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Stability of vicinal metal surfaces: From semi-empirical potentials
to electronic structure calculations
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The stability of metal vicinal surfaces with respect to faceting is investigated using pair potentials, semi-
empirical potentials, and tight-binding electronic structure calculations for several domains of orientations. It is
proven that pair potentials are not precise enough to determine the stability of these surfaces. The answer
obtained with semi-empirical potentials is shown to be quite sensitive to the cutoff distance chosen for the
interactions and may be too schematic. The results derived from electronic structure calculations open up the
possibility of a larger diversity of behaviors due to the existence of electronic step-step interactions. Finally it
is shown that the effects of temperature are quite small, at least up to room temperature.
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I. INTRODUCTION

A vicinal surface is a surface of high Miller indices an
exhibits a periodic succession of terraces and steps of m
atomic height. The study of these surfaces is presently
subject of intensive investigations since they may provide
appropriate substrate for growing nanostructures.1,2 How-
ever, these surfaces are not always stable. Indeed, it mig
energetically favorable for the system to increase its to
area in order to expose to vacuum facets with low Mil
indices with smaller surface energies per unit area. Th
faceted surfaces may also be interesting to elaborate n
structures since atoms deposited on these surfaces will
erentially occupy sites in the inner edges in order to ma
mize their coordination. This may lead to a periodic lattice
nanowires with magnetic and transport properties of h
technological interest.

Up to now, in spite of the large number of experimen
carried out on these surfaces,3–7 very few theoretical works
based on an atomistic description have been devoted to
problem. The faceting condition implies the calculation
the surface energy for any surface orientation. There e
several ways of computing these energies. The most sim
of them use potentials ranging from the crudest empir
pair potentials to semi-empirical ones8 including anN-body
contribution. In the latter case the analytical expression
the semi-empirical potentials attempts to mimic the results
more accurate methods based on the calculation of the e
tronic structure such as the tight-binding approximation
first-principle methods based on the density-functio
theory. The latter two methods, in which the electronic str
ture is explicitly calculated, can also be used. However
view of the large size of the unit cells of vicinal surfaces w
wide terraces, systematic calculations can be carried out
within the tight-binding method.9,10

The aim of this paper is to discuss the implications
these different approaches on the stability of vicinal surfa
relative to faceting. Preliminary results of this work ha
already been presented in Ref. 11 concerning the facetin
the vicinal surfaces found between the~100! and ~111!
0163-1829/2002/66~4!/045410~14!/$20.00 66 0454
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planes into~100!/~111! facets. In the present study we exam
ine the problem in more detail and consider different d
mains of orientations.

The paper is organized as follows. In Sec. II the facet
condition is established and the geometry of the vicinal s
faces involved in these domains is explained. In Sec. III
stability of these vicinal surfaces is analyzed using differ
~semi!-empirical potentials. Analytical results are first d
rived for a rigid lattice and an application to vicinal surfac
of copper, including surface relaxation, is presented usin
semi-empirical potential of the tight-binding type12 with a
particular emphasis on the importance of the cutoff rad
chosen for atomic interactions. The results of electro
structure calculations based on the tight-binding approxim
tion using as,p,d orbital basis set on a rigid lattice are the
discussed in Sec. IV for rhodium, palladium, and copper. T
effects of temperature are studied in Sec. V for copper.
nally conclusions are drawn in Sec. VI.

II. FACETING CONDITION OF AN INFINITE SURFACE

Let us consider two low index surfacesS1 and S2 with
normals n1 and n2, respectively, which intersect along
given row of atoms and the set of vicinal surfaces with eq
distant step edges which is spanned whenS1 is rotated
around the common atomic row towardsS2. Let us takeS1
as the origin of angles and denoteu2 the angle (n1 , n2).
During this rotation the surfaces vicinal toS1 are first found
and the number of atomic rowsp1 ~including the inner edge!
on one terrace decreases from̀to 2 ~angleuc). The surface
corresponding touc can also be regarded as a vicinal ofS2
with p252. Then foruc<u,u2 the surfaces vicinal toS2
are scanned with increasing terrace widths (p2>2). An area
S of any of these high index surfaces will transform in
facets of normaln1 ~areaS1) and normaln2 ~areaS2) while
keeping its average orientation when~Fig. 1!

gS.g1S11g2S2 ~1!

(g,g1 andg2 being the surface energies per unit area of
high index,S1 andS2 surfaces, respectively! with the con-
straints
©2002 The American Physical Society10-1



en

th

f
e

t

.,

r-

r
ed

, of
he

hat
the
ing

ly,

e

s

c-
ion,
rge
to

-
ruc-

ive

is
rgy

-

RAOUAFI, BARRETEAU, SPANJAARD, AND DESJONQUE`RES PHYSICAL REVIEW B66, 045410 ~2002!
S5S1cosu1S2cos~u22u!, ~2!

S1sinu5S2sin~u22u!. ~3!

It is easily shown that the faceting condition can be writt

f ~h!.~12h/h2! f ~0!1~h/h2! f ~h2! ~4!

with h5tanu and f (h)5g(u)/cosu. This condition is
equivalent to the Herring13 construction~see Appendix A!.

This condition has a simple geometrical interpretation:
point „h, f (h)… must be above the straight lineD joining the
points „0,f (0)… and „h2 , f (h2)… or, equivalently, the sign o
the deviationD f (h) from this straight line determines th
stability @D f (h),0# or the instability @D f (h).0# of the
vicinal surface. It can be easily shown~see Appendix B! that

D f ~n!

5@ES~n!2~p121!ES~n1!2~p221!ES~n2!#/A0~n!,

~5!

whereA0(n) is the projected area of the surface unit cellA of
the vicinal surface of orientationn on S1. This formula ap-
plies as well in the domain 0<u<uc with p252, as when
uc<u<u2 with p152. ES(n) is the surface energy~per
atom! of the surface normal ton. It is interesting to note tha
the condition of instability of the surface corresponding tohc
~normalnc) is simply

ES~nc!.ES~n1!1ES~n2!; ~6!

we will see below that in many cases the sign ofD f (hc)
determines the stability for the whole range@0,h2#. It is clear
that the sign ofD f is independent of the origin of angles, i.e
if S1 is referred by the angleu1, since it is given by the sign
of the expression between the square brackets in Eq.~5!
which will be denoted asDE(p1 ,p2) in the following.

Let us denoteA1 (A2) the area of the unit cell ofS1 (S2).
It is straightforward to show that

5 D f ~h!5
DE~p1,2!

A2sinu2
h, 0<h<hc ,

D f ~h!5
DE~2,p2!

A1
~12h/h2!, hc<h<h2 .

~7!

The expression forDE can be transformed using the fo
mula given by Vitoset al.14 for the step energy, i.e.,

Estep~ni ,pi !5ES~ni ,pi !2~pi211 f i !ES~ni!, ~8!

whereEstep(ni ,pi) is the step energy~per step atom! in
the vicinal surface the terraces of which are normal toni and

FIG. 1. Faceting.
04541
e

have pi atomic rows.ES(ni ,pi) is the surface energy pe
atom of this vicinal surface which was equivalently denot
asES(n) in Eq. ~5!. Finally f i is a geometrical factor which
is equal to the ratio of the area, projected on the terrace
the unit cell of the ledge to the area of the unit cell of t
terrace @ f 15A2cos(u2)/A1, f 25A1cos(u2)/A2]. Substituting
for ES(ni ,pi) from Eq. ~8! into DE(p1,2), for instance,
yields

DE~p1,2!5Estep~n1 ,p1!2ES~n2!1 f 1ES~n1!; ~9!

a similar equation can be written forDE(2,p2) by inter-
changing the indices 1 and 2 in the right-hand side of Eq.~9!.
Note that, due to the continuity ofD f (h) at hc (p15p2
52), the following relation holds:

Estep~n1,2!2Estep~n2,2!

