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Self-induced and induced transparencies of two-dimensional and three-dimensional superlattice
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The phenomenon of transparency in two-dimensional and three-dimensional superlattices is analyzed on the
basis of the Boltzmann equation with a collision term encompassing three distinct scattering mechanisms
~elastic, inelastic, and electron–electron! in terms of three corresponding distinct relaxation times. On this
basis, we show that electron heating in the plane perpendicular to the current direction drastically changes the
conditions for the occurrence of self-induced transparency in the superlattice. In particular, it leads to an
additional modulation of the current amplitudes excited by an applied biharmonic electric field with harmonic
components polarized in orthogonal directions. Furthermore, we show that self-induced transparency and
dynamic localization are different phenomena with different physical origins, displaced in time from each
other, and, in general, they arise at different electric fields.
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I. INTRODUCTION

Semiconductor superlattices have been at the focus o
tention for several decades, due to their unique electro
properties. The additional spatial periodicity of the super
tice leads to the formation of narrow Brillouin minizones a
energy minibands.1–3 Bloch oscillations4 and Wannier–Stark
levels5 can be observed in superlattices due to the narr
ness of these minibands even in relatively weak static e
tric fields (102–104 V/cm). The Bloch oscillations are du
to Bragg reflections by the periodic superlattice potential a
are characterized by the frequencyVc5eEcd/\ and ampli-
tude Zc5D/2eEc , where Ec is the constant electric field
applied along the axis of the superlattice of periodd and
miniband widthD. In the case of an applied harmonic a
field, the Bragg reflections do not generate a new type
oscillation beyond that of the static field, but they do mod
late electron motion during the field period. This modulati
is described by oscillatory dependencies of the amplitude
electron velocity harmonics on the amplitude,E1, and/or the
frequency,v1, of the applied harmonic field.6,7 Manifesta-
tions of this modulation can be found in various nonline
macroscopic effects and, in particular, insuperlattice
transparency.7–11 The zeroth harmonic of electron nonline
oscillations responsible for dc current is of special intere
Its vanishing corresponds to electron spatial localization
is called dynamic localization.6 This dynamic localization
occurs only for electrons having a sinelike dispersion l
and for specific ratios of amplitude and frequency of t
applied field, such thatJ0(eE1d/\v1)50 @where J0(x) is
the zeroth order Bessel function#. In the case of deviation
from a sinusoidal dispersion law, dynamic localization c
arise only at multifrequency fields.7 In the literature~see, for
example, Ref. 12!, dynamic localization is very often erro
neously identified with self-induced superlattice transp
ency, predicted in Ref. 9 and verified experimentally in R
10. It was shown there that the macroscopic polarization
the electron gas can vanish and the superlattice behave
0163-1829/2002/66~4!/045319~11!/$20.00 66 0453
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most like a linear dielectric having the permittivity of th
crystal lattice in the absence of mobile electrons, with sm
nonlinear absorption due to electron oscillations. The con
tions for this effect within the singlet-approximation for a
one-dimensional superlattice sample are the same as fo
namic localization, but they have different physical origin
The error of their identification was shown in Refs. 7,13 f
a three-dimensional sample with a one-dimensional supe
tice and it will be further confirmed below for two- an
three-dimensional superlattices.

The singlet-approximation has been reasonably succe
ful in describing the cases of a one-dimensional superlat
and also a one-dimensional model of a three-dimensio
superlatticewithout redistribution of energy and momentum
among the various degrees of freedom due to electron s
tering. However, as was shown in Refs. 14,15, such ene
momentum redistribution resulting from scattering can s
stantially effect superlattice properties and, in particular,
current–voltage characteristics can change due to transv
heating. To overcome the deficiency inherent in the sin
t-approximation, we develop a new method based on
Boltzmann equation with a collision term encompass
three distinct relaxation times. The three relaxation times
clude ~a! a time for redistribution of energy and momentu
supplied by an electric field to a given electron among
various degrees of freedom,~b! a time for redistribution of
energy and momentum among all electrons by inela
electron–electron interactions, and~c! a time for transfer of
the excess energy to the crystal lattice. In this, we emplo
separation of the relaxation processes into elastic, inela
and electron–electron, which is commonly recognized in
study of nonlinear properties of semiconductors at high fie
~see, for example, Refs. 16,17!. The resulting balance equa
tions which we obtain can be solved analytically for syste
having high symmetry~two- and three-dimensional superla
tices!. However, the qualitative results obtained here are a
valid for bulk semiconductors having a one-dimensional
perlattice, i.e., for structures with minibands in the grow
©2002 The American Physical Society19-1
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direction and free electron motion in the lateral plane, wh
can be studied experimentally currently. Moreover, at
present time, three-dimensional cluster lattices are actu
grown18 and technological progress19–21 offers hope that
two-dimensional and three-dimensional superlattices will
fabricated in the near future using quantum dots, relat
directly to our studies here. Furthermore, a simple thr
dimensional Kronig–Penney model was proposed in orde
describe such quantum dots superlattices theoretically.22 On
the basis of the three relaxation time description, we sh
that electron heating in the plane perpendicular to the cur
drastically changes the self-induced transparency of the
perlattice. In particular, it leads to an additional modulati
of the current amplitudes excited by an applied biharmo
electric field with harmonic components polarized in o
thogonal directions. We obtain analytical results in the we
scattering approximation (vt@1) and extend the analysi
numerically for stronger scattering.

