
PHYSICAL REVIEW B 66, 045208 ~2002!
Atomistic description of the electronic structure of InxGa1ÀxAs alloys
and InAsÕGaAs superlattices
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We show how an empirical pseudopotential approach, fitted to bulk and interfacial reference systems,
provides a unified description of the electronic structure of random alloys~bulk and epitaxial!, superlattices,
and related complex systems. We predict the composition and superlattice-period dependence of the band
offsets and interband transitions of InAs/GaAs systems on InP and GaAs substrates.
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I. INTRODUCTION

InAs and GaAs are the building blocks of a diverse ran
of optoelectronic heterojunction systems, including~i! short-
period superlattices (InAs)n /(GaAs)m made of the binary
constituents,1–11 ~ii ! bulk InxGa12xAs alloys,12,13 ~iii ! epitax-
ial alloy films on InP, InxGa12xAs/InP,14–16 and on
GaAs, InxGa12xAs/GaAs,17–20 as well as ~iv! alloy
quantum-wells15,20 (InxGa12xAs)n /InP on InP and
(InxGa12xAs)n /GaAs on GaAs, and~v! GaAs-embedded
InAs quantum dots.21–23 We wish to provide a uniform the
oretical description of the electronic structure of such s
tems, ~i!–~v!, by using a single theoretical approach. B
‘‘electronic structure’’ we include the band gaps, interba
transition energies and their dipole elements, wave functi
localization, and strain-modified band offsets.

The current status of theoretical modeling of such syste
is that different approaches are often used to describe di
ent subsystems. For example, short-period superlatt
made ofbinary constituentsare often treated by atomisti
approaches such as the local-density approximation~LDA !,24

tight binding,25–27 or empirical-pseudopotential metho
~EPM!,28–32 yet, superlattices made ofalloy constituentsare
deemed too complex to be treated by such methods, and
described instead via continuum effective-mass approxi
tions ~EMA!, including single-band or few-bandk•p
methods.33–35 The electronic structure of bulk alloys,12,13

e.g., the optical bowing in InxGa12xAs, is rarely predicted
theoretically, ~see, however, Refs. 36–40 for the mode
theory of alloy bowing!. Instead one uses33–35 the observed
phenomenological bowing in modeling of alloy heterojun
tions. Even when an atomistic theory of bowing in bulk a
loys is attempted,36–40 such descriptions are not extended
alloy superlattices, such as (InxGa12xAs)n /(InP)m , which
represent a higher level of complexity. The use of differe
theoretical approaches with widely varying degrees of ac
racy to describe the various InAs/GaAs subsystems can
problematic not only because of potential inconsistenc
~and lack of elegance!, but also because the ranges of app
cability are currently unknown. For example, it is not obv
ous what are the minimum layer periods (n,m) of AnBm
0163-1829/2002/66~4!/045208~15!/$20.00 66 0452
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superlattices before the continuum EMA description starts
fail, thus requiring an atomistic description,30–32or when the
difference in atomic potentialsVA2VB between the alloy
constituents is too large to justify a virtual-crystal descripti
of theAxB12x alloy, as is the case in GaAsxN12x alloys.41,42

The modern electronic structure theory of solids a
molecules43,44 delivers the basic electronic propertie
through an effective single-particle Schro¨dinger equation,

H 2
1

2
¹21Vscr~r !1(

n
(
a

ua~r2Rn2da!J c i5e ic i~r !,

~1!

whereua is an external atomic potential~e.g., ionic pseudo-
potential, or electron-ion2Z/r field! of atom of typea
5Ga, In, As located at lattice siteda within unit cell atRn ,
andVscr(r ) is the screening response45 of the system to such
external potentials.~We consistently use lowercase symbo
u,v to denote potentials of single atoms, whereasV denotes
the potential of a set of atoms, e.g., an alloy, superlattice
quantum dot.! The specification of the structure—
superlattice or random alloy—is given by the collection
position vectors$Rn ;da%. While the $ua% are properties of
individual atoms, and are thus superposed linearly in Eq.~1!,
the screeningVscr(r ) is generally not linearly superposabl
In the LDA ~Ref. 45! it includes a linearly superposable in
terelectronic Coulomb termVH(r ), as well as a nonlinea
exchange and correlation termVXC(r ). The total screening
Vscr5VH1VXC needs, in general, to be obtained se
consistently, and may even contain spatial nonlocality.43,44If,
however, one considers physical systems made of a lim
number of recurring chemical motifs, one could attempt
decompose the global screening into atomiclike compone
thereby definingscreened potentialsva ~Refs. 46–49! via

V5Vscr~r !1(
n

(
a

ua~r2Rn2da!

'(
n

(
a

va~r2Rn2da!. ~2!
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KIM, KENT, ZUNGER, AND GELLER PHYSICAL REVIEW B66, 045208 ~2002!
The various InAs/GaAs systems discussed above~as well
as other isovalent and isostructural semiconductor pairs! all
involve five basic atomic tetrahedra As (GapIn42p) with 0
<p<4, where the pure binaries InAs and GaAs, resp
tively, are p50 and p54, whereas mixed clusters havep
51, 2, and 3. Moreover, all of the systems we conside
alloys, superlattices, heterojunctions—have fully satisfi
fourfold coordination without free surfaces, reconstructio
or broken bonds. Thus, we wondered if just a few scree
potentials$va% could be constructed from some prototy
systems, and then used in a transferable way to describ
full range of alloys, heterojunctions, and quantum dots v

H 2
1

2
¹21(

n
(
a

va~r2Rn2da!J c i5e ic i . ~3!