5~11 f 2!ES~n2!2~11 f 1!ES~n1!. ~10!

If we note that when, in a first approach, we assume t
the contribution of the ledge to the surface energy of
vicinal surface can be approximated by the correspond
macroscopic surface energy, thenDE vanishes. ThusDE is a
measure of the deviation to this approximation. Rigorous
DE does not vanish and is a function ofh sinceEstep(ni ,pi)
depends onpi due to step-step interactions.

When these interactions are neglectedDE(p1,2) and
DE(2,p2) are equal to the same constantDE since they must
be equal forh5hc . WhenDE is not vanishingD f (h) has a
triangular shape@see Eq.~7!# and both quantities have th
same sign~see Fig. 2!. In the particular caseDE50, any
vicinal surface betweenS1 and S2 has the same energy a
the corresponding faceted surface.

Actually, this simple picture is modified by the intera
tions between steps even at 0 K. When neglecting relaxat
steps start to interact when the range of the potential is la
enough. Then the two straight lines of Fig. 2 transform in
as many segments~with discontinuities of slope! as there are
different step energies whenp increases. In addition, in cal
culations based on the determination of the electronic st
ture, long-range oscillatory interactions are present.9,10 Fi-
nally, atomic relaxation introduces step-step repuls
interactions which tends to lowerD f (h) and to give it a
positive curvature in both domains (0<h<hc ,hc<h
<h2). In the next sections the stability of vicinal surfaces
analyzed using different methods giving the total ene

FIG. 2. Behavior ofD f (h) when there are no interactions be
tween steps.hc corresponds top15p252.
0-2
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STABILITY OF VICINAL METAL SURFACES: FROM . . . PHYSICAL REVIEW B66, 045410 ~2002!
ranging from pair potentials, semi-empirical potentials
cluding anN-body contribution, and, finally, electronic struc
ture calculations. Then we will study the effects of tempe
ture.

Let us finally remark that the curvature off (h) has the
same sign asg(u)1d2g/du2 since

d2f

dh2
5

d2@g~u!/cosu#

~d tanu!2
5cos3u@g~u!1d2g/du2# ~11!

with 0<u,p/2. It is well known that wheng(u)
1d2g/du2<0, the surface orientationu is unstable and will
minimize its energy by developing facets. Therefore in
domain ofh whered2f /dh2 is negative, the correspondin
surfaces are unstable. Otherwise they are stable
metastable.15

III. STABILITY OF VICINAL SURFACES AT 0 K
FROM SEMI-EMPIRICAL POTENTIALS

Empirical potentials belonging to a very large class can
written as a sum of contributionsEi of each atomi ~the
origin of energy being the energy of a free atom so t
Ei,0! depending on its environment of neighborsj at the
interatomic distanceRi j , i.e.,

E5(
i

Ei5(
i

F(
j Þ i

V~Ri j !1FS (
j Þ i

g~Ri j ! D G . ~12!

E is the total energy of the system at 0 K neglecting the
zero-point vibrational energy. In the following we setr i
5( j Þ ig(Ri j ). The first term of Eq.~12! is thus pairwise
while the second one~in which g is a positive function! has
anN-body character. The functionsV andg are usually cutoff
smoothly around a given radiusRc . This class of potentials
includes pair potentials@F(r i)50#, potentials based on ef
fective medium theory~EMT!,16,17 embedded atom mode
~EAM!,18 and glue model,19 and potentials derived from th
tight-binding approximation in the second moment appro
@F(r i)}Ar i #,

20–23 or fitted to calculations including higher
order moments@F(r i)}r i

2/3#.12,24 Note that in potentials of
the tight-binding type, theN-body part is strictly attractive
while the pairwise part is strictly repulsive.

We first fix the interatomic distances to their bulk equili
rium values, i.e., atomic relaxation effects are ignored. W
this assumption( j Þ iV(Ri j ) and( j Þ ig(Ri j ) are linear com-
binations of the number of neighborsZN

i of atomi in theNth
coordination sphere of radiusRN (RN,Rc) andEi5E(Z1

i
•

••ZN
i
•••). It is usual to takeR1 as the reference distance an

setg(R1)51.
To proceed further we must specify the set of vicinal s

faces we want to study. We limit ourselves to fcc crystals a
consider here two domains~Fig. 3!. The first domain is de-
fined byn15(1,0,0) andn25(1,1,1). In this domain, when
0,h<hc(hc5A2/3) the crystallographic planes (2p
21,1,1) are spanned and correspond to thep(100)3(111)
surfaces in Somorjai notations25 and whenhc<h,h2 (h2

5A2) the crystallographic planes are (p11,p21,p21) and
04541
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the corresponding vicinal surfaces arep(111)3(100). Note
that for h5hc the Miller indices of the surface are~311!.

The second domain that we will study is the domain
vicinals between (1̄11) and~111!, i.e., p(1̄11)3(111) @with
Miller indices (22p,p,p)# andp(111)3(1̄11) @with Miller
indices (p22,p,p)#. The surface corresponding tohc (p
52) is ~011!. This domain being symmetrical with respect
the ~011! surface we take the origin of angles at this surfa
i.e., hc50, thushP@2h2 ,h2# with h25A2/2. This range
is interesting since, in particular, it will give information o
the possibility of faceting of the~011! surface into (1̄11) and
~111! facets. Indeed the missing row reconstruction which
observed at the~011! surface of some fcc transition metals26

can be viewed as a ‘‘microscopic’’ faceting of this type. L
us consider in more detail the interval@0,h2#: the surfaces
that are first spanned are thep(011)3(111) vicinal surfaces
@with Miller indices (1,2p21,2p21)# until p52, i.e., the
~133! surface@hc5A2/6#. Then the surfaces between~133!
and ~111! are p(111)3(011) or (p21,p11,p11) which
have the same geometry as the (p11)(111)3(1̄11) surface
since the choice of the ledge is somewhat arbitrary~note that
the number of rows being increased by 1 in the last case,
corresponding geometrical factorf should be decreased b
1!. Thus the study ofD f (h) between 0 andh2 will give the
stability of these vicinal surfaces with respect to faceting in
~011! and ~111! facets.

