
PHYSICAL REVIEW B 66, 045310 ~2002!
Self-consistent theory of current and voltage noise in multimode ballistic conductors

O. M. Bulashenko* and J. M. Rubı´
Departament de Fı´sica Fonamental, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain

~Received 12 January 2002; published 18 July 2002!

Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investi-
gated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differ-
ential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function
and correlation properties of injected electrons. The analytical results have been obtained for a wide range of
biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-
dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested
in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be
less than in equilibrium.
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I. INTRODUCTION

Recently, measurements of nonequilibrium noise h
emerged as a fundamental tool to obtain information on
transport properties and interactions among carriers in m
scopic systems.1–3 Shot-noise suppression in ballistic co
ductors caused by Fermi correlations has been studied e
sively both theoretically4–6 and experimentally.7–10 Within
the scattering approach, it is usually assumed that the ba
tic ~phase-coherent! conductor is attached to reservoirs~ter-
minals or leads! with different chemical potentials. In thi
approach, the mean current in a two-terminal conducto
given by

I 5
q

2p\ (
n
E d« Tn~«!@ f L~«!2 f R~«!#, ~1!

whereq is the electron charge,f L,R(«) the energy distribu-
tion functions at the left~L! and right~R! reservoirs, andTn
the transmission probabilities associated withn transverse
quantum modes~channels!.3 The corresponding current
noise power at zero-frequency has been obtained in
form4,5 ~also see Refs. 3, 6, and 11!

SI5
q2

p\ (
n
E d«$Tn~«!@ f L~12 f L!1 f R~12 f R!#

1Tn~«!@12Tn~«!#~ f L2 f R!2%. ~2!

In Eq. ~2! the noise is a combination of the thermal emiss
noise of the reservoirs and of the partition noise appea
due to the current partitioning between the incoming a
outgoing states@scattering on tunneling barrier~s!, elastic
scatterer~s!, point contact~s!, etc.#. Although in some limits
the well-known noise terms can be identified~associated
with thermal noise or shot noise!, they cannot be separated
general. Out of equilibrium, the noise can manifest itself i
different way, depending on the conditions. At low biasesU,
Eq. ~2! gives thepartition shot noise—the excess noise lin
ear in current~bias!, which does not vanish at zero temper
ture. It is suppressed below the Poisson 2qI value approxi-
mately by the factor3 (nTn(12Tn)/(nTn . This type of
excess noise appears whenever there is a partitioning of
0163-1829/2002/66~4!/045310~16!/$20.00 66 0453
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rent (TnÞ0;1). It vanishes for fully ballistic systems fo
which there is no partitioning (Tn51) ~see experimenta
evidence7–10!. In the absence of partitioning, the excess no
is in general no longer linear in the current. The inhere
randomness in the emission of carriers from the reservoir
at the origin of this type of nonequilibrium noise. Presum
ably, it is more pronounced for sufficiently high biases wh
f R! f L and the transmission dominates in only one directi
In this case, noise formula~2! is simplified to5

SI5
q2

p\ (
n*

E f L~12 f L!d«, ~3!

where the summation is taken for open channels.12 For low
electron densities the occupation numbers are small,f L!1,
and Eq. ~3! leads to the Schottky formulaSI
5(q2/p\)(n* * f Ld«52qIem, where I em is the emission
current from the reservoir~vacuum-tube-like shot noise!. In
this low-density limit, shot noise is Poissonian since t
transmission of carriers is uncorrelated. The factor (12 f L)
in Eq. ~3! introduces the Fermi correlations among carrie
when the occupation numbers are not small in respect t
This leads to the suppressed value of the shot noise. Note
difference between the partition shot noise mentioned ear
and theemission shot noisegiven by Eq.~3!. The former
persists at zero temperature, since it reflects the granulari
charge transmission manifested by partitioning, while the
ter vanishes atT→0, because its origin is the thermal fluc
tuations of the occupation numbers in the reservoirs. Inde
at equilibrium the sum of two opposite shot-noise terms@Eq.
~3!# gives the Nyquist formula.13

It should be stressed that both Eqs.~2! and ~3! are not
complete, since they ignore Coulomb interactions. The e
trons are charged entities and, while moving along the c
ductor, they affect the electric potential giving rise
inhomogeneity.14 The self-consistent coupling between th
nonhomogeneous electron density and potential landsca
very important to adequately describe the transport and n
under nonlinear far-from-equilibrium conditions.15,16 An in-
teresting question is how the self-consistency may affect
current and noise formulas~1!–~3!? First, the transmission
probabilitiesTn for both current and noise become functio
©2002 The American Physical Society10-1
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als of thetime-averagedself-consistent potential profilew̄.17

Second, in the current-noise formulas~2! and ~3!, which re-
flect only the injected current fluctuationsdI in j , the addi-
tional terms should appear caused by the current fluctuat
dI ind inducedby thefluctuationsof the potentialdw. Finding
the fluctuationsdw is a complicated problem in genera
since they are self-consistently linked to the fluctuations
the occupation numbers along the conductor.~The latter may
be expressed through the fluctuations of the occupation n
bers at the terminals, since the system is ballistic.18! As a
result of this self-consistent coupling, the long-range C
lomb correlations appear, which may result in the no
suppression.6,19,20It is believed, however, that such Coulom
correlations need to be taken into account for the descrip
of systems in time-dependent external fields, or fini
frequency fluctuation spectra in stationary fields, while
zero-frequency fluctuations in stationary fields are not
fected by them.3 We show that this is not always true. In th
example we address in this paper, the additional terms
duced by the self-consistent field are of the order of the fl
tuations injected from the leads and cannot be neglected
in the zero-frequency limit at time-independent bias
Moreover, they can almost completely compensate the
jected fluctuations up to an arbitrarily small value. At the
same time, the gauge invariance required for the charge
servation is fulfilled. We also found that this Coulomb su
pression of noise is manifested in the negative excess vol
noise. Current or voltage fluctuations in equilibrium, d
scribed by the fluctuation-dissipation theorem, usually
crease when an external electric field is applied. We have
interesting example when an interacting~via Coulomb
forces! electron system is less noisy at far-from-equilibriu
conditions than in equilibrium. For noninteracting system
such examples have been given by Lesovik and Loosen21

To support our statement we present a theory of cur
and voltage fluctuations in a ballistic two-terminal conduc
in a self-consistent field~Fig. 1!. The calculation of the self-
consistent fluctuating field is, in general, a multidimensio
problem which includes the electrostatic environment. F
simplicity, we consider rather thick samples that allow us
use one-dimensional plane geometry for electrostatics.
the other hand, for wide conductors the number of trans
sal modes is large and the semiclassical treatment is s
cient. By assuming that there is no current partitioning (Tn
51 for all the transmitting modes!, we focus mainly on the

FIG. 1. Energy diagram determining the potential-barrier sh
for a ballistic two-terminal conductor at equilibrium and under a
plied biasU. Barrier heightFb , as seen from the left lead, de
creases with bias. The filled area illustrates the nonhomogen
electron-density distribution.
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nonequilibrium noise caused by thermal emission from
reservoirs under the action of the long-range Coulomb c
relations inside the ballistic region, rather than on the pa
tion shot noise. It should be noted that the previous theo
ical studies have been devoted to ballistic conductors wit
small number of quantum modes~quantum point contacts!
with the Fermi suppression of the partition shot noise~Cou-
lomb correlations have been ignored!.4–6,22

The main results of the present investigation are as
lows: We have obtained complete analytical expressions
the steady-state spatial profiles~carrier density, self-
consistent field!, mean current, and differential conductanc
as well as the current and voltage noise powers in balli
multimode conductors. The analytical results have been
tained for a wide range of biases: from equilibrium to hi
values beyond the linear-response regime under the
consistent-field conditions. We assume in our derivations
bitrary distribution functions and correlation properties
injected electrons in order to generalize the model to
practically important cases of nanoscale devices with n
equilibrium electron injection, like in a resonant-tunnelin
diode emitter, superlattice emitter, hot-electron emitter, e
~see, e.g., Refs. 23–26!. The particular case of a three
dimensional~3D! Fermi-Dirac injection has also been a
dressed. The obtained results clearly demonstrate that
the current and voltage noise can be substantially redu
owing to the long-range Coulomb interactions. This resul
very encouraging from the point of view of applications.