This article is structured as follows: In Sec. II, startin
from a Boltzmann equation, we derive balance equations
average electron velocity~current! and electron energy by
means of the new collision term accounting for moment
and energy redistribution among the various degrees of f
dom. On the basis of these balance equations the theo
self-induced transparency and its mechanisms is develo
in Sec. III for one-, two-, and three-dimensional superlattic
in the presence of a high-frequency~hf! harmonic field. In
Sec. IV we analyze the amplitude modulation of hf curre
by an orthogonal hf field of a different frequency. The ma
results of this work and comparison to previous studies
presented in Sec. V.

II. GENERAL RELATIONS

There are several prominent sources of nonlinear elec
response in superlattices. Electron dynamics in narrow m
bands features phenomena manifested as Bloch oscillat
static electron localization and the Wannier–Stark ladde4,5

in a static electric field; also, in a harmonic electric fie
there are nonlinear oscillations with amplitudes modula
by Bragg reflections and dynamic electron localization6,7

with the collapse of the electron’s minibands.13 In the case of
interminiband transitions, nonlinear phenomenology inclu
interminiband tunneling in a static electric field, with o
without photon-assistance,23 also interminiband tunneling in
a harmonic electric field and Rabi oscillations.24 Of course,
there are also nonlinear electron response properties invo
in the relaxation processes that redistribute energy supp
by the electric field among the various degrees of freed
controlling the anisotropic heating of the electron gas,14,15

upon which our attention is focused in this paper.
We revisit the analysis of electron dynamics in a sin

miniband from a different perspective than that of earl
studies.6,7,13 In this, we will examine electron dynamics i
two-dimensional (m52) and three-dimensional (m53) su-
perlattices in the presence of an oscillatory electric field h
ing m frequency components,
04531
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E~ t !5 (
a51

m

xaEa cos~vat2da!, m52,3, ~1!

wherexa are the unit lattice vectors of the crystal,da are the
initial phases of the fields, and the frequenciesva are differ-
ent in general. We take the electron energy dispersion r
tion in the tight-binding approximation as

«~k!5 (
a51

m

«a~ka!, «a~ka!5
D

2
~12cos~kad!!, ~2!

whereD is the miniband width,«a andka are the energy and
wave number along thea-axis, respectively.

Under the influence of the electric field of Eq.~1!, an
electron in am-dimensional superlattice executes nonline
oscillations~with a different period in each direction! having
the velocity given by~no scattering!

Va~ka
(0) ,t0 ,t !5Vm (

n52`

`

Jn~ga!sin@n~vat2da!

1ka
(0)d2gasin~vat0!#, ~3!

whereVm5Dd/2\ is the maximum electron velocity,ka
(0) is

the electron wave vector at initial timet0, and ga

5Va
(0)/va5eEad/\va . One can obtain a similar expres

sion for electron energy by integrating the relationVa(ka)
5\21]«a(ka)/]ka .

It is clear from Eq.~3! that the velocity harmonic ampli
tudes are oscillatory functions of the field amplitude. Th
sequentially vanish at the zeros of theJn(ga)-functions in-
dependently of the initial electron momentum. In particul
the time averaged values of electron velocity and energy~ze-
roth harmonics! are given by

Va~ka
(0) ,t0!5VmJ0~ga!sin~ka

(0)d2ga sin~vat0!!, ~4!

and

«a~ka
(0) ,t0!5

D

2
@12J0~ga!cos~ka

(0)d2ga

3sin~vat0!!#. ~5!

At the specific values ofga for which J0(ga)50, we have

Va~ka
(0) ,t0!50,«a~ka

(0) ,t0!5
D

2
, ~6!

i.e., electron motion along thea-axis has no net translatio
independently of its initial momentum, and its average e
ergy takes the value at the middle of the one-dimensio
miniband. This phenomenon is known asdynamic electron
localization. The electron has a discrete energy spectrum
to the finiteness of the motion and, therefore, dynamic e
tron localization corresponds to the collapse of its quasi
ergy minibands13 ~described by the precollapse relation!,
9-2
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«̃a~ka!5
D

2
@12J0~ga!cos~kad!#1na\va ,

na50,61,62, . . . ]. ~7!

Depending on the values ofga , dynamic electron localiza
tion and miniband collapse can be one-dimensional, tw
dimensional, or three-dimensional~in which case the local-
ization and collapse are complete!.