The geometry of the studied surfaces being now defin
it is easy to determine the coordination numbersZ1

i ,Z2
i ,••

•ZN
i
••• for the successive atomic layersi of any surface. The

values of f and these coordination numbers are given
Tables I –Vfor each surface up toN55 since interactions
are very rapidly screened in metals. The last atomic laye
each surface refers to the first layer which has the same
five coordination numbers as a bulk atom. In the next t
subsections we first discuss the case of pair potentials
then the influence of the contribution of anN-body term. In
all cases, assuming a rigid lattice, we will determine the la
est rangeRmax of the potential for which the step energie
remain a constant forp>2 for both types of steps involved
in the considered domain. Then we limit ourselves to ran

FIG. 3. Stereographic projection of the two ranges of orien
tions studied~heavy lines!.
0-3



d

o
io

e
o
o
on
r i
in

ic
si

r
he
he

is

as

s
om

e
en-

RAOUAFI, BARRETEAU, SPANJAARD, AND DESJONQUE`RES PHYSICAL REVIEW B66, 045410 ~2002!
Rc<Rmax in which caseD f (h) has a triangular shape an
examine its sign given byDE ~Fig. 2!. We will end by a
numerical study of Cu vicinal surfaces using a potential
the tight-binding type, discussing the influence of relaxat
and of the position of the cutoffRc .

A. Pair potentials

These potentials are the simplest ones which have b
used in the past. We will limit ourselves to the study
unrelaxed surfaces since it is well known that they most
ten lead to an outward relaxation instead of the inward
generally observed at metal surfaces. However, such pai
teractionsVN between an atom and one of its neighbors
the Nth coordination shell have been used on a rigid latt
by Vitos et al.14 in order to estimate step energies in tran
tion and noble metals and study the stability of the fcc~011!
surfaces.27 From Eq.~8! it is seen that

Estep~p!5 (
RN,Rc

nstep
N ~p!VN ~13!

with

nstep
N ~p!5nv ici

N ~p!2~p211 f !nN~`!, ~14!

wherenv ici
N (p) andnN(`) are, respectively, the total numbe

of neighbors in theNth coordination shell suppressed by t
vicinal surface withp atomic rows on the terraces and by t

TABLE I. Coordination numbersZN in the Nth coordination
sphere of atoms belonging to successive atomic layers for the~111!,
~100!, and ~011! fcc surfaces up to the first layer in which atom
have the same first five coordination numbers as a bulk at
nN(`) is the total number ofNth neighbors~per surface atom!
suppressed by the surface.

~111! surface
Layer Z1 Z2 Z3 Z4 Z5

1 9 3 15 9 12
2 12 6 21 9 18
3 12 6 24 12 24
nN(`) 3 3 12 6 18

~100! surface
Layer Z1 Z2 Z3 Z4 Z5

1 8 5 12 8 16
2 12 5 20 8 20
3 12 6 24 12 20
4 12 6 24 12 24
nN(`) 4 2 16 8 16

~011! surface
Layer Z1 Z2 Z3 Z4 Z5

1 7 4 14 7 12
2 11 4 18 7 16
3 12 6 20 11 18
4 12 6 24 11 22
5 12 6 24 12 24
nN(`) 6 4 20 12 28
04541
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flat surface parallel to the terrace. In Eq.~13! the sign ofVN
is defined in such a way that the energy of a bulk atom
written Ebulk52(RN,Rc

ZN
b VN where ZN

b is the number of

Nth neighbors for a bulk atom and the surface energy isES

5(RN,Rc
nS

NVN wherenS
N is the total number ofNth neigh-

bors ~per surface atom! suppressed by the surface.
There are no interactions between steps as long

nstep
N (p) does not depend onp(p>2). We will see in the

following that this condition is fulfilled only whenRc is

.

TABLE II. Same caption as Table I for thep(100)3(111) or
(2p21,1,1) vicinal surfaces (f 51/2). nv ici

N is the total number of
Nth neighbors~per surface atom! suppressed by the surface. Th
values ofnstep

N which determine the step energies in the pair pot
tial model of Vitoset al. ~Ref. 14! are also given.

p52, ~311! surface
Layer Z1 Z2 Z3 Z4 Z5

1 7 3 14 7 14
2 10 5 16 7 16
3 12 5 19 10 18
4 12 6 23 10 20
5 12 6 24 12 22
6 12 6 24 12 24
nv ici

N 7 5 24 14 30
nstep

N 1 2 0 2 6

p53, ~511! surface
Layer Z1 Z2 Z3 Z4 Z5

1 7 3 12 7 12
2 8 5 14 7 16
3 10 5 16 8 18
4 12 5 18 8 18
5 12 5 21 10 20
6 12 6 23 10 20
7 12 6 24 12 20
8 12 6 24 12 22
9 12 6 24 12 24
nv ici

N 11 7 40 22 46
nstep

N 1 2 0 2 6

p54, ~711! surface
Layer Z1 Z2 Z3 Z4 Z5

1 7 3 12 7 12
2 8 5 12 7 14
3 8 5 14 8 18
4 10 5 16 8 18
5 12 5 18 8 18
6 12 5 20 8 20
7 12 5 21 10 20
8 12 6 23 10 20
9 12 6 24 12 20
10 12 6 24 12 20
11 12 6 24 12 22
12 12 6 24 12 24
nv ici

N 15 9 56 30 62
nstep

N 1 2 0 2 6
0-4
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STABILITY OF VICINAL METAL SURFACES: FROM . . . PHYSICAL REVIEW B66, 045410 ~2002!
small enough. Then,D f (h) is linear in both domains@0,hc#
and @hc ,h2#. However, depending on the range of the p
tential, either these two straight lines join athc with a dis-
continuity of slope, orD f (h)50 when hP@0,h2#. In the
former case, the sign ofD f (hc) is sufficient to know
whether the vicinal surfaces are stable or not.

1. p„100…Ã„111…-p„111…Ã„100… domain

From Tables II and III it is seen thatEstep
p(100)3(111) and

Estep
p(111)3(100) are independent ofp when the pair interactions

do not reach the sixth neighbors~actually they begin to de
pend onp when the pair interactions reach the seventh a
sixth neighbors, respectively!. Let us thus assume that th
pair interactions are cut beyond the fifth neighbors and
termine the sign ofDE from Eq. ~5! and Tables I and II. We
find

DE5ES~311!2ES~100!2ES~111!524~V31V5!.
~15!

As a conclusion, if the range of the pair potential is lim
ited to the first and second neighborsDE50, so that the
energy of any vicinal surface is equal to the energy of
faceted~100!/~111! surface. If the range is extended to fif

TABLE III. Same caption as Table II for thep(111)3(100) or
(p11,p21,p21) vicinal surfaces (f 52/3). For p52, see the
~311! surface in Table II butnstep

N should be replaced by~2, 0, 4, 4,
0!.

p53, ~211! surface
Layer Z1 Z2 Z3 Z4 Z5

1 7 3 12 7 12
2 9 3 16 7 14
3 10 5 17 9 16
4 12 5 19 9 16
5 12 6 21 10 18
6 12 6 23 10 22
7 12 6 24 12 22
8 12 6 24 12 24
nv ici

N 10 8 36 20 48
nstep

N 2 0 4 4 0

p54, ~533! surface
Layer Z1 Z2 Z3 Z4 Z5

1 7 3 12 7 12
2 9 3 14 7 12
3 9 3 17 9 14
4 10 5 17 9 16
5 12 5 19 9 16
6 12 6 21 9 16
7 12 6 21 10 20
8 12 6 23 10 22
9 12 6 24 12 22
10 12 6 24 12 24
nv ici

N 13 11 48 26 66
nstep

N 2 0 4 4 0
04541
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TABLE IV. Same caption as Table II for thep(111)3(1̄11) or
(p22,p,p) vicinal surfaces (f 51/3). The same table can be use
for (p21)(111)3(011) (f 54/3) ~see the main text!.

