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Self-consistent theory of current and voltage noise in multimode ballistic conductors
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Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investi-
gated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differ-
ential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function
and correlation properties of injected electrons. The analytical results have been obtained for a wide range of
biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-
dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested
in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be
less than in equilibrium.
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. INTRODUCTION rent (Z,#0;1). It vanishes for fully ballistic systems for
which there is no partitioning ,=1) (see experimental
Recently, measurements of nonequilibrium noise havewvidencé™'9. In the absence of partitioning, the excess noise
emerged as a fundamental tool to obtain information on thés in general no longer linear in the current. The inherent
transport properties and interactions among carriers in mes@andomness in the emission of carriers from the reservoirs is
scopic systemd:® Shot-noise suppression in ballistic con- at the origin of this type of nonequilibrium noise. Presum-
ductors caused by Fermi correlations has been studied exteably, it is more pronounced for sufficiently high biases when
sively both theoreticalff® and experimentallf=*® Within  f.<f, and the transmission dominates in only one direction.
the scattering approach, it is usually assumed that the ballisn this case, noise formul@) is simplified t@
tic (phase-coherentonductor is attached to reservoitsr-

minals or leads with different chemical potentials. In this q?
approach, the mean current in a two-terminal conductor is S=oh E* f fL(l=fu)de, @
given by "

where the summation is taken for open chanfeRBor low
a electron densities the occupation numbers are srhak,1
l=-— de 7, f —f , 1 g
2mh ; f e Ta(e)lfile) = Trle)] @) and Eqg. (3) leads to the Schottky formula$
=(q%/ 7h)Z [T de=2ql.y, Where gy, is the emission
current from the reservoitvacuum-tube-like shot noigeln
this low-density limit, shot noise is Poissonian since the

whereq is the electron chargd, r(e) the energy distribu-
tion functions at the leffL) and right(R) reservoirs, and,
the transmlss(;on pr:obabllht?!eﬁ_hassouated vm;hransverse transmission of carriers is uncorrelated. The factor (1)
quantum modes(channels™ The corresponding current- i, g4 (3) introduces the Fermi correlations among carriers

Pmsgﬁpo;/ver at lz?erfo-f;quenqc/j ?fs been obtained in thgq, the occupation numbers are not small in respect to 1.
orm™ (also see Refs. 3, 6, and) This leads to the suppressed value of the shot noise. Note the

92 difference between the partition shot noise mentioned earlier,
slz_ﬁ > fds{%(s)[fL(l_fL)+fR(1_fR)] and 'theemission shot noisgivgn by Eqg.(3). The former' '

™ n persists at zero temperature, since it reflects the granularity in

T (8)[1-To()](FL—fR)2L. @) charge transmission manifested by partitioning, while the lat-

ter vanishes aT— 0, because its origin is the thermal fluc-
In Eq. (2) the noise is a combination of the thermal emissiontuations of the occupation numbers in the reservoirs. Indeed,
noise of the reservoirs and of the partition noise appearedt equilibrium the sum of two opposite shot-noise tefibg.
due to the current partitioning between the incoming and3)] gives the Nyquist formul&’
outgoing stategscattering on tunneling barrigy, elastic It should be stressed that both E¢8) and (3) are not
scatteres), point contadfs), etc]. Although in some limits complete, since they ignore Coulomb interactions. The elec-
the well-known noise terms can be identifiédssociated trons are charged entities and, while moving along the con-
with thermal noise or shot noisehey cannot be separated in ductor, they affect the electric potential giving rise to
general. Out of equilibrium, the noise can manifest itself in ainhomogeneity* The self-consistent coupling between the
different way, depending on the conditions. At low biatgs nonhomogeneous electron density and potential landscape is
Eq. (2) gives thepartition shot noise-the excess noise lin- very important to adequately describe the transport and noise
ear in currentbias, which does not vanish at zero tempera-under nonlinear far-from-equilibrium conditiof® An in-
ture. It is suppressed below the Poissayl Zalue approxi- teresting question is how the self-consistency may affect the
mately by the factor 3,7,(1—7,)/=,7,. This type of current and noise formulag)—(3)? First, the transmission
excess noise appears whenever there is a partitioning of cuprobabilities?,, for both current and noise become function-
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Potential energy nonequilibrium noise caused by thermal emission from the
~my ~ i Electron reservoirs under the action of the long-range Coulomb cor-
g~ density relations inside the ballistic region, rather than on the parti-
P, tion shot noise. It should be noted that the previous theoret-
qU ical studies have been devoted to ballistic conductors with a

Ballistic small number of quantum modéguantum point contacks

region Right with the Fermi suppression of the partition shot ndiSeu-

lead lomb correlations have been ignojéd®22

The main results of the present investigation are as fol-
for a ballistic two-terminal conductor at equilibrium and under ap- ﬁws: We dhave obtalned_ ?Omplﬁe ana_lytlca(ljl expr655|or|1fs for
plied biasU. Barrier height®,, as seen from the left lead, de- "€ Steady-state spatial profilegcarrier density, self-

creases with bias. The filled area illustrates the nonhomogeneoZ2NSIStent fieltl mean current, and differential conductance,
electron-density distribution. as well as the current and voltage noise powers in ballistic

multimode conductors. The analytical results have been ob-

Second, in the current-noise formulé® and (3), which re- ~ values beyond the linear-response regime under the self-
flect only theinjected current fluctuationssl;,;, the addi- consistent-field conditions. We assume in our derivations ar-
tional terms should appear caused by the current fluctuatiorfrary distribution functions and correlation properties of

81inq inducedby thefluctuationsof the potentialde. Finding ~ INjected electrons in order to generalize the model to the
the fluctuationsse is a complicated problem in general, Practically important cases of nanoscale devices with non-
since they are self-consistently linked to the fluctuations ofduilibrium electron injection, like in a resonant-tunneling-

the occupation numbers along the condudfBhe latter may diode emitter, superlattice emitter, hot-electron emitter, etc.

be expressed through the fluctuations of the occupation nunfS€€: €., Refs. 23-p6The particular case of a three-
bers at the terminals, since the system is ballilicAs a dimensional(3D) Fermi-Dirac injection has also been ad-

result of this self-consistent coupling, the long-range coydressed. The obtained results clearly demonstrate that both
lomb correlations appear, which may result in the noisén€ current and voltage noise can be substantially reduced
suppressioﬁ*.lg'zolt is believed. however. that such Coulomb owing to the long-range Coulomb interactions. This result is
correlations need to be taken into account for the descriptioN€Y encouraging from the point of view of applications.

of systems in time-dependent external fields, or finite- "€ Paper is organized as follows. In Sec. Il we introduce
frequency fluctuation spectra in stationary fields, while thell® basic equations describing the space-charge-limited
zero-frequency fluctuations in stationary fields are not af{SCL) ballistic transport. In Sec. Il the self-consistent
fected by then?.We show that this is not always true. In the steady-state spatial profiles for the electron density, electric
example we address in this paper, the additional terms infield, and potential are found for an arbitrary injection distri-
duced by the self-consistent field are of the order of the flucPution. The mean current and conductance are obtained in

tuations injected from the leads and cannot be neglected ever£C: V- Section V describes a general formula which relates
in the zero-frequency limit at time-independent biasesPoth current_and voltage flqctuatlons with the fluctuations _of
Moreover, they can almost completely compensate the inil€ occupation numbers in the leads. The current noise
jected fluctuations up to an arbitrarily small valuat the ~ POWer, suppressed by interactions, is compared in Sec. VI
same time, the gauge invariance required for the charge cof!/th the case when interactions are disregarded. The Cou-
servation is fulfilled. We also found that this Coulomb sup-/omb and Fermi noise-suppression factors are discussed in
pression of noise is manifested in the negative excess volta%%ecsj Vil and VIIl, respectively, whereas the noise tempera-
noise. Current or voltage fluctuations in equilibrium, de-Ure is given in Sec. IX. The voltage noise power under a
scribed by the fluctuation-dissipation theorem, usually in-fixéd-current conditions is derived in Sec. X. The implemen-
crease when an external electric field is applied. We have aigtion of the results for a GaAs ballistic conductor is pre-
interesting example when an interactiigia Coulomb sentgd in Sec. XI. Finally, Sec. XlI summarizes thg main
forces electron system is less noisy at far-from-equilibrium contributions of the paper, whereas in the Appendixes we
conditions than in equilibrium. For noninteracting systems,present mathematical details concerning some derivations.

such examples have been given by Lesovik and Lodésen.