The paper is organized as follows. In Sec. II we introdu
the basic equations describing the space-charge-lim
~SCL! ballistic transport. In Sec. III the self-consiste
steady-state spatial profiles for the electron density, elec
field, and potential are found for an arbitrary injection dist
bution. The mean current and conductance are obtaine
Sec. IV. Section V describes a general formula which rela
both current and voltage fluctuations with the fluctuations
the occupation numbers in the leads. The current no
power, suppressed by interactions, is compared in Sec
with the case when interactions are disregarded. The C
lomb and Fermi noise-suppression factors are discusse
Secs. VII and VIII, respectively, whereas the noise tempe
ture is given in Sec. IX. The voltage noise power unde
fixed-current conditions is derived in Sec. X. The impleme
tation of the results for a GaAs ballistic conductor is pr
sented in Sec. XI. Finally, Sec. XII summarizes the ma
contributions of the paper, whereas in the Appendixes
present mathematical details concerning some derivation

II. BASIC EQUATIONS

We consider a semiconductor ballistic sample attache
plane-parallel leads~Fig. 1!. In a semiclassical framework
the electron occupation numbersf̃ (x,k,t) inside the ballistic
conductor are determined by the electron flows from the
and right leads. The distribution of carriers is nonhomog
neous along the conductor: their concentration is higher n
the leads and lower in the middle of the sample. The in
mogeneity of the space charge disturbs the electrostatic
tential in such a way that the self-consistent built-in fie
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SELF-CONSISTENT THEORY OF CURRENT AND . . . PHYSICAL REVIEW B66, 045310 ~2002!
determines the potential barrier, at which electrons are ei
reflected or transmitted depending on their energy~Fig. 1!.
We neglect tunneling and quantum reflection, i.e., the tra
mission probability is 1 if the electron energy is higher th
the barrier height, and it is 0 in the opposite case. Out
equilibrium, the barrier height is different for the left an
right lead electrons. If for the left electrons the barrier heig
is Fb , for the right electrons the barrier height isFb1qU
~Fig. 1!. This leads to an asymmetry in their contribution
the current: as the bias is increased, the barrier for the
electrons progressively decreases and the current from
left lead enhances, whereas the barrier for the right elect
increases and the current from the right lead decreases
appearing at all at high biases.

The occupation numbers are described by the Vla
equation ~collisionless Boltzmann equation with a se
consistent field!18,27

S ]

]t
1

\kx

m

]

]x
1q

dw̃

dx

]

\]kx
D f̃ ~x,k,t !50, ~4!

where m is the electron effective mass,k5(kx ,k'), and
w̃(x,t) is the self-consistent electric potential determined
the Poisson equation

]2w̃

]x2
5

q

kE dk

~2p!d
f̃ ~x,k,t !. ~5!

Herek is the dielectric permittivity andd is the dimension of
a momentum space~the spin variable is neglected!. Since
carriers move without collisions, the only source of no
arises from the random injection of carriers from the lea
Thus the boundary conditions at the left~L! and right ~R!
leads are:

f̃ ~0,k,t !ukx.05 f L~k!1d f L~k,t !,

f̃ ~ l ,k,t !ukx,05 f R~k!1d f R~k,t !,

w̃~ l ,t !2w̃~0,t !5Ũ~ t !, ~6!

whered f L,R are the stochastic forces inside the leads w
zero average and given correlation properties, andŨ is the
applied bias betweenx50 andx5 l ~the potential drop in-
side the leads is neglected!. As a consequence of stochas
injection, the occupation numbersf̃ (x,k,t)5 f (x,k)
1d f (x,k,t) and hence the potentialw̃(x,t)5w(x)
1dw(x,t) fluctuate in time around their time-averaged v
ues.

The leads are assumed to be completely absorptive,
the transverse electron momenta are conserved. Thus,
can make summing up over the transversal states~the sum-
mation can be replaced by integration due to the assump
of a large number of modes! and introduce for each longitu
dinal energy« the ~fluctuating! occupation factor at a cros
sectionx:
04531
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ñ~x,«,t !5E
0

`

f̃ ~x,«,«' ,t !n'd«' , ~7!

where«5\2kx
2/(2m), «'5\2k'

2 /(2m), andn' is the den-
sity of transverse modes (n'5m/2p\2 for the 3D case!. The
number of occupied transversal modes isN'5nA, whereA
is the cross-sectional area. In the semiclassical descrip
applied here for a thick conductor, the number of the oc
pied transversal modes is assumed to be large,N'@1.

III. SELF-CONSISTENT STEADY-STATE SPATIAL
PROFILES

It is advantageous to introduce the mean total longitudi
energyE as a sum of the kinetic energy« and the potential
energy@2F(x)#:

E5«2F~x!. ~8!

We shall count off the potential energy from the barrier to
F(x)[qw(x)2qw(xb). Therefore, at the barrier positionx
5xb , we obtainE50 for electrons having the injection ki
netic energy equal to the barrier height~for both leads!. The
boundary values for the potential energy are expres
through the barrier heightqUb and the applied biasU as
FL[F(0)5qUb , and FR[F( l )5FL1qU ~Fig. 2!. The
solution of Eq.~4! for the stationary case (]/]t50) gives,
after integration over the transversal states, the electron
sity at any section of the conductor in terms of the poten
F,18,27

N~F!5E
0

`

@nL~E1FL!1nR~E1FR!#n~E1F!dE

12E
2F

0

@u~2x!nL~E1FL!

1u~x!nR~E1FR!#n~E1F!dE, ~9!

where nL,R(E)5*0
` f L,R(E,«')n'd«' are the occupation

factors at the leads,n(E)51/@2p\v(E)# the density of
states, andv5A2E/m the velocity. The first integral in Eq
~9! corresponds to the electrons transmitted over the ba

FIG. 2. Potential-energy profile for a ballistic space-charg
limited conductor. Electrons with energiesE.0 pass over the bar
rier, while those withE,0 are reflected back to the leads. Sha
owed regions illustrate the energy distributions of the occupa
factors at the leads.
0-3
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(E.0), while the second integral is referred to the reflec
carriers (2F,E,0). The latter term is doubled, since fo
each energy there are two states with opposite momen
kx and 2kx . Finally, u(x) with x5x2xb is the Heaviside
function that distinguishes two classes of the reflected ca
ers: those at the left of the barrier (x,0) originated from the
left lead, and those at the right (x.0) coming from the right
lead.

The electron density@Eq. ~9!# can now be substituted int
-
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d

m:

i-

the Poisson equationd2F/dx25(q2/k)N(F) to find the
self-consistent potentialF. The first integration gives the
electric-field distribution

E~F!52
1

q

dF

dx
52sgn~x!A2

k
Ah~F!, ~10!

where
h~F!5E
0

F

N~F̃ !dF̃5
m

2p\ H E
0

`

@nL~E1FL!1nR~E1FR!#@v~E1F!2v~E!#dE

12E
2F

0

@u~2x!nL~E1FL!1u~x!nR~E1FR!#v~E1F!dEJ . ~11!
in

ect

the

y-

we
cter-

c-
the
Integrating Eq.~10!, one obtains the distribution of the po
tential for both regionsx,0 andx.0 in an implicit form

qA2

k
x52sgn~x!E

0

F dF̃

Ah~F̃ !
. ~12!

