3-5E(9,3/3+E(10,9 and for p=2 when interactions are limited to first-nearest
+E(12,5 - 4E(12,6)/3. (21)  neighbors.

As a consequenc@f(») has a triangular shape when
Using Tables Il and 1l the reader can verify that, when R.<R, and the vicinal surfaces betweenl(!l) and(111) are
R,<R.<Rjg, the step energies of boih(100)x (111) and unstable when Eq16) is fulfilled, i.e.,
p(111)x(100) surfaces are not changed for 3.
Consequently for any semi-empirical potential of the form [F(7)—F(9)]-[F(9)-F(1D]>0 (27
(12) including first and second nearest neighbors only,

Af() has the triangular shapiEig. 2 when relaxation is since the pair potentia does not contribute to this condi-
neglected and its sign is given by. tion. This inequality is always obeyed since, as explained

above,F(p—2)—F(p) is a decreasing function @f. In such
AE=Eg(311) — E4(100) — E¢(111) (220 @ model, at least when atomic relaxation is neglected, the
(011) surface is unstable relative to faceting intal@d and
(111) facets. Note that due to the very short range of the
potential, the conditiori27) gives also the instability relative

to the missing row (X 2) reconstruction which has indeed

This expression has an obvious physical meaniag: ~ (111) and(111) microfacets. _ .
arises from the difference of the sum of energies of, on the WhenR:<Rs, Af(7) is no more a simple triangle. How-
one hand, atoms belonging to the outer and inner step edgedyer, it remains linear in the domain 11)-(133), i.e.,
and, on the other hand, @100 and (111) surface atoms. e[—+2/2,—/2/6] and in the domain symmetrical with re-
From the previous subsection we know that the pair potenspect ton=0. In these domains, the sign aff(\/2/6) [or
tial, when limited to second-nearest neighbors, does not comkf(#)] is given by

or

AE=[E(7,3+E(10,5]-[E(8,5+E(9,3]. (23

045410-7



RAOUAFI, BARRETEAU, SPANJAARD, AND DESJONQLIEES

Af(n)
1st neighbors

i,&

E\—-— ——

as) \ / (133)

(011)

i

PHYSICAL REVIEW B66, 045410 (2002

ERO*(MD=E(7,3,12,7-3E(7,4,14,7/2+E(9,4,16,7
—3E(11,4,18,7/2+E(11,4,19,9
+E(12,6,19,9—3E(12,6,20,11/2

+E(12,6,22,11—E(12,6,24,11/2. (33

Consequently, wheR.<Rg, Af(%) is linear betweery
=0 [(011) surfacg and 5= \/2/6[(133) surfacg.® It is eas-

ily seen from Tables IV and V that steps start to interact if
FIG. 4. Expected evolution af f(7) (full lines) obtained witha  the fifth neighbors are taken into account. We have seen
semi-empirical potential including first- and second-nearest ne'ghébove tha‘Eg[t);l)(lll)X(]ll) (e, E;S)t(gil)l)x(on)) is a constant

bors as a function of the energy contribution of the latddi( ) is
lowered and may change sign depending on this contribution.

Eq(133—3E4(11) =E(7,3 + E(9,4 + E(11,4—3E(9,3)
(28)

and it is expected to depend on the relative contributions og

whenp=2 if R.<R; but not wherR.> R5. As a conclusion,

in this domain,Af(#) has a triangular shape only wh&q
<Rj; and, as shown abo\é&qgs.(29)—(32)], its sign is posi-

tive (see Fig. 3 which means that the corresponding vicinal
surfaces are all unstable with respect to faceting {0t/

111) facets.
Finally, if we compare the results obtained with a pair

the first- and second-nearest neighbors to the energy. In agntential to those derived from usual potentials including an
dition the pointAf(0) is not at the intersection of these two N-body part, we note that step interactions appear at a shorter

lines since the step energies are not the same+o2 (011)
and p=3 (133 [see Egs(25) and (26)]. It can be easily
shown thatA f(0) is below this intersection when

Eq(011)<Eg(133 —Eg(111) (29
or

[E(7,49—E(9,9]—[E(7,39 —E(9,3]<0. (30

cutoff distance in the latter case than in the former.

