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Transmission,S-matrix, and partial densities of states for ac transport
through a resonant cavity with multileads
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We investigate the principal properties of ac transport through a resonant cavity with multileads. In terms of
Green’s function and the coupling strengths of the system, a set of general expressions for the partial densities
of states~PDOS! can be derived in an unambiguous way. In particular we derive the PDOS with a reflection
property. All the PDOS’s are in an explicit and compact form. Based upon these PDOS’s, the ac conductance
can be calculated to a first-order frequency-dependent term. As an extension, we introduce the second-order
nonlinear PDOS; then the ac conductance can be generalized to include the second-order contribution. As an
example, we apply these formulas to evaluate the linear emittance and the second-order nonlinear emittance in
a simplified structure. Some interesting results are obtained.
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I. INTRODUCTION

With the advance of nanofabrications and quantum e
tronics it is desired to understand the properties of sm
electrical systems. For instance, metal-oxide-semicondu
transistors with channel lengths as small as 10 nm are
being actively studied theoretically and experimentally, a
recently molecular devices have been demonstrated clos
realistic functions.1–6 These have stimulated further resear
into quantum logical circuits in developing quantum comp
ing. It is clear that a quantum description of the properties
such systems is demanded. Of particular interest are
properties of ballistic electron transport through a quant
dot with leads attached to it. In order for quantum elect
devices to operate effectively in the presence of logical g
based dynamics, the devices must be subject to a sou
drain bias or an alternating current, and work in nonequi
rium states.7–9

Following Büttiker and co-workers pioneering work, low
frequency, gauge invariant, and current conservation theo
were established in a scattering framework.10–13 In this
theory certain quantities appear naturally in the response
mulas. The most important are the partial densities of st
~PDOS! and the local partial densities of stat
~LPDOS!.14–17 The characters of electron motion in meso
copic systems are dominated by these quantities which
termine the frequency-dependent conductance in the p
ence of slowly oscillating potentials applied to contacts o
nanostructure. As one knows that the density of states~DOS!
is used to describe the equilibrium properties of a phys
system, in order to treat the nonequilibrium problems
PDOS is useful by introducing injectivity an
emissivity.11,18,19The former describes carriers injected fro
a reservoir regardless of which reservoir carriers exit, and
latter describes how these carriers emit to a reservoir reg
less from which reservoir these carriers enter. In fact,
nondiagonal elements of the PDOS are important in desc
ing fluctuations and correlations of carriers in transp
0163-1829/2002/66~4!/045321~9!/$20.00 66 0453
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states.20 It can be shown that the injectivity is related to th
dwell time of carriers in a conductor.21–27 In low-frequency
transport theory, the PDOS can be expressed naturally
scattering matrices. Electrical quantities such as the cap
tance and the nonlinear conductance are strongly depen
on the PDOS.

In this paper we are concerned with several issues fo
multiterminal conductor, such as the transmission proba
ity, the DOS, the injectivity and emissivity, the transmissi
and reflection PDOS, and the dynamical admittance.
shall derive general expressions for these quantities in te
of the Green’s function and the coupling strengths of a s
tem, and then obtain an analytical expression for the ac
mittance in the neutral approximation. In fact for frequenc
which are not too large the mesoscopic conductor of inte
here is a locally screened state at all times.

The paper is organized as follows. The model is int
duced in Sec. II. Then, in Sec. III the analytical work is do
to derive various densities of states in a precise way.
illustrating example is given in Sec. IV, and finally there is
brief summary.

II. MODEL AND FORMULATION

We would like to investigate the structure in which
sample is so small that the phase coherence length exc
all of its dimensions. The sample is connected to seve
contacts which are all in the thermal equilibrium state, a
has a large number of electrons. This means that taking
or adding in a small number of electrons does not affect
properties of reservoirs. We assume that the system con
of a cavity, such as quantum dot, quantum well, or magn
resonator, and several leads through which carriers ente
and exit from the cavity.28–32 The whole device is initially
divided into two different parts. The first part contains
isolated conductor or a small island, while the second p
includes ideal leads~waveguides! which couple the device to
the measuring apparatus. The electrons~or carriers! move
freely and independently inside these ideal leads. The de
©2002 The American Physical Society21-1
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is controlled by external fields by means of a direct coupl
to current sources or voltage sources.