Matching the two branches atx50 yields

qlA2

k
5E

0

FL dF

Ah2~F!
1E

0

FR dF

Ah1~F!
, ~13!

with h2[h(x,0) andh1[h(x.0). Equation~13! relates
three important parameters: the self-consistent barrier he
Ub , the applied biasU, and the length of the conductorl.
Given any two of them, the third one can be calculate28

from Eq. ~13!. In Ref. 18 a similar expression was obtain
for the Maxwell-Boltzmann injection distribution. Here w
have generalized it to the case of an arbitrary injection d
tribution profilesnL(E) andnR(E) at the leads. It should be
noted that in Eq.~13! the dependence on bias enters not o
through the upper limits of the integrals, but also through
functionsh6 .

If we assume that electrons inside the leads obey the e
librium Fermi-Dirac~FD! distributions~the usual assumption
in other works! from Eq. ~7! one obtains the occupatio
numbers

nL,R~«!5
mkBT

2p\2
ln$11exp@~«F2«!/kBT#%, ~14!

where«F is the Fermi energy at the lead andT is the tem-
perature. Thus, for the FD case, the steady-state spatial
files of the potential, electric field, and electron density
determined through Eqs.~9!–~13! by making use of the
distributions

nL~E1FL!5
N
jA

F0~a2E/kBT!,
ht

-

y
e

ui-

ro-
e

nR~E1FR!5
N
jA

F0@a2~E1qU!/kBT#, ~15!

whereN5(kF
2A/4p) is the number of transversal modes

the degenerate zero-temperature limit,j5«F /kBT is the re-
duced Fermi energy,a5(«F2FL)/kBT is the parameter
characterizing the position of the Fermi energy with resp
to the potential barrier, andFk is the Fermi-Dirac integral of
index k.27

IV. MEAN CURRENT AND CONDUCTANCE

The mean ballistic current is found as an integral over
occupation numbers for the transmitted (E.0) carriers from
both leads:

I 5
qA

2p\E0

`

@nL~E1FL!2nR~E1FR!#dE. ~16!

It is convenient for future analysis to introduce the energ
resolved injection currents

I L,R~E!5
qA

2p\
nL,R~E!. ~17!

By this definition, the mean current is

I 5E
0

`

@ I L~E1FL!2I R~E1FR!#dE. ~18!

Having found the barrier heightFL from Eq.~13!, this equa-
tion determines the current-voltage characteristics. Since
have not assumed that the bias must be small, this chara
istics is nonlinear in bias in a general case.

For the FD case, Eq.~18! reduces to

I 5
q

2p\
N kBT

j
@F1~a!2F1~a2V!#, ~19!

where we have denoted the dimensionless biasV
5qU/(kBT). It is seen that under the ballistic SCL condu
tion, the current is determined by the relative positions of
0-4
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SELF-CONSISTENT THEORY OF CURRENT AND . . . PHYSICAL REVIEW B66, 045310 ~2002!
Fermi energies at the leads and the barrier top through th
rametersa andV. This is in contrast to the case of diffusiv
conductors, in which the current is determined by the sc
tering strength.

The differential conductanceG5dI/dU is obtained from
Eq. ~16! as

G5
q2

2p\
AH nR~FR!2

dUb

dU
@nL~FL!2nR~FR!#J .

~20!

The derivativedUb /dU is calculated in Appendix A. With
its help the formula for the conductance becomes

G5
q2

2p\
AFnL~FL!

DR

D
1nR~FR!

DL

D G . ~21!

It is seen that the conductance is a sum of two contributi
corresponding to the left and right leads. Each of th
is a product of the conductance unitG05q2/(2p\),
the number of the transversal modes for the inject
energy corresponding to the barrier top, and some Coulo
interaction factors determined throughDL,R given in
Appendix A. These factors depend on the whole elect
system and cannot be separated for the left and right
electrons.

At small biases close to equilibrium, by assuming iden
cal leads~e.g., FD distributions!, we obtainDL,R'D/2. For
this case the interaction factors vanish, and the conducta
reduces to the value given by the multichannel Landa
formula

Geq'
q2

2p\
N'~FL

0!, ~22!

whereN'(FL
0)5AnL(FL

0) is the number of open modes
the barrier energy. Under this small-bias condition,
current-voltage characteristic is linear:I'GeqU. Equation
~21! may be viewed as the extension of the Landauer
mula for the conductance to far-from-equilibrium conditio
for interacting electrons in a SCL ballistic conductor.

In the opposite limit of high biasesUb!U,Ucr , where
Ucr is the critical bias under which the barrier vanishes,
asymptotic formula for the current is27

I A'I ChildF 11
3

AFR

E
0

`

I L~E1FL!AEdE

E
0

`

I L~E1FL!dE
G , ~23!

where the leading-order term is the Child current

I Child5
4

9
kAA2

m

FR
3/2

q l2
. ~24!

The main term}U3/2 is independent of the injection, whil
the second-order term}U contains information on the injec
tion occupation numbers. Equation~23! for the FD case was
presented in Ref. 29.
04531
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The asymptotic behavior of the conductance at high
ases is obtained from Eq.~23!

GA5
3

2

qIChild

FR F 11
2

AFR

E
0

`

I L~E1FL!AEdE

E
0

`

I L~E1FL!dE
G ,

~25!

giving the leading-order termGA'(3/2)(I Child /U);AU for
an arbitrary injection. For the FD case, Eq.~25! leads to

GA5
3

2

I Child

U F11ApkBT

qU

F3/2~a!

F1~a!
G , ~26!

V. SELF-CONSISTENT CURRENT AND VOLTAGE
FLUCTUATIONS. GENERAL FORMULAS

According to the definition of the potential energy in Se
III, the potential fluctuations at any pointx are given by
dFx5qdw(x)2qdw(xb). In the nonstationary frame fixed
to the barrier top, the fluctuations at the barrier position
zero, dFxb

50, whereas at the leads they are:dF0[dFL

anddF l[dFR5dFL1qdU, wheredU is the fluctuation of
the applied bias.

The current fluctuation is obtained by integrating over t
energy the fluctuation of the occupation factordn(E) found
from a linearization of Eq.~4! around the mean values.27 One
obtains

dI 5E
0

`

@dI L~E1FL!2dI R~E1FR!#dE

2I L~FL!dFL1I R~FR!dFR . ~27!

where dI L,R(E) are the energy-resolved injection-curre
fluctuations from each lead. In Eq.~27!, only the low-
frequency current fluctuations are considered, i.e., the
quencies are below the inverse electron transit time betw
the leads and the displacement current is neglected. The
integral term is standard, and corresponds to the injec
current fluctuationdI in j . The last two terms are the fluctua
tions induced by the self-consistent potential fluctuatio
that give rise to the long-range Coulomb correlations.27 To
find those terms, we need to obtaindFL or, equivalently, the
self-consistent fluctuations of the barrier height in terms
the injected fluctuationsdI L,R by solving the Poisson equa
tion. This has been done in the Appendix B. The result is
relation

dI 2GdU5E
2FL

`

gL~E!dI L~E1FL!dE

1E
2FR

`

gR~E!dI R~E1FR!dE, ~28!

whereG is the differential conductance@Eq. ~21!#, and the
functionsgL,R(E) are determined by
0-5
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gL~E!55 22CDE
2E

FLv~E1F!

h2
3/2

dF, 2FL,E,0

12CDF E
0

FLv~E1F!2v~E!

h2
3/2

dF1E
0

FRv~E1F!2v~E!

h1
3/2

dFG , 0,E,`,

gR~E!55 22CDE
2E

FRv~E1F!

h1
3/2

dF, 2FR,E,0

212CDF E
0

FLv~E1F!2v~E!

h2
3/2

dF1E
0

FRv~E1F!2v~E!

h1
3/2

dFG , 0,E,`.