2. Application to vicinal surfaces of Cu

So far we have demonstrated general results on the stabil-
ity of vicinal surfaces based on a rigid lattice description,
both from pair potentials and-body semi-empirical poten-

tials. Most results were demonstrated under the assumption
that the range of the potential is restricted to the first shells of

neighbors, and it was often difficult to predict the exact be-
havior when the range of the potential is extended to further
neighbors. Moreover, the effect of atomic relaxation was ne-

The pair part of the potential does not play any role in thisgjected. We will now consider a “real” case with a potential

condition which can be rewritten

[F(7+392) —F(9+30,)]

—[F(7+49,)—F(9+4g,)]<0. (31
This inequality is always fulfilled sincE(p—2)—F(p) is a
decreasing function gb.

As a conclusion, whenAf(5)>0 for ne[=2/6,

g \J2/2] the (011) surface is stable relative to faceting into

(111)/(111) facets ifAf(0) is negative, i.e.,

E(011) —2E4(111) = E(7,4) + E(11,4 — 2E(9,3)<O0.
(32

This last condition may or may not not be fulfilled de-

of the form given by Eq(12) (see Ref. 10

E(Rll"'Riv"')

=A 3 (Ro/Ry)PTe(Ry)
L], #i

a

>, exd —2q(R; /Ro—1)1f(R)) | ,

J#I

_ 52
(34)

where R;; is the distance between atomsandj, R, is a
reference distance that we take equal to the bulk nearest-
neighbor spacing and.(R)=1{1+exd(R—R)/A]} is a
smooth cutoff function with a cutoff radiu’; and a charac-
teristic lengthA that we set equal to 0.05 A.

The parameters, &, p, andq are fitted to the cohesive

pending on the importance of second-nearest neighborgnergyE. and the three elastic constaritsulk and shear

WhenAf(7)<0, Af(011) is belowAf(133) (Fig. 4). Thus
the semi-empirical potenti@l2) with R.<R3 cannot explain
the faceting of th€¢011) surface into (B3)/(133) facets ob-
served for IF at least when relaxation is neglected.

(c) p(011)x(111)$p(111)x (011) domain.Limiting our-
selves toR;<Rs, we find that the step energi&g{J;"
are independent gf in the whole range{=2) and equal to

moduli B, C, andC"). The equilibrium equation gives a re-
lation between the four parameters and the first-neighbor dis-
tance is fixed at the experimental valig. In the case of
copper Ro=2.5526 A) we have found that with=0.666

we obtain an excellent fiiof the order of meV per atojrof

the cohesive energf.=—3.5 eV/atom and of the bulk
modulus,B=10.470 eV/atom, but the quality of the fit for
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FIG. 5. Af(#) for Cu derived from the semi-empirical potential
given in the text for two cutoff radii with and without relaxation for
the (100-(111) domain.

FIG. 6. Same as Fig. 5 for the {1)-(111) domain.

) respect to faceting into (111) and X1] facetd, the inclu-

the two other elastic constan@=6.046 eV/atom an®C’  sjon of further neighbors totally modifies this picture since
=1.917 eV/atom is Strongly dependent on the cutoff radiUSWith potentia”?z, Af(n) is negative and the (011) surface
Moreover, the surface energies of the three low index suris stable. Moreover, as expected from analytical reqske
faces (111), (001), and (011), even though not included irsec. 1B 1 b) Af(0) is below the straight line defined by the
the fit, are better withv=0.666 than witha=1/2. (111) and (133) points and therefore all vicinals surfaces

We have checked several sets of parameters, correspongktween (011) and (111) are unstable with respect to face-
ing to different cutoff radiiR;, by comparing to experiment ting into (011) and (111) orientations.
the result of the fi(in particular the two elastic constar@s Finally one can see that atomic relaxation always acts in
andC’) and also the surface relaxation and the bulk phonofayor of a stabilization since the relaxation is larger on a
spectral? It was found that the best set of paramet@ailed  vicinal surface that on a flat one. Typically the displacement
P,) was obtained for a cutoff radiuB.=4.02 A between of an atom relative to its lattice position is 0.035 and
second and third neighbors, the corresponding numerical vag. 037 A inwards for 4100 and(111) surface atom, respec-
ues being A=0.206 eV, £=1.102 eV, p=7.206, q tjvely, while it is also inwards but about 0.13 A for an atom
=2.220. However, to test the influenceRf on the stability  of the step edge using the potentRy. A detailed study of
of vicinal surfaces we have also considered two other sets gfis relaxation will be presented in a forthcoming pafer.
parameters one, denoted &y, with a cutoff radiusR.  Nevertheless, this effect is rather small and in most cases it
=3.08 A between first and second neighbors leading to will not be large enough to modify the stabilitgr instabil-
=0.339 eV, £=1.447 eV, p=6.069, q=2.449, and an- ity) of a surface. The only case where it could influence the
other one P,) with a cutoff radiusR.=5.4 A between stability is whenAf(7) is positive but very small, the inclu-
fourth and fifth neighbors, the corresponding parameters besjon of atomic relaxation could then makéd (%) negative in
ing A=0.195 eV,{=1.021 eV,p=7.357,d=2.100. Inall  some regions and positive in others leading to a more com-
cases the atomic structure of each surface has been fulplex behavior. However, this situation is very unlikely and

