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Transmission, S-matrix, and partial densities of states for ac transport
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We investigate the principal properties of ac transport through a resonant cavity with multileads. In terms of
Green’s function and the coupling strengths of the system, a set of general expressions for the partial densities
of states(PDOS can be derived in an unambiguous way. In particular we derive the PDOS with a reflection
property. All the PDOS’s are in an explicit and compact form. Based upon these PDOS’s, the ac conductance
can be calculated to a first-order frequency-dependent term. As an extension, we introduce the second-order
nonlinear PDOS; then the ac conductance can be generalized to include the second-order contribution. As an
example, we apply these formulas to evaluate the linear emittance and the second-order nonlinear emittance in
a simplified structure. Some interesting results are obtained.
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. INTRODUCTION states” It can be shown that the injectivity is related to the
dwell time of carriers in a conductét=2’ In low-frequency

With the advance of nanofabrications and quantum electransport theory, the PDOS can be expressed naturally by
tronics it is desired to understand the properties of smal$cattering matrices. Electrical quantities such as the capaci-
electrical systems. For instance, metal-oxide-semiconductdgnce and the nonlinear conductance are strongly dependent
transistors with channel lengths as small as 10 nm are no®n the PDOS. _ _
being actively studied theoretically and experimentally, and !N this paper we are concerned with several issues for a
recently molecular devices have been demonstrated close fBultiterminal conductor, such as the transmission probabil-
realistic functiond~® These have stimulated further researchiy: the DOS, the injectivity and emissivity, the transmission

into quantum logical circuits in developing quantum comput-2nd reflection PDOS, and the dynamical admittance. We

ing. It is clear that a quantum description of the properties 01shall derive general expressions for these quantities in terms

such systems is demanded. Of particular interest are th%]c the Green's func_t|on and the_ coupling strengths of a sys-
roperties of ballistic electron transport through a quantun%[e.m’ and.then obtain an analytlca] expression for the ac.ad-
P . ) ._mittance in the neutral approximation. In fact for frequencies
dot with leads attached to it. In order for quantum electric

. . . . which are not too large the mesoscopic conductor of interest
devices to opgrate eﬁectlvgly in the presence of logical Jatehare is a locally screened state at all times.
based dynamics, the devices must be subject to & SOUrCe- the paper is organized as follows. The model is intro-
drain bias or an alternating current, and work in nonequilib-q,ced in Sec. II. Then, in Sec. il the analytical work is done
rium states™ to derive various densities of states in a precise way. An

Following Butiker and co-workers pioneering work, low- jllystrating example is given in Sec. IV, and finally there is a
frequency, gauge invariant, and current conservation theoriasrief summary.
were established in a scattering framewdtk® In this
theory certain quantities appear naturally in the response for-
mulas. The most important are the partial densities of states
(PDOS and the local partial densities of states We would like to investigate the structure in which a
(LPDOS.**~Y The characters of electron motion in mesos-sample is so small that the phase coherence length exceeds
copic systems are dominated by these quantities which dell of its dimensions. The sample is connected to several
termine the frequency-dependent conductance in the presentacts which are all in the thermal equilibrium state, and
ence of slowly oscillating potentials applied to contacts of ahas a large number of electrons. This means that taking out
nanostructure. As one knows that the density of stdd€3S) or adding in a small number of electrons does not affect the
is used to describe the equilibrium properties of a physicaproperties of reservoirs. We assume that the system consists
system, in order to treat the nonequilibrium problems theof a cavity, such as quantum dot, quantum well, or magnetic
PDOS is useful by introducing injectivity and resonator, and several leads through which carriers enter in
emissivity?181°The former describes carriers injected from and exit from the cavitf® 32 The whole device is initially
a reservoir regardless of which reservoir carriers exit, and thdivided into two different parts. The first part contains an
latter describes how these carriers emit to a reservoir regardsolated conductor or a small island, while the second part
less from which reservoir these carriers enter. In fact, thencludes ideal leadevaveguideswhich couple the device to
nondiagonal elements of the PDOS are important in describthe measuring apparatus. The electrgos carriers move
ing fluctuations and correlations of carriers in transportfreely and independently inside these ideal leads. The device

Il. MODEL AND FORMULATION
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To describe the scattering of electrons in the whole system
we have to couple the resonator and the leads by defining the
Hamiltonian+,

FIG. 1. The sketch of a resonant structuggS, andy represent . . . i
the probes connecting with reservoits,, I'g, andI", are the Wheretxi am 1S the coupling strength between a state in chan

coupling parameters for each contact. nelmin lead @ and statgx;) in the resonator.

