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Self-induced and induced transparencies of two-dimensional and three-dimensional superlattices
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The phenomenon of transparency in two-dimensional and three-dimensional superlattices is analyzed on the
basis of the Boltzmann equation with a collision term encompassing three distinct scattering mechanisms
(elastic, inelastic, and electron—electrdn terms of three corresponding distinct relaxation times. On this
basis, we show that electron heating in the plane perpendicular to the current direction drastically changes the
conditions for the occurrence of self-induced transparency in the superlattice. In particular, it leads to an
additional modulation of the current amplitudes excited by an applied biharmonic electric field with harmonic
components polarized in orthogonal directions. Furthermore, we show that self-induced transparency and
dynamic localization are different phenomena with different physical origins, displaced in time from each
other, and, in general, they arise at different electric fields.
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I. INTRODUCTION most like a linear dielectric having the permittivity of the
crystal lattice in the absence of mobile electrons, with small
Semiconductor superlattices have been at the focus of ahonlinear absorption due to electron oscillations. The condi-
tention for several decades, due to their unique electronitions for this effect within the single-approximation for a
properties. The additional spatial periodicity of the superlat-one-dimensional superlattice sample are the same as for dy-
tice leads to the formation of narrow Brillouin minizones and namic localization, but they have different physical origins.
energy minibands>2 Bloch oscillation$ and Wannier—Stark  The error of their identification was shown in Refs. 7,13 for
levels’ can be observed in superlattices due to the narrowa three-dimensional sample with a one-dimensional superlat-
ness of these minibands even in relatively weak static eleaice and it will be further confirmed below for two- and
tric fields (16—10" V/cm). The Bloch oscillations are due three-dimensional superlattices.
to Bragg reflections by the periodic superlattice potential and The singler-approximation has been reasonably success-
are characterized by the frequen@y=eE.d/%# and ampli-  ful in describing the cases of a one-dimensional superlattice
tude Z,=A/2eE;, whereE is the constant electric field and also a one-dimensional model of a three-dimensional
applied along the axis of the superlattice of perbénd  superlatticewithout redistribution of energy and momentum
miniband widthA. In the case of an applied harmonic ac among the various degrees of freedom due to electron scat-
field, the Bragg reflections do not generate a new type ofering. However, as was shown in Refs. 14,15, such energy-
oscillation beyond that of the static field, but they do modu-momentum redistribution resulting from scattering can sub-
late electron motion during the field period. This modulationstantially effect superlattice properties and, in particular, the
is described by oscillatory dependencies of the amplitudes afurrent—voltage characteristics can change due to transverse
electron velocity harmonics on the amplitudig, and/or the  heating. To overcome the deficiency inherent in the single
frequency,w;, of the applied harmonic field! Manifesta-  r-approximation, we develop a new method based on the
tions of this modulation can be found in various nonlinearBoltzmann equation with a collision term encompassing
macroscopic effects and, in particular, isuperlattice three distinct relaxation times. The three relaxation times in-
transparency ~*! The zeroth harmonic of electron nonlinear clude (a) a time for redistribution of energy and momentum
oscillations responsible for dc current is of special interestsupplied by an electric field to a given electron among its
Its vanishing corresponds to electron spatial localization an@arious degrees of freedorth) a time for redistribution of
is called dynamic localizatioff This dynamic localization energy and momentum among all electrons by inelastic
occurs only for electrons having a sinelike dispersion lawelectron—electron interactions, afg) a time for transfer of
and for specific ratios of amplitude and frequency of thethe excess energy to the crystal lattice. In this, we employ a
applied field, such thaly(eE;d/%w,)=0 [whereJy(x) is  separation of the relaxation processes into elastic, inelastic
the zeroth order Bessel functibrin the case of deviation and electron—electron, which is commonly recognized in the
from a sinusoidal dispersion law, dynamic localization canstudy of nonlinear properties of semiconductors at high fields
arise only at multifrequency fieldsin the literature(see, for  (see, for example, Refs. 16)1The resulting balance equa-
example, Ref. 1@ dynamic localization is very often erro- tions which we obtain can be solved analytically for systems
neously identified with self-induced superlattice transparhaving high symmetrytwo- and three-dimensional superlat-
ency, predicted in Ref. 9 and verified experimentally in Ref.tices. However, the qualitative results obtained here are also
10. It was shown there that the macroscopic polarization ofalid for bulk semiconductors having a one-dimensional su-
the electron gas can vanish and the superlattice behaves alerlattice, i.e., for structures with minibands in the growth
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direction and free electron motion in the lateral plane, which ©
can be studied experimentally currently. Moreover, at the E(t)= E X EqCOSw, t—46,), wn=2,3, (D)
present time, three-dimensional cluster lattices are actually a=1
grown'® and technological progreSs?! offers hope that

two-dimensional and three-dimensional superlattices will b%nitial phases of the fields, and the frequendiesare differ-

fabricated in the near future using quantum dots, relatingy; in general. We take the electron energy dispersion rela-
directly to our studies here. Furthermore, a simple threegqn in the tight-binding approximation as