In this system, only resonant transmission makes sens
for a simple statement the structure will be referred to a
resonator, which is schematically shown in Fig. 1. It is b
listic for carriers in this open mesoscopic system. The ine
tic scatterings take place only in the reservoirs. If there arN
reservoirs connected to the resonator byN ideal leads, for the
ath ideal lead there areNa open channels. We consider
model Hamiltonian to describe such a resonant structure

The first part of the Hamiltonian describing the free m
tion of electrons in the isolated leads is

H05 (
a51

N

(
m51

Na E dEuam;E&^am;EuE,

where uam;E& are the channel wave functions, and satis
the normalization ^am;Eubn;E8&5dabdmnd(E2E8). At
zero temperature the energy of free electrons in the lead
Fermi energy, i.e.,E5EF5Em1p2/2m* . Here Em is the
transverse energy of themth channel, andm* is the effective
mass of an electron. Then the above isolated lead Ha
tonian can be rewritten by

H05 (
a51

N

(
m51

Na

uam&^amuEF , ~1!

where^amubn&5dabdmn .
We use the tight-binding approximation for the interior

the resonator. The resonator is discretized byNc sites, and
each site has a wave functionuxi&. In generalNc is much
larger than the number of open channels for any isola
lead, i.e.,Nc@Na . Then the resonator Hamiltonian can b
expressed by

Hc5 (
xi ,xj 51

Nc

uxi&^xj uHxixj
, ~2!

wherexi is in the interior of the resonator. The bound sta
uxi& satisfy the condition ^xi uxj&5dxixj

, with i

51,2, . . . ,Nc . The scattering statesuam& and the bound
statesuxi& form the complete set of a basis in Hilbert spac
i.e.,

FIG. 1. The sketch of a resonant structure.a, b, andg represent
the probes connecting with reservoirs.Ga , Gb , and Gg are the
coupling parameters for each contact.
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a51

N

(
m51

Na

uam&^amu1 (
xi51

Nc

uxi&^xi u.

To describe the scattering of electrons in the whole sys
we have to couple the resonator and the leads by defining
HamiltonianHT ,

HT5 (
a51

N

(
m51

Na

(
xi51

Nc

uxi&E dE^am;Eutxi ,am1H.c., ~3!

wheretxi ,am is the coupling strength between a state in ch

nel m in leada and stateuxi& in the resonator.
Combination of the isolated Hamiltonians and the co

pling Hamiltonian forms the total Hamiltonian of our syste
which is spanned by the complete set$uam&,uxi&% in Hilbert
space:33

H5 (
a51

N

(
m51

Na

ua m&^a muEF1 (
xi ,xj 51

Nc

uxi&^xj uHxixj

1 (
a51

N

(
m51

Na

(
xi51

Nc

uxi&E dE^a m;Eutxi ,am1H.c. ~4!

In the following we will simplify the second term on th
right-hand side of Eq.~4! by conserving only the diagona
elements. It is found thatHxixi

includes the resonant energ

level En , the local electrostatic potential and the self-ene
due to the coupling to leads,34

Hxixi
5En1eU~xi !1D, ~5!

where the local electrostatic potentialU(xi) is produced by
charge pileup or depletion in scattering processes or c
trolled by external gates, andD is the energy shift due to the
coupling.

According to Büttiker and co-workers multiprobe
scattering theory,10–12 external gates are not particular. The
are also viewed as leads and can be treated the same asua m&
states. The electrostatic potential produced by a charge
tribution is determined by the Poisson equation. One sho
note that the approach used here is restricted to the temp
tureskT!Dn , whereDn is the single-particle level spacin
of the resonator. In the mesoscopic transport regime we w
to know the physical properties of the system from the sc
tering states in leads. Using the formal scattering theory
the Lippmann-Schwinger equation, one can relate scatte
wave functions to the structure of the system. The scatte
matrix Sab(E) of the HamiltonianH can be written using
the standard technique35–37

Ŝ5122p id~E2H0!T̂, ~6!

whereT̂ is the transition operator which relates incident a
outgoing wave functions in the leads. In our model theS
matrix can be reduced to31,33,35

Ŝ5122p iŴ†ĜŴ, ~7!

whereĜ is the Green’s function,
1-2
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Ĝ5~E2Hc1 ipŴŴ†!21, ~8!

andŴ is a coupling matrix:

Ŵ5 (
a51

N

(
m51

Na

(
xi51

Nc

uxi&^a mutxi ,am . ~9!