Our current understanding of the nonlinear nature of
exchange-correlation screening45 within Vscr(r ), and the po-
sitional nonlocality of the self-energy44 suggests that Eq.~2!
cannot hold universally for all eigenvalues$e i% of the Schro¨-
dinger equation~3!, or for all structures~bulk as well as
surface!. Nevertheless, it is interesting to explore if this a
satz holds for a useful window of energy eigenvalues~e.g., a
few eV around the band gap! and for a restricted rage o
structures@e.g., systems made of As(GapIn42p), without free
surfaces or undercoordinated atoms#. If an accurate represen
tation such as Eq.~2! does exist, so that the band structu
effective-mass, deformation potentials, and other relevant
perimental properties can be reproduced within reason
accuracy via Eq.~3!, then we can deliver a uniform theore
ical description of alloys, superlattices, quantum wells, a
quantum dots within a single theoretical approach. This m
be computationally feasible since, given such a potential,
~3! can be solved even for a million atoms,50,51 provided we
restrict our attention to a fixed energy window around
fundamental band gap. We next summarize our experienc
constructing an accurate pseudopotentialva of the form
needed in Eqs.~2! and ~3!.

II. OUR CURRENT EMPIRICAL PSEUDOPOTENTIALS

The traditional empirical pseudopotential,46–49 designed
for binary bulk semiconductors, used a plane-wave ba
where the Hamiltonian matrix for reciprocal lattice vectorsG
andG8 was

HG,G85
1

2
G2dG,G81V~G2G8!. ~4!

The first term represents the kinetic energy, and the sec
term represents the Fourier transform of the scree
pseudopotential@right-hand side of Eq.~2!#. Spin-orbit inter-
actions, and other nonlocal terms can also be introduce49

Equation~2! and the Hamiltonian Eq.~4! are solved for the
bulk solid by expanding the wave function in plane wave

C i ,k~r !5eikI •rI (
G

Gmax

Ak1G
( i ) eiGI •rI, ~5!
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where the highest momentum componentGmax in the basis
is determined by a cutoff energy,

1

2
uG1ku2<Ecut . ~6!

This type of empirical potential was constructed in t
1960s~Refs. 46,47! and subsequently improved via nonloc
terms in the 1970s.49 This class of potential was fit to th
bulk band structure of binary solids, producing good bu
reflectivity spectra. However, this class of potentials is n
usable for our purposes involving quantum nanostructu
First, V(G) was constructed46–49 only at the reciprocal lat-
tice vectorsGn of the binary bulk solids, whereas applicatio
to large unit cell materials requiresV(G) at many interme-
diate values.Second, the all-important band offsets betwee
different materials~e.g., InAs and GaAs! were not fitted~not
being required for bulk calculations!, so nanostructure con
finement energies cannot be reproduced.Third, upon
examination52 it was found that the traditional empirica
pseudopotentials47,49 gave very poor bulk effective masse
so quantum-size dependence of energies could not be re
duced.Fourth, the dependence of the valence-band ma
mum ~VBM ! and conduction band minimum~CBM! band-
edge energies on hydrostatic potentials was discovered52,53

often to have an incorrect sign. This problem is illustrated
Fig. 1~a! for GaAs, where the solid lines depict the volum
dependence of the VBM and CBM energies as a function
volume, using conventional empirical pseudopotenti
V(G) that depend only on momentum. Using this descr
tion, we see that the VBM energies move to more nega
values as the material is compressed hydrostatically,@i.e.,
aV5V]evbm /]V is positive#, whereas the CBM energies ar
comparatively pressure independent. In contrast, accu

FIG. 1. GaAs band-edge energy dependence on~a! hydrostatic
pressure, and~b! biaxial deformation, for strain independent an
strain dependent empirical pseudopotentials.av and ac denote the
absolute valence (v) and conduction~c! deformation potentials.
Solid lines denote the available strain independent data and da
lines denote the explicitly strain dependent results.
8-2
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ATOMISTIC DESCRIPTION OF THE ELECTRONIC . . . PHYSICAL REVIEW B 66, 045208 ~2002!
LDA calculations54,55 predict alarge negative ac,0 defor-
mation potential for the CBM, and small deformation pote
tials av for the VBM.56,57 These trends cannot be fit by em
pirical potentials that depend only on momentum.52

The four problems with conventional EPM thus make
unusable for nanostructures exhibiting quantum confinem
and strain. We have therefore generalized the form of
EPM to remedy these problems. We describe these gene
zations below.

A. Continuous q-space form of the potential

We chose a parametrized form of potential that is conti
ous in reciprocal space, permitting application to large u
cells and alloyed materials that require the potential at m
q points. The analytic form adopted for the fit is

v~q!5a0

~q22a1!

@a2ea3q2
21#

, ~7!

wherea0–a3 are the fitting parameters. This form is not on
continuous inq space, but also specified atq50, permitting
fits to the all-important band offsets between materials.

B. Strain dependence of the potential

The problem illustrated in Fig. 1~a! results from the fact
that whenva depends on position only~or, equivalently, on
momentum,q only! it cannot accurately represent the chan
in potential resulting from deformation. This is unlike a se
consistent description, where the charge redistribution res
ing from a deformation is built directly into the screenin
potentialVscr . Since in our approachva(r ) of Eq. ~2! in-
cludes both screening effects and the ionic pseudopote
ua(r ), we must build the response to deformation direc
into the screened potentialva(r ). Thus, we add an explici
strain (e) dependent term,58

V~r !5(
na

va~ ur 2Rnau!@11dva~e!#. ~8!

To linear order under an arbitrary straine i j , the changedva
can be expressed as

dva~e!5(
i j

ai j e i j . ~9!

The Td symmetry of the zincblende structure requiresaxx
5ayy5azz, and thatai j 50 for iÞ j . Thus,

dva~e!}Tr~e!. ~10!

Then, our screened atomic pseudopotential takes the for

va~q,e!5va~q,0!@11gaTr~e!#, ~11!

wherega is a fitting parameter. Appendix A and the figu
therein describe how the Tr(e) term is calculated.

The dashed lines in Fig. 1 show the effect of adding
extra term to the pseudopotential. The changes in energ
the individual bands are thus made consistent with the p
dicted trends in LDA calculations54,55 which are in broad
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agreement with the limited experimental data. The larg
contribution to the band-gap deformation potential no
originates from the deformation potential of the CBM, whic
is now strongly negative. Since Tr(e)50 at equilibrium, the
band structure of the equilibrium bulk band structure rema
unaltered. Furthermore, the crystal-field splitting under bi
ial strain is also preserved when the volume is kept const
This point is illustrated in Fig. 1~b!, where biaxial strain is
applied to bulk GaAs while keeping the volume consta
The EPM calculated heavy hole–light hole deformation p
tential reproduces the observed value of 1.52 eV.