Combination of the isolated Hamiltonians and the cou-
is controlled by external fields by means of a direct couplingP!ing Hamiltonian forms the total Hamiltonian of our system
to current sources or voltage sources. which |35 spanned by the complete $gtm),|x;)} in Hilbert

In this system, only resonant transmission makes sense, space’
for a simple statement the structure will be referred to as a

N N, Ne
resonator, which is schematically shown in Fig. 1. It is bal- _

o Y X . H= m){a m|Eg+ Xi ) (X | Hy.x.
listic for carriers in this open mesoscopic system. The inelas- 0;1 mzzl o) m/E i%:l X1 P

tic scatterings take place only in the reservoirs. If thereNare N
reservoirs connected to the resonatobigleal leads, for the E
ath ideal lead there ar®l, open channels. We consider a +
model Hamiltonian to describe such a resonant structure.

The first part of the Hamiltonian describing the free mo-In the following we will simplify the second term on the

tion of electrons in the isolated leads is right-hand side of Eq(4) by conserving only the diagonal
elements. It is found tha?t[xixi includes the resonant energy

il |xi)J dE(a m;Elty amt+H.C. (4

N Ny level E,, the local electrostatic potential and the self-energy
Ho=>, >, f dE|am;E)(am;E|E, due to the coupling to leads,
a=1 m=1
Hxixi: E,+eU(x)+A4, (5

where|am;E) are the channel wave functions, and satisfy
the normalization(am;E|Bn;E")=6,36md(E—E’). At  where the local electrostatic potentld(x;) is produced by
zero temperature the energy of free electrons in the leads harge pileup or depletion in scattering processes or con-
Fermi energy, i.e.E=Er=E,+p?%2m*. Here E,, is the trolled by external gates, anil is the energy shift due to the
transverse energy of tath channel, andn* is the effective  coupling.
mass of an electron. Then the above isolated lead Hamil- According to Bitiker and co-workers multiprobe-
tonian can be rewritten by scattering theor}?~*? external gates are not particular. They
are also viewed as leads and can be treated the sajneras
N N, states. The electrostatic potential produced by a charge dis-
Ho= 2 E |am){am|Eg, (1)  tribution is determined by the Poisson equation. One should
a=1m=1 note that the approach used here is restricted to the tempera-
tureskT<<A,, whereA, is the single-particle level spacing
where(am|ﬁn); Sap0mn- o o of the resonator. In the mesoscopic transport regime we want
We use the tight-binding approximation for the interior of {4 know the physical properties of the system from the scat-
the resonator. The resonator is discretizedN\aysites, and  tering states in leads. Using the formal scattering theory and
each site has a wave functigr;). In generalN; is much  the | ippmann-Schwinger equation, one can relate scattering
larger than the number of open channels for any isolategyayve functions to the structure of the system. The scattering
lead, i.e.,Nc>N,. Then the resonator Hamiltonian can be yatrix S.4(E) of the HamiltonianH can be written using

expressed by the standard techniqtre’
y . _ .
c S=1-27 8(E—Hy)T, (6)
Ho= 2 D)l Mo, v

i X whereT is the transition operator which relates incident and

_ S outgoing wave functions in the leads. In our model e
wherex; is in the interior of the resonator. The bound states, - trix can be reduced 35333

|x;) satisfy the condition (xi|xj>=5xixj, with

=1,2,...N;. The scattering stategrm) and the bound S=1-27iWTGW, (7)
stategx;) form the complete set of a basis in Hilbert space, .
ie., whereG is the Green’s function,
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dn(a,r)