Then the components of theS-matrix are

Sam,bn5^a muŜub n&

5dabdmn22p i ^a muŴ†ĜŴub n&

5dabdmn22p i (
xi ,xj

Wam,xi

† G~xi ,xj !Wxj ,bn .

~10!

We are interested in the properties of mesoscopic syst
which are influenced by alternating external voltages. A
cording to Büttiker’s low-frequency and gauge invarian
transport theory, the linear frequency-dependent conducta
of the system is expressed by38,39

gab~v!5gab~0!2 ive2Eab . ~11!

The coefficient of the frequency term, called emittance
determined in the Thomas-Fermi approximation by

Eab5E dES 2
] f

]ED E dr Fdn~a,r ,b!

dE
2

dn~a,r !

dE
ub~r !G ,

~12!

whereub(r ) is the characteristic potential which gives th
local potential distribution profile inside the system
dn(a,r ,b)/dE is the LPDOS, anddn(a,r )/dE is the emis-
sivity which denotes the character of the emission at poinr
to probea. From the above formulas one knows that t
LPDOS and the internal potential determine the propertie
the imaginary part of the ac conductance.

The theory provided above describes the response of
rent at contacta to the variation of electrochemical potenti
at contactb.10,12 Due to the oscillating internal potential a
electron incident with energyE may gain or lose modulation
energy\v during reflection at the sample or during tran
mission through the sample. Equation~11! is obtained by
expanding theS-matrix and Fermi distribution function in
powers of\v/E, whereE is around the Fermi energy. Thu
the perturbation is reasonable for the low-frequency beha
if the electrochemical potential at contacta is weak enough
for transitions to neighboring levelsE1\v and E2\v,
while electrons passing through the structure affected b
slowly oscillating potential.

Furthermore, due to the applications of the second-or
nonlinear ac admittance, one needs to know the second-o
nonlinear LPDOS as well. For example, in measurement
the carrier density the usual methods are to detect the rat
the linear and the second-order nonlinear capacitances.40–45

In mesoscopic measurements the charge response at one
tact to the voltage at an other contact is determined by
emittance. The second-order emittance is43
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Eabg5E dES 2
] f

]ED E F2
dn~a,r !

dE
ubg~r !

1
d2n~a,r ,b!

dE2
dbg2

d2n~a,r ,b!

dE2
ug~r !

2
d2n~a,r ,g!

dE2
ub~r !1

d2n~a,r !

dE2
ub~r !ug~r !Gdr ,

~13!

whereubg(r ) is the second-order characteristic potential a
d2n(a,r ,b)/dE2 is the second-order nonlinear LPDOS.

III. PARTIAL DENSITIES OF STATES

In this section we will study the LPDOS using the Green
function and the coupling matrix. For simplicity, here w
consider the quasi-one-dimensional problem; then
LPDOS is11,12,15–17,28

dn~a,x,b!

dE
52

1

4p i (
m51

Na

(
n51

Nb H Sam,bn
† @E,U~x!#

3
dSam,bn@E,U~x!#

dU~x!
2

dSam,bn
† @E,U~x!#

dU~x!

3Sam,bn@E,U~x!#J . ~14!

The global PDOS is just the integral of the LPDOS, i.
dN(a,b)/dE5*dx@dn(a,x,b)/dE#. For the following
derivation we define a potential operator in the Hartree
proximation as

Û5(
x8

ux8&^x8uU~x8!, ~15!

wherex8 is in the interior of the cavity, so is the potentia
U(x8). Taking a variational derivative for Eq.~15!, this gives

dÛ

dU~x!
5ux&^xu. ~16!

According to the definition of functional derivatives
dS/dU(x)5]S/]HcdHc /dU(x), from Eqs.~2!, ~5!, ~8!, and
~10!, one has

dSam,bn

dU~x!
522p i (

xi ,xj

tam,xi
* ^xi uGux&^xuGuxj&txj ,bn ,

~17!

and similarly

dSam,bn
†

dU~x!
52p i (

xi ,xj

tbn,xi
* ^xi uG†ux&^xuG†uxj&txj ,am .

~18!