C. Local environment dependence of the potential

To improve the transferability of the potential, we let
depend on its local chemical environment. For example,
potentialvAs

(p)(q,e) of the As atom depends on the numberp
of Ga and In atoms surrounding it in the GapIn42p tetrahe-
dron. A simple approximation

vAs@GapIn42pAs#5
42p

4
vAs~ InAs!1

p

4
vAs~GaAs!

~12!

is utilized.

D. Kinetic-energy scaling

Using the local strain dependence of Eq.~8! and the local
environment dependence of Eq.~12! permits a good descrip
tion of a range of relevant electronic properties. Howeve
further generalization of the EPM proved important for
good simultaneous fit of band gaps and effective masses
kinetic energy in the single-particle equation was scaled

Hc i5H 2
b

2
¹21V~r !J c5e ic i , ~13!

whereb is the scaling constant.58,59The origin of this term is
as follows. In an accurate description of the crystal ba
structure, such as theGWmethod,44 a general, spatially non
local potential,V(r ,r 8), is needed to describe the self-ener
term. In the absence of such a term the occupied band w
of an inhomogeneous electron gas is too large compare
the exact many-body result. To a first approximation, ho
ever, the leading effects of this nonlocal potential,V(r ,r 8),
can be represented by scaling the kinetic energy. This ca
seen by Fourier transformingV(r ,r 8) in reciprocal space,q,
then making a Taylor expansion ofq about zero. We find tha
the introduction of such a kinetic-energy scaling,b permits
an improved simultaneous fit of both the effective mas
and energy gaps. In this study, we fitb51.23 for both ma-
terials.

E. G-space smoothing of the wave functions

The eigenfunctions of the Hamiltonian, Eq.~4!, are solved
for the bulk solid by expanding Eq.~5! in plane waves. Typi-
cally we use a cutoff energyEcut of 5 Ry, which corresponds
to only '60 plane waves at theG point of a two-atom primi-
tive cell of GaAs. As the lattice constant of the system
8-3
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KIM, KENT, ZUNGER, AND GELLER PHYSICAL REVIEW B66, 045208 ~2002!
varied, plane waves are added or subtracted, potentially
nificantly increasing or decreasing the flexibility of the ba
set. In order to minimize this effect, we find it beneficial
apply a weighting function to the individual plane waves

wG5
cos~u!11

2
, ~14!

u5p
EG2nEcut

~12n!Ecut
, ~15!

where EG is the kinetic energy of the plane waveuG
1ku2/2. We find n50.8 provides an improved fit to cell
shape dependent properties such as hydrostatic and bi
deformation potentials and alloy properties of strong
lattice-mismatched systems, e.g., GaAsN.

F. Fitting to experimental and LDA results

The empirical potentials are fit to the best available
perimental data.60 Where data are not available, or unre
able, the best theoretical calculations are used to pro
target fitting values. The potential fitting includes the follow
ing:

~i! The experimentally measured band energies.60

~ii ! The experimentally determined effective masses.60

~iii ! The experimentally measured hydrostatic deform
tion potentialsag and biaxial deformation potentialsb.60

~iv! The LDA-calculated55 hydrostatic band-edge defo
mation potentialsav and ac . ~Only the difference ac2av
5ag currently is accessible experimentally; the individu
components are not.!

~v! The LDA-calculated,61 unstrained valence-band of
sets between different semiconductors.

~vi! The experimentally determined spin-orbit splitting
the valence band.60

The screened pseudopotentialva contains a local part and
a nonlocal, spin-orbit interaction part and is fit to the pro
erties described above. The nonlocal part of the poten
describes the spin-orbit interaction,

Hso5(
na

V̂a
so~Rna![(

na
(

l
Vl ,a

so ~r 2Rna!u l &Rna
L•Ŝ l uRna

,

~16!

whereu l &Rna
is a projector of angular momentuml centered

at Rna , L is the spatial angular momentum operator,S is the
Dirac spin operator, andVl ,a

so (r ) is a potential describing the
spin-orbit~SO! interaction. We use a Gaussian,p-only poten-
tial for Vso, and evaluate Eq.~16! using the method de
scribed in Appendix B and Ref. 62.

The properties to which the InAs and GaAs pseudopot
tial parameters are fit are given in Table I. We see that un
the LDA, here we accurately reproduce the bulk band g
and effective masses. We emphasize that a significant di
ence in our parameter set to that used conventionally inkp
studies21,33,35 is our choice of a negative magnitude for th
valence-band deformation potential,av , which we have ob-
tained from FLAPW calculations.54,55The final EPM param-
eters are given in Table II.
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Once we have the screened pseudopotentials, Eq.~3! can
now be solved for the electronic structure for given$va% and
$Rn ,da% without additional approximations except tho
used to construct$va%. This development is due to advanc
in fast ~‘‘order N’’ ! diagonalization methods50,51and the ease
of exactly calculating the matrix elements ofva in a basis of
plane waves. In this approach all geometries~alloys, super-
lattices, quantum dots, and wires! and systems are treate
equivalently, using a single input set$va%. Thus, any discrep-
ancy between predicted results and experimental results
be traced to some approximation in$va%. Here we will de-
scribe the application of Eq.~3! to the electronic structure o
various systems constructed from the InAs and GaAs bu
ing blocks. This approach provides a uniform, atomistic d
scription of the electronic structure of such systems.

III. EQUILIBRIUM ATOMIC POSITIONS

A full calculation for an alloy, superlattice, or quantu
dot requires two steps.

~a! Obtaining reliable equilibrium atomic positions for
given atomic configuration,@e.g., (GaAs)n /(InAs)m ~001!
superlattice#.

~b! Obtaining reliable electronic energy levels for th
atomic configuration and atomic positions.