The dynamical peculiarities of superlattice electrons
evident in nonlinear conduction. However, even a qualitat
analysis requires the use of a correct model of the relaxa
processes, which may be simplified to the specifications
particular problem. In the present work we endeavor to t
account of them-dimensionality of the electron scatterin
processes and the separation of elastic and inelastic sc
ing. The single t-approximation, useful for the one
dimensional model, is not adequate for our purposes, as
cussed above. A two relaxation time model was propose
Ref. 25 as well as in Ref. 8 by one of the authors of
present work. However, this model is, in fact, on
dimensional and, moreover, it produces theillusion of a
separation of elastic and inelastic electron scattering p
cesses and associated scattering times, which we now u
stand to be incorrect. In some sense this model is even w
than usual singlet-approximation@but, unfortunately, is still
in use~Ref. 26!# because its identification of the two rela
ation times from experimental data is erroneous. The bala
equation method, developed in Ref. 27, would be useful
our goals, if it would be generalized by replacing the isot
pic electron temperature by an anisotropic one~Ref. 15!, but
this generalization presents a considerable challenge and
not been done yet. The approach proposed in Ref. 28 t
into consideration the interplay between different degree
freedom and separates phonon and impurity scatterings
microscopic basis. However, this method is essenti
single-particle in nature and it is primarily applicable for
superlattice with low carrier concentration when electro
electron scattering does not play a significant role. To ov
come these limitations, we start from a three-dimensio
model of a superlattice having the novel phenomenolog
collision term proposed in Ref. 15. This collision term d
scribes scattering in terms of an improved three-chan
electron relaxation process. We employ the commo
understood16,17 separation of the relaxation processes in
elastic, inelastic and electron–electron with characteri
times specified for each of the three channels working
parallel. In the first channel~usually the fastest one! an elec-
tron is subject to redistribution of the additional energy a
momentum supplied by the applied electric field among
degrees of freedom by means of elastic scattering durin
characteristic timet1. The kinetic energy of each electron
conserved during this scattering to isoenergetic surfaces
the direction of momentum is randomized~with consequent
reduction of the drift velocity!. In the longer-lasting secon
channel, the energy supplied by the external electric fiel
redistributed among all electrons due to inelastic electro
electron scattering, including Umklapp processes. As a re
of the Umklapp processes the Fermi distribution becom
04531
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undrifted17 and, furthermore, the redistribution of energy e
tablishes an effective electron temperatureTe during a time
tee by electron–electron scattering. The total energy of
electrons is conserved during the redistribution process
spite of their momentum relaxation. Finally, in the thi
channel, electrons transmit energy to the lattice over a t
t« and their distribution relaxes to a Fermi function at t
lattice temperatureT0.

The Boltzmann equation with this model collision ter
has the form,

] f ~k,t !

]t
1

eE~ t !

\

] f ~k,t !

]k
52S ] f

]t D
coll

, ~8!

where

S ] f

]t D
coll

5
f ~k,t !2 f S~«,t !

t1
1

f ~k,t !2 f 0~«,Te!

tee

1
f ~k,t !2 f 0~«,T0!

t«
, ~9!

with the isoenergetic distribution function,f S(«,t), ex-
pressed as an integral average over the equipotential su
S« ,

f S~«,t !5

E
S«

f ~k,t !
dS

u¹k«u

E
S«

dS

u¹k«u

, ~10!

and

^«&5^«&S5^«&e , ~11!

where we use the notation«5«(k) and f (k,t) is the non-
equilibrium distribution function driven by the electric field
f 0(«,Te) is the equilibrium Fermi distribution at the elevate
electron temperatureTe and f 0(«,T0) is the equilibrium
Fermi distribution at lattice temperatureT0 . ^«&,^«&S ,^«&e ,
and ^«&0 are the energies averaged over the correspond
distribution functions. The effective electron temperatureTe
is determined by Eq.~11!. It is important to note that the
anisotropic functionf S(«,t) plays the role of the ‘‘isotropic’’
distribution function of Ref. 16, but not the symmetric on
i.e., f S(«,t)Þ( f (k,t)1 f (2k,t))/2. A symmetric form of
f S(«,t) would occur if there wereno energy and momentum
redistribution among all degrees of freedom and it wou
correspond to the one-dimensional model of a superlat
used in Refs. 8,25.

Let us summarize our generalizations and simplificatio
of the three relaxation processes:

~1! As in Ref. 16, the quasielastic electron scattering le
ing to the ‘‘isotropization’’ of the electron distribution func
tion is considered to be dominant. In our case, the electr
are distributed onto corresponding~nonspherical!! isoener-
getic surfaces and the anisotropic functionf s(«,t) plays the
role of the ‘‘isotropic’’ distribution function of Ref. 16.

~2! The Brillouin minizones are narrow for superlattice
lending importance to Umklapp processes and the estab
9-3
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ment of anundrifted Fermi distribution with an effective
temperatureTe .17 This underscores the difference of o
present description from that of Ref. 27.

~3! The dynamical development of the deviation of t
electron distribution function from the ‘‘isotropic’’ one is de
scribed by

]

]t
~ f ~k,t !2 f s~«,t !!st52

f ~k,t !2 f s~«,t !

t
, ~12!

i.e., by the effective relaxation timet, which is, in general,
dependent not only on energy but also on the electron
mentum direction. This relation is the same as the one c
monly used for the first term of the distribution functio
expansion in Legendre polynomials.16 Thus, in this respect
our description is the same as that of Ref. 16 up to this po
In accordance with our classification of the three relaxat
processes, we have

1

t
5

1

t1
1

1

tee
1

1

t«
. ~13!

~4! We describe the collision dynamics of the ‘‘isotropic
distribution function f s(«,t) approximately by two relax-
ation times,tee andt« , i.e., by the relation

S ] f s~«,t !