~29!
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In Eq. ~29!, one can distinguish the contributions from th
left-lead (gL) and right-lead (gR) electrons, as well as from
the reflected (E,0) and transmitted (E.0) carriers. All the
terms related to the barrier fluctuations are proportiona
the constant

CD5
m

2p\ D
@nL~FL!2nR~FR!#, ~30!

where D is the constant previously used to determine
conductanceG and which has been derived in Appendix A
Equations ~28!–~30! are one of the main results of ou
theory. They relate the self-consistent current and volt
fluctuations with the noise source—spontaneous fluctuat
of the occupation numbers in the leads. The transfer fu
tions gL,R , summarizing the interaction effects, show t
contribution of each energy to the total fluctuations. In t
absence of interactions,gL(E)5u(E) and gR(E)52u(E),
i.e., the fluctuations of all energies above the barrier top
equally transmitted. The role of the Coulomb interactions
to introduce an inhomogeneity in the energy flux of fluctu
tions, by suppressing or enhancing occupation-number fl
tuations at different energies. Note that the Coulomb inter
tions are pronounced only in the presence of transport
equilibrium,CD50, and they are not effective.

In general, both termsgL and gR may contribute to the
noise. However, at high biases,Ub!U,Ucr , one can find
that onlygL(E.0) dominates, the asymptotic expression
which is given by27

gL
A~E!5

3

AFR

~AE2vD!1OS 1

FR
D , ~31!

vD5
1

nL~FL!
E

0

`F2
]nL~E1FL!

]E GAEdE. ~32!

We shall use these formulas later on to analyze
asymptotic limits for other important noise quantities.

To find the total fluctuationsdI or dU, one needs to de
fine the correlation properties of the fluctuations at the lea
In general, one can write27

^dI k~E!dI k~E8!&5Kk~E!~D f !d~E2E8!, ~33!
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where,k5L,R and D f is the frequency bandwidth~we as-
sume the low-frequency limit!. For the case of the Poisso
nian injection from both leadsKL,R(E)}I L,R(E). More gen-
erally, for the non-Poissonian injection, under the assump
that the leads are in local equilibrium, one can use the
mula

KL,R~E!52kBTG0AS 2
]nL,R

]E D , ~34!

whereG0 is the unit of conductance. This formula follow
from the Nyquist theorem~see Appendix C!.

By applying Eq.~34! for the FD case, we also obtain

KL,R~E!5
2GS

j

1

11e(E/kBT)2j
, ~35!

where GS5G0N is the Sharvin conductance, andG0
5q2/(2p\) is the unit of conductance. For further nois
analysis, we have to specify the conditions imposed on
external circuit. We shall consider two cases of interest:~i! a
voltage-controlled circuit ~zero external impedance! for
which dU50, and one can find the spectral density of c
rent fluctuationsSI ; and ~ii ! a current controlled circuit~in-
finite external impedance! for which dI 50 and one can find
the spectral density of voltage fluctuationsSV on the leads. In
both cases, we will show that Coulomb interactions play
prominent role in the noise suppression.

VI. COULOMB SUPPRESSED CURRENT NOISE

Let us suppose that the potentials at the leads are
fixed and do not fluctuate. This corresponds to the case w
currents are measured using a zero-impedance externa
cuit. Under the conditiondU50, Eq.~28! gives the current-
noise spectral density

SI5E
2FL

`

gL
2~E!KL~E1FL! dE

1E
2FR

`

gR
2~E!KR~E1FR! dE. ~36!
0-6
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SELF-CONSISTENT THEORY OF CURRENT AND . . . PHYSICAL REVIEW B66, 045310 ~2002!
It is important to highlight that the obtained current-noi
power @Eq. ~36!#, that includes Coulomb interactions, h
been obtained for a wide range of biases, ranging from e
librium to far-from-equilibrium conditions beyond the linea
response regime. Therefore, it describes both thermal
shot-noise limits.

One can verify that Eq.~36! at the high-bias limitUb
!U,Ucr reduces to

SI
A5E

0

`

gL
2~E!KL~E1FL!dE. ~37!

Taking into account Eqs.~31! and ~34!, one obtains the
asymptotic expression for the current-noise power

SI
A'b 2qI

kBT

qU
5

b

3
4kBT GA , ~38!

where

b59S 12

F E
0

`

I L~E1FL!
dE

2AE
G 2

I L~FL!E
0

`

I L~E1FL!dE
D . ~39!

The parameterb is determined by the energy profile of th
injected electronsI L(E). For the FD injection, Eq.~39! leads
to the formula derived earlier29:

b~a!59S 12
p

4

@F1/2~a!#2

F0~a!F1~a! D . ~40!

Equation~39! is more general and can be applied to an ar
trary injection distribution obeying the Nyquist relationsh
@Eq. ~34!# for the correlation function. It is seen also fro
Eq. ~38!, that at high biasesSI

A;AU.
One can also find, for comparison, the current-no

power for the case of disregarded Coulomb correlations

SI
uncor5E

0

`

KL~E1FL! dE1E
0

`

KR~E1FR! dE,

which under the assumption of equilibrium conditions at
leads@Eq. ~34!# results in

SI
uncor52qkBT@ I L~FL!1I R~FR!#. ~41!

For the sake of completeness, we present also expressio
the FD case:

SI
uncor52kBTGS

1

j
@F0~a!1F0~a2V!#. ~42!

Note that Eq.~42! corresponds to Eq.~3! discussed in Sec. I
Indeed, if one applies Eq.~3! for two opposite flows of non-
interacting FD electrons, summing up over the open ch
nels, one then gets Eq.~42!.
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VII. COULOMB NOISE-SUPPRESSION FACTOR

To estimate the significance of Coulomb interactions, o
can introduce the Coulomb noise-suppression factor29

GC5
SI

SI
uncor

, ~43!

that extends over both thermal-noise and shot-noise lim
Strictly in equilibrium,GC51, as was pointed out in Sec. V
The effect of interactions is noticeable, however, already
der small applied biases. In Sec. XI A, we will show th
while SI

uncor increases with bias, the behavior ofSI is just the
opposite: it decreases with bias starting fromU50 up to a
certain bias where it reaches the noise minimum, thenSI

increases but much slower thanSI
uncor.

We remark the difference between thenoise-suppression
factor @Eq. ~43!# and theshot-noise-suppression factor~also
referred to as the Fano factor3! given by

F5
SI

ex

2qI
. ~44!

In the latter formula, the noise powerSI
ex refers to the shot-

noise power, i.e., theexcessto the thermal-equilibrium-noise
level:6 SI

ex5SI24kBTGeq . Moreover, Eq.~44! is meaning-
ful for systems in whichSI

ex}I ~for instance, in linear-
response regime!. In this case, it simply gives a measure
how much the noise power deviates from the ideal Pois
nian 2qI value due to correlations among carriers. For t
nonlinear case, whenSI

ex is not proportional toI, definition
~44! is less useful, since the suppression factor dependsI.
It should be noted that Eqs.~43! and ~44! become identical
under the conditions:qU@kBT ~for negligible thermal-noise
contribution! and SI

uncor52qI. The latter is valid, for in-
stance, for the Maxwell-Boltzmann nondegenera
injection.18 If the injection is non-Poissonian, as in the ca
of FD injection,SI

uncorÞ2qI, and Eqs.~43!and ~44! differ.

VIII. FERMI NOISE-SUPPRESSION FACTOR

It is instructive to introduce the Poissonian noise pow
for the full range of biases:

SI
P52qI cothS qU

2kBTD
'H 4kBTGeq , qU!kBT

2qI, qU@kBT.
~45!

Based on this definition, one can introduce the Fermi no
suppression factor

GF5
SI

uncor

SI
P

. ~46!

Thus the total noise-suppression factor is
0-7
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G5GFGC5
SI

SI
P

, ~47!

Note that all of definitions~43!, ~46!, and ~47! extend from
thermal- to shot-noise limits. They will be used in the ana
sis of the results in Sec. XI.

For the FD two-lead injection, from Eqs.~19! and~42! it
follows that

GF5
F0~a!1F0~a2V!

F1~a!2F1~a2V!
tanh~V/2!. ~48!

One can verify that at the low-bias limitV→0, there is no
suppression effect:GF→1. The finite bias introduces asym
metry in the contributions from electrons of different lead
The larger the bias, the smaller is the contribution from
biased lead, since the electrons have a higher potential
rier by an additional amount ofV to overcome. It is clear tha
starting from a certain bias, the contribution from only o
injecting lead dominates. The unidirectional charge flow
curs when

V*max$5;a13%. ~49!