FIG. 1. Energy diagram determining the potential-barrier shap

To support our statement we present a theory of current Il. BASIC EQUATIONS
and voltage fluctuations in a ballistic two-terminal conductor ) ) o
in a self-consistent fiel@Fig. 1). The calculation of the self- We consider a semiconductor ballistic sample attached to

consistent fluctuating field is, in general, a multidimensionalplane-parallel leadgFig. 1). In a semiclassical framework,
problem which includes the electrostatic environment. Foithe electron occupation numberéx,k,t) inside the ballistic
simplicity, we consider rather thick samples that allow us toconductor are determined by the electron flows from the left
use one-dimensional plane geometry for electrostatics. Oand right leads. The distribution of carriers is nonhomoge-
the other hand, for wide conductors the number of transvemeous along the conductor: their concentration is higher near
sal modes is large and the semiclassical treatment is suffihe leads and lower in the middle of the sample. The inho-
cient. By assuming that there is no current partitionifig ( mogeneity of the space charge disturbs the electrostatic po-
=1 for all the transmitting modeswe focus mainly on the tential in such a way that the self-consistent built-in field
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determines the potential barrier, at which electrons are either
reflected or transmitted depending on their endigg. 1).

We neglect tunneling and quantum reflection, i.e., the trans-
mission probability is 1 if the electron energy is higher than
the barrier height, and it is O in the opposite case. Out of
equilibrium, the barrier height is different for the left and
right lead electrons. If for the left electrons the barrier height
is @, for the right electrons the barrier heightds,+qU

(Fig. 1. This leads to an asymmetry in their contribution to
the current: as the bias is increased, the barrier for the left
electrons progressively decreases and the current from the
left lead enhances, whereas the barrier for the right electrons ) _ o
increases and the current from the right lead decreases dis- FIG- 2. Potential-energy profile for a ballistic space-charge-
appearing at all at high biases. limited conductor. Electrons with energi&s>0 pass over the bar-

The occupation numbers are described by the Viasoy" While those withE<0 are reflected back to the leads. Shad-
equation (collisionless Boltzmann equation with a self- owed regions illustrate the energy distributions of the occupation
consistent fielgt82’ factors at the leads.

|
@ e e e o

(a ik, 0 do ﬁ(x,s,t)zf T(x,e,e, Oy, de, , 7
0

m+'m(m+qumw)”KKU_o’ @
_ . wheree=7%2k2/(2m), &, =#%k?/(2m), and v, is the den-
where m is the electron effective mas&=(ky,k,), and sty of transverse modes/(=m/2x#2 for the 3D casp The
o(x,t) is the self-consistent electric potential determined bynumber of occupied transversal modedNis=nA, whereA

the Poisson equation is the cross-sectional area. In the semiclassical description
applied here for a thick conductor, the number of the occu-
pied transversal modes is assumed to be laxge; 1.

#e dk -
—Zzﬂf STk ). (5)
oxs  KJ (2m)

I1l. SELF-CONSISTENT STEADY-STATE SPATIAL

Herek is the dielectric permittivity and is the dimension of PROFILES

a momentum spacéhe spin variable is neglectgdSince It is advantageous to introduce the mean total longitudinal

arises from the random injection of carriers from the leadsenergy[ — d(x)]:

Thus the boundary conditions at the I¢k) and right (R)

leads are: E=e—®(x). (8
~ We shall count off the potential energy from the barrier top:
FOK, )] ~0=TFL(K)+ SfL(K,1), ®(x)=qe(x) —qe(x,). Therefore, at the barrier position
=X,, we obtainE=0 for electrons having the injection ki-
F 1kvt)|kX<O:fR(k)+ Sfa(k,t), netic energy equal to the barrier heigfdr both leads The

boundary values for the potential energy are expressed
through the barrier heighyU, and the applied biatl as
(1) —(0t)=0(1), 6 D =d(0)=qU,, andPr=d(1)=d +qU (Fig. 2. The
solution of Eq.(4) for the stationary cased(dt=0) gives,
where 6f_r are the stochastic forces inside the leads withafter integration over the transversal states, the electron den-
zero average and given correlation properties, dni$ the  sity at any section of the conductor in terms of the potential
applied bias betweer=0 andx=1 (the potential drop in- P, 1827
side the leads is neglected\s a consequence of stochastic

injection, the occupation numbers?(ka,t)zf(x,k) N(q)):f‘[nL(E+q)L)+nR(E+(I)R)]V(E+(D)dE
+ 6f(x,k,t) and hence the potentialp(x,t)=¢(X) 0

+ 8¢(x,t) fluctuate in time around their time-averaged val- 0
ues. +2f LO(—=x)NL(E+ D)
The leads are assumed to be completely absorptive, and -
the transverse electron momenta are conserved. Thus, one +0(x)NR(E+ D) ]¥(E+D)dE, (9

can make summing up over the transversal stétes sum-

mation can be replaced by integration due to the assumptiowhere n_ g(E)=/f r(E,e,)v,de, are the occupation

of a large number of modgsand introduce for each longitu- factors at the leadsy(E)=1[27hv(E)] the density of
dinal energys the (fluctuating occupation factor at a cross states, and = 2E/m the velocity. The first integral in Eq.
sectionx: (9) corresponds to the electrons transmitted over the barrier

045310-3



O. M. BULASHENKO AND J. M. RUBI PHYSICAL REVIEW B 66, 045310(2002

(E>0), while the second integral is referred to the reflectedhe Poisson equationl?®/dx?= (g% k)N(®) to find the
carriers — ®<E<O0). The latter term is doubled, since for self-consistent potentia®. The first integration gives the
each energy there are two states with opposite momentunelectric-field distribution

k, and —k,.. Finally, 6(x) with y=x—X, is the Heaviside

function that distinguishes two classes of the reflected carri-

ers: those at the left of the barrieg<0) originated from the &)= — E @ =—sgnx) \ﬁ h(®), (10)
left lead, and those at the right£0) coming from the right q dx K
lead.