]t D
st

52
f s~«,t !2 f 0~«,Te!

tee
2

f s~«,t !2 f 0~«,T0!

t«
.

~14!

While this is not an exact equation forf s(«,t), it is accept-
able for a qualitative description. Moreover, our interest
not in the details of the distribution functions, but only in th
current and in the average energy. Furthermore, it is easi
incorporate necessary corrections directly in balance eq
tions to be derived below.

The balance equations can be obtained from Eqs.~8! to
~11!. For sake of simplicity we take the relaxation timest1 ,
tee, andt« to be energy and momentum independent. M
tiplying Eq. ~8! sequentially by]«a(ka)/]ka and by«a(ka)
and integrating over first Brillouin minizone, we obtain th
following equations for the current components (j a(t)
5ne\21^]«a(ka)/]ka&) and the average energies^«a&:

] j a~ t !

]t
2ne2^ma

21~«!&Ea~ t !52
j a~ t !

tp
; ~15!

d

dt
^«a&2

1

n
Ea~ t ! j a~ t !

52
^«a&2^«&S

t1
2

^«a&2^«&e

tee
2

^«a&2^«&0

t«
;

~16!

and

(
a51

m

^«a&S5 (
a51

m

^«a&e5^«&, ~17!

where
04531
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^ma
21~«!&5K 1

\2

]2«~ka!

]ka
2 L , ~18!

n is the three-dimensional electron density andtp
215t1

21

1tee
211t«

21 is the overall inverse electron relaxation time
The balance equations@Eqs.~15!–~17!# are valid both for

homogeneous semiconductors~without superlattice! and for
semiconductor superlattices of any dimensions. All terms
these equations have clear physical meaning and allow s
generalizations, for example, the replacement of scalar re
ation times by a relaxation tensor~for symmetric structures
we consider it unnecessary!. It should be noted that the re
laxation times,tp and t« , can be taken from independen
calculations using the actual scattering mechanisms. Su
calculation for one-dimensional GaAs-based superlatti
was done in Ref. 29, where, in particular, it was shown t
the relaxation times,tp andt« , can be taken to be indepen
dent of energy, if the miniband width is less than optic
phonon energy.

In general, the set of Eqs.~15!–~17! is not closed becaus
of coupling to higher order moments of the distribution fun
tion f (k,t). However, there are simplifications for one
two-, and three-dimensional superlattices with a sinuso
dispersion law, Eq.~2!. In these cases, symmetry dictates th

^«a&S5^«a&e5
1

m
^«&. ~19!

Furthermore, the sinusoidal dispersion law provides the
ear proportionality between the effective electron mass
its energy,

^ma
21~«!&5S D

2
2^«a& D d2

\2
. ~20!

Accordingly, Eqs.~15!, ~16!, taken jointly with Eqs.~19!,
~20!, form a closed set of equations. It is convenient to wr
this set in complex form, introducing a dimensionless co
plex m-component ‘‘vector’’ with components defined by

Fa~ t !5
D/22^«a&
D/22^«a&0

2 i
j a~ t !

j 0a
, ~21!

wherej 0a5(end/\)(D/22^«a&0). The balance equation fo
Fa(t), equivalent to Eqs.~15!, ~16!, ~19!, ~20!, is given by

dFa~ t !

dt
1~tp

211 iVa~ t !!Fa~ t !

5t«
211

1

m
~tp

212t«
21! (

b51

m

ReFb~ t !, ~22!

whereVa(t)5edEa(t)/\. The last term on the right-han
side of Eq.~22! describes the redistribution of electron e
ergy and momentum among all degrees of freedom. T
feature is absent in the single relaxation time description
is of crucial importance for our present considerations. Fo
one-dimensional superlattice, (m51), Eq.~22! is identical to
the balance equations obtained in Ref. 8. It should be no
that the only significant feature of the distribution function
9-4
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f S(«,t) and f 0(«,Te), is that given by Eq.~19! in regard to
the derivation of Eq.~22! for two-, and three-dimensiona
superlattices, because of the high symmetry of the elec
dispersion relation. The specific forms off S(«,t) and
f 0(«,Te), beyond Eq.~19!, are not pertinent. A further con
sequence of this symmetry is that the inverse relaxa
timest1

21 andtee
21 are involved in Eq.~22! only in the form

of their sum. For bulk semiconductors having a on
dimensional superlattice with free motion in the lateral pla
one obtains an integrodifferential equation~allowing only
numerical solution! instead of Eq.~22!. Such an integrodif-
ferential equation was analyzed for the case of a static e
tric field in Ref. 15 in detail.

It is easily shown that the complex ’’vector’’ with compo
nents Fa(t) introduced above is constituted by the fir
Fourier-components of distribution functionf (k,t). Using
periodicity in k-space, this distribution function may be e
panded in am-dimensional Fourier series,

f ~k,t !5(
na

Fn exp$ in•kd%Fn~ t !, ~23!

with Fourier coefficients given by

Fn5S d

2p D mE
BZ

dmk f0~k!exp$2 in•kd%, ~24!

where n→(n1) for one-dimensional,n→(n1 ,n2) for two-
dimensional,n→(n1 ,n2 ,n3) for three-dimensional superla
tices, and the integration is taken over the first Brillouin zo
~BZ!. Only the first momentum harmonics~in any direction!
of the distribution function,

Fa~ t !5

E dmk f~k,t !exp$2 ikad%

E dmk f0~k!exp$2 ikad%

~25!

contribute to the current densityj (t) and the electron energ
^«a& for the miniband case of Eq.~2!. One can see that the
are the same as those given by Eq.~21!.