For ~a!, we will use a valence force field63–66fit to experi-
ment. For~b!, we will use a fast-diagonalization method50,51

to solve the pseudopotential Schro¨dinger equation, Eq.~3!, in
the plane-wave basis of Eq.~5! and previously obtained em
pirical potentials.

TABLE I. Fitted bulk electronic properties for GaAs and InA
using the screened atomic pseudopotentials. The hydrostatic d
mation potential of the band gap andG15v levels are denoted by
agap and aG15v

. The biaxial deformation potential is denoted byb
and the spin-orbit splittings at theG15v andL1v points are denoted
by D0 andD1. The EPM calculated alloy bowing coefficient is 0.4
eV @see Fig. 6~a!#, and the valence-band offsets on different su
strates are given in Fig. 5.

Property GaAs InAs
EPM Expt.~Ref. 60! EPM Expt.~Ref. 60!

Egap 1.527 1.52 0.424 0.42
EX5v

22.697 22.96 22.330 22.40
EX1c

1.981 1.98 2.205 2.34
EX3c

2.52 2.50 2.719 2.54
EL3v

21.01 21.30 25.76 26.30
EL1c

2.36 1.81 1.668 1.71
me* 0.066 0.067 0.024 0.023
mhh* @100# 0.342 0.40 0.385 0.35
mhh* @111# 0.866 0.57 0.994 0.85
mlh* @100# 0.093 0.082 0.030 0.026
agap 27.88 28.33 26.79 25.7
aG15v

21.11 21.0 20.826 21.0
b 21.559 21.7 21.62 21.7
D0 0.34 0.34 0.36 0.38
D1 0.177 0.22 0.26 0.27
8-4
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TABLE II. Parameters of the InGaAs EPM used in this study. The potentials were fitted at a plane
cutoff of 5 Ry, with kinetic-energy rescalingb51.23 and smoothingn50.8. We denote the potential to b
used for a Ga atom when bonded to an As atom as ‘‘Ga-As.’’

Species a0 a1 a2 a3 g Spin Orbit

Ga-As 432960.04 1.7842354 18880.626 0.20809693 2.5639153 0.046
As-Ga 10.938638 3.0904963 1.1039588 0.23304077 0.0 0.0976
In-As 644.12963 1.5126251 15.200855 0.35374034 2.1821453 0.480
As-In 26.468192 3.0312950 1.2464169 0.42129203 0.0 0.0976
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A. Equilibrium atomic positions in superlattices

1. Continuum elasticity„CE… theory for strained superlattices

A film of a material grown epitaxially on a thick substra
will strain so that its atoms grow in registry with those of t
substrate. Thus, its dimensionai , the lattice parameter of th
layer parallel to the interface, becomes equal to that of
substrateas ~coherency condition!, and a' , the lattice pa-
rameter of the layer perpendicular to the interface, is de
mined by the strain tensor. Based on macroscopic continu
elasticity theory,67–69

a'~as ,Ĝ!5aeq2@223q~Ĝ!#~as2aeq!. ~17!

Here, Ĝ is the direction of deformation and the epitaxi
strain reduction factor is given by

q~Ĝ!512
B

C111g~Ĝ!D
, ~18!

whereB is the bulk modulus, theCi j are elastic constants o
the embedded material, and

D5C442
1

2
~C112C12! ~19!

is the elastic anisotropy.g is a purely geometric factor give
by

g~Ĝ!5g~f,u!5sin2~2u!1sin4~u!sin2~f!, ~20!

wheref areu the spherical angles formed byĜ. A general
expression forq(Ĝ) is given in Ref. 67. Explicit expression
for q(Ĝ) along the principal directions~001!, ~011!, and
~111! are

q@001#5
2

3 S 12
C12

C11
D ,

q@110#5
1

3

C112C1216C44

3C111C1212C44
,

q@111#5
4C44

C1112C1214C44
. ~21!

Thus, for the superlattice along the~001! direction the per-
pendicular straine'5(a'2aeq)/aeq becomes
04520
e

r-
m

e'
(001)522

C12

C11
e i ~22!

and for the superlattice along the~111! direction, it is

e'
(111)52

2C1114C1224C44

C1112C1214C44
e i . ~23!

2. Valence force field„VFF … method

Although the continuum elasticity theory gives good es
mates of cell-external parameters for a supercell~e.g., thea'

value!, it does not give any information as to the positio
and local strains of the atoms inside the supercell. To ca
late the relaxed atomic positions within the supercell, we
a generalization~generalized VFF, GVFF! of the original63

valence force field model. Our implementation of the VF
includes bond stretching, bond angle bending, and bo
length/bond-angle interaction terms in the VFF Hamiltonia
This enables us to accurately reproduce theC11, C12, and
C44 elastic constants in a zinc blende bulk material.60 We
have also included higher order bond stretching terms, wh
give the correct dependence of the Young’s modulus w
pressure. The GVFF total energy can be expressed as

EVFF5(
i

(
j

nni 3

8
@a i j

(1)Ddi j
2 1a i j

(2)Ddi j
3 #

1(
i

(
k. j

nni 3b j ik

8di j
0 dik

0 @~Rj2Ri !•~Rk2Ri !

2cosu j ik
0 di j

0 dik
0 #21(

i
(
k. j

nni 3s i jk

dik
0

Ddi j @~Rj

2Ri !•~Rk2Ri !2cosu j ik
0 di j

0 dik
0 #, ~24!

whereDdi j
2 5$@(Ri2Rj )

22di j
0 2#/di j

0 %2. HereRi is the coor-
dinate of atomi anddi j

0 is the ideal~unrelaxed! bond distance
between atom types ofi and j. Also, u j ik

0 is the ideal~unre-
laxed! angle of the bond anglej 2 i 2k. The (nni denotes
summation over the nearest neighbors of atomi. The bond
stretching, bond angle bending, and bond-length/bond-a
interaction coefficientsa i j

(1)([a), b j ik , s j ik are related to
the elastic constants in a pure zinc blende structure in
following way:
8-5
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TABLE III. Input GVFF parametersa, b, s to Eq. ~24! and their resulting elastic constantsC11, C12,
andC44.

a b s a (2) C11 C12 C44

(103 dyne/cm) (1011 dyne/cm2)

GaAs 32.153 9.370 24.099 2105 12.11 5.48 6.04
InAs 21.674 5.760 25.753 2112 8.33 4.53 3.80
t

, i
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reas
CE
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e

as
C1112C125A 3

4d0
~3a1b26s!,

C112C125A 3

d0
b,

C445A 3

d0

@~a1b!~ab2s2!22s312abs#

~a1b12s!2 . ~25!