The electron densitjEq. (9)] can now be substituted into where

[0) - - )
h(q)):fo N((I))d(D:%{fo [N(E+ P ) +ng(E+DPR)][v(E+D)—v(E)]dE

0
+2f [0(—x)N (E+® )+ O(x)ng(E+DPR)Jv(E+D)dE}. (11
)
|
Integrating Eq.(10), one obtains the distribution of the po- N
tential for both regiongy<0 andy>0 in an implicit form nR(E+(I)R):g_AfO[a_(E+qU)/kBT]7 (15
2 o dd whereNz(kEA/47r) is the number of transversal modes in
AV X~ —sgr(X)J o (12)  the degenerate zero-temperature linit e /kgT is the re-
° Vh(®) duced Fermi energya=(eg—® )/kgT is the parameter
Matching the two branches at=0 yields characterizin_g the p_osition of the Fermi _en_ergy_with respect
to the p207tent|al barrier, and, is the Fermi-Dirac integral of
|\/§— fq)L dd N J(DR d s indexk.
TN o Vho(@) Jo Jhi(®)’ IV. MEAN CURRENT AND CONDUCTANCE
with h_=h(xy<0) andh, =h(x>0). Equation(13) relates The mean ballistic current is found as an integral over the

three important parameters: the self-consistent barrier heigiccupation numbers for the transmittéei 0) carriers from
Uy, the applied biat), and the length of the conductar ~ Poth leads:
Given any two of them, the third one can be calculdted A (=
from Eq. (13). In Ref. 18 a similar expression was obtained | = q—f [N(E+®)—ng(E+PR)]dE. (16)
for the Maxwell-Boltzmann injection distribution. Here we 27h Jo
have generalized it to the case of an arbitrary injection distt is convenient for future analysis to introduce the energy-
tribution profilesnL(E) and nR(E) at the leads. It should be reso'ved injection currents
noted that in Eq(13) the dependence on bias enters not only
;B:lc():l;%r;;?i L.Jpper limits of the integrals, but also through the L a(E)= ;ﬁnLYR(E). 17
If we assume that electrons inside the leads obey the equ
librium Fermi-Dirac(FD) distributions(the usual assumption

in other work$ from Eq. (7) one obtains the occupation %
numbers |=fo [IL(E+®)—Ir(E+Dg)]dE. (18

Ey this definition, the mean current is

mkgT Having found the barrier heigld, from Eq.(13), this equa-
N r(e)= ﬁln{l"_eXF[(sF_s)/kBT]}! (14 tion determines the current-voltage characteristics. Since we
& have not assumed that the bias must be small, this character-
wheresg is the Fermi energy at the lead afids the tem- istics is nonlinear in bias in a general case.
perature. Thus, for the FD case, the steady-state spatial pro- For the FD case, Eq18) reduces to
files of the potential, electric field, and electron density are

determined through Eq99)—(13) by making use of the I=iﬁNkB—T[}"1(a)—f1(a—V)], (19)
distributions 2mh &
% where we have denoted the dimensionless bids
E+®, )= Fo(a—E/ksT), .=qU/(kBT). It is seen tha}t under the baII!st|c SCL conduc-
M 2 EA ol aT) tion, the current is determined by the relative positions of the
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Fermi energies at the leads and the barrier top through thepa- The asymptotic behavior of the conductance at high bi-
rametersae andV. This is in contrast to the case of diffusive ases is obtained from EQ3)
conductors, in which the current is determined by the scat-

tering strength. *
The differential conductanc&=dl/dU is obtained from 3 qlenig 2 JO IL(E+®,) EdE
Eqg. (16) as AS5 g B 1+ \/cpT — ,
¢ " R R f | (E+®,)dE
b 0
G:ﬁA{nR((I)R)_W[nL((DL)_nR((DR)]]- (25)

(20 giving the leading-order term® ,~ (3/2) (I chii/U) ~ VU for
The derivativedU, /dU is calculated in Appendix A. With ~an arbitrary injection. For the FD case, Eg5) leads to
its help the formula for the conductance becomes

3 e (kg T F
q° Ar Ap GA:E Clj"d + quj ;/i(;)) ’ (26)
- _R -t 1
=y Al N(B) T (@R[ (@D

It is seen that the conductance is a sum of two contributions V. SELF-CONSISTENT CURRENT AND VOLTAGE
corresponding to the left and right leads. Each of them FLUCTUATIONS. GENERAL FORMULAS

is a product of the conductance un,=q?(27#), . — . .
the number of the transversal modes for the injectiorlg According to the definition of the potential energy in Sec.

. . ll, the potential fluctuations at any point are given by
energy corresponding to the barrier top, and some Coulom ®,=qe(x)—qde(x,). In the nonstationary frame fixed

interaction factors determined through, g given in : : . "

: : to the barrier top, the fluctuations at the barrier position are
Appendix A. These factors depend on the whole electron 0. 5b. =0 whereas at the leads thev ag@b.— 5d
system and cannot be separated for the left and right leadf™© 2P x, =" y 0= oL

electrons. ando®,=o6dr= 6P +qoU, wheresU is the fluctuation of
At small biases close to equilibrium, by assuming identi-the applied bias. o _ _ _
cal leads(e.g., FD distributions we obtainA, g~A/2. For The current fluctuation is obtained by integrating over the

this case the interaction factors vanish, and the conductan&ergy the fluctuation of the occupation facgr(E) found
reduces to the value given by the multichannel Landaueffom @ linearization of Eq(4) around the mean valué$One

formula obtains
q° 0 [ _
Geg~ 5= N.(PD), (22) 5l—fo [SIL(E+ D)~ SIg(E+Pg)]dE
whereN, (%) =An, (®?) is the number of open modes at =1 (@) 6D +1r(PR)6DR. (27)

the barrier energy. Under this small-bias condition, the L
current-voltage characteristic is linedr=G,,U. Equation where 61, r(E) are the energy-resolved injection-current
(21) may be viewed as the extension of the Landauer forfluctuations from each lead. In Eq27), only the low-

mula for the conductance to far-from-equilibrium conditions frequency current fluctuations are considered, i.e., the fre-
for interacting electrons in a SCL ballistic conductor. guencies are below the inverse electron transit time between

In the opposite limit of high biased,<U<U,, , where the leads and the displacement current is neglected. The first
cr» . . -
U,, is the critical bias under which the barrier vanishes, thdt€gral term is standard, and corresponds to the injected
asymptotic formula for the current?s current fluctuationsl;,; . The last two terms are the fluctua-
tions induced by the self-consistent potential fluctuations,
that give rise to the long-range Coulomb correlatiéh$o

3 f IL(E+®,)\EdE find those terms, we need to obtaiP, or, equivalently, the
Lol 14 0 23  self-consistent fluctuations of the barrier height in terms of
A~ L child - . (23 . - . .

VOPgr f | (E+®)dE the injected fluctuationsl, g by solving the Poisson equa-
o - L tion. This has been done in the Appendix B. The result is the
relation
where the leading-order term is the Child current
4 2 o2 5I—G6U=f_q) y(E)8I (E+®)dE
L chilg=g KA mqi (24 t

The main termxU%? is independent of the injection, while * f,(p
the second-order termU contains information on the injec-

tion occupation numbers. Equati¢23) for the FD case was whereG is the differential conductandéeq. (21)], and the
presented in Ref. 29. functionsy_gr(E) are determined by

Yr(E) SIR(E+DR)dE, (28
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Lo (E+ D)
_ZCAJ, Td@, -9 <E<O0
n(E)= §
P v(E+®P)—v(E) Pro(E+P)—v(E)
1-C, J —=p @-i—f ———dd|, O0<E<m,
h 0 h¥?
- +
Prv(E+ D)
—ZCAJ qu), —Pr<E<O0
+
Yr(E)= (29
P v(E+P)—v(E) Pry(E+P)—v(E)
—1—CA Y e— o+ #dq) , O<E<om,
h?! 0 hi