G=(E—Hc+imWWH1, (8) of
e[ 0d - )|

andW is a coupling matrix:

N N, N¢ +d2n(a,l’,ﬂ) dzn(a,r,ﬂ)
W:z E 2 |Xi><am|txi,am- (9) dEZ By dE2 uy(r)
a=1m=1 x=1
Then the components of tiematrix are _dZn((Mﬁ,) d?n(a,r)

Ug(r +— Ug(r)u,(r dr,
" dE? 'B( ) dE? B( (1)
Sam,,Bn (a’III|S|,8II>

= 8,50mn— 27 m|WTGW| B n)

(13

whereug,(r) is the second-order characteristic potential and
d?n(a,r,B)/dE? is the second-order nonlinear LPDOS.

= 80 pOmn— 27 X_Ex_ Wi GOXG X)W g
o w0 Ill. PARTIAL DENSITIES OF STATES
. _ _ . In this section we will study the LPDOS using the Green’s
We are interested in the properties of mesoscopic systemfginction and the coupling matrix. For simplicity, here we

which are influenced by alternating external voltages. Acconsider the quasi-one-dimensional problem; then the
cording to Butiker’s low-frequency and gauge invariant | ppQg jdt:12.15-17.28

transport theory, the linear frequency-dependent conductance

of the system is expressed $y"° dn(a,x,B) 1 Ne Ng
o e DAt
galg(a)):gaﬁ(o)_|we Eaﬁ (11) m=1n=1
The coefficient of the frequency term, called emittance, is 0Sam,gnl E,U(X)] 532m,,;n[E,U(X)]
determined in the Thomas-Fermi approximation by SU(x) B SU(X)

dn(a,r,B) dn(a,r)
e Tl xsam,gn[E,uu)]]. 14

- [ o[- 2] [
af ™ - E r
) o ) ) . The global PDOS is just the integral of the LPDOS, i.e.,
whereug(r) is the characteristic potential which gives the qN(, 8)/dE= fdx[dn(a,x,8)/dE]. For the following

local potential distribution profile inside the system. gerjvation we define a potential operator in the Hartree ap-
dn(a,r,B)/dE is the LPDOS, andin(«,r)/dE is the emis-  yroximation as

sivity which denotes the character of the emission at point

to probe a. From the above formulas one knows that the .

LPDOS and the internal potential determine the properties of U=2 X' }{x'|U(x"), (19
the imaginary part of the ac conductance. x!

The theory provided above describes the response of Cugherex’ is in the interior of the cavity, so is the potential

rent at contactr to the variation of electrochemical potential y(x'). Taking a variational derivative for E¢L5), this gives
at contactB.'®? Due to the oscillating internal potential an

electron incident with energl may gain or lose modulation 50

energyf o during reflection at the sample or during trans- ———=|X){X|.
mission through the sample. Equatioil) is obtained by dU(x)
expanding theSmatrix and Fermi distribution function in According to the definition of functional derivatives,

powers offw/E, whereE is around the Fermi energy. Thus ss/5U (x) = S/ oM, M,/ 5U (x), from Egs.(2), (5), (8), and
the perturbation is reasonable for the low-frequency behavior1 ) one has

if the electrochemical potential at contaetis weak enough

for transitions to neighboring levelE+%w and E-fw, 8Sam.pn . .

while electrons passing through the structure affected by a SUX) —ZWIXEX_ tam,xi(xi|G|X)(X|G|Xj)txj B
slowly oscillating potential. 1

(16)