Substituting them into Eq.~14!, we have the LPDOS
1-3
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dn~a,x,b!

dE
5

1

2 Fdab (
m51

Na

(
x1 ,x2

gam~x2 ,x1!G~x1 ,x!G~x,x2!

1p i (
m51

Na

(
n51

Nb

(
x3 ,x4

(
xi ,xj

gbn~x4 ,x3!G†~x3 ,xi !

3gam~xi ,xj !G~xj ,x!G~x,x4!2H.c.G , ~19!

where we have defined the parameter

gam~xi ,xj !5txi ,amtam,xj
* ,

and we assume thatgam(xi ,xj ) is real. We can further define
two parameters

ga~xi ,xj !5(
m

gam~xi ,xj !,g~xi ,xj !5(
a

ga~xi ,xj !

for later use.
For writing Eq. ~19! in a more compact form, we intro

duce the coupling operators for a single channel,

Ĝam5 (
xi ,xj

uxi&gam~xi ,xj !^xj u, ~20!

and for a lead:

Ĝa5 (
m51

Na

Ĝam . ~21!

The coupling points are taken at the boundaries of the ca
as shown in Fig. 2. Now Eq.~19! becomes28,29

dn~a,x,b!

dE
5

1

2
dab@~GGaG!xx1~G†GaG†!xx#

1p i @~GGbG†GaG!xx2~G†GaGGbG†!xx#.

~22!

To see the meaning of a transmission amplitude matrix
our system, we write a component of theS-matrix for a
Þb explicitly, i.e.,

FIG. 2. The coupling between leada and two sitesxi andxj at
the boundary.xi andxj are inside the cavity. The coupling streng
matrix is represented byGa(xi ,xj ). It is the same for the other lead
b,g, etc.
04532
y,

n

Sam,bn522p i (
xi ,xj

tam,xi
* ^xi uGuxj&txj ,bn .

It relates the incident amplitude to the outgoing amplitude
a wave function. Both incident and outgoing waves suffer
scattering at the boundaries and transport coherently f
sitexj to xi . The propagatorG(xi ,xj ) goes all the path con
necting sitexj andxi , that is,G(xi ,xj )5(pAp(xi ,xj ), andp
includes all Feynman paths starting from sitexj and ending
at sitexi . We can see this process in Fig. 3.

In the following we need the transmission and reflecti
probabilities of the system. By the definition of the transm
sion matrix foraÞb, we have

Tab5 (
m51

Na

(
n51

Nb

Sam,bn
† Sam,bn

54p2 (
m51

Na

(
n51

Nb

(
x1 ,x2

(
xi ,xj

gbn~xi ,xj !G
†~xi ,xj !

3gam~x1 ,x2!G~x2 ,xi !.

It is the summation of the diagonal elements of the transm
sion matrix. The transmission probability from contactb to
contacta can be written in a simplified form34,46,47

Tab54p2Tr~GbG†GaG!54p2Tr~GaGGbG†!. ~23!

The physical meaning is clear that for the transmiss
from contactb to contacta is determined by the propagato
and the coupling strengths at the boundaries. In terms of
transmission and the total density of states we can exp
the transmission LPDOS,

dn~a,x,b!

dE
5p i (

m51

Na

(
n51

Nb

(
x3 ,x4

(
xi ,xj

@gbn~x4 ,x3!G†~x3 ,xi !

3gam~xi ,xj !G~xj ,x!G~x,x4!2H.c.#

in a more explicit form. By noting the relation48–50

G~xj ,xm!G~xm ,xi8!5G~xm ,xm!G~xj ,xi8! ~24!

for wave propagation in the pathxi8→xm→xj , we have

FIG. 3. The propagation of waves in a cavity. A carrier is inc
dent from contactb and hops to sitexj by the coupling strength
Gb . The carrier moves coherently through all paths to sitexi and
then enters leada.
1-4
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dn~a,x,b!

dE
5p i @G~x,x!2G†~x,x!#Tr~G†GaGGb!.

Because the local density of states is defined by

dn~x!

dE
52

1

2p i
@G~x,x!2G†~x,x!#,

we have

dn~a,x,b!

dE
5

Tab

2

dn~x!

dE
. ~25!

Integrating both side overx gives the global transmissio
PDOS as

dN~a,b!

dE
5

Tab

2

dN

dE
.