relaxed using a conjugate gradient algorithm. the inclusion of new effectélike that of vibrational energy
We will now examine the cases of tH&00-(111) do-  would also modify the picture in that specific case.
main. In Fig. 5 we have representad(») with and without Let us discuss and summarize our results. From our ana-

atomic relaxation for the two potentiaf, and P,. As ex-  Iytical study and Figs. 5 and 6 it appears that the range of the
pected from our previous analysis all vicinal surfaces bepotential plays an important role but it is difficult to draw
tween (100) and (111) are unstable for fhgpotential the  general conclusions. In all cases considered here the effect of
range of which is restricted to second neighbihe poten-  farther neighbors is to stabilize vicinal surfaces, however,
tial P, leads qualitatively to the same resultslowever, we  including them will not automatically make vicinal surfaces
can see that the effect of farther neighbors is crucial sincestable, this crucially depends on their relative importance and
with potential P,, all vicinal surfaces between (100) and therefore on the dependence of the functivigs) andg(r)
(111) become stable. with distance[Eq. (12)]. The stability also depends on the
The case of the (11)-(111) domain is presented in Fig. 6 relative importance oW with respect toF(p) since when
where we have showa f(7) with and without atomic relax- farther neighbors are included both terms are present in the
ation for the two potential®,; andP,. Here again the range energy balance. Moreover, in EAM and EMT potentials the
of the potential is crucial: as expected potenialleads to embedding and pair parts are not necessarily purely attractive
an upward triangle and therefore an instability of all the vici-or purely repulsive, therefore even the sign of these terms is
nal surfacegin particular the (011) surface is unstable with not known. Let us finally compare our results with those of
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FIG. 7. Af(#n) for Rh, Pd, and Cu from tight-binding calcula- FIG. 8. Same as Fig. 7 for the_11)-(111) domain.

tions for the(100)-(111) domain.

a local maximum atp=2/3 [(311) surfacg This means
of Frenken and Stoltz& These authors have calculated that the vicinal surfaces of orientation such tha/5< 7
Af(n) for the fully relaxed (100) and (111) vicinal surfaces <3,/2/5 are unstable relative to faceting irfil1) and (533
of Ag (and other metajsusing an EMT potential wittR;  orientations. This peculiar behavior is related to electronic
<R:<R,. However, the role played by the third neighbors is step-step interactions which are repulsive for the (311) and
very small compared to thfltz of first and §<3500nd neighltors  (211) surfaces and attractive for (511) and (533) surfates.
fixideas,g;=1, g,=3x10", g3=3x10""). Our analysis | the (111)-(111) domain the situation is rather different
shows that all the\f(7) curves calculated with a potential p,t some general features can, however, be drawn from Fig.
of type (12) and a cutoff radiuR;<R; will behave identi-  g. for the three considered elements the (011) surface is
cally. In the case of their potential, even though third nelgh—Stable with respect to faceting into (111) and.{] facets in

bors are included, their role is too small to have a significam:,igreement with experiment but it appears that vicinal sur-

influence. This explains the strong similarity between our ; ;
) . . 11)X(111) are un le fgp=4 since there is an
results on relaxed C(Fig. 5 with potentialP, and those of acesp(011)x (111) are unstable fqp since there Is a

inversion of curvature fop=4. For copper and palladium

Frenken and Stoltze for Ag. there is a range of instability between 2(0xi()111) or
(133) and 4(012X (111) or (177) meaning that vicinal sur-
IV. STABILITY OF VICINAL SURFACES AT 0 K faces in this range are expected to facet into (133) and (177)
FROM TIGHT-BINDING CALCULATIONS orientations. For rhodium this instability is not present. Con-