The second-order bond stretching coefficienta (2) is related
to the pressure derivative of the Young’s modulus bydB/dP,
whereB5(C1112C12)/3 is the Young’s modulus. Note tha
in the standard63 VFF the last terms of Eq.~24! are missing,
so s50 in Eq. ~25!. Thus there were onlytwo free param-
eters (a,b) and therefore three elastic constants could not
general, be fit exactly. The GVFF parameters and the res
ing elastic constants are shown in Table III for GaAs a
InAs crystals. For an InGaAs alloy system, the bond an
and bond-length/bond-angle interaction parametersb, s for
the mixed cation Ga-As-In bond-angle are taken as the a
braic average of the In-As-In and Ga-As-Ga values. T
ideal bond-angleu j ik

0 is 109° for the pure zinc blende crysta
However, to satisfy Vegard’s law for the alloy volume, w
find that it is necessary to useuGa-As-In

0 5110.5° for the cat-
ion mixed bond angle.

3. CE vs VFF for superlattices

We first compare the straine' calculated with continuum
elasticity and with VFF for InAs and GaAs monolayers
GaAs and InP substrates. We use the same elastic cons
in both calculations~Table III!. The results shown in Table
IV demonstrate that continuum elasticity also works well
film thicknesses down to a single monolayer. It is of inter
that Brandtet al.8 suggested in 1992 that continuum elast
ity fails at the monolayer limit. In 1994, accurate LD

TABLE IV. Comparison of perpendicular straine' obtained for
monolayer insertions of InAs in GaAs or InP using continuum el
ticity ~CE! and valence force field~VFF!.

Superlattice Direction e'
CE ~%! e'

VFF (%)

(InAs)1(GaAs)̀ ~001! 7.27 7.27
(InAs)1(GaAs)̀ ~111! 3.81 3.77
(GaAs)1(InP)` ~001! 23.45 23.36
(InAs)1(InP)` ~001! 3.40 3.41
(GaAs)1(InP)` ~111! 21.77 21.77
(InAs)1(InP)` ~111! 1.78 1.73
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calculations65 showed that the calculated deformation agre
very well with that predicted by continuum elasticity. Bett
experiments in 1995~Refs. 9,10! and 1998~Ref. 11! have
indeed revealed that the earlier8 experiments were incorrec
and that continuum elasticity is serviceable down to
monolayer limit.

We next compare CE and VFF for (GaAs)n(InAs)m on
~001! GaAs. Continuum elasticity predicts the following fo
the c/a(5a' /ai) ratio vs (n,m) for the (GaAs)n(InAs)m
superlattices on a GaAs substrate:

~GaAs!n~ InAs!m

c

a
511

ma'
InAs

~n1m!ai
,

~GaAs!1~ InAs!`

c

a
5

a'
InAs

ai
,

~GaAs!`~ InAs!1

c

a
51,

~GaAs!`~ InAs!`

c

a
5

1

2 S 11
a'

InAs

ai
D .

These CE results are shown as solid lines in Fig. 2, whe
the VFF results are shown as filled symbols. We see that
is reasonably accurate for the~001! direction and also for the
~111! direction @Fig. 2~b!#.

Finally, we compare CE and VFF results fo
(GaAs)n(InAs)m on InP. Continuum elasticity predicts th
following for thec/a ratio for (GaAs)n(InAs)m superlattices
on an InP substrate:

~GaAs!n~ InAs!m

c

a
5

na'
GaAs1ma'

InAs

~n1m!ai
,

~GaAs!1~ InAs!`

c

a
5

a'
InAs

ai
,

~GaAs!`~ InAs!1

c

a
5

a'
GaAs

ai
,

~GaAs!`~ InAs!`

c

a
5

a'
GaAs1a'

InAs

2ai
.

Figures 2~c! and 2~d!, respectively, show the normalizedc/a
values calculated with CE and VFF for (GaAs)n(InAs)m su-
perlattices along~001! and~111! directions on GaAs and InP
substrates. The asymptotic values ofc/a for m→` and n

-
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ATOMISTIC DESCRIPTION OF THE ELECTRONIC . . . PHYSICAL REVIEW B 66, 045208 ~2002!
FIG. 2. c/a from continuum
elasticity ~CE! @solid lines, Eq.
~17!# and from VFF~filled circles!
for (GaAs)n(InAs)m superlattices
~a! along ~001! and ~b! ~111! di-
rections on GaAs, and~c! along
~001! and ~d! ~111! directions on
InP substrates. The asymptoticn
→` values ofc/a are shown as
dashed lines.
o

m
do

an

e
n

→` are shown as dashed lines in Fig. 2. We see that c
tinuum elasticity also works well for thec/a ratio.

4. VFF vs LDA for superlattices

As a simple test of our GVFF for alloy systems, we co
pared the relaxed atomic positions from GVFF with pseu
potential LDA results for a~100! (GaAs)1 /(InAs)1 superlat-
tice where thec/a ratio is fixed to 1, but we allow
energy minimizing changes in the overall lattice const
(aeq) and the atomic internal degrees of freedom (ueq). We
find

aeq
LDA55.8612 Å,

ueq
LDA50.2305,

while the GVFF results are

aeq
GVFF55.8611 Å,

ueq
GVFF50.2305.
04520
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A first-principles calculation by Bernard and Zunger65 for
(InAs)1(GaAs)7 ~001! superlattice resulted ine'57.73%.
Our GVFF gives 7.36%.