In Eg. (29), one can distinguish the contributions from the where,k=L,R and Af is the frequency bandwidttwe as-
left-lead (y,) and right-lead {) electrons, as well as from sume the low-frequency linit For the case of the Poisso-
the reflected E<0) and transmittedE>0) carriers. All the  nian injection from both lead& r(E)«I _g(E). More gen-
terms related to the barrier fluctuations are proportional teerally, for the non-Poissonian injection, under the assumption

the constant that the leads are in local equilibrium, one can use the for-
mula
Ca= 5 [N(PL) ~NR(Pp)] (30
AT 5 A LNL(PL) = NR(PR) |,
27h A an
T Ky r(E)=2kgT GoA| — aER), (34)

where A is the constant previously used to determine the
conductancés and which has been derived in Appendix A. \yhere G, is the unit of conductance. This formula follows
Equations (28)—(30) are one of the main results of our from the Nyquist theorenisee Appendix €

theory. They relate the self-consistent current and voltage By applying Eq.(34) for the FD case, we also obtain
fluctuations with the noise source—spontaneous fluctuations ’

of the occupation numbers in the leads. The transfer func- 2G
tions y g, summarizing the interaction effects, show the K. r(E)= S '
contribution of each energy to the total fluctuations. In the ’ £ 1+elFlkeN—¢
absence of interactions;, (E) = 6(E) and yg(E)= — 6(E), ) )
i.e., the fluctuations of all energies above the barrier top aréhere Gs=Go/\ is the Sharvin conductance, anGo
equally transmitted. The role of the Coulomb interactions is=d°/(27:) is the unit of conductance. For further noise
to introduce an inhomogeneity in the energy flux of fluctua-analysis, we have to specify the conditions imposed on the
tions, by suppressing or enhancing occupation-number flucexternal circuit. We shall consider two cases of interésia
tuations at different energies. Note that the Coulomb interacvoltage-controlled circuit(zero external impedangefor
tions are pronounced only in the presence of transport. I¥hich sU=0, and one can find the spectral density of cur-
equilibrium, C,=0, and they are not effective. rent fluctuationsS; ; and(ii) a current controlled circuitin-

In general, both termg, and yr may contribute to the finite external impedangdor which 8l =0 and one can find
noise. However, at high biases,<U<U,,, one can find the spectral density of voltage fluctuatid®gson the leads. In
that onlyy, (E>0) dominates, the asymptotic expression forboth cases, we will show that Coulomb interactions play a

(39

which is given by’ prominent role in the noise suppression.
3
PE) = ——(VE=0,)+0 qT)’ 31) VI. COULOMB SUPPRESSED CURRENT NOISE
\/(FR R Let us suppose that the potentials at the leads are held
fixed and do not fluctuate. This corresponds to the case when
- 1 f* _ 3”L(E+¢L)}\/EdE 32) currents are measured using a zero-impedance external cir-
A7 (@) Jo JE ' cuit. Under the conditio®U =0, Eq.(28) gives the current-

noise spectral density
We shall use these formulas later on to analyze the

asymptotic limits for other important noise quantities. o
To find the total fluctuationsl or 6U, one needs to de- S :j YA(E)K (E+®) dE
fine the correlation properties of the fluctuations at the leads. P
In general, one can writé o
|

Y&(E)Kr(E+®g) dE. (36)
(S (E)SIW(E"))=K(E)(Af)S(E-E"), (33 R
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It is important to highlight that the obtained current-noise VII. COULOMB NOISE-SUPPRESSION FACTOR

power [Eq. (36)], that includes Coulomb interactions, has To estimate the significance of Coulomb interactions, one

been obtained for a wide range of biases, ranging from equi-_ d he C 9 lomb noise- ion f3%t '

librium to far-from-equilibrium conditions beyond the linear- can introduce the Coulomb noise-suppression or

response regime. Therefore, it describes both thermal and

shot-noise limits. Fczi (43)
One can verify that Eq(36) at the high-bias limitUy, guneer’

<U<U, reduces to . o
that extends over both thermal-noise and shot-noise limits.

oc Strictly in equilibrium,I"c=1, as was pointed out in Sec. V.
Sﬁzf Y2 (E)K(E+®)dE. (837 The effect of interactions is noticeable, however, already un-
der small applied biases. In Sec. XI A, we will show that
while §"*”increases with bias, the behavior$fis just the

0

Taking into account Eqs(31) and (34), one obtains the

asymptotic expression for the current-noise power opposite: it decreases with bias starting freh+0 up to a
certain bias where it reaches the noise minimum, tBen

sl B increases but much slower th&i™".
St~ 24l QU §4|<BT Ga, (39 We remark the difference between theisesuppression

factor[Eq. (43)] and theshot-noisesuppression factofalso
referred to as the Fano factpgiven by

where
2 S
” dE F=——. 44
f [W(E+D)—= 2ql (44)
0 2\/E
B=9| 1- oo 39 |n the latter formula, the noise pow&f* refers to the shot-
|L((I)L)f0 L (E+P)dE noise power, i.e., thexcesgo the thermal-equilibrium-noise

level® SP*=S,— 4kgTGe,. Moreover, Eq.(44) is meaning-

The parameteg is determined by the energy profile of the ful for systems in whichS™xI (for instance, in linear-

injected electrong, (E). For the FD injection, Eq:39) leads ~ 'esponse regimeln this case, it simply gives a measure of
to the formula derived earligt how much the noise power deviates from the ideal Poisso-

nian 2ql value due to correlations among carriers. For the

nonlinear case, whe§/™ is not proportional td, definition
Bla) =9( 1- 7 m . (40) (44) is less useful, since the suppression factor depends on

0 1 It should be noted that Eq$43) and (44) become identical
Equation(39) is more general and can be applied to an arbi-under the conditionggU>kgT (for negligible thermal-noise
trary injection distribution obeying the Nyquist relationship contribution and S"*=2ql. The latter is valid, for in-
[Eq. (34)] for the correlation function. It is seen also from Stance, for —the Maxwell-Boltzmann nondegenerate
Eq. (39), that at high biaseS/*~ \/U. injection® If the injection is non-Poissonian, as in the case
One can also find, for comparison, the current-noise?f FD injection, S+ 2ql, and Egs(43)and (44) differ.

power for the case of disregarded Coulomb correlations

m [Fia)]?

VIIl. FERMI NOISE-SUPPRESSION FACTOR

S,“"°°r=f KL(E+®)) dE+f Kr(E+®R) dE, It is instructive to introduce the Poissonian noise power
0 0 for the full range of biases:
which under the assumption of equilibrium conditions at the qu
leads[Eq. (34)] results in P— —
[Eq. (34)] S’ =2ql cot?( 2kBT)
SO =2qkg T[ 1 (P )+ 1r(DPR)]. 41
| qkeT[I (P)+1r(PR)] (41 4K T Goq, qU<kaT
For the sake of completeness, we present also expression for = 2ql, qU>kgT.
the FD case: (45)
1 Based on this definition, one can introduce the Fermi noise-
g"'= 2kBTGSE[}‘0(a) + Fola—V)]. (42)  suppression factor
. . Suncor
Note that Eq(42) corresponds to Eq3) discussed in Sec. I. .- (46)
Indeed, if one applies E@3) for two opposite flows of non- F 5|P ’
interacting FD electrons, summing up over the open chan-
nels, one then gets E¢42). Thus the total noise-suppression factor is
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S, as in the linear-response regime. It should be remembered,
=Telc=—, (470  however, that at higher bias&s> «, the 2V dependence is
S changed to the 2/ law. The largest noise suppression by

Note that all of definitiong43), (46), and (47) extend from  Fermi correlation®’ is described by Eq(50), giving gt
thermal- to shot-noise limits. They will be used in the analy-= 2/, when the barrier height is zero. We shall give some

sis of the results in Sec. XI. examples in Sec. XI.
For the FD two-lead injection, from Eq&19) and(42) it
follows that IX. NOISE TEMPERATURE
Fola)+ Fola—V) It is interesting to see from E@38), that at high biases