V\;;eming the vicinal surfaces(111)x (111) for p>2, Fig. 8
shows that they are stable for copper and rhodium but un-
stable for palladium. Unfortunately there are very few ex-

should also depend on the angular arrangement of its neiglﬁ)-g:mgﬂg: ?eiﬁltﬂ\)/\teth;erz&gaieogfo:éegtztfgs’o:‘hgu(zqgﬁx-
bors. This effect is accounted for in electronic structure cal’ e . idy N ’

i . ) : .~ which is found to be stable in agreement with our findings. It
culations which, moreover, include long-range interactions . . X

. : : would therefore be very interesting to have experimental

(often oscillatory. These interactions, although small, may studies of (011) vicinal surfaces with higher indext4) to
play a role in the very delicate energy balance which deter—check the validity of our calculations 9
mines the stability of vicinal surfaces. In a recent pdpee y '
calculated the step energies of various vicinal surfaces from
a realistic tight-binding model for Rh, Pd, and Cu. The func- V. FINITE TEMPERATURE EFFECTS

tionsAf(#) derived from the results of this paper are plotted ON THE STABILITY OF VICINAL SURFACES

in_Figs. 7 and 8 for the (100)-(111) vicinal surfaces and g4 far il calculations were carried out at 0 K; we will

(111)-(111) vicinal surfaces, respectively. now consider the influence of finite temperatures. There are
As can be seen there is a great variety of shapes and thgo sources of variation of(7) with temperature: a purely

(100)-(111) domain is very different from the 11)-(111)  statistical ternf,,(T) due to the entrop$s,; gained by the

domain. On the (100)-(111) domain we find that for Cu allmeandering of steps regulated by the kink formation energy

vicinal surfaces are stablé @ K while for Pd they are un- (g, therefore decreasing the free energy for step forma-

stable. For Rh the situation is more complex: all vicinal sur-tion, and the vibrational free enerdy,, due to the vibra-

faces are stable with respect to faceting into (100) and (111jional motion of atoms. We then have

surfaces, however, the curve presents two local minima at

n=12/5[(511) surfacgand »=32/5[(533) surfacéwith f(7.T)=fo(n)+ fsad 7. T+ (7. T), (35)

The potentials considered above have a common dra
back: the energy of an atom(on a rigid lattice is com-
pletely fixed by its coordination numbei@), whereas it
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where fy(7) is the static term independent of temperature.
Actually f4 is very difficult to calculate, it can, however,

be evaluated analytically in a simple first-nearest neighbor 025
Ising model for a free step on(a00) fcc surfacé® leading to

e 02
kgT Eki >
free __ "B kink >
fstat(n!T) Ao(n) In COtl’le? , (36) §0_15
£
this expression being only valid when steps fluctuate inde- 2“5 ol

pendently of each other. Indeed, when the meandering of

steps is large enough compared to the terrace width one must

take into account the fact that steps cannot cross. This re-

striction decreases the configurational entropy and leads to

an effective repulsion of the steps. One can formally write

foat @s the sum of two termg£'e and {125 °SSwhich is the

positive contribution due to the noncrossing condition. (100)
For fg4: the low index surfaces do not contribute since

the only allowed events that we consider are kink creation, FIG. 9. Af,;,(#) for Cu in the(100-(111) domain from poten-

therefore Afg,= fsat- If We neglect the term due to the tial P, as a function of temperature.

noncrossing conditior f ;5 has a simple downward trian-

gular shape and the minimum is obtained for the intermedi- The main conclusion is that the order of magnitude of

ate vicinal surface corresponding ip= 7. (or equivalently  Af .. is approximately some tenths of meVd/and there-

005

n=tand

(111)

p=2) and is equal to fore in most cases it will have a negligible role on the sta-
bility. However, Afg,; may become of the same order of
Afsial 7c) = —KgT In[coth(ein/2kgT) J/[S1(1+f1) ]. magnitude asAf,;, for temperatures above 300 K. One

(37)  should also note that the shape/of,;, is very different for
) o o ) ) e the two domains: it is positive for the (100)-(111) domain
This statistical contributiorfs, is obviously stabilizing  ang consequently tends to destabilize vicinal surfaces, it is

vicinal surfaces and it varies rapidly with temperature. To fiXggcillatory with some positive and negative parts for the
ideas let us take th€l00-(311) domain[which corresponds (Tll)-(lll) domain.

to vicinal surfaces with(100) terrace$ and a kink energy

. . Finally, let us note that our results concerning the influ-
typically of 0.12 eV/atom for copper. One finds that Y 9

Af s of th d ¢ 10° oV/AZ at 100 K ence of the vibrational energy are in contradiction with those
stat ”C)Af‘ of the order o g a ' of Frenken and Stoltz& since these authors claimed that

1077 ev/ ;& 200 K, 0.05 meV/A at 300 K, and 0000 stabilize vicinal surfaces in t00)-(111) domain.