dimensional Kronig—Penney model was proposed in order to
describe such quantum dots superlattices theoretia®n @ A
the basis of the three relaxation time description, we show  ¢(k)= > ¢ (k,), e,(k,)==(1—cogk,d)), (2)
that electron heating in the plane perpendicular to the current a=1 2
drastically changes the self-induced transparency of the su- ] o ]
perlattice. In particular, it leads to an additional modulationWhereA is the miniband widthg , andk, are the energy and
of the current amplitudes excited by an applied biharmoni¢Vave number along the-axis, respectively.
electric field with harmonic components polarized in or- Under. the mf_luencg of the electr!c field of EGL), an
thogonal directions. We obtain analytical results in the Wea‘gleqtro_n In a;f-d|m¢a.n5|onal su.perl'att|ce exgcutgs nqnlmear
scattering approximatione(r>1) and extend the analysis OSC|IIat|or_15(W|_th a different penc_)d in each directiphaving
. ; the velocity given by(no scattering

numerically for stronger scattering.

This article is structured as follows: In Sec. Il, starting -
from a Boltzmann equation, we derive balance equations for (0) _ . _
average electron velocitgcurren) and electron energy by Valke ,to,t)—an;m In(@o)sinn(w,t=0,)
means of the new collision term accounting for momentum
and energy redistribution among the various degrees of free-
dom. On the basis of these balance equations the theory of . . . .
self-induced transparency and its mec?]anisms is develo)g) hereVi=Ad/2# is the maximum gl_ectrqn veIocnk,&o) IS
in Sec. Il for one-, two-, and three-dimensional superlattice§ € (éa)lectron wave vector at |n|t|all t|mep, . and g,
in the presence of a high-frequendyf) harmonic field. In ~ — <ta /@a=€E,d/hw,. One can obtain a similar expres-
Sec. IV we analyze the amplitude modulation of hf current>'o" for electron energy by integrating the relatigp(k,)

. . =h"19e (k) K, .
by an orthogonal hf field of a different frequency. The main It is clear from Eq.(3) that the velocity harmonic ampli-

results of this work and comparison to previous studies A%udes are oscillatory functions of the field amplitude. They

presented in Sec. V. sequentially vanish at the zeros of thgg,)-functions in-
dependently of the initial electron momentum. In particular,
the time averaged values of electron velocity and enézgy
Il. GENERAL RELATIONS roth harmonicsare given by

wherex, are the unit lattice vectors of the crysta], are the

+kOd—g,sin(w,to)], &)

There are several prominent sources of nonlinear electron  __ ) . 0) .
response in superlattices. Electron dynamics in narrow mini-  Va(Kz’to) = Vmdo(ga)sin(k; ’d—g, sinf(w,to)), (4)
bands features phenomena manifested as Bloch oscillations,
static electron localization and the Wannier—Stark latider 2"
in a static electric field; also, in a harmonic electric field
there are nonlinear oscillations with amplitudes modulated
by Bragg reflections and dynamic electron localizatibn
with the collapse of the electron’s minibantidn the case of )
interminiband transitions, nonlinear phenomenology includes Xsin(w,to))]. 5)
interminiband tunneling in a static electric field, with or
without photon-assistan@@ also interminiband tunneling in
a harmonic electric field and Rabi oscillatiosOf course,
there are also nonlinear electron response properties involved
in the relaxation processes that redistribute energy supplied
by the electric field among the various degrees of freedom,
controlling the anisotropic heating of the electron 455, i.e., electron motion along the-axis has no net translation
upon which our attention is focused in this paper. independently of its initial momentum, and its average en-

We revisit the analysis of electron dynamics in a singleergy takes the value at the middle of the one-dimensional
miniband from a different perspective than that of earlierminiband. This phenomenon is known dgnamic electron
studie " In this, we will examine electron dynamics in localization The electron has a discrete energy spectrum due
two-dimensional ft=2) and three-dimensionaju=3) su- to the finiteness of the motion and, therefore, dynamic elec-
perlattices in the presence of an oscillatory electric field haviron localization corresponds to the collapse of its quasien-
ing u frequency components, ergy miniband¥’® (described by the precollapse relatipn

A
ok 1)) = 511 Jo(ga)cotkd g,

At the specific values of, for which Jy(g,)=0, we have

— A
Vol 1) =04(k to) = 5, )
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5 A undrifted’” and, furthermore, the redistribution of energy es-
£a(Ka) =511~ Jo(ga)COSKA) ]+ Nofr tablishes an effective electron temperatiligeduring a time
Tee DY electron—electron scattering. The total energy of all
N =0+1+2 1 @) eIe_ctrons is.conserved during thg redis_tributio_n process, in
o TTmommed spite of their momentum relaxation. Finally, in the third
Depending on the values of,, dynamic electron localiza- Cchannel, electrons transmit energy to the lattice over a time
tion and miniband Co”apse can be one- d|mens|ona| twoT e and their distribution relaxes to a Fermi function at the

dimensional, or three-dimension@h which case the local- lattice temperaturdo. .
ization and collapse are complete The Boltzmann equation with this model collision term