F= ()= F (a_v)tanr(V/Z). (48 and strong screening, despite the strong nonlinearity, the ra-
1 ! tio betweenS, and the differential conductand@ tends to
One can verify that at the low-bias limit—0, there is no the constant value. It is instructive, therefore, to introduce

suppression effecr— 1. The finite bias introduces asym- the effective noise temperatui®, through® S;=4ksT,G.
metry in the contributions from electrons of different leads.Note thatkgT, has a meaning of the maximum noise power
The larger the bias, the smaller is the contribution from theper unit bandwidth which can be delivered to an output
biased lead, since the electrons have a higher potential bamatched circuit; thus it is a measurable quartityThe
rier by an additional amount of to overcome. It is clear that asymptotic high-bias value is then obtained as

starting from a certain bias, the contribution from only one

injecting lead dominates. The unidirectional charge flow oc- E_ } _ 3(1—ml4), a=-3 (52)
curs when T S'B(Q)N 1/3, as>1.
V=max5;a+3}. (49 It is seen thal ,<T for any «, indicating the noise suppres-

. . . . ... sion effect[see the plot of3(«) in Ref. 29. For a nonde-
This condition comes from the consideration of two limits. generate Maxwell-Boltzmann injection, the limiting value

For a nondegenerate in_jecti@?ne Fermi energy_is below the (TﬂdEQT)ZS(l— 7/4)~0.644 is well knowr®3 For a
barne.r, as—3) the b|as-to-temperature ratio sh_ogld .behighly degenerate FD injection, we have obtained from our
Iarr]ge.léqUZ_SkBT, Wh?reag for ahhlggly Qegfgeratﬁ mfjfcuontheory (Tﬂeng)=1/3. The physical meaning of the latter re-
Shgul dek:r)r:Icc?rrT]\ep?r)(/a(:ilswftlhot\r/\Z It:e?miaer;:zawgstp—eqdis sult is that the _noise power per unit bandwidth produced py
+3kgT. Thus, under condition49), from Eq. (48) one ob- the SCL ballistic con_ductor with degenerate FD electrons is
tains the asymptotic formui3 1/3 of th_e thermal noise power produced by the heated resis-
tance with the same value of the conductafcéthe same
|-V dependence independently of the material parameters.

1, as—3
_ Fola) 5 50
F ]:l(a) , a=3. X. COULOMB SUPPRESSED VOLTAGE NOISE
a+3mla?

Alternatively, one could measure the voltages at the leads
using an ideal infinite-impedance voltmeter. The infinite-

It is also of interest to analyze the case opposite to con: N
dition (49), when the bias is not so high that both Ieads|mpedance external circuit then forces the current to be zero

: - _ at all times, 61 =0. Fluctuations in the current are counter-
E:r?]r:r:'bflgf atrc: o;zeé gcezzrr%?e flliﬁiv:l“t;:imFeJXQ mgﬁ?/i;;;in balanced by fluctuations of the chemical potentials in the
erate, limit, that happens WhéMSa—.?) one can use the electron reservoirs. Under the conditiafi=0, Eq. (28)

approximations for the Fermi-Dirac integr&isFy(x) ~x and gives the voltage-noise spe_ctral density which takes into ac-
F1(X)~x2/2+ 7?16, and Eq.(48) leads to a simple formula count the Coulomb correlations:

2 % 1= 5
1“,:=—tan)‘(—. (52) SUZE _¢L7L(E)KL(E+‘I’L)dE

\% 2

Surprisingly, the dependence anand hence on the barrier <,
height, ballistic length, and material parameters, canceled out +f q,RVR(E) Kr(E+dg) dE|. (53
from this equationI’r depends only on one parameter—the

bias-to-temperature ratio, and at sufficiently highit de- It is evident that the relation

creases with bias ds-~2/V. Note that this behavior occurs

under the nonlinear bias regime in the presence of a space S

charge. Indeed, for this case one finds the sublinear charac- :E (54)
teristics for the mean curreht=GgU[1—q(U,+U/2)/eg],

whereas the current noise power is given I8/  holds, in whichS is the current-noise spectral densifq.
=4kgTG4g 1—q(Up+U/2)/e¢], with the identical factor in  (36)] measured undefU =0, andG is the steady-state dif-
square brackets. As a result, one obtaB8 °=4kgT I/U,  ferential conductanc&1l).
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FIG. 3. Parameterr=(er— P )/kgT characterizing the posi-
tion of the Fermi energy  with respect to the potential barridr_
for different lengths of the ballistic regidn At U— U, the barrier
vanishes®, =0, anda attains its maximum value= £=10.

The asymptotic behavior @& at high biases can also be
found from Eqgs.(38) and (54). We obtain

B 1
Sﬁ—§4kBTG—A, (55)
with 8 given by Eq.(39). It is seen that the voltage noise 10° 10’ 10° 10°
decreases with bias &)~ 1/\JU at U,<U<U,, (the gen- qU T kT

eral result independent of the injection distribujioRlence FIG. 4. Current-noise powe, and differential conductanc®
the Coulomb interactions result in the voltage-noise suppresys iasu for different ballistic lengths. For comparison the noise

sion. This fact will be discussed in detail in Sec. XI B. power for the Poissonian injectiongRcoth@U/2kgT) and the
Fermi-Dirac injection with disregarded Coulomb correlati@{&™"
Xl. RESULTS FOR FERMI-DIRAC INJECTION are plotted. The normalization constants are the corresponding equi-

) ) o librium values atU=0: S/9=4kgTGeq and G-
To illustrate our results, consider the GaAs ballistic-n

diode atT=4 K.*3 For this temperature and the effective
mass m=0.0671n,, the effective density of states iN.
~6.7<10" cm~3. Assuming the contact doping 1.6 . = - :
X 10%¢cm™3, the reduced Fermi energy~10, and the con- injection becomes_degengrate fqr all three cases. Finally, at
tact electrons are degenerate, that is necessary for studyirl'ng2|)_>L.J‘3r the potential barrier vanls_h(_aac,— ¢ and the trans-
the joint effect of both Fermi and Coulomb correlations. ForPort Is no I(_)nger space-char_ge_ limited. The _vaIuesUgf

this set of parameters, the Debye screening length associatgapend obviously on the ballistic lengtfisee Fig. &

with the contact degenerate electron density is approximately

Lo=VkksT/[0°NcF_15(£)]=14 nm. The calculations A. Fixed-bias conditions: 5V =0
have been carried out for the following ballistic lengtlhs: . .
In Fig. 4 we show the results for the current-noise power

=0.05, 0.1, and 0.5um. . . !
' ’ 1 [EQ. (36)] and differential conductanc® vs biasU cal-
The degeneracy of the contact electrons does not guara§ulated for different ballistic lengthk For comparison, the

tee the degeneracy of the injection, since the potential barrier .