0.5 meV/A? at 500 K. Therefore at room temperature this |, their work they evaluated the role of phonons using a

statistical energetic contribution will be at most a few hun-gjnified Einstein model and neglected the internal energy,

dredths of meV for Cu and completely negligible in the casepich js quite questionable at low temperatures. Moreover,

of elements with higher kink energies like rhodium and pal-, heir evaluation ofAf,;, they used a formula similar to

ladium. In any casd i, has a negligible influence on the gq (23) byt in which they only included the difference be-
stability of vicinal surfaces.

The excess vibrational free energy has two contributions:

the internal energy which dominates at low temperature anc L ! 0K ! i
vanishes at high temperature and the entropy part which ha  o.02 .
the inverse behavior. This excess free energy has been evall - 100K -
ated in recent publications using a simple model of the Ein- ~ 0 200K
stein type>>3°% put in view of the rather delicate energy § - 1
balance involved here it is more advisable to use a complete g 002 300 n
description of the phonon spectrum and include both the in- < i 400 i
ternal energy and the entropy part. Therefore we have calcu 59 -0.041= 500 B
lated the vibrational free energy from precise phonon spectre 5~ | I
. ) g -0.06 - =
based on the empirical potentiB, which is known to re- | - i
produce very accurately the experimental data for the vibra- el (133) (133) i
tion spectra of bulk Cu and its low- and high-index L Ccu 1
surfaces? Contrary to the statistical term the vibrational en- 01 1 ) ) 1
ergy is obviously not zero on the flat surface and there is an ~ "V2/2 -0:5 n=?ane 05 V22
important cancellation when calculating the difference of en- (T11) ©11) (111
ergy givingAf,;,. On Figs. 9 and 10 we have represented
Af,p for the two domains (100)-(111) and 11)-(111) at FIG. 10. Af,;,(7) for Cu in the (111)-(111) domain from po-
different temperatures from 0 to 500 K. tential P, as a function of temperature.
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tween the outer edge and(&ll) surface atom, i.e&(7, 3) 011)
—E(9, 3). Our analytical calculatiori&q. (23)] show that at

least another term should imperatively be considered,
namely E(10,5)—E(8,5) arising from the difference be-
tween the inner edge and a (100) surface atom. These two
terms have opposite signs and are expected to be of the same
order of magnitude. This explains why not only the order of
magnitude of Frenken and Stoltze estimation is too large _
(meV instead of tenths of meg\but even the sign is wrong (100)
since we find that phonons tend to destabilize vicinal sur-

faces, at least for Cu, in the (100)-(111) domain whereas the
influence of phonons can be stabilizing in some regions and
destabilizing in some others in the 1)-(111) domain.

(T11) 111)

(100)

= S

VI. CONCLUSION din a1

In this paper we have investigated the implications of dif- (0TT)
ferent approaches for calculating the surface energies on the
stability of vicinal surfaces with respect to faceting. We have FIG. 11. y plot of Cu for the orientations studied in the main
shown that, although effective pair potentials are useful tdext.
estimate step energié$*this method is not precise enough
to determine the stability of vicinal surfaces. First, in this surface has a more pronounced cusp than the (100) direction,
model, the stability would be governed by pair potentialswhile that of the (011) direction is hardly visible. We con-
beyond first-nearest neighbors, at least. As emphasized gider a schematic case with a strong anisotropy, for the sake
Ref. 10 the sign of these terms is not known with certaintyof clarity, as shown in Fig. 12. First we construct the plane
since it depends on the surface energy data base used 1o perpendicular to the radius vector of theplot and tan-
determine them. When surface energies are calculated frogent to the Wulff equilibrium shape at poihtLet us callH
semi-empirical potentials, we have seen that the results déhe projection of the center of thg plot O, on 7, and set
pend on the cutoff distance chosen for the interatomic intery;=OH. When the radius vector scans all theplot the
actions and of the importance of farther neighbors comparegoint H scans a surface that we will cdll. From Herring
with first-nearest neighbors. Moreover, the shape\bf»)  criterion, the surface is unstable with respect to faceting if
remains schematic, even when atomic relaxation is includedhe surfacd’ is inside they plot.
In addition, pair potentials, as well &body semi-empirical We will now recast this geometrical construction into the
ones, have a common drawback: they only depend on theore straightforward one derived in Sec. Il. Let us first cal-
interatomic distances and not on the angular arrangement efilate y¢(6):
atoms. This latter effect is small in metals. However, it can-
not be neglected in view of the delicate energy balance y1(6)=0OH=0I cog 6, —6) (A1)
which governs the stability of vicinal surfaces with respect toyjth O1= y(n,)/cos@, ), therefore we have
faceting. On the contrary, electronic structure calculations
take this effect into account and open up the possibility of a cog 6, —0)
large variety of behaviors, including a possible faceting of a yi(0)= ok y(ny). (A2)
vicinal surface into two different vicinal surfaces. Such a *
phenomenon is a consequence of electronic oscillatory step-
step interactions. Finally temperature effects are found to be
most often negligible, at least up to room temperature.