For arbitrary time-dependence of the electric fieldE(t), it
is useful to writeFa(t) in a form that is convenient for the
representation of Bloch oscillations, as

Fa~ t !5aa~ t !Ca~ t !, ~26!

where

Ca~ t !5expH 2 i E
0

t

Va~ t1!dt1J ~27!

is a solution of the homogeneous counterpart of Eq.~22!
associated with Bloch oscillations in the absence of sca
ing terms. This function describes the dynamic modulat
of the electron distribution function by the applied elect
field without scattering. In particular, for a simple harmon
field, Ea(t)5Ea

(0)cosvt, we have
04531
n

n

-
,

c-

e

r-
n

Ca~ t !5exp$2 iga sinvt%5 (
n52`

`

Jn~ga!e2 invt, ~28!

where ga5Va
(0)/v is the projection of the dimensionles

field amplitude onto thexa-axis. The functionsaa(t) repre-
sent dissipative processes, describing changes in the am
tude ofFa(t) ~deviation from the Bloch oscillation solution!
due to scattering. They obey the following equations, ba
on Eq.~22!:

ȧa~ t !1tp
21aa~ t !

5t«
21Ca* ~ t !1

1

m
~tp

212t«
21!3ReS (

b51

m

abCbDCa* ~ t !.

~29!

In the absence of scattering,aa(t)[1. The transfer from the
description in terms of the functionsFa(t) to a description
in terms of functionsaa(t) corresponds to a transformatio
to a new system of coordinates,K0, oscillating in momentum
space together with the unscattered electron. In the sys
K0, each electron is at a fixed pointk0. Only scattering
changes the distribution of these points. In the case of
collisions (vt@1), such changes are small during the peri
of the applied field, but they can accumulate and beco
important over the time of a few collisions. Otherwise, t
equilibrium distribution functions~to which the electrons re
lax! in the systemK0 are modulated by the field and becom
rapid functions of time, as

f 0~«,T0!→ f 0~k3!5 f 0S k02
1

dE0

t

V~ t1!dt1D . ~30!

This feature is embodied in the structure of Eq.~29!: the
‘‘scattering-out’’ term~second term on the left-hand side! has
the usual relaxation form with the overall inverse relaxati
time due to all scattering mechanisms, and the ‘‘scatteri
in’’ term ~first term on the right-hand side! is the dynamically
modulated equilibrium distribution function with inverse r
laxation timet«

21 . The last term on the right-hand side o
Eq. ~29!, describing the redistribution of energy and mome
tum over the various degrees of freedom, is modulated by
electric field twofold; once in connection with the transfo
mation to the systemK0, and, secondly, because the corr
sponding equilibrium distribution functions are determin
by the average normalized electron energy@Eqs. ~21! and
~26!# which, in turn, depends on the field and time. Th
average energy is involved in the last term through the re
tion,

ReS (
b51

m

abCbD 5ReS (
b51

m

Fb~ t !D 5 (
b51

m
D/22^«b&
D/22^«b&0

.

III. SELF-INDUCED TRANSPARENCY

In this section, we analyze superlattice response to a h
frequency (vtp@1) monochromatic field directed along th
9-5



s

,

ri

-

r

e
e of
gle
r-

ic

ees
arply
is-

tu-

ncy
r an

e

s

ROMANOV, ROMANOVA, MOUROKH, AND HORING PHYSICAL REVIEW B66, 045319 ~2002!
x1-axis. Consideringaa to be slowly varying functions of
time, we average Eq.~29! over an intervalDt given by
2p/v!Dt!tp , obtaining an algebraic system of equation
for which the stationary solution is

a15
lm2J0~g1!

m@11~m21!l#•B~g1!2~m21!~12l!2J0
2~g1!

,

~31!

and

aa5l
mB~g1!1~12l!J0

2~g1!

@11~m21!l#•B~g1!2~m21!~12l!2J0
2~g1!

,

aÞ1, ~32!

wherel5tp /t« and

B~g!512
12l

2m
@11J0~2g!#. ~33!

In the derivation of Eqs.~31! and~32!, we used the relations

Ca~ t !5J0~ga!, ~Re~Ca~ t !!25 1
2 @11J0~2ga!#,

~34!

where the overhead bar indicates averaging over the pe
of the impressed electric field.

According to Eqs.~21!,~26!,~28!,~31!, and ~32!, the cur-
rent, energy dissipation rate,Q, and ratio between the trans
verse and longitudinal electron heating,d, are given by

j̃ 1[ j 1 / j 015a1sin~g1sin~vt !!1OS 1

vt D , ~35!

Q[n
^«&2^«&0

t«
5Q0~12a1J0~g1!!,

Q05
m~D/22^«a&0!n

t«1~m21!tp
, ~36!

and

d[
~m21!~^«a&2^«a&0!