determines the energy portion of electrons which may pasi!S€ Power for the Poissonian injecti&)i [Eq. (45)] and
over the barrier and contribute to the injection current. For” 'Mi-Dirac injection with disregarded Coulomb correlations

each ballistic lengthl and biasU, we have numerically S"*'[Eq. (42)] have also been plotted. In equilibrium, all
solved Eq.(13) to find the self-consistent potential barrier the noise-power curves coalesce toward the Johnson-Nyquist
height®, and the parameter=(e-—®, )/kgT characteriz- noiseS;%=4kpT G, independently of the presence of Fermi

ing the position of the Fermi energy with respect to the po-Of Coulomp correlations. However,'starting frqm small bi-
tential barrier. The results are plotted in Fig. 3. ases the difference becomes drastic. WIS increases
It is seen that in equilibrium, for the ballistic lengths ~ With bias, the behavior o is just the opposite: it decreases
=0.05, 0.1, and 0.5um, the self-consistent barrier height with bias starting fromU=0 up to a certain bias where it
®, is about &gT, 9kgT, and 1%gT, respectively. This reaches the noise minimum, theh increases, but much
means that the injected electronslat 0 are degenerate for slower thanS'™*". Finally, atU— U, when the barrier van-

| =0.05 and 0.m, and nondegenerate for0.5um, since ishes,S, sharply recover§'™". Note that in the absence of

for the latter case only the tail of the distribution function is
injected (@<<—3). As U is increased®  vanishes and the
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FIG. 6. Noise temperatur&,, vs biasU for different ballistic
FIG. 5. Contributions to the current-noise pov@grfor the case  lengthsl. The asymptotic I(—c,U— ) limits for nondegenerate
of I=0.5 um: from overbarrier electrons transmitted from the left and highly degenerate electrons are shoWf’®%=3(1—=/4)T
(Si1) and right G r) leads, and those reflected by the barrier and T9%%9=(1/3)T, respectively.
(S s +rr). For comparison, contributions t§"°°" are shown as

II: f left- (S/7°°) and right-lead §'%°) electrons. - N
well: from left- (S'i™) and right-lead §%”) elec <T would indicate the significance of the Coulomb correla-

tions effects which suppress the current noise UAtU,,
T, sharply increases due to the current saturatiGs-Q),
that may also be detected in the experiment.

The current-noise-suppression factbggandl'r, and the

Coulomb interactionsS™" follows the Poissonian lavg
=2ql coth@U/2kgT) only for a nondegenerate injection, as
in the case ofl=0.5 um at qU=<10kgT [Fig. 4(c)]. At
higher biases, and for shorter ballistic 'engtl]s in all thea) 1 (their multiplication correspondent to the noise-
range, the injection is non-Maxwellian aigl<S; because ower curves of Fig. 4 are plotted in Fig. 7 as functions of
of Fermi suppressiofFigs. 4a) and 4b)]. It should also be  hjag The behavior of the Fermi suppression fattpris in a
noted thatS;<S'" in a wide range of biases, which means ¢jose agreement with the analytical formulas of Sec. VIII. It
that the noise for interacting ballistic electrons in an externalaries from 1 at low biases, then decreases attaining with a
field is less than the equilibrium Johnson-Nyquist noise. Asjjce precision the asymptotic dependencex2/@x/a?) at
will be shown later, the same is true for the voltage noisehigh biase§Eq. (47)]. For all three cases, the same minimal
power. value 2£~0.2 is reached at the highest biases, in agreement
Figure 5 assists the understanding of the results by showgith the predictiond® We have also checked that for the
ing the contributions td5, from different electron groups. degenerate injection from both leads, which is well realized
The effect of Coulomb correlations is manifested quite dif-g; the lengthl =0.05 wm, the analytical formul&Eq. (51)]
ferently for the left lead and right-lead electrons: while the\,ery nicely describes the numerical results in a wide bias
left-lead noise is suppressed,(;<S;"®), the right-lead range: fromU=0 up toU~5kgT [Fig. 7(@)].
noise is enhanced(r>Siz""). Since the role of the right- The relative significance of two mechanisms on the noise
lead electrons is diminished with bias, the overall effect ofsuppression can be understood by comparing the curves for
interaction results in the total-noise suppression. There ighree different ballistic lengthd. For short samples| (
also a non-negligible contribution{(10— 15 %) to the noise  =0.05.m), the Fermi suppression dominates at low biases
from the reflected carriers atJ=<10kgT. It appears for cor- V<3, wherel'c=1 andI'~I' [see Fig. 7a)]. At higher
related electrons only. biases, V=20, both Coulomb and Fermi mechanisms
Figure 6 shows the noise temperatllig versus bias)  contribute to the suppression. Aer0.1.m, the suppression
calculated from T,,/T) =S, /(4kgTG) by using the data of factorsT' andI' are comparable in all the bias range. Fi-
Fig. 4. One can see that starting froip=T at zero bias it nally, for the longer sampld,=0.5uxm, the Coulomb noise
drops atqU=kgT below the temperatur& of the injected  suppression completely dominatds;<T'g. This behavior
electrons. It is interesting to note that for degenerate eleccan be explained by the fact that the Fermi shot-noise-
trons (=0.05 um), this drop starts to appear at higher bi- suppression factor is limited below by the valug,dle., by
ases than for nondegenerate electrdrsQ.5 um). Accord-  the properties of the injecting contact independently of the
ing to Eq.(52), the minimal asymptotic value of, in the  ballistic length?® In contrast, the Coulomb noise suppression
limit | —o,U—c differs for nondegenerate and degeneratemay be enhanced arbitrarily strong by extending the length
electrons(see indications in Fig.)6 For our set of param- of the ballistic sample with a simultaneous increase of bias
eters, the injection is degenerate at the highest biases. Hoyprovided the transport remains balligtidherefore, for any
ever, the IimitTﬁeg:(ll3)T is not achieved for those ballis- degree of electron degeneraéy e /kgT, there exists the
tic lengths, since the samples are not sufficiently long. Notdallistic length starting from which the Coulomb interactions
that T,, is a measurable quantity, and the observatio,pf become to dominate in the noise suppression.
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FIG. 8. Energy distributions of the current-noise povg€E)
under various biase¥ for a ballistic conductor witi=0.05 um
(solid lineg. The zero energy corresponds to the conduction-band

3 edge at the leffunbiasedl lead. The sharp peak at low energies
corresponds to the position of the space-charge barrier. The dashed
line shows the energy profil, (E) for the injection noise at the

left lead (e=10kgT). The profile for the right leadkgz(E) is the
same, but is shifted by V in energy. All the curves are normalized

by 4ql (®?) related to the noise level &t=0.

2

10° 10 10
qU 1 k,T

10

FIG. 7. Current-noise-suppression factdis (Coulomb, I'r
(Fermi, andTI'=T'gI' (total) as functions of applied bias for
different ballistic lengthsl. The analytical approximations 2¥(
+ 7?3a) and 2W tanh{/2) for I'c and kgT/qU for I' are also
shown. rier is negligible at these biagedVith increasing the bias,

several features appedi) the contribution from the right

Another important difference between the two supprescontact becomes smaller and smaller because of the shift in
sion mechanisms is that the Fermi noise-suppression factemergy—V, (i) the Coulomb interactions give rise to a sharp
I'r is @ monotonically decreasing function of bias, while thepeak at the barrier energy with a noise suppression at the
Coulomb noise-suppression faclog exhibits a minimum at  energies beyond the peak, afii) the carriers below the
a certain bias value, as seen in Fig. 7. After the minimum, théarrier give appreciable nonzero contribution to the noise.
curve of I'¢ increases to 1 due to the disappearance of th&he peak appears due to the fact that electrons with the en-
potential barrier al=U,,. ergy E=® virtually stop at the barrier top, producing an

The total noise-suppression factbrapproaches at high infinitely large perturbation of the currefthis singularity is
biases the asymptotic curkgT/qU, once the injection, be- integrable, since it is of the logarithmic tylSe Another in-
cause of barrier lowering, becomes fully degenerate, ineresting feature is the “noiseless” ener@ lying above
agreement with the predictidi.The longer the sample, the the barrier, in which the noise exhibits a local minimum. It is
wider is the bias range in which this asymptotic law is ful- better pronounced for a nondegenerate injectsae, for in-
filled independently of the material parametéf®y. 7). Itis  stance, Fig. Pwhere one can observe the zero-noise point
also important that the suppression may be several orders g{E*)=0 for various biasg This point appears approxi-
magnitude stronger than the shot-noise suppression due ffately at the conditiony, (E*)=0. As long as the barrier
elastic partitioning’ vanishes at highest bias&ls—U,,, the Coulomb noise sup-