p52, ~011! surface

Layer Z1 Z2 Z3 Z4 Z5

1 7 4 14 7 12

2 11 4 18 7 16

3 12 6 20 11 18

4 12 6 24 11 22

5 12 6 24 12 24

nv ici
N 6 4 20 12 28

nstep
N 2 0 4 4 4

p53, ~133! surface

Layer Z1 Z2 Z3 Z4 Z5

1 7 3 12 7 14

2 9 4 16 7 14

3 11 4 19 9 14

4 12 6 19 9 18

5 12 6 22 11 20

6 12 6 24 11 22

7 12 6 24 12 24

nv ici
N 9 7 32 18 42

nstep
N 2 0 4 4 0

p54, ~122! surface

Layer Z1 Z2 Z3 Z4 Z5

1 7 3 12 7 12

2 9 3 14 7 14

3 9 4 17 9 14

4 11 4 19 9 14

5 12 6 19 9 16

6 12 6 21 9 20

7 12 6 22 11 20

8 12 6 24 11 22

9 12 6 24 12 24

nv ici
N 12 10 44 24 60

nstep
N 2 0 4 4 0

p55, ~355! surface

Layer Z1 Z2 Z3 Z4 Z5

1 7 3 12 7 12

2 9 3 14 7 12

3 9 3 15 9 14

4 9 4 17 9 14

5 11 4 19 9 14

6 12 6 19 9 16

7 12 6 21 9 18

8 12 6 21 9 20

9 12 6 22 11 20

10 12 6 24 11 22

11 12 6 24 12 24

nv ici
N 15 13 56 30 78

nstep
N 2 0 4 4 0
0-5
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neighbors the surface is stable ifV31V5,0 and unstable
otherwise. ThenD f (h) behaves as shown in Fig. 2. If w
look at the numerical values ofV3 given by Vitos et al.14

when R3,Rc,R4, the only element for whichV3 is nega-
tive is Au, but it is well known that Au~100! and Au~111!
reconstruct and thus the present analysis, which assume
reconstructed flat surfaces, cannot be applied.

2. p„1̄11…Ã„111…-p„111…Ã„1̄11… domain

In this domain, as already stated, we chooseuc as the
origin of angles (hc50) and hP@2h2 ,h2# with h2

5A2/2. In these conditionsD is the horizontal line at ordi-
nate f (h2)5g(111)/cosu2. The corresponding steps do n
interact as long asRc,R5 ~see Table IV!. ThenD f (h) has a
triangular shape and the position of its apex relative to thh
axis determines the stability of the vicinal surfaces. From
~6! they are unstable when

TABLE V. Same caption as Table II for thep(011)3(111) or
(1,2p21,2p21) vicinal surfaces (f 51/2). Forp52, see Table IV
for the ~133! surface, butnstep

N should be replaced by (0,1,2,0,0)

p53, ~155! surface
Layer Z1 Z2 Z3 Z4 Z5

1 7 3 12 7 12
2 7 4 14 7 14
3 9 4 16 7 14
4 11 4 18 7 14
5 11 4 19 9 16
6 12 6 19 9 18
7 12 6 20 11 18
8 12 6 22 11 20
9 12 6 24 11 22
10 12 6 24 11 22
11 12 6 24 12 24
nv ici

N 15 11 52 30 70
nstep

N 0 1 2 0 0

p54, ~177! surface
Layer Z1 Z2 Z3 Z4 Z5

1 7 3 12 7 12
2 7 4 14 7 12
3 7 4 14 7 14
4 9 4 16 7 14
5 11 4 18 7 14
6 11 4 18 7 16
7 11 4 19 9 16
8 12 6 19 9 18
9 12 6 20 11 18
10 12 6 20 11 18
11 12 6 22 11 20
12 12 6 24 11 22
13 12 6 24 11 22
14 12 6 24 11 22
15 12 6 24 12 24
nv ici

N 21 15 72 42 98
nstep

N 0 1 2 0 0
04541
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DE5ES~011!22ES~111!.0, ~16!

i.e., whenV212V3,0 and stable otherwise. Note that
the former case, the step energy (V212V3) of the
p(011)3(111) is negative and the~011! surface is less
stable than the missing row reconstructed (011)(231)
surface.10,14All these findings are consistent with an instab
ity of the ~011! surface whenV212V3,0. The latter condi-
tion is not fulfilled for the fcc elements of the 3d and 4d
transition-metal series when using the pair interactions gi
by Vitos et al., in accordance with the stability of the~011!
surface of these elements. For Pt and Au,V212V3 is nega-
tive and this would be consistent with the missing row
construction occurring for both elements. However, we m
note that the condition~16! is not really applicable for
Au~111! since this surface is reconstructed. The case
Ir~011! is still under debate sinceV212V3 is positive ac-
cording to Ref. 14 and very close to 0 from Ref. 27.

3. p„011…Ã„111…-p„111…Ã„011… domain

This domain is defined byhP@0,A2/2#. The surfacep
52 corresponding tohc5A2/6 is the~133! crystallographic
plane. From Tables IV and V we see that, whenRc,R6 at
least, the step energiesEstep

p(011)3(111) andEstep
p(111)3(011) are in-

dependent ofp ~actually, steps begin to interact whenRc
.R12 for the first ones, andRc.R8 for the second ones!28!.
From Eq.~6! these vicinal surfaces are unstable with resp
to faceting into~011!-~111! facets when

ES~133!.ES~011!1ES~111!. ~17!

This inequality is fulfilled whenV5,0 if Rc,R6. As a
consequence whenRc,R5, all vicinal surfaces in this do-
main are degenerate with the faceted ones. IfRc,R6 and
V5Þ0, D f (h) has the triangular shapes shown in Fig. 2 w
DE.0 (V5,0) andDE,0 (V5.0).

Let us now summarize our results. We have found that
faceted surface is nondegenerate with the vicinal one w
the pair potential includes third neighbors for the~100!-~111!
domain, second neighbors for the (11̄1)-~111! domain, and
fifth neighbors for the~011!-~111! domain. However, we
have shown in a recent work10 that pair potentials derived
from ab initio calculations of surface energies are very d
pendent of the used data base, in particular even the sig
V2 is uncertain. Thus the use of pair potentials to study
faceting of metal surfaces is questionable.

B. N-body semi-empirical potentials

Let us now examine the case of semi-empirical potent
including an N-body contribution. We will first neglect
atomic relaxation and derive general trends for potentials
type ~12!. Then we will present examples of the use of su
a semi-empirical potential in the case of Cu vicinal surfac
without and with relaxation.

1. Case of rigid lattices

Here the interatomic distances are fixed to their bulk eq
librium values and, as stated above, the energy of an atoi
0-6
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STABILITY OF VICINAL METAL SURFACES: FROM . . . PHYSICAL REVIEW B66, 045410 ~2002!
is completely determined by its coordination numbers up
the cutoff radius, i.e.,Ei5E(Z1

i ,•••ZN
i ).

(a) p(100)3(111)-p(111)3(100) domain.We limit our-
selves to values ofRc such thatRc,R4 since, as we will see
below, D f (h) deviates from the triangular shape as soon
Rc reaches the third neighbors. Let us first examine wh
Estep

p(100)3(111) is independent ofp. Using Tables I, II, and III
and Eq.~8! we find

Estep
2(100)3(111)5E~7,3,14!23E~8,5,12!/21E~10,5,16!