APPENDIX A: FACETING CONDITION AND HERRING
GEOMETRICAL CONSTRUCTION

In this appendix we show the equivalence between the
geometrical construction of Herring and the simpler faceting
criterion derived in Sec. Il. Let us recall the Herring
construction® One starts from they plot in polar coordi-
nates. An example of & plot, obtained for copper from our
tight-binding calculations, is given in Fig. 11. Its most strik-
ing feature is the existence of well defined cusps in some
directions, namely (111), (100), and (011). The more close
packed the surface, the deeper the cusp. This appears clearly
in Fig. 11 where the direction corresponding to the (111) FIG. 12. The Herring construction.
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-7 angles, i.e.f=(nq,n), 6,=(nq,n,). The spacing of atomic

Ala iy rows parallel to the step edges is denoted jafl,) in the
~a T N | ed, . . .
- e LA face of normaln, (n,), d; is the interplanar spacing along
n ’X__,_-' n—s directionn,, anda the interatomic spacing along the rows.
T { 3 @D p; and p, denote the numbers of atomic rows in each facet
= 1 An)a including the inner edge. All vicinal surfaces with mono-

atomic steps encountered in the domping,] are of this

FIG. 13. Cut of a vicinal surface with terraces of orientatiops type with

whenp,=2 andn, whenp;=2. w>p,;=2; p,=2 when 0<#<6,,

As seen from Sec. Il, the relevant function j$6)/cos(). p1=2; 2<p,<~ when 6,<60<6,.
Let us then calculate )
We want to prove Eq(5) starting from[see Eq.4)]
¥:(6)
=v(n;)+[y(ny)tang, Jtane. (A3) y(n) tané tand | y(ny)
0 =7 1= _

cos6) AM=0s0 \ 1 @n 6, YD~ | 6,/ cosb,’

Actually Ol has two equivalent expressions whether the ori- (B1)

gin of the angles are the directions or n,, one gets wherey(n) is the surface energy per unit area of a surface of

orientationn. Let us denote a8, A,, andA, the areas of the

n n
Ol= 4 ;) = 70( i)g (A4)  unit cells of the planes with normafs n;, andn,, respec-
cog6,) cogf=0.) tively, and Ag(n) =A cosé the projection ofA on the plane
which allows one to derive an expression for tan of orientationn,. The following relations hold:
n 1 A1: all y (BZ)
tang, = vina) . (A5)
y(ny)siné, tané, ad,
Substituting Eq(A5) for tan#, into Eq. (A3) yields Ar=aly=go 0, (B3)
y1(6) ( tand tang | y(n,) (p,—1)d,tané
=|1- ny) + ——_ (A6 _ 2 Rl
cog 6) tand, v(ny) tané, | cosé, (A6) N0 (0, 1), + (py— D)l ytand, (B4
Comparing Eq(A6) with the inequality(4) the faceting con-  |ntroducing the surface energies per surface aafm) into
dition can be written Eq. (B1) gives
Y(0)>y1(6). (A7) Af(n)= E«(n) ( tand \Eg(n;) [ tand | Eg(ny)
Thus the faceting condition given by Herring construction is Acost tand,) A tan6,/ A,cosd,
equivalent to the inequalit{4). (BS)
Substituting Eqs(B2), (B3), and(B4) for A;, A,, and tary
APPENDIX B: into Eq. (B5) yields

Let us consider the stepped surface of orientatishown  Af(n)=[Eg(n)—(p;—1)Eg(n;) — (po—1)Eg(Nny) ]/ Ag(n).
in Fig. 13. The planes of normal, are taken as the origin of (B6)
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