5. Atomic relaxation and interlayer spacing in InAsÕGaAs
superlattices

Figure 3 shows~001! and ~111! interlayer distances in
(GaAs)8 /(InAs)8 superlattices. For an unrelaxed~001!
superlattice, the internal coordinatez of the indium
plane is 0.25 with respect to thec axis. The straine'5(z
2zequil)/zequil is shown in Fig. 3. For an~111! superlattice,
there are two internal coordinates,d1 andd2. The unrelaxed
~ideal! values are d15A3/4 and d25A3/12. d1 is
the distance between Ga~In! and As atom layers where th
bond is along~111! directions andd2 is the distance betwee
Ga~In! and As atom layers where the bond is along (111)̄,
(11̄1), or (1̄11) directions. The strains e15(d1
2d1,equil)/d1,equil and e25(d22d2,equil)/d2,equil are shown
in Fig. 3.
8-7
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FIG. 3. ~001! and ~111! inter-
layer distances in
(GaAs)8 /(InAs)8 superlattices.
d1 is the distance between Ga~In!
and As atom layers where th
bond is along~111! directions and
d2 is the distance between Ga~In!
and As atom layers where th

bond is along (111̄), (11̄1), and

(1̄11) directions.
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We see that on a GaAs substrate, the atoms of the G
segment of the superlattice~SL! are unrelaxed, whereas th
strain in the InAs segment is positive. Most atoms have c
stant strain, except the atoms next to the interface. On
other hand, on an InP substrate, the GaAs segment is di
(e',0) and the InAs segment is compressed (e'.0), even
though the lattice constant of the SL is almost matched
that of the substrate.

B. Equilibrium atomic positions in random alloys

The GVFF also is used to determine equilibrium atom
positions in random alloys. Here we create a supercell
randomly occupy cation sites with Ga and In atoms, acco
ing to the concentration In12xGaxAs. We then minimize the
GVFF elastic energy by displacing atoms to their relax
positions. We use a conjugate gradient algorithm using a
lytically calculated forces for both atomic positions anda' .
In a previous study66 we reported the results for the close
related In12xGaxP alloy, so we will not repeat the results fo
In12xGaxAs here. In both cases we find a bimodal distrib
tion of the nearest-neighbor anion-cation bond lengths, an
multimodal distribution of the cation-cation distances. D
tails are given in Ref. 66.

IV. STRAIN-MODIFIED BAND OFFSETS

Once we have determined the equilibrium atomic po
tions, and have a reliable screened pseudopotential, we
solve the Schro¨dinger equation, Eq.~3!, in the plane-wave
basis of Eq.~5!. We first solve the simplest case, epitaxia
deformed InAs and GaAs. Here, we imagine that GaAs
coherently strained on a substrate whose lattice constanas
ranges from that of GaAs to that of InAs. The tetragon
deformationa'(as ,Ĝ) in the perpendicular directionĜ is
given by Eq.~17! if one uses continuum elasticity. We the
solve the Schro¨dinger equation as a function ofas . The re-
04520
As

-
e
ed

o

d
-

d
a-

-
a

-

i-
an

s

l

sulting band edge energiesevbm(as ,a') and ecbm(as ,a')
are shown on the right-hand side of Fig. 4. Similarly, wh
InAs is coherently compressed, we find the eigenval
shown on the left-hand side of Fig. 4. The center panel ali
the unstrained valence-band maximum of GaAs and In
using our LDA calculated band offset.61 We see that expand
ing GaAs leads to an upward shift of the light-hole~lh! band,
but a downward shift of the heavy-hole~hh! band. Com-
pressing InAs leads, concomitantly, to an upward shift of
but in this case, lh also rises. The conduction-band minim
shifts to higher energies upon compression. Figure 4 a
shows that the band offset depends sensitively on the
strate used. One can read from this figure the value of

FIG. 4. The CBM and highest three VBM levels for straine
binary GaAs and InAs calculated using the LDA values for t
unstrained binaries~central panel!, as well as the LDA deformation
potentials. The lines represent the EPM fit.
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ATOMISTIC DESCRIPTION OF THE ELECTRONIC . . . PHYSICAL REVIEW B 66, 045208 ~2002!
FIG. 5. Calculated strained band offsets of InAs/GaAs on various substrates and two layer orientations.
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InAs/GaAs band offsets for various substrates such as G
InP, and InAs. The calculated strained offsets on these
strates are given in Fig. 5 for two orientations,~001! and
~111!.

V. BAND-EDGE STATES IN RANDOM In XGa1ÀxAs
ALLOYS

Figure 6 shows the band-edge states and the band ga
~a! relaxed~‘‘bulk’’ ! InxGa12xAs random alloys, and~b! ep-
itaxial InxGa12xAs alloys on GaAs and InP substrates, c
culated using the empirical pseudopotential. For the calc
tion of the relaxed alloy we have used the Vegard latt
constant. For the epitaxial alloy the in-plane lattice const
is fixed and the perpendicular lattice constanta' is opti-
mized. The bowing parameter is very small for t
InxGa12xAs alloys, being 0.4 eV for the bulk alloy, 0.0 e
for the alloy on GaAs, and20.3 eV for the alloy on InP.
The three highest valence-band states are shown in Fi
i.e., light hole, heavy hole, and split off states. We note
following:

~i! Epitaxy-induced reversal of bowing parameters. The
bulk alloy @Fig. 6~a!# shows a downward-bowing CBM an
an upward-bowing VBM, with a total band-gap bowing c
efficientbgap5bc2bv of 10.4 eV, in good agreement wit
experiment,70,71 and with LDA calculations.41

The reason thatEv bows upwardswith composition is
that the highest valence states~anion p like, G8v) are el-
evated by the lower-lying,G8v-folding stateL4,5v , which is
also anionp like.72 On the other hand,Ec bows downwards
04520
s,
b-

of

-
a-
e
t

6,
e

with composition due to repulsion of the lowest conducti
band~cations like, G6c) by higher lyingL6c andX6c cation
s-like states.41,72 In contrast to the bulk alloys, however, th
epitaxial alloys @Fig. 6~b!# show anupward bowing CBM
(bc,0), leading to a total band-gap bowing'0 eV on
GaAs,20.4 eV on InP, which is much smaller than that
the bulk alloy. The reason for this reversal is strain effec
When the alloy iscompressed~e.g., In-rich InxGa12xAs/InP)
its CBM and VBM both move up~much like in the zinc
blende constituents, see Fig. 4! relative to the unstrained al
loy. For InAs/InP these shifts are1213 meV and
1154 meV, respectively. Conversely, when the alloy isex-
panded ~e.g., Ga-rich InxGa12xAs/InP) its CBM moves
down while the VBM movesup. For GaAs/InP these shifts
are2390 meV and1119 meV, respectively. At the lattice
matched composition, In0.53Ga0.47As/InP, the CBM is un-
changed. Due to the displacements of the In-rich and Ga-
segments, the bowing~total, and for the CBM and VBM
separately! changes sign via epitaxy.