Furthermore, due to the applications of the second-order (a7
nonlinear ac admittance, one needs to know the second-ordand similarly
nonlinear LPDOS as well. For example, in measurements of
the carrier density the usual methods are to detect the ratio of ~ 6S! Bn _
the linear and the second-order nonlinear capaciteficés. T(’X)=27Tl > o X1 G IXYXIG X))t am-
In mesoscopic measurements the charge response at one con- X (19)
tact to the voltage at an other contact is determined by the
emittance. The second-order emittanc€ is Substituting them into Eq.14), we have the LPDOS
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FIG. 2. The coupling between leadand two sites andx; at FIG. 3. The propagation of waves in a cavity. A carrier is inci-
the boundaryx; andx; are inside the cavity. The coupling strength dent from contaci3 and hops to sites; by the coupling strength
matrix is represented by, (x; ,x;). Itis the same for the other leads T, The carrier moves coherently through all paths to xjtend

B.v, etc. then enters lead.

dan(e,x,8) 1 Na

—_— == 50{ E E ‘)’am(XZIXI)G(XlIX)G(XIXZ) Sam Bﬂ: —2mi 2 th X‘<Xi|G|X'>tX- pn -
dE 2 Pz X1 .Xp ' X Xi X 172X

!
N

a

Ng It relates the incident amplitude to the outgoing amplitude of
+ami > X > 2 ¥en(XaX3)G(x3,x)  awave function. Both incident and outgoing waves suffer the
M=L =1 X3 X Xi X, scattering at the boundaries and transport coherently from
sitex; to x; . The propagatoG(x;,X;) goes all the path con-
X Yam(Xi X)) G(Xj,X)G(X,X4) —H.C.|, (19 necting sitex; andx;, that is,G(X; ,X;) =2 ,Ax(X; ,X;), andp
includes all Feynman paths starting from siteand ending

where we have defined the parameter at sitex; . We can see this process in F_ig. _3. _
In the following we need the transmission and reflection
Vam(Xi X)) =ty amt? probabilities of the system. By the definition of the transmis-
a 1 i

am,Xx;

sion matrix fora# B, we have

and we assume that,(x; ,X;) is real. We can further define
two parameters

ya(xi vxj):E YQm(Xi vxj)!‘y(xi vxj)ZE ’ygz(xi 1Xj) No Ng
i ’ :47szzzl nzl xzx x2><- ')’,Bn(xi 'Xj)GT(Xi ’Xj)

for later use. !

For writing Eq.(19) in a more compact form, we intro- X Y aml(X1,%2) G(X2,X;) .
duce the coupling operators for a single channel,
It is the summation of the diagonal elements of the transmis-
sion matrix. The transmission probability from cont#tto

Famzxle X0 Yam(Xi X)) (X, (200 contacta can be written in a simplified forffi“®47
i
and for a lead: T,p=4m°Tr(I' yG'T ,G)=47°Tr(I' ,GI'xG"). (23
. No The physical meaning is clear that for the transmission
r,= E | . (21)  from contactp to contactw is determined by the propagator
m=1

and the coupling strengths at the boundaries. In terms of the
ransmission and the total density of states we can express

The coupling points are taken at the boundaries of the cavit he transmission LPDOS,

as shown in Fig. 2. Now Eq19) become&2°

dn(a,x,8) 1 dn(ax.p) & < . '
e 2 6upl(GT G (G'T G 1)] TaE T & &, & DexexaCle )
+7i[ (G 4G ,G)x— (G'T ,GI 4G 51 X Yam(Xi X)) G(Xj ,X)G(X,X4) —H.C]
(220 in a more explicit form. By noting the relatiéfr>°
To see the mean_ing of a transmission amplitu_de matrix in G(Xj X)) G (X, X ) =G(X,, ,X,)G(X] ,X/) (24)
our system, we write a component of tisematrix for «
# B explicitly, i.e., for wave propagation in the patf —x,—Xx;, we have
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dn(a,x,B)

g~ LG~ G (xx)]T(G'T ,GIp).
Because the local density of states is defined by

dn(x)
dE

dE. 2 dE

(29

Integrating both side ovex gives the global transmission

PDOS as

dN(a,8) T,z dN
dE 2 dE

Now we can see what is the local injectiviiy(x, 8)/dE
by summing the LPDOS over the index i.e.,

dn(x,f) < dn(a,x,B)
dE —2 dE

1 T T
= E[(GFBG)XX+(G FBG )xxl

Ng
i 2 2 2 [Ypn(XaXa) Gl (g, %)

n=1 X3,X4 Xj.X]

Xy (Xi X)) G(Xj,X)G(X,X4) —H.C.]. (26)

To simplify this expression we need the total density of states

PHYSICAL REVIEW B 66, 045321 (2002

then, forx’ =x, the local density of states is

dn
d(EX) = > GI(X,x1) ¥(X1,%2) G(X2,X).