The dynamical peculiarities of superlattice electrons aréas the form,
evident in nonlinear conduction. However, even a qualitative
q A1) | eE(t) at(k,) (af)
coll

analysis requires the use of a correct model of the relaxation

processes, which may be simplified to the specifications of a ot fi ak at

particular problem. In the present work we endeavor to take

account of theu-dimensionality of the electron scattering

processes and the separation of elastic and inelastic scatter- ((gf) f(k,t)—fo(e,t)  F(k,t)—fole,Te)
coll

®

where

ing. The single r-approximation, useful for the one- 7t
dimensional model, is not adequate for our purposes, as dis-

cussed above. A two relaxation time model was proposed in f(k,t)— fole,To)

Ref. 25 as well as in Ref. 8 by one of the authors of the g 0 (9)
present work. However, this model is, in fact, one- Te
dimensional and, moreover, it produces ftilesion of a  wijth the isoenergetic distribution functionfs(e,t), ex-

separation of elastic and inelastic electron scattering propressed as an integral average over the equipotential surface
cesses and associated scattering times, which we now undeg-

stand to be incorrect. In some sense this model is even worse

1 Tee

than usual single-approximation but, unfortunately, is still

in use(Ref. 26] because its identification of the two relax- f f(k,t) |Vk |

ation times from experimental data is erroneous. The balance fqle,t)= , (10
equation method, developed in Ref. 27, would be useful for ~ [ ds

our goals, if it would be generalized by replacing the isotro- SE|VK8|

pic electron temperature by an anisotropic ¢Ref. 15, but

this generalization presents a considerable challenge and hggd

not been done yet. The approach proposed in Ref. 28 takes (e)=(e)s=(&)e, (12)

into consideration the interplay between different degrees of

freedom and separates phonon and impurity scatterings onvehere we use the notatios=¢(k) and f(k,t) is the non-
microscopic basis. However, this method is essentiallyequilibrium distribution function driven by the electric field.
single-particle in nature and it is primarily applicable for a fo(e,Te) is the equilibrium Fermi distribution at the elevated
superlattice with low carrier concentration when electron—electron temperaturd, and fo(e,Tp) is the equilibrium
electron scattering does not play a significant role. To overFermi distribution at lattice temperatufg. (&),(e)s.,(€)e,
come these limitations, we start from a three-dimensionafnd (e), are the energies averaged over the corresponding
model of a superlattice having the novel phenomenologicatlistribution functions. The effective electron temperatilige
collision term proposed in Ref. 15. This collision term de-is determined by Eq(11). It is important to note that the
scribes scattering in terms of an improved three-channehnisotropic functiorfg(e,t) plays the role of the “isotropic”
electron relaxation process. We employ the commonlydistribution function of Ref. 16, but not the symmetric one,
understootf'!” separation of the relaxation processes intoi.e., fg(e,t)# (f(k,t)+f(—k,t))/2. A symmetric form of
elastic, inelastic and electron—electron with characteristid o(e,t) would occur if there wer@o energy and momentum
times specified for each of the three channels working imedistribution among all degrees of freedom and it would
parallel. In the first channélisually the fastest onan elec- correspond to the one-dimensional model of a superlattice
tron is subject to redistribution of the additional energy andused in Refs. 8,25.

momentum supplied by the applied electric field among its Let us summarize our generalizations and simplifications
degrees of freedom by means of elastic scattering during af the three relaxation processes:

characteristic timer;. The kinetic energy of each electronis (1) As in Ref. 16, the quasielastic electron scattering lead-
conserved during this scattering to isoenergetic surfaces, birig to the “isotropization” of the electron distribution func-
the direction of momentum is randomize@vith consequent tion is considered to be dominant. In our case, the electrons
reduction of the drift velocity. In the longer-lasting second are distributed onto correspondirfgonspherica)! isoener-
channel, the energy supplied by the external electric field igetic surfaces and the anisotropic functie,t) plays the
redistributed among all electrons due to inelastic electron—+ole of the “isotropic” distribution function of Ref. 16.
electron scattering, including Umklapp processes. As a result (2) The Brillouin minizones are narrow for superlattices,
of the Umklapp processes the Fermi distribution become$ending importance to Umklapp processes and the establish-
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ment of anundrifted Fermi distribution with an effective 1 azs(k )>
=), (18)

temperatureT,.'” This underscores the difference of our (mal(g))=<—2 >
present description from that of Ref. 27. he ok,
(3) The dynamical development of the deviation of the

A . . . _ n is the three dimensional electron densit aq)dl
electron distribution function from the “isotropic” one is de- y Tl

+ 7, + T, Lis the overall inverse electron relaxation time.