It is instructive to plot the energy-resolved current-noisepression disappears and the energy prafi) recovers the
power s(E) defined byS,=[s(E)dE. The derived formula FD shape.
[Eqg. (36)] allows us to analyze these distributions for differ-
ent lengths and biases. The results Ifer0.05 and 0.5um
are shown in Figs. 8 and 9. At small bias&s<0.1 in the
figureg, the Coulomb interactions are ineffective, and the Thus far we have presented the results obtained under the
noise is approximately the sum of two equal contributionsassumption that the ballistic sample is connected to zero-
from the left and right leads. These contributions are theémpedance external circuit. In this case the fluctuations of the
Fermi-Dirac profiles filled out above the barrighe contri-  applied voltage can be neglected. In experiments, it is the
butions of the reflected carriers with energies below the barvoltage fluctuations which are actually measured and which

B. Fixed-current conditions: 81 =0
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P S _\ ' veot of voltage fluctuations is much more pronouncgii) Com-

L OKE) o S(E) = paring the asymptotic dependen&s~ 1/\/U and S~ U,

| \ it is seen that the latter eventually exceeds the equilibrium
? i _ ____________ ’ ] Nyquist noise when the ballistic length is sufficiently long

5 T V=10 [see Fig. 4c)]. In contrastS falls off the equilibrium value

! J/\ in a full range of SCL conduction. Note that the equilibrium
- S e ; fluctuations, described by the fluctuation-dissipation theo-

Q| B V=100 rem, usually increase when an external electric field is ap-
= : plied. In our model, we have an interesting example when an

0 ——— interacting (via Coulomb forcep electron system is less
L S V=600 ] noisy at far-from-equilibrium conditions than in equilibrium.

E k For noninteracting electrons in quantum conductors, such ex-
0 |+ —S— amples have been provided by Lesovik and LodSen.
T [ Tl V=670 ] We can also mention more familiar examples from semi-

i conductor device literature. For instance, in Schottky-barrier
0 5'\ — diodes orp-n junctions, in the range of the exponential/
1 Tttt = V=690 1 characteristics, the current-noise power is given 8y

:/—\ =2kgTG, which is a half of the thermal noise value given
o L - by the Nyquist relationship* However, this is not really a

0 E/llOT 20 suppression effect, since the current-noise po$enever

B

drops down the equilibrium Nyquist levef 9= 4kgTGg,. In

FIG. 9. Distributions similar to Fig. 8 for another ballistic length this caseG>G,q and S>S;® for any bias® (in our model
I=0.5 um. The notations are the same, except KatE) is not S <Sf%in a wide bias range On the other hand, for these
normalized. junctions under the fixed-current conditiors,= 2k TG 2,

. . that is again a half of the Nyquist relationship, (8it< S
eventually are converted to current fluctuations. By using afnay now occuf® It should be emphasized, however, that the
infinite-impedance circuit, the current fluctuations are forcedatter noise reduction appears fwninteractingcarriers, and
to be zero, and one can analyze the voltage-noise powsf. js caused by the nonlinearity in the current-voltage char-
Both cases are interrelated through Esf). It is of interest  acteristics which results in such a behavior that the conduc-
howeyer to see the results for th_e voltage-noise power—thgyncec grows with bias as fast as the current-noise poger
quantity that can be measured directly. (exponentially. As a resultS, =S, /G2 is a decreasing func-

Figure 10 shows the results of applying of E§4) to our o of bias. In our model, the noise suppression below the
set of parameters. The behavior §j calculated with and  thermal equilibrium valugnegative excess voltage noise
without Coulomb correlations is strikingly different. We re- 5ccurs due te€Coulomb interactionemong carriers. Without
mark the following featuredi) For the case when the inter- interactions, despite the nonlinear SCL regime, the noise
actions are included, the noise decreases with bias instead Qfows above the Nyquist level, as was shown in Figs. 4 and
increasindthe asymptotic behavig,~ 1/y/U at high biases 10.

(see Sec. Xis confirmed. (ii) For longer samples, the range
of the space-charge conduction is wider, and the suppression

102 XIl. DISCUSSION

In this paper, we have presented a theory of the electron
transport and noise in a self-consistent potential along a bal-
listic two-terminal conductor. Since electrons are fermions
and carry charge, they interact among themselves by both
Fermi statistical correlations and long-range Coulomb corre-
0.5um lations. The interplay of these two mechanisms determine the
noise properties of a ballistic conductor—the subject we

have addressed in the paper.
The long-range Coulomb correlations appear due to the
— with Coulomb cor self-consistent coupling between the electric potential and

the occupation numbers. This coupling is essential to ad-
1(')0 161 162 163 10° equately de;cribe the noise phenomen_a. To develop a bgtter
qU I kT understanding of the Coulomb-correlation effect, we rewrite
Eqg. (1)—a standard equation for the mean current in a two-
FIG. 10. \oltage-noise powef, vs biasU for different ballis-  terminal conductor—in which we explicitly introduce the de-
tic lengthsl are compared for two cases: with and without Coulombpendence of the transmission probabilities on the self-
correlations taken into account. consistent potentiglin this case on the barrier heigiit,):

thermal—eq.
noise -
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experiment¥). Unfortunately, the data on noise measure-

I= f de [7 (e,®p) I .(e) = Tr(e,Pp) Ir(e)].  (56)  ments in these structures are scafdBue to a great progress

in noise measurements in quantum ballistic conductors dur-

Here, I r(e)=(qA271i) [T r(e,e,)v,de;, are the cur- jng the last ten yeafs'® (also see Ref.)3 we believe it
rents corresponding to the longitudinal enesgyn the semi-  would be now possible to measure the noise suppression
classical limit, by neglecting the quantum-mechanical refleceffects in SCL ballistic conductors. Although the theoretical
tion of electrons with energies>®}, and tunneling through  results presented in this paper are strictly valid for thick mul-
the barrier, the transmission probabilities are the Heavisidgichannel conductor$3D electron gas the Coulomb sup-
step functions:7 (&, ®,)= 6(e —P,) and Tr(e,Pp)=60(s  pression of noise should also be pronoufidedconductors

—P,—qU). o . with a small number of channe(@D or 1D) in which elec-
The current fluctuation is found by perturbing H&6);  trons are more confined in space, for instance, in quantum
we obtain wires under the high-bias nonlinear transport regtfher, in
carbon nanotubes under the SCL conducton.

Sl :f [T, 81— Tdl r]de Additionally, we wouldllike to gmphasize the importance
of the effect of Coulomb interactions. They not only lead to
the noise reduction, but can also be used as a tool to probe

a7, T - e : .
+ J (—6Dp) — I +(—6P,—qoU) —Ix|de the energy profile of the injected carriers and other electronic
de de properties?