~ii ! Hole localization. The thin dashed horizontal line in
Fig. 6~b! depicts the energy of the unstrained GaAs VBM
We see that the alloy hh energy is above the VBM of pu
GaAs. Thus, the wave function would be localized on t
alloy material, not on GaAs both in the bulk and in the ep
taxial alloy on GaAs. However, at low In concentratio
(xIn,10%) the lh in the InGaAs/GaAs system has a ve
low offset with GaAs, so the hole is expected to be deloc
ized. ForxIn.10%, this hole is always localized on the In
rich material. For the epitaxial alloy on InP, we find a lh-h
8-9
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FIG. 6. Calculated band-edg
states of InGaAs random alloy
for ~a! the ‘‘free-floating’’ bulk al-
loy, ~b! the epitaxial alloy on
GaAs, and~c! the epitaxial alloy
on InP.
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crossover15 around 50% In, and a very shallow offset, su
gesting rather delocalized holes.

~iii ! Electron localization. In the bulk alloy and in the
epitaxial alloy on GaAs the electrons always are localized
the In-rich material. The CBM of unstrained InP is shown
a dashed horizontal line in Fig. 6~c!, exhibiting a crossover
with the alloy CBM: for xIn,30% the electrons are loca
ized on the InP substrate, whereas forxIn.30% they are
localized on the alloy.15

VI. SHORT-PERIOD InAs ÕGaAs SUPERLATTICES

Figures 7, 8, and 9 show the CBM and VBM levels a
band gaps for~001! and~111! ~GaAs! n~InAs! m superlattices
on GaAs and InP. To understand the asymptotic results o
superlattice atn→` we have also calculated the energy le
els of the epitaxial binary compounds InAs on InP, InAs
GaAs, GaAs on GaAs, and GaAs on InP. These levels
shown as a bar diagram to the right-hand side of each fr
in Figs. 7, 8, and 9. Arrows connect energy levels
the superlattice with energy levels in the strained bin
constituents, showing the limiting behavior. The epitax
binaries were calculated by constraining each materia
the substrate lattice constant and relaxing the atomic p
tions in the perpendicular direction. We see the followi
trends.

~i! For large n, the (GaAs)n(InAs)1 ~Fig. 8! and
04520
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(GaAs)1(InAs)n ~Fig. 9! levels becomes those of epitaxi
GaAs ~horizontal solid lines! and InAs ~horizontal dashed
lines!, respectively.

~ii ! The levels of (GaAs)n(InAs)n ~Fig. 7! go eventually
to InAs levels but the convergence is slower. Since the
fective mass of InAs is very small, it takes a very long peri
superlattice to localize the wave function within the cell. T
localization of states is shown in Table V.

~iii ! For (n,n) and (1,n) superlattices, the highest VBM i
for the~111! superlattice but the lowest CBM is for the~001!
superlattice. For (n,1) superlattice, it is the opposite, i.e. th
highest VBM is for the~001! superlattice but the lowes
CBM is for the ~111! superlattice.

~iv! For the symmetric (n,n) SL, the CBM rises in en-
ergy, and the VBM moves down in energy as the periodn
decreases, as suggested by quantum confinement. On
other hand, these trends are reversed for the asymm
(n,1) SL~Fig. 8!, where band-folding effects are greater th
quantum-confinement effects. As a result, the band gap
creases asn decreases in the (n,n) SLs, but in the (n,1) SL
the gap decreases.

~v! ~111! superlattices have smaller gaps than~001! super-
lattices, as the former exhibitL folding that repels theG1c
CBM to lower energies more than theX folding, akin to
~001! superlattices.72

Figure 10 shows the planar average of the wave functi
8-10
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ATOMISTIC DESCRIPTION OF THE ELECTRONIC . . . PHYSICAL REVIEW B 66, 045208 ~2002!
FIG. 7. The CBM and VBM
levels for ~001! and ~111!
(GaAs)n(InAs)n superlattices on
GaAs and InP. The boxes on th
right-hand side of each panel de
pict the band edges of pure GaA
~dashed lines! and pure InAs
~solid lines! binaries strained epi-
taxially on the corresponding sub
strate for the corresponding orien
tation. The two lower panels
depict the band gaps.

FIG. 8. The CBM and VBM
levels and band gaps for~001! and
~111! (GaAs)n(InAs)1 superlat-
tices on GaAs and InP. The boxe
on the right-hand side of eac
panel depict the band edges o
pure GaAs and pure InAs binarie
strained epitaxially on the corre
sponding substrate for the corre
sponding orientation.
045208-11
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FIG. 9. The CBM and VBM
levels and band gaps for~001! and
~111! (GaAs)1(InAs)m superlat-
tices on GaAs and InP. The boxe
on the right-hand side of eac
panel depict the band edges o
pure GaAs and pure InAs binarie
strained epitaxially on the corre
sponding substrate for the corre
sponding orientation.
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of the~001! (GaAs)n(InAS)n superlattice on InP forn52, 6,
and 10. For the largest period shown,n510, the CBM states
are localized on InAs, just as in the asymptotic behav
noted in Fig. 6. However, for shorter periods, Fig. 10 sho
that the CBM is delocalized both on InAs and GaAs as p
dicted from first-principles calculations.54 This shows that
our EPM closely follows LDA calculations down to th
monolayer regime.