scribed by The balance equation&qgs.(15—(17)] are valid both for
9 f(k,t)—fq(e,t) homogeneous semiconductdsithout superlatticeand for
E(f(k,t)—fs(s,t))ss e (12 semiconductor superlattices of any dimensions. All terms in

these equations have clear physical meaning and allow some
i.e., by the effective relaxation time, which is, in general, generalizations, for example, the replacement of scalar relax-
dependent not only on energy but also on the electron maation times by a relaxation tens@or symmetric structures
mentum direction. This relation is the same as the one comwe consider it unnecessanit should be noted that the re-
monly used for the first term of the distribution function laxation times,7, and 7,, can be taken from independent
expansion in Legendre polynomiafsThus, in this respect, calculations usmg the actual scattering mechanisms. Such a
our description is the same as that of Ref. 16 up to this pointcalculation for one-dimensional GaAs-based superlattices
In accordance with our classification of the three relaxatiorwas done in Ref. 29, where, in particular, it was shown that

processes, we have the relaxation timesr, and 7., can be taken to be indepen-
dent of energy, if the miniband width is less than optical
1 1 1 1 phonon energy.
T 7-_1+ 7-_ee+ T, (13 In general, the set of Eq§15)—(17) is not closed because

of coupling to higher order moments of the distribution func-
(4) We describe the collision dynamics of the “isotropic” tion f(k,t). However, there are simplifications for one-,
distribution functionfy(e,t) approximately by two relax- two-, and three-dimensional superlattices with a sinusoidal

ation times,r.. and ., i.e., by the relation dispersion law, E¢(2). In these cases, symmetry dictates that
ﬁfs(s,t)) fs(e,t) —fole,Te) fs(e,t)=Fo(e,To) 1
- — - ) es=(&)e=—(8). 19
( i - - (eas=(ea)e= () (19
(14

Furthermore, the sinusoidal dispersion law provides the lin-
While this is not an exact equation fog(e,t), it is accept- ear proportionality between the effective electron mass and
able for a qualitative description. Moreover, our interest isitS energy,

not in the details of the distribution functions, but only in the

current and in the average energy. Furthermore, it is easier to

incorporate necessary corrections directly in balance equa- (m, (2) >_(__<8“>)
tions to be derived below.

The balance equations can be obtained from Egjsto  Accordingly, Eqgs.(15), (16), taken jointly with Egs.(19),
(11). For sake of simplicity we take the relaxation timas (20), form a closed set of equations. It is convenient to write
Tee, @and 7, to be energy and momentum independent. Mul- this set in complex form, introducing a dimensionless com-
tiplying Eq. (8) sequentially bye ,(k,)/dk, and bye ,(k,) plex u-component “vector” with components defined by
and integrating over first Brillouin minizone, we obtain the A2~ (z,) i (0
following equations for the current components$,(t) = o Jf“ ,
=neh Y de(k,)/k,)) and the average energiés,): “ Al2—(e4)o Joa
wherejo,=(end#)(A/2—{e,)o). The balance equation for

(20

(21)

9] “(t) e2<m’1(s)>Ea(t)— _ Jalt ), (15) d (1), equivalent to Eqs(15), (16), (19), (20), is given by
" " Ao,
d 1 S T (7 Q) ()
i)~ EaDialt) )
_ (e =(e)s (ea)=(e)e (ea)=(e)o. =nf+%vﬁ—n5;;Rw%m, (22
71 Tee Te ’

whereQ (t)=edE,(t)/%. The last term on the right-hand

(16) side of Eq.(22) describes the redistribution of electron en-
and ergy and momentum among all degrees of freedom. This
feature is absent in the single relaxation time description and

© is of crucial importance for our present considerations. For a
;_:1 (ea)s= ;_:1 (ea)e=(e), (17 one-dimensional superlatticex &€ 1), Eq.(22) is identical to
the balance equations obtained in Ref. 8. It should be noted
where that the only significant feature of the distribution functions,
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fs(e,t) andfy(e,Te), is that given by Eq(19) in regard to * _
the derivation of Eq(22) for two-, and three-dimensional v (t)=exp{—ig,sinotl= >, J,(g)e ", (28
superlattices, because of the high symmetry of the electron veTE

dispersion relation. The specific forms dig(e,t) and .00 0.=0%w is the projection of the dimensionless

fo(e,Te), beyond Eq(19), are not pertinent. A further con- field amplitude onto the&,-axis. The functions(t) repre-

sequence of this symmetry is that the inverse relaxatioréent dissipative processes, describing changes in the ampli-
times7; * and 7. are involved in Eq(22) only in the form P P ! g g P

; . . tude ofd ,(t) (deviation from the Bloch oscillation solutipn
of their sum. For bulk semiconductors having a one- a(0) ( 5

dimensional superlattice with free motion in the lateral planegzeEtg (szczittenng. They obey the following equations, based

one obtains an integrodifferential equatiéallowing only

numerical solutiohinstead of Eq(22). Such an integrodif- . _1
ferential equation was analyzed for the case of a static ele@a(l) + 7p7au(1)
tric field in Ref. 15 in detail.