^«1&2^«1&0

5
~12l!~m21!

11l~m21!
. ~37!

Figure 1 depicts the functiona1 involved in the expres-
sion for the current, and also showsQ/Q0, as functions ofg
for a three-dimensional superlattice (m53) with l51, 0.1,
0.01. In the casetp5t«(l51), we obtaina15J0(g1) and
expressions~35! and ~36! coincide with those obtained fo
04531
,

od

the one-dimensional model of a superlattice.8 With increas-
ing tp while holdingt« fixed, the current in the superlattic
increases, the dissipation decreases, and the amplitud
their modulation increases. As in the case of the usual sin
t-approximation,7–9 the three-dimensional superlattice cu
rent vanishes at fields such thatJ0(g1)50 @with an accuracy
of (vtp)21#, where dissipation is maximal. When elast
collisions dominate over inelastic scattering (tp!t«) there is
a rapid redistribution of energy among the electron degr
of freedom and, consequently, the current decreases sh
for g1>1. This is caused by a strong expansion of the d
tribution function in momentum space, due to both longi
dinal and transverse heating.

To examine the peculiarities of self-induced transpare
in the case of a two-dimensional superlattice, we conside
electric field of the form,

E5~E1x11E2x2!cos~vt !. ~38!

In a manner similar to that of the foregoing analysis, w
obtain the components of the dissipative function as

FIG. 1. Normalized~a! current and~b! energy dissipation rate a
functions ofg5eEd/\v.
a1,25
4l~J0~g1,2!B~g1,2!1~12l!J0~g1,2!~J0~g11g2!1J0~g12g2!!!

16B~g1!B~g2!2~12l!2~J0~g11g2!1J0~g12g2!!2
. ~39!
9-6
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To obtain Eq. ~39!, we used the relations~34! and the
expression

ReC1~ t !ReC2~ t !5 1
2 ~J0~g11g2!1J0~g12g2!!.

~40!

The corresponding current and energy dissipation rate
given by

j 1,2~ t !5a1,2sin~g1,2sinvt !, ~41!

and

Q5
n~D2^«&0!

t«
S 12

1

2
~a1J0~g1!1a2J0~g2!! D . ~42!

It is clear from Eqs.~39! and ~41! that the current along
each superlattice axis depends on all field projections
contrast to the results of Ref. 30. In general, the curren
each excited harmonic is not parallel or antiparallel to
resultant electric field and has its own elliptic polarizatio
There are exceptions if the electric field is in the lattice
rections @10# or @11#, in which case the field and excite
current are parallel.

Furthermore, it is evident from Eqs.~39! and ~41!, that
both dynamic localization and self-induced transparency
be either one-dimensional or complete for two-dimensio
superlattices. In Fig. 2 we show the locii of one-dimensio
self-induced transparencies occuring in directionsx1 ~hori-
zontal curves! andx2 ~vertical curves!, respectively, as func
tions of g1 andg2. At fields corresponding to these curve
the current components vanish@ j 1(t)'0 and j 2(t)'0, re-
spectively#. These dependencies exhibit oscillations arou
the lineJ0(g1,2)50 ~see Fig. 2 inset!, which is the condition
for dynamic localization to occur. The average energies
the dissipation rate for these values of the fields are given

FIG. 2. Loci for one-dimensional self-induced transparencies
directionsx1 ~horizontal curves! andx2 ~vertical curves!. The inset
exhibits a magnification of the locus for one-dimensional se
induced transparency in directionx1 and the locus for one-
dimensional dynamic localization in this direction~horizontal line!.
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^«1(2)&5
D

2
,^«2(1)&5

D

2
2S D

2
2^«2(1)&0D

3
4lJ0

2~g2(1)!

41~12l!~11J0~2g2(1)!!
,

~43!

and

Q5
n~D2^«&0!

t«
S 12

2lJ0
2~g2(1)!

41~12l!~11J0~2g2(1)!!
D ,

~44!

where the first of the subscripted indices is related to
horizontal curves and the second subscripted index~in paren-
theses! is related to the vertical curves. At points of interse
tion, determined by the conditionJ0(g1)5J0(g2)50, there
is complete self-induced transparency. In such cases, the
erage electron energies and the dissipation rate are max
and are given by

^«1&5^«2&5
D

2
, ~45!

and

Q5
n~D2^«&0!

t«
. ~46!

The dissipation rate in Eq.~46! is larger than that in Eq.~44!,
and is also larger than the maximum dissipation rate for
fields oriented strictly along the crystal axes, the latter be
given by Eq.~36! as

Q5
n~D2^«&0!

t«1tp
. ~47!

It is apparent that, within the three-relaxation-time d
scription presently under consideration, complete s
induced transparency and dynamic localization occur at
same fields, whereas one-dimensional self-induced trans
ency and dynamic localization arise at different fields.
two-dimensional superlattices complete dynamic localizat
and self-induced transparency occur at the discrete ampli
values and applied electric field directions determined by
relations,

Em,n5
\v

ed
Ajm

2 1jn
2, wm,n5arctan~jm

2 /jn
2!, ~48!

wherewm,n is the angle of field orientation with respect
the superlattice crystal axis andjm is themth-order root of
the zeroth-order Bessel function. This can be generali
easily to the three-dimensional case.