As to the hole states, we see that for the largest pe

TABLE V. Localization of states. Asterisks denote wheth
~001! or ~111! orientation gives highest VBM or lowest CBM.

VBM CBM
Superlattice Substrate Direction localized on localized

(n,n) GaAs ~001! InAs InAs*
(n,n) GaAs ~111! InAs* InAs
(n,n) InP ~001! InAs InAs*
(n,n) InP ~111! InAs* InAs

(n,1) GaAs ~001! GaAs* GaAs
(n,1) GaAs ~111! GaAs GaAs*
(n,1) InP ~001! GaAs* GaAs
(n,1) InP ~111! GaAs GaAs*

(1,n) GaAs ~001! InAs InAs*
(1,n) GaAs ~111! InAs* InAs
(1,n) InP ~001! InAs InAs*
(1,n) InP ~111! InAs* InAs
04520
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considered in Fig. 10 the lh1 state is rather delocaliz
with a preferred amplitude on GaAs. This reflects t
small, ,0.1 eV lh band offset on an InP substrate~Fig. 5!.
The asymptotic,n→` localization is on GaAs. On the
other hand, the hh1 wave function is strongly localized
InAs, reflecting the larger hh offset of 0.32 eV for the In
substrate. The hh2 wave function is localized mostly on
interface.

Figure 11 depicts the calculated dipole matrix elem
squared for interband transitions. We see that the transitio
the lowest electron state,e1, is polarized mostly in plane fo
hh1→e1 and so→e1 components, whereas for transition
from the lh1 level toe1, the strongest amplitude is for th
out-of-plane transition. The dependence on superlattice
riod is rather weak.

VII. CONCLUSIONS

We find that an atomistic description of the electron
structure and a well-fit, modern empirical pseudopoten
can deliver an accurate, detailed picture of random allo
epitaxial alloys, superlattices, and quantum dots.21 This ap-
proach does not suffer from the limitations of continuu
effective-mass models, and can be applied to complex a
systems of arbitrary geometry.
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FIG. 10. The planar average of wave fun
tions for ~001! (GaAs)n(InAs)n SL on InP for
periodsn52,6,10 and for the states CBM, lh1
hh1, and hh2.
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APPENDIX A: CALCULATION OF THE LOCAL STRAIN

To use the empirical pseudopotential, one needs a me
to calculate the local strain for arbitrary systems. Figure
illustrates how the local strain is calculated. After the atom
positions are relaxed by minimizing the elastic energy,
04520
od
2
c
e

local strain tensore i j is calculated at each atomic site b
considering the tetrahedron formed by the four near
neighbor atoms. The distorted tetrahedron edges,R12,R23,
and R34 are related to the ideal tetrahedron edgesR12

0 ,R23
0 ,

andR34
0 via which
FIG. 11. The dipole elements for interband transitions in~001! (GaAs)n(InAs)n SL on InP.
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KIM, KENT, ZUNGER, AND GELLER PHYSICAL REVIEW B66, 045208 ~2002!
S R12,x R23,x R34,x

R12,y R23,y R34,y

R12,z R23,z R34,z

D 5S 11exx eyx ezx

11exy 11eyy ezy

exz eyz 11ezz

D
3S R12,x

0 R23,x
0 R34,x

0

R12,y
0 R23,y

0 R34,y
0

R12,z
0 R23,z

0 R34,z
0
D . ~A1!

The ideal tetrahedron edges are$R0%5$@110#a/
2,@01̄1#a/2,@ 1̄10#a/2%, wherea denotes the equilibrium lat
tice constant. The local strain,e i j is then calculated by a
matrix inversion as

S 11exx eyx ezx

11exy 11eyy ezy

exz eyz 11ezz

D
5S R12,x R23,x R34,x

R12,y R23,y R34,y

R12,z R23,z R34,z

D S R12,x
0 R23,x

0 R34,x
0

R12,y
0 R23,y

0 R34,y
0

R12,z
0 R23,z

0 R34,z
0
D 21

2I ,

~A2!

whereI is the unit matrix.
Since only the trace of the strain is required, the eval

tion of Tr(e) can be simplified as

FIG. 12. Geometries of the atom centered tetrahedra used
calculation of the strain tensor.
nd

et
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Tr~e!5
DV

V
5

~R123R13!Ṙ14/6

V
21, ~A3!

whereV is the volume of the ideal, undistorted tetrahedro
i.e., V5(R12

0 3R13
0 )Ṙ14

0 /6.

APPENDIX B: CALCULATION OF THE SPIN-ORBIT
INTERACTION

The spin-orbit interaction is included in the Hamiltonia
via a nonlocal, atom-centeredp-like potential. In order to
maintain linear scaling with system size, we use the ‘‘sm
box’’ implementation of Ref. 62 to evaluate the potential.

The spin-orbit term in the Hamiltonian, Eq.~16!, consists
of finite-ranged, atom-centered potentials, assumed zero
r>r cut . Only the part ofc within r cut has contributions to
V̂SOc(r ), which leads to the following implementation. Fo
a given atom atRi , on the real-space numerical grid, w
consider a small box centered onRi . Defining cQ(r )
[c(r ) for grid points inside the small boxQ, we then treat
cQ as if it were periodic within the small box. This permi
us to use the fast Fourier transform ofcQ(r ), cQ(GQ),
whereGQ is a reciprocal lattice vector of the small boxQ.
Now in Fourier space, we can directly evaluate the nonlo
spin-orbit potential,vQ(GQ ,GQ8 ),

fQ~GQ!5(
G8

vQ~GQ ,GQ8 !cQ~GQ8 !. ~B1!

Fourier transforming the new wave functionfQ back to
real space we then add this small box of wave function b
to the full wave function. The computational effort for eac
atom is therefore fixed, independent of the total size of
system, and the cost of the method scales linearly with
size of the system.

For the spin-orbit potential itself, we adopt a Gauss
form, vp(r )5exp@2(r/0.7)2#, and rescale the amplitude o
this potential for different atoms.
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