Xq1,X2

This is a well-known resuft* Substituting Eq(28) into (26),
and combining Eq9420) and(21), the local injectivity can be
written in a compact form:

dn((jXE,B) :X.EX. G(X,%)) 750X X)) GT (X , ) = (GT 4G 1) 4.
h (30

Similarly, the emissivity can be obtained by summing the
LPDOS over the another indg& In the absence of magnetic
field it is equal to the injectivity®

Furthermore, the global injectivity in the operator form is

on‘\l(a)_z dN(a,B)
dE 4 dE
1 n o apn o2
=§(GFQG+GTI‘QGT)

+mi(GTG'T,G-G'T ,GIG.

Inserting the relation G'TG=GIG'=—1/27i (G- G
into the above expression, we find

=G'T 6. (31)

represented by the Green's function and the couplings yajue is the sum of the diagonal elements of the local

strengths. Using the unitary property of tBamatrix

U _
; Svasyﬁ - 5aﬁ’ !

we have

—2mi > W (G—GNHWj,
m

+4m2Y > WL G, ,GW;z,=0 (27

vy mn
for a# B. Combining with Egs(9) and(20), Eq. (27) gives
G(XJ vxl)_GT(XJ vxi)

=—2mi >, G'(X}, X)) ¥(X1,X2) G(X2,X)).

X1,Xp
(28

If we define the nonlocal density of states

dn(x,x") 1 , t o 1 /
T__ﬁ[G(X’X )—GT(x,x )]——;Im G(x,x"),

(29

PDOS matrix, i.e.,

an(x,a)
dE

and for the continuous
= fdx dn(x,a)/dE].
Finally the total DOS is the quantity by summing over the

index a as

spectrum dN(«)/dE

2>

d

dN P
d(Ea)=2 & 6=6T6, (32

o

Ezg

wherel'=% ,I",,. Although Eq.(32) can also be obtained by
other method” here we show that th&-matrix is an effec-
tive approach to give the correct result.

Now we shall derive the expressidm(«,X,a)/dE. From
Eq. (22), we find

045321-5



XUEAN ZHAO, GUO-JUN JIN, QI-NIAN ZHOU, AND YOU-QUAN LI

dn(a,x,a) 1 T T
g~ LGBt (GGl
+mi[(GI' oG 4G)yx— (G'T,GT' .G 1) -
(33

To simplify this expression, we first consider the reflection
probability of ath lead in terms of th&-matrix:

Nl!
RaaZSZaSaaz 2 1 |Sam,an|2'

m,n=

By using Egs(9), (10), and(21), we can write this as
Ryo=N,— 2mi[Tr(T ,G)—Tr(T ,G")]
+47%T(T ,G'T,G), (34)

whereN,, is the number of modes in lead. On the other
hand, after some algebra from E@6), we can prove the
relation

(GI',G)yx+(G'T,G ")y
__dn(x,a) L,dn(x)_[ - dN(a)
2= 4" qg "|lage | D

Substituting Eqs(34) and (35) into Eq. (33), the final result
is

dn(a,x,a)_l
dE 2

dn(x)
dE

aa

an(x,a)
dE -

Furthermore, the global reflection PDOS operator is

dN(a,a) 1 \ dN  dN(a)
de 2 (ReaNoJGE*+ —4E

(36)

As stated in Sec. |, it is useful to know the second-order
nonlinear LPDOS or the global PDOS. We can derive the
second-order nonlinear PDOS in a global operator form. The

local PDOS is easily obtained by inserting local projection
operator. The result for the transmission PDOS is

d’N(a,B) d?N
—— lapT 5o (37)
dE dE
and that for the reflection PDOS is
d’N(a,a) RN )dZN . d?N(a) 39
dE? Y dE2 dE?

where d?N/dE? and d®N(«)/dE? represent the energy de-

rivatives of the total density of states and partial density of

states, respectively. In our system they are

T (G+GNHGIG™,

dE?