To develop a physical understanding of one-dimensio
and complete self-induced transparencies, we examine
evolution of the electron distribution in theK0-system. One
can see from Eq.~29! and its following discussion that, un
der the influence of the field and scattering, the number

n

-

9-7
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electrons entering the current components, ImF1,2 ~includ-
ing redistribution among them!, averaged over the field pe
riod, P1,2, is given by

P1,25t«
21C1,2~ t !1

1

m
~tp

212t«
21!

3~a1,2~ReC1,2~ t !!21a2,1ReC1~ t !ReC2~ t !!.

~49!

If the dynamic modulation of the equilibrium distributio
function is such thatC1(t)5C2(t)50, then the average
number of electrons entering the current components v
ishes~there is only electron redistribution among the comp
nents!, and, therefore, the current components are eventu
completely eliminated from the nonequlibrium distributio
function by ‘‘scattering-out’’ over a time of ordertp . It
should be noted that forC1(t)5C2(t)50, the set of Eq.
~29! averaged over the field period becomes homogene
and its steady-state solution is zero. In this case elec
heating is maximal due to complete dynamic localizatio
Thus, after a time of ordertp , the superlattice become
transparent, i.e., behaves like a dielectric having the per
tivity of the crystal lattice and relatively small, but resona
absorption. This is to say that we have complete self-indu
transparency. It should be emphasized that, at arbitrary fie
the absorption rate stabilizes after timet« , i.e., later than the
vanishing of the current.

If dynamic localization takes place in only one of the tw
crystal directions, for example, in@10#, i.e., ReC1(t)
5J0(g1)50, but ReC2(t)5J0(g2)Þ0, then the electrons
only enter the current componentF2(t) due to dynamic
modulation of the equilibrium distribution function. How
ever, because of the redistribution of energy and momen
among the degrees of freedom, electrons also flow
F1(t). Therefore, even atJ0(g1)50 both P1 and j 1 are
nonzero. The currentj 1 vanishes only if the components o
the flowP1 caused~a! by direct dynamical modulation of th
distribution function, and~b! by redistribution via scattering
compensate each other in this direction. However, this oc
at J0(g1)Þ0, i.e., when dynamic localization in this direc
tion is absent, as reflected in Eq.~32! and Fig. 2. Further-
more, it should be noted that the time-averaged o
dimensional energy isD/2 for each electron when dynam
localization occurs, but this is valid only for both time an
ensemble averaged energy in the case of one-dimens
self-induced transparency.

One can easily see that if the relaxation timestp andt«

are energy dependent~not constant!, then the first harmonics
of the distribution~23! become coupled to higher harmonic
In this case self-induced transparency does not occur e
when there is complete dynamic localization. This was de
onstrated in Ref. 7 for a one-dimensional superlattice. Ho
ever, as mentioned above, for an appropriate set of supe
tice parameters, these relaxation times can be consid
energy-independent29 and, therefore, even the quantitativ
results discussed above have a wide range of validity.
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It should be emphasized that, although both self-indu
transparency and dynamic localization occur in a superlat
due to the narrowness of its Brillouin minizones, the physi
origins of these effects are completely different. Dynam
localization arises when the zeroth harmonic of nonlin
electron oscillations, modulated by Bragg reflections, v
ishes. In contrast to dynamic localization, self-induced tra
parency is a result of the joint action of Bragg reflections
miniband electrons and collisions creating strongly mod
lated electron distributions in which the first harmonics a
absent for discrete values of the electric field amplitudes~in
the limit tp→`). As a result, dynamic localization appea
immediately after turn-on of electric field, and self-induc
transparency occurs only after a time of order oftp . The
conditions for self-induced transparency depend on the s
tering mechanisms and, in general, it takes place even w
out dynamic localization. It can be shown that states of s
induced transparency are not stable with respect to
generation of static and hf fields~having frequencies no
equal tov1!31 and, therefore, experimental studies should
performed at low electron concentrations and with the use
pulsed electric fields.

IV. CURRENT MODULATION BY ORTHOGONAL FIELDS

In this section we examine superlattice behavior in
presence of a high frequency biharmonic electric field giv
by

E5E1x1 cos~v1t2d1!1E2x2 cos~v2t2d2!. ~50!

In this case the field components have different frequen
and are directed along different crystal axes taken to be
thogonal~the case of parallel fields was analyzed in Ref.
in a singlet-approximation!. We are interested to explore th
occurrence of current amplitude modulation by a high f
quency electric field orthogonal to the current direction. T
is determined by the redistribution of energy and moment
among the various degrees of freedom. We assume tha
frequencies of the most important electric field harmon
are well separated, i.e.,

un1v12n2v2utp@1, n1,251,2, . . . . ~51!

Using Eq.~34! and the expression

ReCa~ t !ReCb~ t !5J0~ga!J0~gb!, aÞb, ~52!

we obtain the following relations for current components a
averaged energies:

j 1,25a1,2~g1 ,g2!sin~g1,2sin~v1,2t2d1,2!!, ~53!

and

^«1,2&2^«1,2&05S D

2
2^«1,2&0D ~12a1,2~g1 ,g2!J0~g1,2!!,

~54!

where, in the case of a two-dimensional superlattice,
9-8



SELF-INDUCED AND INDUCED TRANSPARENCIES OF . . . PHYSICAL REVIEW B 66, 045319 ~2002!
a1,2~g1 ,g2!5
4lJ0~g1,2!~2B~g2,1!1~12l!J0

2~g2,1!!