This condition comes from the consideration of two limi
For a nondegenerate injection~the Fermi energy is below th
barrier, a&23) the bias-to-temperature ratio should
large:qU*5kBT, whereas for a highly degenerate injectio
~the Fermi energy is above the barrier,a*3), the bias
should be compared with the Fermi energy:qU*«F2qUb
13kBT. Thus, under condition~49!, from Eq. ~48! one ob-
tains the asymptotic formula29

GF'
F0~a!

F1~a!
'H 1, a&23

2

a13p/a2
, a*3.

~50!

It is also of interest to analyze the case opposite to c
dition ~49!, when the bias is not so high that both lea
contribute to the charge flow, namely,V&max$5;a13%.
Then, for a nondegenerate limitGF'1. For a highly degen-
erate limit, that happens whenV&a23, one can use the
approximations for the Fermi-Dirac integrals29 F0(x)'x and
F1(x)'x2/21p2/6, and Eq.~48! leads to a simple formula

GF5
2

V
tanhS V

2 D . ~51!

Surprisingly, the dependence ona and hence on the barrie
height, ballistic length, and material parameters, canceled
from this equation.GF depends only on one parameter—t
bias-to-temperature ratio, and at sufficiently highV it de-
creases with bias asGF'2/V. Note that this behavior occur
under the nonlinear bias regime in the presence of a sp
charge. Indeed, for this case one finds the sublinear cha
teristics for the mean currentI 5GSU@12q(Ub1U/2)/«F#,
whereas the current noise power is given bySI

uncor

54kBTGS@12q(Ub1U/2)/«F#, with the identical factor in
square brackets. As a result, one obtains,SI

uncor54kBT I/U,
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as in the linear-response regime. It should be remembe
however, that at higher biasesV@a, the 2/V dependence is
changed to the 2/a law. The largest noise suppression b
Fermi correlations29 is described by Eq.~50!, giving GF

min

52/j, when the barrier height is zero. We shall give som
examples in Sec. XI.

IX. NOISE TEMPERATURE

It is interesting to see from Eq.~38!, that at high biases
and strong screening, despite the strong nonlinearity, the
tio betweenSI and the differential conductanceG tends to
the constant value. It is instructive, therefore, to introdu
the effective noise temperatureTn through30 SI54kBTnG.
Note thatkBTn has a meaning of the maximum noise pow
per unit bandwidth which can be delivered to an outp
matched circuit; thus it is a measurable quantity.31 The
asymptotic high-bias value is then obtained as

Tn

T
5

1

3
b~a!'H 3~12p/4!, a&23

1/3, a@1.
~52!

It is seen thatTn,T for anya, indicating the noise suppres
sion effect@see the plot ofb(a) in Ref. 29#. For a nonde-
generate Maxwell-Boltzmann injection, the limiting valu
(Tn

ndeg/T)53(12p/4)'0.644 is well known.30,32 For a
highly degenerate FD injection, we have obtained from o
theory (Tn

deg/T)51/3. The physical meaning of the latter re
sult is that the noise power per unit bandwidth produced
the SCL ballistic conductor with degenerate FD electrons
1/3 of the thermal noise power produced by the heated re
tance with the same value of the conductanceG ~the same
I -V dependence!, independently of the material parameter

X. COULOMB SUPPRESSED VOLTAGE NOISE

Alternatively, one could measure the voltages at the le
using an ideal infinite-impedance voltmeter. The infinit
impedance external circuit then forces the current to be z
at all times,dI 50. Fluctuations in the current are counte
balanced by fluctuations of the chemical potentials in
electron reservoirs. Under the conditiondI 50, Eq. ~28!
gives the voltage-noise spectral density which takes into
count the Coulomb correlations:

SU5
1

G2 F E
2FL

`

gL
2~E! KL~E1FL! dE

1E
2FR

`

gR
2~E! KR~E1FR! dEG . ~53!

It is evident that the relation

SU5
SI

G2
~54!

holds, in whichSI is the current-noise spectral density@Eq.
~36!# measured underdU50, andG is the steady-state dif
ferential conductance~21!.
0-8
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SELF-CONSISTENT THEORY OF CURRENT AND . . . PHYSICAL REVIEW B66, 045310 ~2002!
The asymptotic behavior ofSU at high biases can also b
found from Eqs.~38! and ~54!. We obtain

SU
A5

b

3
4kBT

1

GA
, ~55!

with b given by Eq.~39!. It is seen that the voltage nois
decreases with bias asSU

A;1/AU at Ub!U,Ucr ~the gen-
eral result independent of the injection distribution!. Hence
the Coulomb interactions result in the voltage-noise supp
sion. This fact will be discussed in detail in Sec. XI B.

XI. RESULTS FOR FERMI-DIRAC INJECTION

To illustrate our results, consider the GaAs ballisticn-i -n
diode atT54 K.33 For this temperature and the effectiv
mass m50.067m0, the effective density of states isNc
'6.731014 cm23. Assuming the contact doping 1.
31016cm23, the reduced Fermi energyj'10, and the con-
tact electrons are degenerate, that is necessary for stud
the joint effect of both Fermi and Coulomb correlations. F
this set of parameters, the Debye screening length assoc
with the contact degenerate electron density is approxima
LD5AkkBT/@q2NcF21/2(j)#'14 nm. The calculations
have been carried out for the following ballistic lengthsl
50.05, 0.1, and 0.5mm.

The degeneracy of the contact electrons does not gua
tee the degeneracy of the injection, since the potential ba
determines the energy portion of electrons which may p
over the barrier and contribute to the injection current. F
each ballistic lengthl and biasU, we have numerically
solved Eq.~13! to find the self-consistent potential barri
heightFL and the parametera5(«F2FL)/kBT characteriz-
ing the position of the Fermi energy with respect to the p
tential barrier. The results are plotted in Fig. 3.

It is seen that in equilibrium, for the ballistic lengthsl
50.05, 0.1, and 0.5mm, the self-consistent barrier heigh
FL is about 6kBT, 9kBT, and 13kBT, respectively. This
means that the injected electrons atU50 are degenerate fo
l 50.05 and 0.1mm, and nondegenerate forl 50.5mm, since

FIG. 3. Parametera5(«F2FL)/kBT characterizing the posi
tion of the Fermi energy«F with respect to the potential barrierFL

for different lengths of the ballistic regionl. At U→Ucr the barrier
vanishes,FL50, anda attains its maximum valuea5j510.
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for the latter case only the tail of the distribution function
injected (a,23). As U is increased,FL vanishes and the
injection becomes degenerate for all three cases. Finally
U→Ucr the potential barrier vanishes,a5j, and the trans-
port is no longer space-charge limited. The values ofUcr
depend obviously on the ballistic lengthl ~see Fig. 3!.