Now we can see what is the local injectivitydn(x,b)/dE
by summing the LPDOS over the indexa, i.e.,

dn~x,b!

dE
5(

a

dn~a,x,b!

dE

5
1

2
@~GGbG!xx1~G†GbG†!xx#

1p i (
n51

Nb

(
x3 ,x4

(
xi ,xj

@gbn~x4 ,x3!G†~x3 ,xi !

3g~xi ,xj !G~xj ,x!G~x,x4!2H.c.#. ~26!

To simplify this expression we need the total density of sta
represented by the Green’s function and the coup
strengths. Using the unitary property of theS-matrix

(
g

Sga
† Sgb5dab ,

we have

22p i(
m

Wam
† ~G2G†!Wbm

14p2(
g

(
m,n

Wan
† G†GgmGWbn50 ~27!

for aÞb. Combining with Eqs.~9! and~20!, Eq. ~27! gives

G~xj ,xi !2G†~xj ,xi !

522p i (
x1 ,x2

G†~xj ,x1!g~x1 ,x2!G~x2 ,xi !.

~28!

If we define the nonlocal density of states

dn~x,x8!

dE
52

1

2p i
@G~x,x8!2G†~x,x8!#52

1

p
Im G~x,x8!,

~29!
04532
s
g

then, forx85x, the local density of states is

dn~x!

dE
5 (

x1 ,x2

G†~x,x1!g~x1 ,x2!G~x2 ,x!.

This is a well-known result.34 Substituting Eq.~28! into ~26!,
and combining Eqs.~20! and~21!, the local injectivity can be
written in a compact form:

dn~x,b!

dE
5 (

xi ,xj

G~x,xj !gb~xj ,xi !G
†~xi ,x!5~GGbG†!xx .

~30!

Similarly, the emissivity can be obtained by summing t
LPDOS over the another indexb. In the absence of magneti
field it is equal to the injectivity.11,38

Furthermore, the global injectivity in the operator form

dN̂~a!

dE
5(

b

dN̂~a,b!

dE

5
1

2
~ĜĜaĜ1Ĝ†ĜaĜ†!

1p i ~ĜĜĜ†ĜaĜ2Ĝ†ĜaĜĜĜ†!.

Inserting the relation Ĝ†ĜĜ5ĜĜĜ†521/2p i (Ĝ2Ĝ†)
into the above expression, we find

dN̂~a!

dE
5Ĝ†ĜaĜ. ~31!

Its value is the sum of the diagonal elements of the lo
PDOS matrix, i.e.,

dN~a!

dE
5(

x
^xuĜ†ĜaĜux&

5(
x

~Ĝ†ĜaĜ!xx

5(
x

dn~x,a!

dE
,

and for the continuous spectrum dN(a)/dE
5*dx@dn(x,a)/dE#.

Finally the total DOS is the quantity by summing over t
index a as

dN̂

dE
5(

a

dN̂~a!

dE
5(

a
Ĝ†ĜaĜ5 Ĝ†ĜĜ, ~32!

whereĜ5SaĜa . Although Eq.~32! can also be obtained b
other method,34 here we show that theS-matrix is an effec-
tive approach to give the correct result.

Now we shall derive the expressiondn(a,x,a)/dE. From
Eq. ~22!, we find
1-5
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dn~a,x,a!

dE
5

1

2
@~GGaG!xx1~G†GaG†!xx#

1p i @~GGaG†GaG!xx2~G†GaGGaG†!xx#.

~33!

To simplify this expression, we first consider the reflecti
probability of ath lead in terms of theS-matrix:

Raa5Saa
† Saa5 (

m,n51

Na

uSam,anu2.

By using Eqs.~9!, ~10!, and~21!, we can write this as

Raa5Na22p i @Tr~GaG!2Tr~GaG†!#

14p2Tr~GaG†GaG!, ~34!

whereNa is the number of modes in leada. On the other
hand, after some algebra from Eq.~26!, we can prove the
relation

~GGaG!xx1~G†GaG†!xx

52
dn~x,a!

dE
24p2

dn~x!

dE
TrF Ĝa

dN̂~a!

dE
G . ~35!

Substituting Eqs.~34! and~35! into Eq. ~33!, the final result
is

dn~a,x,a!

dE
5

1

2
~Raa2Na!

dn~x!

dE
1

dn~x,a!

dE
.