y23
It is easily shown that the complex "vector” with compo- =7 1 (1) + E(Tgl_ . hx Re( > aB\pﬁ) WE(1).
nents @ ,(t) introduced above is constituted by the first I B=1
Fourier-components of distribution functioi(k,t). Using (29)
periodicity in k-space, this distribution function may be ex-
panded in gu-dimensional Fourier series, In the absence of scattering,(t)=1. The transfer from the

description in terms of the functionb ,(t) to a description
in terms of functionsa,(t) corresponds to a transformation

fk,)= ; F,expliv-kd}®,(t), 23 toanew system of coordinatd§y, oscillating in momentum
“ space together with the unscattered electron. In the system
with Fourier coefficients given by Ko, each electron is at a fixed poitly. Only scattering

changes the distribution of these points. In the case of rare
w _ collisions (w7>1), such changes are small during the period
FF(Z—) J dkfo(k)exp{—iv-kd}, (24)  of the applied field, but they can accumulate and become
™ BZ . . .. .
important over the time of a few collisions. Otherwise, the
equilibrium distribution functiongto which the electrons re-

where v—(v;) for one-dimensionaly— (v4,v,) for two- . !
dimensionaly— (vq,v,,v3) for three-dimensional superlat- Iax)_ in the gystean are modulated by the field and become
rapid functions of time, as

tices, and the integration is taken over the first Brillouin zone
(BZ). Only the first momentum harmoni¢s any direction

L) : 1t
of the distribution function, fo(S,To)Hfo(ks):fo( ko— afoﬂ(tl)dH)' (30)
fd“kf(k,t)exp{—ikad} This feature is embodied in the structure of ERQ9): the
D (1)= (25) “scattering-out” term(second term on the left-hand s)deas
f drkfo(k)expl — ik ,d} t_he usual relaxation fo_rm with the _overall inverse relaxat_ion
time due to all scattering mechanisms, and the “scattering-

) ) in” term (first term on the right-hand siglés the dynamically
contribute to the current densifft) and the electron energy m,qylated equilibrium distribution function with inverse re-

(e4) for the miniband case of Eq2). One can see that they |5y ation timer- L. The last term on the right-hand side of

are the same as those given by E2fl). Eq. (2 . h istributi ¢ )
For arbitrary time-dependence of the electric field), it d.(29), describing the redistribution of energy and momen

. ful d inaf hat i ont for th tum over the various degrees of freedom, is modulated by the
is useful to write®,,(t) in a form that is convenient for the  g|epric field twofold; once in connection with the transfor-
representation of Bloch oscillations, as

mation to the syster,, and, secondly, because the corre-
sponding equilibrium distribution functions are determined

Po(t)=a()Wu(t), (26) by the average normalized electron enefys. (21) and
(26)] which, in turn, depends on the field and time. This
where - )
average energy is involved in the last term through the rela-
. tion,
\Pa(t):ex% _I f Qa(tl)dtl} (27)
0 - - EOAR—(&g)
Re > az¥ =Re<2 P (t))=2 ——
is a solution of the homogeneous counterpart of &%) e<ﬁ=1 pop B=1 p A=1 AI2—(ep)o

associated with Bloch oscillations in the absence of scatter-
ing terms. This function describes the dynamic modulation
of the electron distribution function by the applied electric
field without scattering. In particular, for a simple harmonic  In this section, we analyze superlattice response to a high
field, E,(t) =E®coswt, we have frequency (7,>1) monochromatic field directed along the

Ill. SELF-INDUCED TRANSPARENCY
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X;-axis. Consideringa, to be slowly varying functions of
time, we average Eq(29) over an intervalAt given by
27 o<At<T,, obtaining an algebraic system of equations,

for which the stationary solution is
- Au?3o(91)
1_ 1
u[1+w—1m-B(gl)—w—lxl—x)%%(gl)( )
31

and
N #B(91)+(1-0)J5(gy)
14+ (p—1)N]-B(gy) — (r—1)(1-M)233(gy)
a*l, (32
where\ = 7,/7, and
(33

1-X
B(g)=1—ﬂ[1+30(29)]-

In the derivation of Eqs(31) and(32), we used the relations,

(RE(W 4(1)?=3[1+J0(294)],
(349

Vo (1) =J0(9a),
where the overhead bar indicates averaging over the period
of the impressed electric field.

According to Egs.(21),(26),(28),(31), and (32), the cur-
rent, energy dissipation rat€, and ratio between the trans-
verse and longitudinal electron heatin§y,are given by

T1=i1/jo1=assin(gssin(wt))+O E’)’ (39

QEHMZQO(l_al‘JO(gl))r
_M(A/2_<8a>0)n
o A (u-D7y (36)

and
(r=D((ee)—(€a)o) (1=N)(n—1)
= — = . (37
(e1)—(e1)o 1+ Mp—1)

Figure 1 depicts the functioa,; involved in the expres-
sion for the current, and also sho@2Q,, as functions ofj

for a three-dimensional superlattica € 3) with A=1, 0.1,

PHYSICAL REVIEW B66, 045319 (2002

w et

©)