A. Fixed-bias conditions: dVÄ0

In Fig. 4 we show the results for the current-noise pow
SI @Eq. ~36!# and differential conductanceG vs biasU cal-
culated for different ballistic lengthsl. For comparison, the
noise power for the Poissonian injectionSI

P @Eq. ~45!# and
Fermi-Dirac injection with disregarded Coulomb correlatio
SI

uncor @Eq. ~42!# have also been plotted. In equilibrium, a
the noise-power curves coalesce toward the Johnson-Nyq
noiseSI

eq54kBTGeq independently of the presence of Ferm
or Coulomb correlations. However, starting from small b
ases the difference becomes drastic. WhileSI

uncor increases
with bias, the behavior ofSI is just the opposite: it decrease
with bias starting fromU50 up to a certain bias where
reaches the noise minimum, thenSI increases, but much
slower thanSI

uncor. Finally, atU→Ucr when the barrier van-
ishes,SI sharply recoversSI

uncor. Note that in the absence o

FIG. 4. Current-noise powerSI and differential conductanceG
vs biasU for different ballistic lengthsl. For comparison the noise
power for the Poissonian injection 2qI coth(qU/2kBT) and the
Fermi-Dirac injection with disregarded Coulomb correlationsSI

uncor

are plotted. The normalization constants are the corresponding e
librium values atU50: SI

eq54kBTGeq andGeq .
0-9
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O. M. BULASHENKO AND J. M. RUBÍ PHYSICAL REVIEW B 66, 045310 ~2002!
Coulomb interactions,SI
uncor follows the Poissonian lawSI

P

52qI coth(qU/2kBT) only for a nondegenerate injection, a
in the case ofl 50.5 mm at qU&10kBT @Fig. 4~c!#. At
higher biases, and for shorter ballistic lengths in all t
range, the injection is non-Maxwellian andSI,SI

P because
of Fermi suppression@Figs. 4~a! and 4~b!#. It should also be
noted thatSI,SI

eq in a wide range of biases, which mea
that the noise for interacting ballistic electrons in an exter
field is less than the equilibrium Johnson-Nyquist noise.
will be shown later, the same is true for the voltage no
power.

Figure 5 assists the understanding of the results by sh
ing the contributions toSI from different electron groups
The effect of Coulomb correlations is manifested quite d
ferently for the left lead and right-lead electrons: while t
left-lead noise is suppressed (SILt,SIL

uncor), the right-lead
noise is enhanced (SIRt.SIR

uncor). Since the role of the right-
lead electrons is diminished with bias, the overall effect
interaction results in the total-noise suppression. There
also a non-negligible contribution (;10215 %) to the noise
from the reflected carriers atqU&10kBT. It appears for cor-
related electrons only.

Figure 6 shows the noise temperatureTn versus biasU
calculated from (Tn /T)5SI /(4kBTG) by using the data of
Fig. 4. One can see that starting fromTn5T at zero bias it
drops atqU*kBT below the temperatureT of the injected
electrons. It is interesting to note that for degenerate e
trons (l 50.05 mm), this drop starts to appear at higher b
ases than for nondegenerate electrons (l 50.5 mm). Accord-
ing to Eq. ~52!, the minimal asymptotic value ofTn in the
limit l→`,U→` differs for nondegenerate and degener
electrons~see indications in Fig. 6!. For our set of param-
eters, the injection is degenerate at the highest biases. H
ever, the limitTn

deg5(1/3)T is not achieved for those ballis
tic lengths, since the samples are not sufficiently long. N
that Tn is a measurable quantity, and the observation ofTn

FIG. 5. Contributions to the current-noise powerSI for the case
of l 50.5 mm: from overbarrier electrons transmitted from the le
(SI Lt) and right (SI Rt) leads, and those reflected by the barr
(SI Lr 1Rr). For comparison, contributions toSI

uncor are shown as
well: from left- (SI L

uncor) and right-lead (SI R
uncor) electrons.
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,T would indicate the significance of the Coulomb corre
tions effects which suppress the current noise. AtU;Ucr ,
Tn sharply increases due to the current saturation (G50),
that may also be detected in the experiment.

The current-noise-suppression factorsGC andGF , and the
total G ~their multiplication! correspondent to the noise
power curves of Fig. 4 are plotted in Fig. 7 as functions
bias. The behavior of the Fermi suppression factorGF is in a
close agreement with the analytical formulas of Sec. VIII.
varies from 1 at low biases, then decreases attaining wi
nice precision the asymptotic dependence 2/(a13p/a2) at
high biases@Eq. ~47!#. For all three cases, the same minim
value 2/j'0.2 is reached at the highest biases, in agreem
with the predictions.29 We have also checked that for th
degenerate injection from both leads, which is well realiz
for the lengthl 50.05 mm, the analytical formula@Eq. ~51!#
very nicely describes the numerical results in a wide b
range: fromU50 up toU;5kBT @Fig. 7~a!#.

The relative significance of two mechanisms on the no
suppression can be understood by comparing the curves
three different ballistic lengthsl. For short samples (l
50.05mm), the Fermi suppression dominates at low bia
V&3, whereGC'1 and G'GF @see Fig. 7~a!#. At higher
biases, 3&V&20, both Coulomb and Fermi mechanism
contribute to the suppression. Forl 50.1mm, the suppression
factorsGF andGC are comparable in all the bias range. F
nally, for the longer sample,l 50.5mm, the Coulomb noise
suppression completely dominates:GC!GF . This behavior
can be explained by the fact that the Fermi shot-noi
suppression factor is limited below by the value 2/j, i.e., by
the properties of the injecting contact independently of
ballistic length.29 In contrast, the Coulomb noise suppressi
may be enhanced arbitrarily strong by extending the len
of the ballistic sample with a simultaneous increase of b
~provided the transport remains ballistic!. Therefore, for any
degree of electron degeneracyj5«F /kBT, there exists the
ballistic length starting from which the Coulomb interactio
become to dominate in the noise suppression.

FIG. 6. Noise temperatureTn vs biasU for different ballistic
lengthsl. The asymptotic (l→`,U→`) limits for nondegenerate
and highly degenerate electrons are shown:Tn

ndeg53(12p/4)T
andTn

deg5(1/3)T, respectively.
0-10
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SELF-CONSISTENT THEORY OF CURRENT AND . . . PHYSICAL REVIEW B66, 045310 ~2002!
Another important difference between the two suppr
sion mechanisms is that the Fermi noise-suppression fa
GF is a monotonically decreasing function of bias, while t
Coulomb noise-suppression factorGC exhibits a minimum at
a certain bias value, as seen in Fig. 7. After the minimum,
curve of GC increases to 1 due to the disappearance of
potential barrier atU5Ucr .

The total noise-suppression factorG approaches at high
biases the asymptotic curvekBT/qU, once the injection, be
cause of barrier lowering, becomes fully degenerate,
agreement with the prediction.29 The longer the sample, th
wider is the bias range in which this asymptotic law is fu
filled independently of the material parameters~Fig. 7!. It is
also important that the suppression may be several orde
magnitude stronger than the shot-noise suppression du
elastic partitioning.3

It is instructive to plot the energy-resolved current-no
power s(E) defined bySI5*s(E)dE. The derived formula
@Eq. ~36!# allows us to analyze these distributions for diffe
ent lengths and biases. The results forl 50.05 and 0.5mm
are shown in Figs. 8 and 9. At small biases (V50.1 in the
figures!, the Coulomb interactions are ineffective, and t
noise is approximately the sum of two equal contributio
from the left and right leads. These contributions are
Fermi-Dirac profiles filled out above the barrier~the contri-
butions of the reflected carriers with energies below the b

FIG. 7. Current-noise-suppression factorsGC ~Coulomb!, GF

~Fermi!, and G5GFGC ~total! as functions of applied biasU for
different ballistic lengthsl. The analytical approximations 2/(a
1p2/3a) and 2/V tanh(V/2) for GF and kBT/qU for G are also
shown.
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rier is negligible at these biases!. With increasing the bias
several features appear:~i! the contribution from the right
contact becomes smaller and smaller because of the sh
energy2V, ~ii ! the Coulomb interactions give rise to a sha
peak at the barrier energy with a noise suppression at
energies beyond the peak, and~iii ! the carriers below the
barrier give appreciable nonzero contribution to the noi
The peak appears due to the fact that electrons with the
ergy E5FL virtually stop at the barrier top, producing a
infinitely large perturbation of the current~this singularity is
integrable, since it is of the logarithmic type18!. Another in-
teresting feature is the ‘‘noiseless’’ energyE* lying above
the barrier, in which the noise exhibits a local minimum. It
better pronounced for a nondegenerate injection~see, for in-
stance, Fig. 9! where one can observe the zero-noise po
s(E* )50 for various biase!. This point appears approxi
mately at the condition:gL(E* )50. As long as the barrier
vanishes at highest biasesU→Ucr , the Coulomb noise sup
pression disappears and the energy profiles(E) recovers the
FD shape.