4B~g1!B~g2!2~12l!2J0
2~g1!J0

2~g2!
, ~55!

whereas, for a three-dimensional superlattice we have

a1,2~g1 ,g2!5
9lJ0~g1,2!~3B~g2,1!1~12l!J0

2~g2,1!!

9~21l!B~g1!B~g2!2~12l!2~3J0
2~g1!B~g2!13J0

2~g2!B~g1!1~42l!J0
2~g1!J0

2~g2!!
. ~56!
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In Fig. 3~a! we exhibit the functionsã1
21(0.05,g2)

[a1(g150.05,g250)/a1(g150.05,g2) and ã1
21(g1,2.405)

[a1(g1 ,g250)/a1(g1 ,g252.405) for l50.1. The former
function describes the modulation due to the electric fieldE2
~orthogonal toE1) of current driven by a weak electric fiel
E1; whereas the latter function describes the same cur
modulation in the presence of an arbitrary fieldE1 under
conditions of dynamic localization in the directio
x2(J0(g2)50). The functionsa1(g1 ,g250) and a1(g1 ,g2

FIG. 3. ~a! Current modulation by orthogonal fields as describ

by ã1
21(0.05,g2) andã1

21(g1,2.405)~defined in text!. ~b! The func-
tions a1(g1 ,g250) anda1(g1 ,g252.405) employed in the deter

mination of ã1
21(g1,2.405) of Fig. 3~a!.
04531
nt

52.405), corresponding to the curveã1
21(g1,2.405) of Fig.

3~a!, are shown in Fig. 3~b!.
One can see from Eqs.~55!, ~56! and Figs. 3~a!, 3~b!, that

it is impossible for the orthogonal field to cause a compl
vanishing of polarization, and, therefore,induced transpar-
ency does not occur. However, the modulation of polari
tion by the orthogonal field can be significant, especially
smalll. The maximum decrease of polarization comes ab
with the occurrence of one-dimensional dynamic electron
calization in the transverse direction (J0(g2)50). In particu-
lar, for E1→0, it decreases by the factor (11(m
21)l)/ml. The reason for this is that, under condition
dynamic localization, electron heating is maximal and t
distribution function widens in all directions in momentu
space due to energy and momentum redistribution amon
degrees of freedom, which always leads to decreased cur

As in the case of self-induced transparency, for spec
ratios of field amplitudes and frequencies determined by
conditions J0(g1)5J0(g2)50, complete induced superla
tice transparency takes place. In this case a two-dimensi
superlattice is transparent to an arbitrarily polarized th
weak signal with frequencyv3 ~well separated from the fre
quenciesn1v16n2v2, wheren1 andn2 are integers!.

Similar to self-induced transparency, current modulat
by an orthogonal field and induced transparency occur~van-
ish! in a time of order oftp and they become stationary in
time of order oft« after turn-on~turn-off! of the electric
field, i.e., they are displaced in time from dynamic localiz
tion.

To establish the frequency limitations of the phenome
we have explored, we carried out a numerical analysis of
~22! with finite values oftp andt« . The results are shown in
Fig. 4, where the dashed lines represent the above-desc
analytical calculations for the functionsã1

21(0.05,g2) ~upper

curve! and ã1
21(g1,2.405) ~lower curve!, respectively. The

solid lines represent our numerical determinations of the a
plitudes of the first current harmonics~thick curves! and the
maximal currents~thin curves! at vtp51 ~maintainingvt«

@1). One can see that the dependencies presented in
3~a! and 3~b! change only slightly with decreasingtp .

V. SUMMARY

In summary, we have applied the Boltzmann equat
with an improved three-relaxation-time collision term to t
analysis of self-induced and induced transparencies in se
conductor superlattices. The three relaxation times incl
9-9
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~a! a time for redistribution of energy and momentum su
plied by an electric field to a given electron among its va
ous degrees of freedom,~b! a time for redistribution of en-
ergy and momentum among all electrons by inelas
electron–electron interactions, and~c! a time for transfer of
the excess energy to the crystal lattice. We have perform
analytical calculations for systems having high symme

FIG. 4. Amplitude ofj / j 0 as a function of field (g1(2)).
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~for one-, two-, and three-dimensional superlattices!. How-
ever, the results obtained here are valid qualitatively for b
semiconductors with a one-dimensional superlattice, wh
are currently available for experimentation. Furthermore,
have shown that self-induced transparency and dynamic
calization are different phenomena with different physic
origins, displaced in time from each other, and, in gene
they arise at different electric fields. Moreover, we ha
found that the redistribution of energy and momentu
among the various degrees of freedom is of crucial imp
tance in two-dimensional and three-dimensional superlat
transport and optical properties. Transverse electron hea
drastically changes the conditions for self-induced transp
ency, and this effect facilitates current modulation by an
plied perpendicular high-frequency electric field.
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