0.0,

' 4
g

FIG. 1. Normalizeda) current andb) energy dissipation rate as

functions ofg=eEd% w.

the one-dimensional model of a superlatficd/ith increas-
ing 7, while holding 7, fixed, the current in the superlattice
increases, the dissipation decreases, and the amplitude of
their modulation increases. As in the case of the usual single
r-approximation’® the three-dimensional superlattice cur-

rent vanishes at fields such thiig{g;) =0 [with an accuracy
of (wrp)*l], where dissipation is maximal. When elastic
collisions dominate over inelastic scattering « 7,,) there is

a rapid redistribution of energy among the electron degrees
of freedom and, consequently, the current decreases sharply
for g,=1. This is caused by a strong expansion of the dis-
tribution function in momentum space, due to both longitu-
dinal and transverse heating.

To examine the peculiarities of self-induced transparency
in the case of a two-dimensional superlattice, we consider an
electric field of the form,

E=(E1x;+E5X,)coq wt).

In a manner similar to that of the foregoing analysis, we

(38)

0.01. In the case,=7,(\=1), we obtaina;=Jy(g;) and

expressiong35) and (36) coincide with those obtained for obtain the components of the dissipative function as

4N(Jo(91,2B(g1,0) +(

1_)\)30(91,2)(30(91+92)+Jo(91_92)))' (39)

ag o=

16B(91)B(g,) —

(1-N)2(Jp(91+92) +Jo(91—72))?
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25/\ o <81(2)>—§v<82(1)>—§ > (e201)0
8 23| \/ . % 47\\13(92(1))
! P 4+ (1-M)(1+J3o(292(1))
o 6

4t and

of _nA—(e)o) [, 2035(92(1))
Q= 4+ (- N)(1+3o(280m) )

Qb (44

0 2 4 6 8 10
where the first of the subscripted indices is related to the
9, horizontal curves and the second subscripted ifgegaren-

FIG. 2. Loci for one-dimensional self-induced transparencies inthese}us relqted to the Vertlca}l'curves. At points of intersec-
directionsx, (horizontal curvesandx, (vertical curves The inset 10", determlned_by the conditiady(g;) =Jo(92) =0, there
exhibits a magnification of the locus for one-dimensional self-iIS complete self-induced transparency. In such cases, the av-
induced transparency in directior, and the locus for one- €rage electron energies and the dissipation rate are maximal

dimensional dynamic localization in this directiémorizontal ling. and are given by

To obta_in Eqg. (39, we used the relation$34) and the <81>:<82>:%' (45)
expression
) and
ReW (t)ReW,(t) =35(Jo(91+092) + (91— 92))- 40
4 n(A—(e)o)
Q: 7-—0 (46)
The corresponding current and energy dissipation rate are €
given by The dissipation rate in E@46) is larger than that in Eq44),
and is also larger than the maximum dissipation rate for the
j1(t)=a; »Sin(g; »Sinwt), (41) fields oriented strictly along the crystal axes, the latter being
' ' ' given by Eq.(36) as
e (A= (e)o
n(A—(e
Q=——F—". (47)
~ N(A=(g)o) 1 TeT Tp

. 1- 5(3130(91)"‘3230(92)) . (42 _ o o
e It is apparent that, within the three-relaxation-time de-
scription presently under consideration, complete self-

It is clear from Eqs(39) and (41) that the current along induced transparency and dynamic localization occur at the
each superlattice axis depends on all field projections, igame fields, whereas one-dimensional self-induced transpar-
contrast to the results of Ref. 30. In general, the current ogncy and dynamic localization arise at different fields. In
each excited harmonic is not parallel or antiparallel to thewo-dimensional superlattices complete dynamic localization
resultant electric field and has its own e”lptIC polarization.and self-induced transparency occur at the discrete amp“tude
There are exceptions if the electric field is in the lattice di-values and applied electric field directions determined by the
rections[10] or [11], in which case the field and excited relations,
current are parallel.

Furthermore, it is evident from Eq$39) and (41), that o ———s _—
both dynamic localization and self-induced transparency can Emn=ggVémtén  ema=arctan&n/&n), (49
be either one-dimensional or complete for two-dimensional
superlattices. In Fig. 2 we show the locii of one-dimensionalwhere ¢, , is the angle of field orientation with respect to
self-induced transparencies occuring in directiepshori-  the superlattice crystal axis arg, is the mth-order root of
zontal curvesandx, (vertical curvey, respectively, as func- the zeroth-order Bessel function. This can be generalized
tions of g, andg,. At fields corresponding to these curves, easily to the three-dimensional case.
the current components vani$h,(t)~0 andj,(t)=~0, re- To develop a physical understanding of one-dimensional
spectivelyl. These dependencies exhibit oscillations aroundand complete self-induced transparencies, we examine the
the lineJy(g,,2) =0 (see Fig. 2 insef which is the condition evolution of the electron distribution in th€y-system. One
for dynamic localization to occur. The average energies andan see from Eq29) and its following discussion that, un-
the dissipation rate for these values of the fields are given bger the influence of the field and scattering, the number of
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electrons entering the current componentsdpy (includ- It should be emphasized that, although both self-induced
ing redistribution among themaveraged over the field pe- transparency and dynamic localization occur in a superlattice
riod, P, ,, is given by due to the narrowness of its Brillouin minizones, the physical