B. Fixed-current conditions: dIÄ0

Thus far we have presented the results obtained unde
assumption that the ballistic sample is connected to ze
impedance external circuit. In this case the fluctuations of
applied voltage can be neglected. In experiments, it is
voltage fluctuations which are actually measured and wh

FIG. 8. Energy distributions of the current-noise powers(E)
under various biasesV for a ballistic conductor withl 50.05 mm
~solid lines!. The zero energy corresponds to the conduction-b
edge at the left~unbiased! lead. The sharp peak at low energie
corresponds to the position of the space-charge barrier. The da
line shows the energy profileKL(E) for the injection noise at the
left lead («F510kBT). The profile for the right leadKR(E) is the
same, but is shifted by2V in energy. All the curves are normalize
by 4qIL(FL

0) related to the noise level atV50.
0-11
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eventually are converted to current fluctuations. By using
infinite-impedance circuit, the current fluctuations are forc
to be zero, and one can analyze the voltage-noise po
Both cases are interrelated through Eq.~54!. It is of interest
however to see the results for the voltage-noise power—
quantity that can be measured directly.

Figure 10 shows the results of applying of Eq.~54! to our
set of parameters. The behavior ofSU calculated with and
without Coulomb correlations is strikingly different. We re
mark the following features:~i! For the case when the inte
actions are included, the noise decreases with bias instea
increasing@the asymptotic behaviorSU;1/AU at high biases
~see Sec. X! is confirmed#. ~ii ! For longer samples, the rang
of the space-charge conduction is wider, and the suppres

FIG. 9. Distributions similar to Fig. 8 for another ballistic leng
l 50.5 mm. The notations are the same, except thatKL(E) is not
normalized.

FIG. 10. Voltage-noise powersSU vs biasU for different ballis-
tic lengthsl are compared for two cases: with and without Coulom
correlations taken into account.
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of voltage fluctuations is much more pronounced.~iii ! Com-
paring the asymptotic dependencesSU;1/AU andSI;AU,
it is seen that the latter eventually exceeds the equilibri
Nyquist noise when the ballistic length is sufficiently lon
@see Fig. 4~c!#. In contrast,SU falls off the equilibrium value
in a full range of SCL conduction. Note that the equilibriu
fluctuations, described by the fluctuation-dissipation th
rem, usually increase when an external electric field is
plied. In our model, we have an interesting example when
interacting ~via Coulomb forces! electron system is les
noisy at far-from-equilibrium conditions than in equilibrium
For noninteracting electrons in quantum conductors, such
amples have been provided by Lesovik and Loosen.21

We can also mention more familiar examples from sem
conductor device literature. For instance, in Schottky-bar
diodes orp-n junctions, in the range of the exponentialI -V
characteristics, the current-noise power is given bySI

52kBTG, which is a half of the thermal noise value give
by the Nyquist relationship.34 However, this is not really a
suppression effect, since the current-noise powerSI never
drops down the equilibrium Nyquist levelSI

eq54kBTGeq . In
this caseG@Geq and SI.SI

eq for any bias35 ~in our model
SI,SI

eq in a wide bias range!. On the other hand, for thes
junctions under the fixed-current conditions,SU52kBTG21,
that is again a half of the Nyquist relationship, butSU,SU

eq

may now occur.35 It should be emphasized, however, that t
latter noise reduction appears fornoninteractingcarriers, and
it is caused by the nonlinearity in the current-voltage ch
acteristics which results in such a behavior that the cond
tanceG grows with bias as fast as the current-noise powerSI
~exponentially!. As a result,SU5SI /G2 is a decreasing func
tion of bias. In our model, the noise suppression below
thermal equilibrium value~negative excess voltage nois!
occurs due toCoulomb interactionsamong carriers. Without
interactions, despite the nonlinear SCL regime, the no
grows above the Nyquist level, as was shown in Figs. 4
10.

XII. DISCUSSION

In this paper, we have presented a theory of the elec
transport and noise in a self-consistent potential along a
listic two-terminal conductor. Since electrons are fermio
and carry charge, they interact among themselves by b
Fermi statistical correlations and long-range Coulomb co
lations. The interplay of these two mechanisms determine
noise properties of a ballistic conductor—the subject
have addressed in the paper.

The long-range Coulomb correlations appear due to
self-consistent coupling between the electric potential a
the occupation numbers. This coupling is essential to
equately describe the noise phenomena. To develop a b
understanding of the Coulomb-correlation effect, we rewr
Eq. ~1!—a standard equation for the mean current in a tw
terminal conductor—in which we explicitly introduce the d
pendence of the transmission probabilities on the s
consistent potential~in this case on the barrier heightFb):
0-12
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I 5E d« @TL~«,Fb! I L~«!2TR~«,Fb! I R~«!#. ~56!

Here, I L,R(«)5(qA/2p\)* f L,R(«,«')n'd«' are the cur-
rents corresponding to the longitudinal energy«. In the semi-
classical limit, by neglecting the quantum-mechanical refl
tion of electrons with energies«.Fb and tunneling through
the barrier, the transmission probabilities are the Heavis
step functions:TL(«,Fb)5u(«2Fb) and TR(«,Fb)5u(«
2Fb2qU).

The current fluctuation is found by perturbing Eq.~56!;
we obtain

dI 5E @TLdI L2TRdI R#d«

1E F ~2dFb!
]TL

]«
I L 1~2dFb2qdU !

]TR

]«
I RGd«

[dI in j1dI ind , ~57!

The first integral in Eq.~57! is the injected current fluctua
tion dI in j . Its origin is the thermal fluctuation of the occu
pation numbers in the leads ballistically injected into t
conductor. In fact this term corresponds to Eq.~2!—the stan-
dard formula used to calculate the current noise in me
scopic conductors.@Since for our case allTn50 or 1, the
term }Tn(12Tn) is absent.# The second integral in Eq.~57!
is the induced current fluctuationdI ind caused by the fluc-
tuation of the potential. It is precisely the term appeared
to Coulomb correlations and ignored in Eq.~2!. For our case,
the derivatives are found as (]TL /]«)5d(«2Fb),
(]TR /]«)5d(«2Fb2qU), leading to

dI ind52dFb I L~Fb!1~dFb2qdU ! I R~Fb1qU!.
~58!

Thus Eqs.~57! and ~58! lead to Eq.~27! for the current
fluctuation derived more rigorously earlier from the transp
equation.

We would like to highlight that the induced current flu
tuationsdI ind should appear not only in the case of com
pletely open/closed channels (Tn50;1), but also under the
conditions of the partitioning shot noise, for which there e
ist channels with 0,Tn,1. It is clear thatdI ind should de-
pend in general on the derivatives of the transmission pr
abilities (]Tn /]«) and the fluctuations of the self-consiste
potentialdFx . The main problem is then to find the fluctu
tions dFx through the noise sources. For the particular c
of a multimode ballistic two-terminal conductor, we ha
found an exact analytical result fordFx . For the case of
partitioning shot noise in which Eq.~2! holds, work is in
progress.

The validity of our theory can be tested experimentally
currently accessible semiconductor structures. The requ
conditions are similar36 to those for the transport in vacuum
tubes:~i! the ballistic electron transmission between the t
minals, and~ii ! the limitation of current by the space charg
The SCL transport regime, as applied for ballistic electro
in solids ~mostly in n1-n-n1 or n-i -n semiconductor struc
tures!, was discussed a long time ago~see, e.g., theory37 and
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experiments38!. Unfortunately, the data on noise measu
ments in these structures are scarce.39 Due to a great progres
in noise measurements in quantum ballistic conductors d
ing the last ten years7–10 ~also see Ref. 3!, we believe it
would be now possible to measure the noise suppres
effects in SCL ballistic conductors. Although the theoretic
results presented in this paper are strictly valid for thick m
tichannel conductors~3D electron gas!, the Coulomb sup-
pression of noise should also be pronounced6 in conductors
with a small number of channels~2D or 1D! in which elec-
trons are more confined in space, for instance, in quan
wires under the high-bias nonlinear transport regime,40 or in
carbon nanotubes under the SCL conduction.41

Additionally, we would like to emphasize the importanc
of the effect of Coulomb interactions. They not only lead
the noise reduction, but can also be used as a tool to p
the energy profile of the injected carriers and other electro
properties.42
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APPENDIX A: DERIVATION OF dUb ÕdU

Differentiating Eq.~13! gives

dFL

dU

1

Ah2~FL!
2

1

2E0

FL 1

h2
3/2

dh2

dU
dF

1
dFR

dU

1

Ah1~FR!
2

1

2E0

FR 1

h1
3/2

dh1

dU
dF50.