=6lini+ 6ling, S
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APPENDIX A: DERIVATION OF dU,/dU

term«7,(1—7,) is abseni The second integral in E457) Differentiating Eq.(13) gives
is the induced current fluctuatiodl;,4 caused by the fluc-
tuation of the potential. It is precisely the term appeared due ddo, 1 1(e. 1 dho 4o
to Coulomb correlations and ignored in Eg). For our case, AU ke 5] w32 dU
the derivatives are found as d7 /de)=3(e—Py), h-(®y) 0 h=
(07rl0e) = 6(e —P,—qU), leading to ddg 1 lfq,R 1 dh,
+ =z —5—=+dd=0.
8ling=— 8Dy I (Pp) +(5Pp—qoU) I(Pp+qU). dU Vh,(®g) 2Jo h¥?dU
(58) (A1)

Thus Egs.(57) and (58) lead to Eq.(27) for the current

fluctuation derived more rigorously earlier from the transportBy usingd®g/dU=q+d®, /dU and findingdh/dU from

Eqg. (11), we obtain

equation.
We would like to highlight that the induced current fluc- dh dd,
tuations 8l;,4 should appear not only in the case of com- gu =~ (HirHR G —AHR, (A2)

pletely open/closed channelg,&0;1), butalso under the

conditions of the partitioning shot noise, for which there ex-where

ist channels with 87,<1. It is clear thatdl,,q should de- .

pend in general on the derivatives of the transmission prob- H (d)= i[f D, [v(E+®)—v(E)]dE

abilities (97,/09¢) and the fluctuations of the self-consistent 2mh | Jo

potential 5P, . The main problem is then to find the fluctua- 0

tions 6®, through the noise sources. For the particular case +29(_X)f DLv(E+d)d E], (A3)

of a multimode ballistic two-terminal conductor, we have -®

found an exact analytical result fat®,. For the case of 0

Ef\(;gtrlggsg shot noise in which Eq2) holds, work is in HR((D):W[ J;, Dr[v(E+®)—v(E)]dE
The validity of our theory can be tested experimentally in

currently accessible semiconductor structures. The required 0

conditions are simildf to those for the transport in vacuum +20(x) jq,DRU(EJFCD)dE]’ (A4)
tubes:(i) the ballistic electron transmission between the ter-

minals, andii) the limitation of current by the space charge. ang

The SCL transport regime, as applied for ballistic electrons D(E)=~ OE , k=LR (A5)
in solids (mostly inn*-n-n" or n-i-n semiconductor struc- E+dy

ture9, was discussed a long time a(gee, e.g., theofy and Substituting Eqs(A2)—(A4) into Eq. (A1), we finally obtain
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du, 1do Ar A6 . d®> g?dN
dU " qdU A +Ag (A6) Lod,= 2« db o6® = bs,, (B4)
Here we have defined where 55,= (g% x)[ SN — (dH, /d®) 5D, — (dHg/
o H- o HF d®)sdg]. The boundary conditions for this equation
f SR f ST 5D (0)= 6D, , 6D, (1)=6Dg, P, (x5)=0.
“ (@) (®)) h3’2 h3/2 The second-order differential equatic®4) with spatially
dependent coefficients can be solved explicitly fsb, .18
o, Ho o H Here we need just the boundary valug®d, and §®y (the
f R J' —dcb relation between themwhich has entered explicitly into the
h (@) h3/2 h%? nonhomogeneous part and can be obtained by applying the

where we have denoted, =H,(x<0) and H; =H,(y  Creen’s identity for the operatdr,

>0), k=L,R. The quantitiesA; and A, as well as their ) d5® du
sum f [u(x)L6®,— 6P, Lu(x)]dx= u(x)W—&DX&)
a

are used in this paper to calculate the differential conducyhere [a;b]=[0:x,] for x<0 and[a;b]=[xy;I] for x
tance[Eq. (21)] and the noise suppressi¢Rq. (30)]. The 0. |tis convenient to chose the functialix) as a solution
physical meaning oA becomes clear from the relation of the homogeneous equatiof:lu(x):O satisfying the

50 4l boundary conditionsi(0)=0 andu(l)=0. This gives
A=2q \[( ID,

Xp I 5(I)|_ 5(DR
f U5SXdX+j uésxdx=£——g—,
e., it relates the increment of the barrier height with the 0 *b L R

increase of the length of the sample under fixed bigsg

are the corresponding contributions to that increment frorﬁNhere 5.'- and £ are.the electric flelds at=_0 and X.:l’
the left-lead and right-lead electrons. respectively. Changing the variable of integratiaix

=—d®d/(g€) , one obtains

) : (A8)
U=const

u (I)R u 6(I)|_ 5(I)R
—5sxdcb—f F08db=————=. (B6)
0

o & & Er

APPENDIX B: DERIVATION OF THE SELF-CONSISTENT @,
POTENTIAL FLUCTUATIONS f

Integrating the fluctuation of the occupation factor(E)
over the longitudinal states, one obtains the electron-densitl is convenient to represent the fluctuatiés, as a deriva-
fluctuation as a sum of two contributionsiN= SN tive 8s,=(k/q?) (dsh/dd). By using this notation, the in-

+ 6N where the injected part is tegrals in Eq(B6) can be reduced t6
5Ni”i(q>):f [SnL(E+®,)+ Snp(E+ Pr)v(E+D)dE q’kE@d@:EJq’kihdq), k=LR (87
0 o €& dd gqJo
0
+2f [6(—x)on (E+D)) whereassh is obtained by integration ofs, :
-o
+0(x) SNg(E+ D) |v(E+D)dE, (B1) sh=6h""—H, 6& —Hg 6D, (B8)
and the induced part is o o
5h'“1(qn)=f SN 4D . (B9)
SNId(@ —d 5 0P M o - 2R s, (B2 i

Now substituting Eqs(B7) and (B8) into Eq. (B6), and by

Equations(B1) and (B2) should now be substituted into the USing Ed.(10), we obtain
Poisson equation fof®, to find the self-consistent fluctua-

tion of the potential profile: o sh'M og Sh'M
A6®L+ARq5U=f Wd‘b‘l’f —5 4P,
o h? hZ
d? 2 . .
pﬁcpﬁq?(awm SNInd), (B3) (B10)
X
whereA and Ai were denoted in Appendix A. Combining

We obtain Egs.(27) and(B10) and excludingé®, , we obtain
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sl —GoU G _dl B jwalL dE c2
> dufy o GE Eral
=f [81 (E+®)— Slg(E+Dg)]dE -
0 By using the Nyquist theorer§; 9= 4kg TG4, We obtain
o o * 0 * O”L
(D))~ 1r(DR) @, sh'™ q’R5hTJ K (E+®[)dE=2qgkgT “E dE
— f f dd 0 0 E+ 30
A o n? h372 * L
- +

Since this integral relation should be valid for different
lengthsl of the ballistic conducto(different(l)f), it should
also be valid for the integrands,

that leads to Eq(28).

APPENDIX C: NYQUIST THEOREM AND THE
BOUNDARY CONDITIONS FOR FLUCTUATIONS ( al L)
K (E)=2qksT| — ==, (C3)
Consider the situation when the potentials at the leads are JE
held equal =0, 8U=0) by means of a zero-impedance that leads to Eq(34). Thus, just from the Nyquist theorem
external circuit.(A similar consideration can be carried out we have a useful relation for the energy-resolved currents
for the infinite-impedance circujtAdditionally we assume (occupation factopsat the leads. It relates the energy profiles
that the contacts are identicdl; (E)=1r(E), and K_(E) of the fluctuations and the mean values. In the simplest case
=Kg(E), VE. Thus from Eq.(30) we haveC,=0, ¥ (E)  of the Poissonian injection, for instance, the correlation func-
= @(E), and yg(E)=— 6(E), which means that Coulomb tion is proportional to the meah
correlations do not affect noise at zero bias. Therefore, from

Egs.(28) and(33) one obtains the current-noise power KIS E)=2ql (E). (CH
w From this result it follows that, (E) = —kgT(dl /JE), and
S,eq=zj K(E+®?) dE, (C1)  one obtains the Boltzmann distribution
0
Poi _ _
where ® is the equilibrium barrier heightthe noise de- IL"E)=C exp( —E/kgT), (CH

pends on the steady-state self-consistent)fi#idr the equi- where the integration constaftis determined by the nor-
librium conductance we find malization condition.
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