origins of these effects are completely different. Dynamic
localization arises when the zeroth harmonic of nonlinear
P, .— _1\If—t)+£( 1 _electron oscillations, modu_lated by B_ragg ref_lections, van-
12=Te WO+ o ishes. In contrast to dynamic localization, self-induced trans-
parency is a result of the joint action of Bragg reflections of
X (ay AReW; A1))*+ay ReW () ReW,(t)). miniband electrons and collisions creating strongly modu-
(49) lated electron distributions in which the first harmonics are
absent for discrete values of the electric field amplitudes
) ] o . the limit 7,—). As a result, dynamic localization appears
If the dynamic modulation of the equilibrium distribution jymediately after turn-on of electric field, and self-induced
function is such that¥y(t)="V,(t)=0, then the average transparency occurs only after a time of ordermgf The
number of electrons entering the current components vartonditions for self-induced transparency depend on the scat-
ishes(there is only electron redistribution among the compo-tering mechanisms and, in general, it takes place even with-
nentg, and, therefore, the current components are eventuallyyt dynamic localization. It can be shown that states of self-
completely eliminated from the nonequlibrium distribution induced transparency are not stable with respect to the
function by “scattering-out” over a time of order,. It  generation of static and hf fieldéaving frequencies not
should be noted that foW,(t)=W,(t)=0, the set of Eq. equal tow;)%! and, therefore, experimental studies should be
(29) averaged over the field period becomes homogeneoyserformed at low electron concentrations and with the use of
and its steady-state solution is zero. In this case electropulsed electric fields.
heating is maximal due to complete dynamic localization.
Thus, after a time of order,, the superlattice becomes |, cURRENT MODULATION BY ORTHOGONAL FIELDS
transparent, i.e., behaves like a dielectric having the permit-
tivity of the crystal lattice and relatively small, but resonant, In this section we examine superlattice behavior in the
absorption. This is to say that we have complete self-inducegresence of a high frequency biharmonic electric field given
transparency. It should be emphasized that, at arbitrary fieldy
the absorption rate stabilizes after timeg, i.e., later than the
vanishing of the current. E=E;x; cof wit— 8;) + ExXy cod wot—8,).  (50)

If dynamic localization takes place in only one of the two
crystal directions, for example, if110], i.e., ReW(t)
=Jo(g1)=0, but ReWw,(t)=Jy(g,)#0, then the electrons
only enter the current componedt,(t) due to dynamic
modulation of the equilibrium distribution function. How-

In this case the field components have different frequencies
and are directed along different crystal axes taken to be or-
thogonal(the case of parallel fields was analyzed in Ref. 32
in a singler-approximation. We are interested to explore the
Qecurrence of current amplitude modulation by a high fre-
Suency electric field orthogonal to the current direction. This
is determined by the redistribution of energy and momentum
among the various degrees of freedom. We assume that the
frequencies of the most important electric field harmonics
are well separated, i.e.,

among the degrees of freedom, electrons also flow int
®,(t). Therefore, even aly(g,)=0 both P, and j, are
nonzero. The currerjt; vanishes only if the components of
the flowP, causeda) by direct dynamical modulation of the
distribution function, andb) by redistribution via scattering,
compensate each other in this direction. However, this occurs
at Jo(g4) #0, i.e., when dynamic localization in this direc-
tion is absent, as reflected in E@®2) and Fig. 2. Further- ysing Eq.(34) and the expression

more, it should be noted that the time-averaged one-

dimensional energy ia/2 for each electron when dynamic _

localization occurs, but this is valid only for both time and ReWo(DREW 5(1)=Jo(9a)do(Gp),  a# B, (52

ensemble averaged energy in the case of one-dimensionge obtain the following relations for current components and

|n1w1—n2w2|rp> 1, n1’2= 1,2, P (51)

self-induced transparency. averaged energies:
One can easily see that if the relaxation timgsand 7,
are energy dependef(riot constant, then the first harmonics j1o=a1 A01,05)SIN(g1 »SIN( w1 t— 51 2)), (53

of the distribution(23) become coupled to higher harmonics.

In this case self-induced transparency does not occur eveand

when there is complete dynamic localization. This was dem-

onstrated in Ref. 7 for a one-dimensional superlattice. How- — A

ever, as mentioned above, for an appropriate set of superlat-{€1.2 ~(£1,20= <§_<81,2>o) (1-a;291,92)J0(91,2)),

tice parameters, these relaxation times can be considered (54)
energy-independefit and, therefore, even the quantitative
results discussed above have a wide range of validity. where, in the case of a two-dimensional superlattice,
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4NJo(91.2)(2B(gp0) +(1—N)J5(921)

a1A91.92)= , (55)

P 4B(91)B(92) — (1-1)233(01) I3(92)

whereas, for a three-dimensional superlattice we have

9NJo(91,9(3B(02,) + (1= M) JI5(92)

a;491.92)= > o2 5 > > . (56)
9(2+X)B(g91)B(92) = (1—N)*(335(91)B(g2) +3J5(92)B(g1) +(4—N)J5(91)I5(92))
|

In Fig. 3@ we exhibit the functionsa;*(0.05g,)  =2.405), corresponding to the cureg *(g;,2.405) of Fig.