1E~12,5,19!23E~12,5,20!/21E~12,6,23!

2E~12,6,24! ~18!

and

Estep
3(100)3(111)5E~7,3,12!25E~8,5,12!/21E~8,5,14!

1E~10,5,16!1E~12,5,18!25E~12,5,20!/2

1E~12,5,21!1E~12,6,23!2E~12,6,24!.

~19!

It is easily seen that, whenR3,Rc,R4 these two steps
energies are different but become equal whenR2,Rc,R3 in
which case

Estep
2(100)3(111)5Estep

3(100)3(111)

5E~7,3!1E~10,5!23E~8,5!/22E~12,5!/2.

~20!

For thep(111)3(100) vicinal surfaces a similar calcula
tion shows also that the two step energies are different w
R3,Rc,R4 but are equal whenR2,Rc,R3:

Estep
2(111)3(100)5Estep

3(111)3(100)

5E~7,3!25E~9,3!/31E~10,5!

1E~12,5!24E~12,6!/3. ~21!

Using Tables II and III the reader can verify that, wh
R2,Rc,R3, the step energies of bothp(100)3(111) and
p(111)3(100) surfaces are not changed forp.3.

Consequently for any semi-empirical potential of the fo
~12! including first and second nearest neighbors on
D f (h) has the triangular shape~Fig. 2! when relaxation is
neglected and its sign is given by

DE5ES~311!2ES~100!2ES~111! ~22!

or

DE5@E~7,3!1E~10,5!#2@E~8,5!1E~9,3!#. ~23!

This expression has an obvious physical meaning:DE
arises from the difference of the sum of energies of, on
one hand, atoms belonging to the outer and inner step ed
and, on the other hand, of~100! and ~111! surface atoms.
From the previous subsection we know that the pair pot
tial, when limited to second-nearest neighbors, does not c
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tribute to DE which can be written as a function of th
N-body part of the potential only. Noting that, sinceg(R1)
51, r i5( j Þ ig(Ri j )5Z1

i 1Z2
i g2 with g25g(R2), DE is fi-

nally given by

DE5@F~713g2!2F~913g2!#

2@F~815g2!2F~1015g2!#. ~24!

For all the existing potentials of the form~12! F9(r)
5d2F/dr2 is positive. As a consequenceF(r22)2F(r) is
a decreasing function ofr, thereforeDE @and thusD f (h)# is
always positive in the whole domain. This common prope
of this class of potentials has a clear physical origin:
energy Ei of an atom i should decrease more and mo
slowly when its coordination increases towards the b
coordination.15,29 This clearly implies thatF9(r) must be
positive. We have then proved that forany empirical poten-
tial of the general form~12! on a rigid lattice at 0 K and a
cutoff radiusRc,R3, anyvicinal surface from~100! to ~111!
is unstablewith respect to faceting.

(b) p(1̄11)3(111)-p(111)3(1̄11) domain.We will limit
ourselves to the values ofRc such thatRc,R3 since the step
energies cease to be a constant whenRc.R1. Indeed forp
52 and 3 they are not equal:

Estep
2(111)3(1̄11)5E~7,4!24E~9,3!/31E~11,4!22E~12,6!/3

~25!

and

Estep
3(111)3(1̄11)5E~7,4!27E~9,3!/3

1E~9,4!1E~11,4!22E~12,6!/3. ~26!

It is easily shown thatEstep
p(111)3(1̄11) remains constant for

p>3 when first- and second-nearest neighbors are inclu
and for p>2 when interactions are limited to first-neare
neighbors.

As a consequenceD f (h) has a triangular shape whe
Rc,R2 and the vicinal surfaces between (11̄1) and~111! are
unstable when Eq.~16! is fulfilled, i.e.,

@F~7!2F~9!#2@F~9!2F~11!#.0 ~27!

since the pair potentialV does not contribute to this cond
tion. This inequality is always obeyed since, as explain
above,F(r22)2F(r) is a decreasing function ofr. In such
a model, at least when atomic relaxation is neglected,
~011! surface is unstable relative to faceting into (11̄1) and
~111! facets. Note that due to the very short range of
potential, the condition~27! gives also the instability relative
to the missing row (132) reconstruction which has indee
(1̄11) and~111! microfacets.

WhenRc,R3 , D f (h) is no more a simple triangle. How
ever, it remains linear in the domain (11̄1)-(1̄33), i.e., h
P@2A2/2,2A2/6# and in the domain symmetrical with re
spect toh50. In these domains, the sign ofD f (A2/6) @or
D f (h)# is given by
0-7
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ES~133!23ES~111!5E~7,3!1E~9,4!1E~11,4!23E~9,3!

~28!

and it is expected to depend on the relative contributions
the first- and second-nearest neighbors to the energy. In
dition the pointD f (0) is not at the intersection of these tw
lines since the step energies are not the same forp52 ~011!
and p53 ~133! @see Eqs.~25! and ~26!#. It can be easily
shown thatD f (0) is below this intersection when

ES~011!,ES~133!2ES~111! ~29!

or

@E~7,4!2E~9,4!#2@E~7,3!2E~9,3!#,0. ~30!

The pair part of the potential does not play any role in t
condition which can be rewritten

@F~713g2!2F~913g2!#

2@F~714g2!2F~914g2!#,0. ~31!

This inequality is always fulfilled sinceF(r22)2F(r) is a
decreasing function ofr.

As a conclusion, whenD f (h).0 for hP@6A2/6,
6A2/2# the ~011! surface is stable relative to faceting in
(1̄11)/(111) facets ifD f (0) is negative, i.e.,

ES~011!22ES~111!5E~7,4!1E~11,4!22E~9,3!,0.

~32!

This last condition may or may not not be fulfilled d
pending on the importance of second-nearest neighb
WhenD f (h),0, D f (011) is belowD f (133) ~Fig. 4!. Thus
the semi-empirical potential~12! with Rc,R3 cannot explain
the faceting of the~011! surface into (1̄33)/(133) facets ob-
served for Ir,30 at least when relaxation is neglected.

(c) p(011)3(111)-p(111)3(011) domain.Limiting our-
selves toRc,R5, we find that the step energiesEstep

p(011)3(111)

are independent ofp in the whole range (p>2) and equal to

FIG. 4. Expected evolution ofD f (h) ~full lines! obtained with a
semi-empirical potential including first- and second-nearest ne
bors as a function of the energy contribution of the latter.D f (h) is
lowered and may change sign depending on this contribution.
04541
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Estep
p(011)3(111)5E~7,3,12,7!23E~7,4,14,7!/21E~9,4,16,7!

23E~11,4,18,7!/21E~11,4,19,9!

1E~12,6,19,9!23E~12,6,20,11!/2

1E~12,6,22,11!2E~12,6,24,11!/2. ~33!

Consequently, whenRc,R5 , D f (h) is linear betweenh
50 @~011! surface# andhc5A2/6 @~133! surface#.31 It is eas-
ily seen from Tables IV and V that steps start to interac
the fifth neighbors are taken into account. We have s

above thatEstep
(p11)(111)3(1̄11) ~i.e., Estep

p(111)3(011)) is a constant
whenp>2 if Rc,R3 but not whenRc.R3. As a conclusion,
in this domain,D f (h) has a triangular shape only whenRc
,R3 and, as shown above@Eqs.~29!–~32!#, its sign is posi-
tive ~see Fig. 3! which means that the corresponding vicin
surfaces are all unstable with respect to faceting into~011!/
~111! facets.