PHYSICAL REVIEW B 66, 045321 (2002

d2N( @)

T =T (G+GNHGT ,GM.

(39

IV. AN APPLICATION TO A QUANTUM WELL
WITH TWO LEADS

As an illustrating example, we consider a simplified case
in which the system consists of a quantum well attached by
two single-channel leadd.The quantum well corresponds to
a double-barrier structure with a resonant endtgy We can
write the Green’s function a$s3(E)=[(E—E,—eU—-A)
+i7I']~ 1, whereU is the electrostatic potential away from
the non-Coulomb interaction state in the well. The coupling
between the left lead and the welll§, and that is for the
right lead and the well i§",. The total coupling strength
=I",+TI', determines the energy width of particles deviating
from the resonant levet, . To simplify the analytical treat-
ment we takd™ to be a number by making an average over
all sites. Thus all the quantities in this example are numbers
rather than the matrices. Equatiof@l) and(32) can be ex-
pressed explicitly by

dN(a) r,
—=G'T _G=
dE (E—E,—eU—A)2+ 7212
and
AN _ i r
dE (E—E,—eU—A)%+ 7212’

In the neutral approximation the characteristic potential is
_dN(a)/dE T,
YemTANIdE T T

Substituting these expressions into Eg6) and takingR;;
=R,,=R, M;=M,=1 andT,=T,,=T, we have

dN(L,D) RdAN  1[dN(1) dN(2)
dE 2dE 2| 7dE ~ dE |
dN(2,2 RdN 1[dN(2) dN(1)
dE _2dE 2| 7dE ~ dE |

The emittances now can all be determined. In particular at
zero temperature they are

CRAN T,-TydN(L)  1dN(2)
Eu=2 4" "2r dE 2 dE °
c CRdN T;-T,dN2)  1dN(1)
254t 2r dE 2 dE °

TdN T, dN(1)

TdN T, dN(2)

(40

It is easy to confirm thaE,;=E,,= —E;,=—E,;. In this
example we can writ&€; or E1, in more explicit forms. If
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(E-E,-eU-A)/aT

FIG. 4. The imaginary part of the dynamical conductaBegvs

the incident energy. The solid line is for the coupling ratio (E-E
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FIG. 5. The second-order nonlinear emittarieg, vs energy
—eU—A)/#«I'. The inset is the second-order characteristic

I',T,/T3= 72, while the dash-dotted line and the dashed line arePCtential vs the energy.

for I'yI",/T'3=72/2 andl";I", /T"®= 7?/10, respectively.

the structure is symmetric, i.el;;=T,=T"/2, substituting
dN(1)/dE into Eq. (40) we find

£ T T,0, dN_1T I:sz
2= 72 JaE "2 T RGE
and
E L R-T dn
ll_Z( - )d_E

It is clearly shown that in the resonant cdsg is negative
and the crossover from negative to positive isRatT. In
generall';#I',, and Eq.(40) gives

Py 1-x
RS (14x3)2
where

x=(E—E,—eU—A)/aT.

Figure 4 showsE,, vs x for different ratios ofl",I",/T"3.