=a,(g,=0.05g,=0)/a,;(g,;=0.05g,) and a; *(g,,2.405) 3(a), are shown in Fig. ®).

=a,(9;,9,=0)/a;(g;,g,= 2.405) for)\zo_]_]: The former 'Olne can see from Eq55), (56) ar_1d Figs. &), 3(b), that
function describes the modulation due to the electric figld it is impossible for the orthogonal field to cause a complete
(orthogonal toE;) of current driven by a weak electric field vanishing of polarization, and, therefoneducedtranspar-
E,; whereas the latter function describes the same curreff"cy does not occur. However, the modulation of polariza-

modulation in the presence of an arbitrary fidd under tion by the orthogonal field can be significant, especially for
conditions of dynamic localization in the direction SMall\. The maximum decrease of polarization comes about

%5(Jo(g,) =0). The functionsa,(g;,9,=0) anday(g;,9s wnh th_e occurrence of one-d!mensmnal dynamic eleqtron lo-
calization in the transverse directiodiy(g,) =0). In particu-
0 2 4 6 8 lar, for E;—0, it decreases by the factor {Iu
4 } y ' ' ' —1)N)/uN. The reason for this is that, under condition of
1 dynamic localization, electron heating is maximal and the
‘| - distribution function widens in all directions in momentum
' d,(0.05,g) space due to energy and momentum redistribution among all
‘|
1

1 degrees of freedom, which always leads to decreased current.
As in the case of self-induced transparency, for specific
! ratios of field amplitudes and frequencies determined by the
conditions Jo(g1) =Jo(g2) =0, complete induced superlat-
21 [ @' (g,2.405) 1 tice transparency takes place. In this case a two-dimensional
A e D superlattice is transparent to an arbitrarily polarized third
weak signal with frequencys (well separated from the fre-
(@) quencigmlwli UPICPY wheren; andn, are integerg '
Similar to self-induced transparency, current modulation
0 2 4 6 8 by an orthogonal field and induced transparency o¢can-
81,2 ish) in a time of order ofr, and they become stationary in a
time of order of 7, after turn-on(turn-off) of the electric
field, i.e., they are displaced in time from dynamic localiza-
®) ton. - .
0.8 To establish the frequency limitations of the phenomena
a,(g,0) we have explored, we carried out a numerical analysis of Eq.
0.6 - / (22) with finite values ofr, andr, . The results are shown in
Fig. 4, where the dashed lines represent the above-described

0.4 2(g,2.405) analytical calculations for the functi0r5q§1(0.05gz) (upper
2.

8 curve andafl(gl,2.405) (lower curve, respectively. The
0.24 solid lines represent our numerical determinations of the am-
N plitudes of the first current harmonié¢thick curves and the

- maximal currentgthin curves at o7,=1 (maintainingw 7,

>1). One can see that the dependencies presented in Figs.
-0.2 . . r r 3(a) and 3b) change only slightly with decreasing .

1‘0 Il Il 1 1

0.0 1

& V. SUMMARY

FIG. 3. (a) Current modulation by orthogonal fields as described |n summary, we have applied the Boltzmann equation
by a; '(0.05g,) anda; *(g;,2.405)(defined in text (b) The func-  with an improved three-relaxation-time collision term to the
tions a;(g;,9,=0) anda;(g,,9,=2.405) employed in the deter- analysis of self-induced and induced transparencies in semi-
mination ofa; (g,,2.405) of Fig. 8a). conductor superlattices. The three relaxation times include
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(for one-, two-, and three-dimensional superlatticétow-
5 o ever, the results obtained here are valid qualitatively for bulk
/_\//" semiconductors with a one-dimensional superlattice, which
o, —— are currently available for experimentation. Furthermore, we
TP iy > . PR TS have shown that self-induced transparency and dynamic lo-
o \ I/ ~47 calization are different phenomena with different physical
1Y
g

A\ origins, displaced in time from each other, and, in general,
\ they arise at different electric fields. Moreover, we have
found that the redistribution of energy and momentum
Y ARNIN N S S among the various degrees of freedom is of crucial impor-
R e tance in two-dimensional and three-dimensional superlattice
1 transport and optical properties. Transverse electron heating
0 2 4 6 8 10 drastically changes the conditions for self-induced transpar-
90 ency, and this effect facilitates current modulation by an ap-
plied perpendicular high-frequency electric field.

FIG. 4. Amplitude ofj/j, as a function of field §; ()).
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