Finally, if we compare the results obtained with a pa
potential to those derived from usual potentials including
N-body part, we note that step interactions appear at a sho
cutoff distance in the latter case than in the former.

2. Application to vicinal surfaces of Cu

So far we have demonstrated general results on the st
ity of vicinal surfaces based on a rigid lattice descriptio
both from pair potentials andN-body semi-empirical poten
tials. Most results were demonstrated under the assump
that the range of the potential is restricted to the first shells
neighbors, and it was often difficult to predict the exact b
havior when the range of the potential is extended to furt
neighbors. Moreover, the effect of atomic relaxation was
glected. We will now consider a ‘‘real’’ case with a potenti
of the form given by Eq.~12! ~see Ref. 10!:

E~R1 ,•••Ri ,••• !

5A (
i , j , j Þ i

~R0 /Ri j !
pf c~Ri j !

2j(
i

S (
j Þ i

exp@22q~Ri j /R021!# f c~Ri j ! D a

,

~34!

where Ri j is the distance between atomsi and j, R0 is a
reference distance that we take equal to the bulk near
neighbor spacing andf c(R)51/$11exp@(R2Rc)/D#% is a
smooth cutoff function with a cutoff radiusRc and a charac-
teristic lengthD that we set equal to 0.05 Å.

The parametersA, j, p, andq are fitted to the cohesive
energyEc and the three elastic constants~bulk and shear
moduli B, C, andC8). The equilibrium equation gives a re
lation between the four parameters and the first-neighbor
tance is fixed at the experimental valueR0. In the case of
copper (R052.5526 Å) we have found that witha50.666
we obtain an excellent fit~of the order of meV per atom! of
the cohesive energyEc523.5 eV/atom and of the bulk
modulus,B510.470 eV/atom, but the quality of the fit fo

h-
0-8
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STABILITY OF VICINAL METAL SURFACES: FROM . . . PHYSICAL REVIEW B66, 045410 ~2002!
the two other elastic constantsC56.046 eV/atom andC8
51.917 eV/atom is strongly dependent on the cutoff rad
Moreover, the surface energies of the three low index s
faces (111), (001), and (011), even though not included
the fit, are better witha50.666 than witha51/2.

We have checked several sets of parameters, corresp
ing to different cutoff radiiRc , by comparing to experimen
the result of the fit~in particular the two elastic constantsC
andC8! and also the surface relaxation and the bulk phon
spectra.12 It was found that the best set of parameters~called
P2) was obtained for a cutoff radiusRc54.02 Å between
second and third neighbors, the corresponding numerical
ues being A50.206 eV, j51.102 eV, p57.206, q
52.220. However, to test the influence ofRc on the stability
of vicinal surfaces we have also considered two other set
parameters one, denoted asP1, with a cutoff radiusRc
53.08 Å between first and second neighbors leading toA
50.339 eV, j51.447 eV, p56.069, q52.449, and an-
other one (P4) with a cutoff radiusRc55.4 Å between
fourth and fifth neighbors, the corresponding parameters
ing A50.195 eV,j51.021 eV,p57.357,q52.100. In all
cases the atomic structure of each surface has been
relaxed using a conjugate gradient algorithm.

We will now examine the cases of the~100!-~111! do-
main. In Fig. 5 we have representedD f (h) with and without
atomic relaxation for the two potentialsP2 and P4. As ex-
pected from our previous analysis all vicinal surfaces
tween (100) and (111) are unstable for theP2 potential the
range of which is restricted to second neighbors~the poten-
tial P1 leads qualitatively to the same results!. However, we
can see that the effect of farther neighbors is crucial sin
with potential P4, all vicinal surfaces between (100) an
(111) become stable.

The case of the (11̄1)-(111) domain is presented in Fig.
where we have shownD f (h) with and without atomic relax-
ation for the two potentialsP1 andP2. Here again the range
of the potential is crucial: as expected potentialP1 leads to
an upward triangle and therefore an instability of all the vi
nal surfaces@in particular the (011) surface is unstable wi

FIG. 5. D f (h) for Cu derived from the semi-empirical potenti
given in the text for two cutoff radii with and without relaxation fo
the ~100!-~111! domain.
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respect to faceting into (111) and (11̄1# facets#, the inclu-
sion of further neighbors totally modifies this picture sin
with potentialP2 , D f (h) is negative and the (011) surfac
is stable. Moreover, as expected from analytical results~see
Sec. II B 1 b! D f (0) is below the straight line defined by th
(111) and (133) points and therefore all vicinals surfac
between (011) and (111) are unstable with respect to fa
ting into (011) and (111) orientations.

Finally one can see that atomic relaxation always acts
favor of a stabilization since the relaxation is larger on
vicinal surface that on a flat one. Typically the displacem
of an atom relative to its lattice position is 0.035 an
0.037 Å inwards for a~100! and~111! surface atom, respec
tively, while it is also inwards but about 0.13 Å for an ato
of the step edge using the potentialP2. A detailed study of
this relaxation will be presented in a forthcoming paper32.
Nevertheless, this effect is rather small and in most case
will not be large enough to modify the stability~or instabil-
ity! of a surface. The only case where it could influence
stability is whenD f (h) is positive but very small, the inclu
sion of atomic relaxation could then makeD f (h) negative in
some regions and positive in others leading to a more c
plex behavior. However, this situation is very unlikely an
the inclusion of new effects~like that of vibrational energy!
would also modify the picture in that specific case.

Let us discuss and summarize our results. From our a
lytical study and Figs. 5 and 6 it appears that the range of
potential plays an important role but it is difficult to dra
general conclusions. In all cases considered here the effe
farther neighbors is to stabilize vicinal surfaces, howev
including them will not automatically make vicinal surface
stable, this crucially depends on their relative importance
therefore on the dependence of the functionsV(r ) andg(r )
with distance@Eq. ~12!#. The stability also depends on th
relative importance ofV with respect toF(r) since when
farther neighbors are included both terms are present in
energy balance. Moreover, in EAM and EMT potentials t
embedding and pair parts are not necessarily purely attrac
or purely repulsive, therefore even the sign of these term
not known. Let us finally compare our results with those

FIG. 6. Same as Fig. 5 for the (11̄1)-(111) domain.
0-9
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RAOUAFI, BARRETEAU, SPANJAARD, AND DESJONQUE`RES PHYSICAL REVIEW B66, 045410 ~2002!
of Frenken and Stoltze.33 These authors have calculate
D f (h) for the fully relaxed (100) and (111) vicinal surface
of Ag ~and other metals! using an EMT potential withR3
,Rc,R4. However, the role played by the third neighbors
very small compared to that of first and second neighbors~to
fix ideas,g151, g2.331022, g3.331023). Our analysis
shows that all theD f (h) curves calculated with a potentia
of type ~12! and a cutoff radiusRc,R3 will behave identi-
cally. In the case of their potential, even though third neig
bors are included, their role is too small to have a signific
influence. This explains the strong similarity between o
results on relaxed Cu~Fig. 5! with potentialP2 and those of
Frenken and Stoltze for Ag.