Furthermore, the global reflection PDOS operator is

dN̂~a,a!

dE
5

1

2
~Raa2Na!

dN̂

dE
1

dN̂~a!

dE
. ~36!

As stated in Sec. I, it is useful to know the second-or
nonlinear LPDOS or the global PDOS. We can derive
second-order nonlinear PDOS in a global operator form. T
local PDOS is easily obtained by inserting local projecti
operator. The result for the transmission PDOS is

d2N̂~a,b!

dE2
5Tab

d2N̂

dE2
, ~37!

and that for the reflection PDOS is

d2N̂~a,a!

dE2
5~Raa2Na!

d2N̂

dE2
1

d2N̂~a!

dE2
, ~38!

whered2N/dE2 and d2N(a)/dE2 represent the energy de
rivatives of the total density of states and partial density
states, respectively. In our system they are

d2N

dE2
5Tr@~Ĝ1Ĝ†!ĜĜĜ†#,
04532
r
e
e

f

d2N~a!

dE2
5Tr@~Ĝ1Ĝ†!ĜĜaĜ†#. ~39!

IV. AN APPLICATION TO A QUANTUM WELL
WITH TWO LEADS

As an illustrating example, we consider a simplified ca
in which the system consists of a quantum well attached
two single-channel leads.51 The quantum well corresponds t
a double-barrier structure with a resonant energyEr . We can
write the Green’s function asG(E)5@(E2Er2eU2D)
1 ipG#21, whereU is the electrostatic potential away from
the non-Coulomb interaction state in the well. The coupli
between the left lead and the well isG1, and that is for the
right lead and the well isG2. The total coupling strengthG
5G11G2 determines the energy width of particles deviati
from the resonant levelEr . To simplify the analytical treat-
ment we takeG to be a number by making an average ov
all sites. Thus all the quantities in this example are numb
rather than the matrices. Equations~31! and ~32! can be ex-
pressed explicitly by

dN~a!

dE
5G†GaG5

Ga

~E2Er2eU2D!21p2G2

and

dN

dE
5G†GG5

G

~E2Er2eU2D!21p2G2
.

In the neutral approximation the characteristic potential i

ua5
dN~a!/dE

dN/dE
5

Ga

G
.

Substituting these expressions into Eq.~36! and takingR11
5R225R, M15M251 andT125T215T, we have

dN~1,1!

dE
5

R

2

dN

dE
1

1

2 FdN~1!

dE
2

dN~2!

dE G ,
dN~2,2!

dE
5

R

2

dN

dE
1

1

2 FdN~2!

dE
2

dN~1!

dE G .
The emittances now can all be determined. In particula

zero temperature they are

E115
R

2

dN

dE
1

G22G1

2G

dN~1!

dE
2

1

2

dN~2!

dE
,

E225
R

2

dN

dE
1

G12G2

2G

dN~2!

dE
2

1

2

dN~1!

dE
,

E125
T

2

dN

dE
2

G2

G

dN~1!

dE
, E215

T

2

dN

dE
2

G1

G

dN~2!

dE
.

~40!

It is easy to confirm thatE115E2252E1252E21. In this
example we can writeE11 or E12 in more explicit forms. If
1-6
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the structure is symmetric, i.e.,G15G25G/2, substituting
dN(1)/dE into Eq. ~40! we find

E125S T

2
2

G1G2

G2 D dN

dE
5

1

4
~T2R!

dN

dE

and

E115
1

4
~R2T!

dN

dE
.

It is clearly shown that in the resonant caseE11 is negative
and the crossover from negative to positive is atR5T. In
generalG1ÞG2, and Eq.~40! gives

E125
G1G2

p2G3

12x2

~11x2!2
,

where

x5~E2Er2eU2D!/pG.

Figure 4 showsE12 vs x for different ratios ofG1G2 /G3.
For the second-order emittance in the neutral approxi

tion, the expression is

Eabg5D̃abg2Daubg , ~41!

where

D̃abg5
d2N~a,b!

dE2
dbg2

d2N~a,b!

dE2
ug

2
d2N~a,g!

dE2
ub1

d2N~a!

dE2
ubug ~42!

and

FIG. 4. The imaginary part of the dynamical conductanceE12 vs
the incident energy. The solid line is for the coupling ra
G1G2 /G35p2, while the dash-dotted line and the dashed line
for G1G2 /G35p2/2 andG1G2 /G35p2/10, respectively.
04532
a-

ubg5
1

~dN/dE!3 Fd2N~b!

dE2 S dN

dED 2

dbg

22
dN~b!

dE

d2N~g!

dE2

dN

dE
1

dN~b!

dE

d2N

dE2

dN~g!

dE G .