~A1!

By usingdFR /dU5q1dFL /dU and findingdh/dU from
Eq. ~11!, we obtain

dh

dU
52~HL1HR!

dFL

dU
2qHR , ~A2!

where

HL~F!5
m

2p\ H E
0

`

DL@v~E1F!2v~E!#dE

12u~2x!E
2F

0

DLv~E1F!dEJ , ~A3!

HR~F!5
m

2p\ H E
0

`

DR@v~E1F!2v~E!#dE

12u~x!E
2F

0

DRv~E1F!dEJ , ~A4!

Dk~E!52
]nk

]E U
E1Fk

, k5L,R. ~A5!

Substituting Eqs.~A2!–~A4! into Eq.~A1!, we finally obtain
0-13
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dUb

dU
5

1

q

dFL

dU
52

DR

DL1DR
. ~A6!

Here we have defined

DL5
2

Ah2~FL!
1E

0

FL HL
2

h2
3/2

dF1E
0

FR HL
1

h1
3/2

dF,

DR5
2

Ah1~FR!
1E

0

FL HR
2

h2
3/2

dF1E
0

FR HR
1

h1
3/2

dF,

where we have denotedHk
2[Hk(x,0) and Hk

1[Hk(x
.0), k5L,R. The quantitiesDL and DR , as well as their
sum

D5DL1DR , ~A7!

are used in this paper to calculate the differential cond
tance@Eq. ~21!# and the noise suppression@Eq. ~30!#. The
physical meaning ofD becomes clear from the relation

D52qA2

kS ] l

]FL
D

U5const

, ~A8!

i.e., it relates the increment of the barrier height with t
increase of the length of the sample under fixed bias.DL,R
are the corresponding contributions to that increment fr
the left-lead and right-lead electrons.

APPENDIX B: DERIVATION OF THE SELF-CONSISTENT
POTENTIAL FLUCTUATIONS

Integrating the fluctuation of the occupation factordn(E)
over the longitudinal states, one obtains the electron-den
fluctuation as a sum of two contributions,dN5dNin j

1dNind, where the injected part is

dNin j~F!5E
0

`

@dnL~E1FL!1dnR~E1FR!#n~E1F!dE

12E
2F

0

@u~2x!dnL~E1FL!

1u~x!dnR~E1FR!#n~E1F!dE, ~B1!

and the induced part is

dNind~F!5
dN

dF
dFx2

dHL

dF
dFL2

dHR

dF
dFR . ~B2!

Equations~B1! and ~B2! should now be substituted into th
Poisson equation fordFx to find the self-consistent fluctua
tion of the potential profile:

d2

dx2
dFx5

q2

k
~dNin j1dNind!. ~B3!

We obtain
04531
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L̂dFx[F d2

dx2
2

q2

k

dN

dFGdFx5dsx , ~B4!

where dsx5(q2/k)@dNin j2(dHL /dF)dFL2(dHR /
dF)dFR#. The boundary conditions for this equatio
dFx(0)5dFL , dFx( l )5dFR , dFx(xb)50.

The second-order differential equation~B4! with spatially
dependent coefficients can be solved explicitly fordFx .18

Here we need just the boundary valuesdFL and dFR ~the
relation between them!, which has entered explicitly into the
nonhomogeneous part and can be obtained by applying
Green’s identity for the operatorL̂,

E
a

b

@u~x!L̂dFx2dFxL̂u~x!#dx5S u~x!
ddF

dx
2dFx

du

dxD U
a

b

,

~B5!

where @a;b#5@0;xb# for x,0 and @a;b#5@xb ; l # for x
.0. It is convenient to chose the functionu(x) as a solution
of the homogeneous equationL̂u(x)50 satisfying the
boundary conditionsu(0)50 andu( l )50. This gives

E
0

xb
u dsx dx1E

xb

l

u dsx dx5
dFL

EL
2

dFR

ER
,

where EL and ER are the electric fields atx50 and x5 l ,
respectively. Changing the variable of integrationdx
52dF/(qE) , one obtains

E
0

FL u

E dsx dF2E
0

FR u

E dsx dF5
dFL

EL
2

dFR

ER
. ~B6!

It is convenient to represent the fluctuationdsx as a deriva-
tive dsx5(k/q2) (ddh/dF). By using this notation, the in-
tegrals in Eq.~B6! can be reduced to27

E
0

Fk u

E
d dh

dF
dF5

1

qE0

Fk dh

E 3
dF, k5L,R ~B7!

whereasdh is obtained by integration ofdsx :

dh5dhin j2HLdFL2HR dFR , ~B8!

dhin j~F!5E
0

F

dNin jdF̃. ~B9!

Now substituting Eqs.~B7! and ~B8! into Eq. ~B6!, and by
using Eq.~10!, we obtain

DdFL1DRqdU5E
0

FL dh2
in j

h2
3/2

dF1E
0

FR dh1
in j

h1
3/2

dF,

~B10!

whereD and DR were denoted in Appendix A. Combinin
Eqs.~27! and ~B10! and excludingdFL , we obtain
0-14
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dI 2GdU

5E
0

`

@dI L~E1FL!2dI R~E1FR!#dE

2
I L~FL!2I R~FR!

D S E
0

FLdh2
in j

h2
3/2

dF1E
0

FRdh1
in j

h1
3/2

dF D ,

that leads to Eq.~28!.

APPENDIX C: NYQUIST THEOREM AND THE
BOUNDARY CONDITIONS FOR FLUCTUATIONS

Consider the situation when the potentials at the leads
held equal (U50, dU50! by means of a zero-impedanc
external circuit.~A similar consideration can be carried o
for the infinite-impedance circuit.! Additionally we assume
that the contacts are identical:I L(E)5I R(E), and KL(E)
5KR(E), ;E. Thus from Eq.~30! we haveCD50, gL(E)
5u(E), and gR(E)52u(E), which means that Coulomb
correlations do not affect noise at zero bias. Therefore, fr
Eqs.~28! and ~33! one obtains the current-noise power

SI
eq52E

0

`

KL~E1FL
0! dE, ~C1!

where FL
0 is the equilibrium barrier height~the noise de-

pends on the steady-state self-consistent field!. For the equi-
librium conductance we find
h
.

04531
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Geq5
dI

dU U
U50

52qE
0

`]I L

]EU
E1F

L
0
dE. ~C2!

By using the Nyquist theoremSI
eq54kBTGeq , we obtain

E
0

`

KL~E1FL
0! dE52qkBTE

0

`S 2
]I L

]E D U
E1F

L
0
dE.

Since this integral relation should be valid for differe
lengthsl of the ballistic conductor~different FL

0!, it should
also be valid for the integrands,

KL~E!52qkBTS 2
]I L

]E D , ~C3!

that leads to Eq.~34!. Thus, just from the Nyquist theorem
we have a useful relation for the energy-resolved curre
~occupation factors! at the leads. It relates the energy profil
of the fluctuations and the mean values. In the simplest c
of the Poissonian injection, for instance, the correlation fu
tion is proportional to the mean11:

KL
Pois~E!52qIL~E!. ~C4!

From this result it follows thatI L(E)52kBT(]I L /]E), and
one obtains the Boltzmann distribution

I L
Pois~E!5C exp~2E/kBT!, ~C5!

where the integration constantC is determined by the nor
malization condition.
.
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