IV. STABILITY OF VICINAL SURFACES AT 0 K
FROM TIGHT-BINDING CALCULATIONS

The potentials considered above have a common dr
back: the energy of an atomi ~on a rigid lattice! is com-
pletely fixed by its coordination numbersZN

i whereas it
should also depend on the angular arrangement of its ne
bors. This effect is accounted for in electronic structure c
culations which, moreover, include long-range interactio
~often oscillatory!. These interactions, although small, m
play a role in the very delicate energy balance which de
mines the stability of vicinal surfaces. In a recent paper10 we
calculated the step energies of various vicinal surfaces f
a realistic tight-binding model for Rh, Pd, and Cu. The fun
tionsD f (h) derived from the results of this paper are plott
in Figs. 7 and 8 for the (100)-(111) vicinal surfaces a
(1̄11)-(111) vicinal surfaces, respectively.

As can be seen there is a great variety of shapes and
(100)-(111) domain is very different from the (11̄1)-(111)
domain. On the (100)-(111) domain we find that for Cu
vicinal surfaces are stable at 0 K while for Pd they are un-
stable. For Rh the situation is more complex: all vicinal s
faces are stable with respect to faceting into (100) and (1
surfaces, however, the curve presents two local minima
h5A2/5 @(511) surface# andh53A2/5 @(533) surface# with

FIG. 7. D f (h) for Rh, Pd, and Cu from tight-binding calcula
tions for the~100!-~111! domain.
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a local maximum ath5A2/3 @(311) surface#. This means
that the vicinal surfaces of orientation such thatA2/5,h
,3A2/5 are unstable relative to faceting into~511! and~533!
orientations. This peculiar behavior is related to electro
step-step interactions which are repulsive for the (311)
(211) surfaces and attractive for (511) and (533) surface10

In the (1̄11)-(111) domain the situation is rather differe
but some general features can, however, be drawn from
8: for the three considered elements the (011) surfac
stable with respect to faceting into (111) and (11̄1) facets in
agreement with experiment but it appears that vicinal s
facesp(011)3(111) are unstable forp>4 since there is an
inversion of curvature forp>4. For copper and palladium
there is a range of instability between 2(011)3(111) or
(133) and 4(011)3(111) or (177) meaning that vicinal sur
faces in this range are expected to facet into (133) and (1
orientations. For rhodium this instability is not present. Co
cerning the vicinal surfacesp(111)3(1̄11) for p.2, Fig. 8
shows that they are stable for copper and rhodium but
stable for palladium. Unfortunately there are very few e
perimental data for this range of orientations, the only e
perimental result we are aware of is a study of Cu(13334

which is found to be stable in agreement with our findings
would therefore be very interesting to have experimen
studies of (011) vicinal surfaces with higher index (p>4) to
check the validity of our calculations.

V. FINITE TEMPERATURE EFFECTS
ON THE STABILITY OF VICINAL SURFACES

So far all calculations were carried out at 0 K; we w
now consider the influence of finite temperatures. There
two sources of variation off (h) with temperature: a purely
statistical termf stat(T) due to the entropySstat gained by the
meandering of steps regulated by the kink formation ene
(«kink), therefore decreasing the free energy for step form
tion, and the vibrational free energyf v ib due to the vibra-
tional motion of atoms. We then have

f ~h,T!5 f 0~h!1 f stat~h,T!1 f v ib~h,T!, ~35!

FIG. 8. Same as Fig. 7 for the (11̄1)-(111) domain.
0-10
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STABILITY OF VICINAL METAL SURFACES: FROM . . . PHYSICAL REVIEW B66, 045410 ~2002!
where f 0(h) is the static term independent of temperatu
Actually f stat is very difficult to calculate, it can, howeve
be evaluated analytically in a simple first-nearest neigh
Ising model for a free step on a~100! fcc surface15 leading to

f stat
f ree~h,T!52

kBT

A0~n!
lnFcoth

«kink

2kBTG , ~36!

this expression being only valid when steps fluctuate in
pendently of each other. Indeed, when the meandering
steps is large enough compared to the terrace width one
take into account the fact that steps cannot cross. This
striction decreases the configurational entropy and lead
an effective repulsion of the steps. One can formally wr
f stat as the sum of two terms:f stat

f ree and f stat
nocrosswhich is the

positive contribution due to the noncrossing condition.
For f stat the low index surfaces do not contribute sin

the only allowed events that we consider are kink creati
thereforeD f stat5 f stat . If we neglect the term due to th
noncrossing conditionD f stat has a simple downward trian
gular shape and the minimum is obtained for the interme
ate vicinal surface corresponding toh5hc ~or equivalently
p52) and is equal to

D f stat~hc!52kBT ln@coth~«kink/2kBT!#/@S1~11 f 1!#.
~37!

This statistical contributionf stat is obviously stabilizing
vicinal surfaces and it varies rapidly with temperature. To
ideas let us take the~100!-~311! domain@which corresponds
to vicinal surfaces with~100! terraces# and a kink energy
typically of 0.12 eV/atom for copper. One finds th
D f stat(hc) is of the order of 1029 eV/Å2 at 100 K,
1026 eV/Å2 at 200 K, 0.05 meV/Å2 at 300 K, and
0.5 meV/Å2 at 500 K. Therefore at room temperature th
statistical energetic contribution will be at most a few hu
dredths of meV for Cu and completely negligible in the ca
of elements with higher kink energies like rhodium and p
ladium. In any casef stat has a negligible influence on th
stability of vicinal surfaces.

The excess vibrational free energy has two contributio
the internal energy which dominates at low temperature
vanishes at high temperature and the entropy part which
the inverse behavior. This excess free energy has been e
ated in recent publications using a simple model of the E
stein type,33,35,36 but in view of the rather delicate energ
balance involved here it is more advisable to use a comp
description of the phonon spectrum and include both the
ternal energy and the entropy part. Therefore we have ca
lated the vibrational free energy from precise phonon spe
based on the empirical potentialP2 which is known to re-
produce very accurately the experimental data for the vib
tion spectra of bulk Cu and its low- and high-inde
surfaces.12 Contrary to the statistical term the vibrational e
ergy is obviously not zero on the flat surface and there is
important cancellation when calculating the difference of
ergy giving D f v ib . On Figs. 9 and 10 we have represent
D f v ib for the two domains (100)-(111) and (11̄1)-(111) at
different temperatures from 0 to 500 K.
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The main conclusion is that the order of magnitude
D f v ib is approximately some tenths of meV/Å2 and there-
fore in most cases it will have a negligible role on the s
bility. However, D f stat may become of the same order
magnitude asD f v ib for temperatures above 300 K. On
should also note that the shape ofD f v ib is very different for
the two domains: it is positive for the (100)-(111) doma
and consequently tends to destabilize vicinal surfaces,
oscillatory with some positive and negative parts for t
(1̄11)-(111) domain.

Finally, let us note that our results concerning the infl
ence of the vibrational energy are in contradiction with tho
of Frenken and Stoltze,33 since these authors claimed th
phonons stabilize vicinal surfaces in the~100!-~111! domain.
In their work they evaluated the role of phonons using
simplified Einstein model and neglected the internal ene
which is quite questionable at low temperatures. Moreov
in their evaluation ofD f v ib they used a formula similar to
Eq. ~23! but in which they only included the difference be

FIG. 9. D f v ib(h) for Cu in the~100!-~111! domain from poten-
tial P2 as a function of temperature.