~43!

The second-order DOS and PDOS here can be obtained

d2N

dE2
5

2

p3G2

1

~11x2)2
,

d2N~a!

dE2
5

2Ga

p3G3

1

~11x2)2
.

~44!

Thus, inserting Eq.~44! into Eq. ~43!, one has

u115
2G1G2

pG3

x

11x2
. ~45!

In the same way we obtain the quantities

d2N~1,1!

dE2
5

2G1

p3G3

1

~11x2!2 F12
4G2

G~11x2!
G ~46!

and

D̃1115
2G1G2

p3G5

x@~x223!G214G1#

~11x2!3
. ~47!

Substituting Eqs.~45!, ~46!, ~47!, and~31! into Eq. ~41!, we
have the second-order nonlinear emittance

E1115
2G1G2

p3G5
~G12G2!

x~32x2!

~11x2!3
.

This result shows that for the spatially symmetric structu
E11150. For the nonsymmetric structure Fig. 5 showsE111
vs x. The second-order charge response at the contact 1 t
voltage variation at itself changes sign across the reso
energyEr . From Eq.~45! one can see that the second-ord

e

FIG. 5. The second-order nonlinear emittanceE111 vs energy
(E2Er2eU2D)/pG. The inset is the second-order characteris
potential vs the energy.
1-7
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characteristic potential is not constant vs the incident ene
while the linear characteristic potential is constant.

V. SUMMARY

So far we have systematically investigated the ac tra
port of a small quantum structure composed of a reson
cavity with several leads. A model Hamiltonian is establish
for this. Based on Bu¨ttiker’s and co-workers’ pioneering
work, we have dealt with a low-frequency conductan
which is determined by a set of PDOS’s. In terms of t
Green’s function and coupling parameters of the system,
have derived all the important formulas in a transparent w
We have also extended the PDOS to the second-order
linear case and derived the formulas for calculating
second-order nonlinear PDOS in terms of the Green’s fu
tion and the coupling parameters. This extension is neces
and useful for the calculations of low-frequency and wea
nonlinear ac conductance. The results are in the compact
explicit form.

The theoretical results obtained are quite general and
plicable for a resonant cavity connecting to an outside circ
through ideal leads. The physical meaning is clear: for
stance, the transmission PDOS is a part of the total DOS
is proportional to the transmission probability. The transm
sion probability is related to the incident coupling streng
and the outgoing coupling strength in the coherent propa
tion. The reflection PDOS is related to the reflection pro
ability and the number of modes in an incident lead. T
predicts that the number of modes in a lead will influence
ac transport in mesoscopic regime. The most important qu
tities in computing second-order nonlinear emittance are
second-order nonlinear PDOS.

It should be noted that the formulas derived in this wo
is based on weakly applied alternating potentials. In ac
.

ee
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d
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,

d
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applications of these formulas one can first apply a la
constant bias to reach the working point and then ad
slowly oscillating voltage around the working point. This
just a typical method in classical circuits. A self-consiste
calculation is needed for the alternating potential, and
require the frequencies to be far smaller than the typical s
band spacingDE. For example, in nanostructures compos
of typical materials such as GaAs, the cutoff frequency c
be as large as 100GHz.

We have applied the linear and nonlinear PDOS exp
sions to treat an illustrating example of ac coherent transp
For a quantum well with two single-channel leads and in
nuetral approximation, the linear and second-order nonlin
emittances were analytically derived and numerically cal
lated. The linear emittance is the same as the results obta
by Breit-Wigner formula.12,13,38The second-order nonlinea
emittance is a new result, to our knowledge. We can see
it changes the sign across the resonant level of the ca
with a very sharp variation. This feature is different from t
linear emittance which is no change at the resonant ene
Thus near the resonant level the electric current may
crease for an increasing the voltage difference. Such a
havior is precisely the expected nonlinear conduction ch
acter, and up to second order in the voltage difference
results can provide useful information.
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19M. Büttiker, H. Thomas, and A. Preˆtre, Phys. Lett. A180, 364

~1997!.
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