For the second-order emittance in the neutral approxima-

tion, the expression is

Eaﬁyzbaﬁ’y—DauBy’ (41)
where
- dN(ap) d*N(a, )
aBy ™ dE2 By~ dE2 u,
d°N(a,y) d’N(a)
- = Ug = ugu, (42
and

1
(dN/dE)®

d?N(B) [ dN\?
) By

herT de? |dE

dN(B) d?N(y) dN  dN(B) d?N dN(7y)
dE g2 dE ' dE gg2 dE

(43
The second-order DOS and PDOS here can be obtained as

d’N 2 1 d°N(a) 2T, 1

dE2 732 (1+x2)2' dE? I3 (1+x2)2'
(44)
Thus, inserting Eq(44) into Eq. (43), one has
2, x
Ujq=———=% ) 45
1 al® 1+x? 49
In the same way we obtain the quantities
d?N(1,1) 2r 1 AT
(1Y _ 2r, LA .
dE? w3 (1+x%)? '(1+x?)
and
~ 21T, X[ (x2—3)',+4I']
11= (47)

w3

Substituting Eqs(45), (46), (47), and(31) into Eq.(41), we
have the second-order nonlinear emittance

(1+x3)3

2r,I, x(3—x3)
Elll_ 71_31_‘5 ( 1 2)(1+X2)3.
This result shows that for the spatially symmetric structure
E;1;=0. For the nonsymmetric structure Fig. 5 sholasg ;
vs x. The second-order charge response at the contact 1 to the
voltage variation at itself changes sign across the resonant
energyE, . From Eq.(45) one can see that the second-order
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characteristic potential is not constant vs the incident energypplications of these formulas one can first apply a large

while the linear characteristic potential is constant. constant bias to reach the working point and then add a
slowly oscillating voltage around the working point. This is
V. SUMMARY just a typical method in classical circuits. A self-consistent

i i . calculation is needed for the alternating potential, and we

So far we have systematically investigated the ac transrequire the frequencies to be far smaller than the typical side-
port of a small quantum structure composed of a resonarfang spacing\E. For example, in nanostructures composed
cavity with several leads. A model Hamiltonian is established,s typical materials such as GaAs, the cutoff frequency can
for this. Based on Biiker's and co-workers’ pioneering pe as large as 100GHz.
work, we have dealt with a low-frequency conductance \ye have applied the linear and nonlinear PDOS expres-
which is determined by a set of PDOS's. In terms of thegjgns to treat an illustrating example of ac coherent transport.
Green’s function and coupling parameters of the system, Weoy g quantum well with two single-channel leads and in the
have derived all the important formulas in a transparent wayyetral approximation, the linear and second-order nonlinear
We have also extended the PDOS to the second-order nogmjttances were analytically derived and numerically calcu-
linear case and derived the formulas for calculating thgateq. The linear emittance is the same as the results obtained
second-order nonlinear PDOS in terms of the Green’s funcby Breit-Wigner formula2338The second-order nonlinear
tion and the coupling parameters. This extension is necessaghittance is a new result, to our knowledge. We can see that
and useful for the calculations of low-frequency and weakly;; changes the sign across the resonant level of the cavity

nonlinear ac conductance. The results are in the compact aRgith a very sharp variation. This feature is different from the
explicit form. _ _ linear emittance which is no change at the resonant energy.
_The theoretical results obtained are quite general and aprhys near the resonant level the electric current may de-
plicable for a resonant cavity connecting to an outside circuitrease for an increasing the voltage difference. Such a be-
through ideal leads. The physical meaning is clear: for inayior is precisely the expected nonlinear conduction char-

stance, the transmission PDOS is a part of the total DOS angter, and up to second order in the voltage difference our
is proportional to the transmission probability. The transmisyegyits can provide useful information.

sion probability is related to the incident coupling strength
and the outgoing coupling strength in the coherent propaga-
tion. The reflection PDOS is related to the reflection prob-
ability and the number of modes in an incident lead. This This work was supported by Zhejiang Provincial Natural
predicts that the number of modes in a lead will influence thé=oundation No. 500079, the National Laboratory of Solid
ac transport in mesoscopic regime. The most important quarState Microstructures in Nanjing University No. M001509,
tities in computing second-order nonlinear emittance are théhe Educational Department of Zhejiang Province No.
second-order nonlinear PDOS. G20010059, and SRF for ROCS, SEM. One of the authors

It should be noted that the formulas derived in this work(G.J) acknowledges the support from the State Key Program
is based on weakly applied alternating potentials. In actualor Basic Research of China No. 001CB610602.
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