FIG. 10. D f v ib(h) for Cu in the (1̄11)-(111) domain from po-
tential P2 as a function of temperature.
0-11



e
-
tw

sa
o
rg

u
th

an

if
t

v
l t
h
is

al
d
nt
d

fro
d

te
re

e

t
nt
n

nc
to
n
f
f
a

te
b

th
in
g

r
k-
m

os
le
1

tion,
-
ake
ne

if

he
al-

in
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tween the outer edge and a~111! surface atom, i.e.,E(7, 3)
2E(9, 3). Our analytical calculations@Eq. ~23!# show that at
least another term should imperatively be consider
namely E(10, 5)2E(8, 5) arising from the difference be
tween the inner edge and a (100) surface atom. These
terms have opposite signs and are expected to be of the
order of magnitude. This explains why not only the order
magnitude of Frenken and Stoltze estimation is too la
~meV instead of tenths of meV! but even the sign is wrong
since we find that phonons tend to destabilize vicinal s
faces, at least for Cu, in the (100)-(111) domain whereas
influence of phonons can be stabilizing in some regions
destabilizing in some others in the (11̄1)-(111) domain.

VI. CONCLUSION

In this paper we have investigated the implications of d
ferent approaches for calculating the surface energies on
stability of vicinal surfaces with respect to faceting. We ha
shown that, although effective pair potentials are usefu
estimate step energies,10,14 this method is not precise enoug
to determine the stability of vicinal surfaces. First, in th
model, the stability would be governed by pair potenti
beyond first-nearest neighbors, at least. As emphasize
Ref. 10 the sign of these terms is not known with certai
since it depends on the surface energy data base use
determine them. When surface energies are calculated
semi-empirical potentials, we have seen that the results
pend on the cutoff distance chosen for the interatomic in
actions and of the importance of farther neighbors compa
with first-nearest neighbors. Moreover, the shape ofD f (h)
remains schematic, even when atomic relaxation is includ
In addition, pair potentials, as well asN-body semi-empirical
ones, have a common drawback: they only depend on
interatomic distances and not on the angular arrangeme
atoms. This latter effect is small in metals. However, it ca
not be neglected in view of the delicate energy bala
which governs the stability of vicinal surfaces with respect
faceting. On the contrary, electronic structure calculatio
take this effect into account and open up the possibility o
large variety of behaviors, including a possible faceting o
vicinal surface into two different vicinal surfaces. Such
phenomenon is a consequence of electronic oscillatory s
step interactions. Finally temperature effects are found to
most often negligible, at least up to room temperature.

APPENDIX A: FACETING CONDITION AND HERRING
GEOMETRICAL CONSTRUCTION

In this appendix we show the equivalence between
geometrical construction of Herring and the simpler facet
criterion derived in Sec. II. Let us recall the Herrin
construction.13 One starts from theg plot in polar coordi-
nates. An example of ag plot, obtained for copper from ou
tight-binding calculations, is given in Fig. 11. Its most stri
ing feature is the existence of well defined cusps in so
directions, namely (111), (100), and (011). The more cl
packed the surface, the deeper the cusp. This appears c
in Fig. 11 where the direction corresponding to the (11
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surface has a more pronounced cusp than the (100) direc
while that of the (011) direction is hardly visible. We con
sider a schematic case with a strong anisotropy, for the s
of clarity, as shown in Fig. 12. First we construct the pla
p, perpendicular to the radius vector of theg plot and tan-
gent to the Wulff equilibrium shape at pointI. Let us callH
the projection of the center of theg plot O, on p, and set
g f5OH. When the radius vector scans all theg plot the
point H scans a surface that we will callG. From Herring
criterion, the surface is unstable with respect to faceting
the surfaceG is inside theg plot.

We will now recast this geometrical construction into t
more straightforward one derived in Sec. II. Let us first c
culateg f(u):

g f~u!5OH5OI cos~u'2u! ~A1!

with OI5g(n1)/cos(u'), therefore we have

g f~u!5
cos~u'2u!

cos~u'!
g~n1!. ~A2!

FIG. 11. g plot of Cu for the orientations studied in the ma
text.

FIG. 12. The Herring construction.
0-12
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As seen from Sec. II, the relevant function isg(u)/cos(u).
Let us then calculate

g f~u!

cos~u!
5g~n1!1@g~n1!tanu'#tanu. ~A3!

Actually OI has two equivalent expressions whether the o
gin of the angles are the directionsn1 or n2, one gets

OI5
g~n1!

cos~u'!
5

g~n2!

cos~u22u'!
~A4!

which allows one to derive an expression for tanu' :

tanu'5
g~n2!

g~n1!sinu2
2

1

tanu2
. ~A5!

Substituting Eq.~A5! for tanu' into Eq. ~A3! yields

g f~u!

cos~u!
5S 12

tanu

tanu2
Dg~n1!1S tanu

tanu2
D g~n2!

cosu2
. ~A6!

Comparing Eq.~A6! with the inequality~4! the faceting con-
dition can be written

g~u!.g f~u!. ~A7!

Thus the faceting condition given by Herring construction
equivalent to the inequality~4!.

APPENDIX B:

Let us consider the stepped surface of orientationn shown
in Fig. 13. The planes of normaln1 are taken as the origin o

FIG. 13. Cut of a vicinal surface with terraces of orientationsn1

whenp252 andn2 whenp152.
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angles, i.e.,u5(n1 ,n), u25(n1 ,n2). The spacing of atomic
rows parallel to the step edges is denoted asl 1 ( l 2) in the
face of normaln1 (n2), d1 is the interplanar spacing alon
direction n1, anda the interatomic spacing along the row
p1 andp2 denote the numbers of atomic rows in each fa
including the inner edge. All vicinal surfaces with mon
atomic steps encountered in the domain@0,u2# are of this
type with

`.p1>2; p252 when 0,u<uc ,

p152; 2<p2,` when uc,u<u2 .

We want to prove Eq.~5! starting from@see Eq.~4!#

D f ~n!5
g~n!

cosu
2S 12

tanu

tanu2
Dg~n1!2S tanu

tanu2
D g~n2!

cosu2
,

~B1!

whereg(n) is the surface energy per unit area of a surface
orientationn. Let us denote asA, A1, andA2 the areas of the
unit cells of the planes with normalsn, n1, andn2, respec-
tively, andA0(n)5A cosu the projection ofA on the plane
of orientationn1. The following relations hold:

A15al1 , ~B2!

A25al25
ad1

sinu2
, ~B3!

tanu5
~p221!d1tanu2

~p221!d11~p121!l 1tanu2
. ~B4!

Introducing the surface energies per surface atomEs(n) into
Eq. ~B1! gives

D f ~n!5
Es~n!

Acosu
2S 12

tanu

tanu2
DES~n1!

A1
2S tanu

tanu2
D ES~n2!

A2cosu2
.

~B5!

Substituting Eqs.~B2!, ~B3!, and~B4! for A1 , A2, and tanu
into Eq. ~B5! yields

D f ~n!5@ES~n!2~p121!ES~n1!2~p221!ES~n2!#/A0~n!.
~B6!
B
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