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Atomistic description of the electronic structure of In,Ga;_,As alloys
and InAs/GaAs superlattices

Kwiseon Kim, P. R. C. Kent, and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

C. B. Geller
Bettis Atomic Power Laboratory, West Mifflin, Pennsylvania 15122
(Received 12 March 2002; published 30 July 2002

We show how an empirical pseudopotential approach, fitted to bulk and interfacial reference systems,
provides a unified description of the electronic structure of random alloyi& and epitaxigl superlattices,
and related complex systems. We predict the composition and superlattice-period dependence of the band
offsets and interband transitions of InAs/GaAs systems on InP and GaAs substrates.
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[. INTRODUCTION superlattices before the continuum EMA description starts to

fail, thus requiring an atomistic descriptiéf,>2or when the

InAs and GaAs are the building blocks of a diverse rangdlifference in atomic potential¥,—Vg between the alloy
of optoelectronic heterojunction systems, includiiigshort-  constituents is too large to justify a virtual-crystal description

period superlattices (InAs)(GaAs), made of the binary of theAB;_, alloy, as is the case in Gag,; _ alloys**

constituents; (i) bulk In,Ga, _,As alloyst?*3(iii ) epitax- The modern electronic structure theory of solids and
ial alloy films on InP, InGa, ,As/INP¥-16 and on Mmolecule§** delivers the basic electronic properties

GaAs, InGa_,As/GaAsi’- as well as (iv) alloy through an effective single-particle Schinger equation,
quantum-well®?°  (In,Ga _,As),/InP on InP and

(In,Ga, _,As),/GaAs on GaAs, andv) GaAs-embedded 1_,
InAs quantum dot8:~2*We wish to provide a uniform the- | ~ 35V +Vscr(r)+; % Ua(r=Rpy—do) ( i = €¢i(r),
oretical description of the electronic structure of such sys- (1)

tems, (i)—(v), by using a single theoretical approach. By

“electronic structure” we include the band gaps, interband,erey, is an external atomic potentiéé.g., ionic pseudo-
transition energies and their dipole elements, wave funCt'onBotential or electron-ion-Z/r field) of atom of type

localization, and strain-modified band offsets. =Ga, In, As located at lattice sit, within unit cell atR,,,

The current status of theoretical modeling of such systemgndvscr(r) is the screening resporféef the system to such
is that different approaches are often used to describe diffegsyternal potentials(\We consistently use lowercase symbols
ent subsystems. For example, short-period superlatticeg, to denote potentials of single atoms, wher¥agenotes
made ofbinary constituentsare often treated by atomistic the potential of a set of atoms, e.g., an alloy, superlattice, or
approaches such as the local-density approximatid® ),**  quantum dod. The specification of the structure—
tight binding?~" or empirical-pseudopotential method superlattice or random alloy—is given by the collection of
(EPM),**~*yet, superlattices made afloy constituentsre  position vectors{R,,;d,}. While the{u,} are properties of
deemed too complex to be treated by such methods, and ajigdividual atoms, and are thus superposed linearly in(Ex.
described instead via continuum effective-mass approximahe screening/s.,(r) is generally not linearly superposable.
tions (EMA), including single-band or few-bank-p  |n the LDA (Ref. 45 it includes a linearly superposable in-
methods™®~** The electronic structure of bulk alloyé®  terelectronic Coulomb terVy(r), as well as a nonlinear
e.g., the optical bowing in iGa,_,As, is rarely predicted exchange and correlation terkfic(r). The total screening
theoretically, (see, however, Refs. 36-40 for the moderny_ =V, +Vy: needs, in general, to be obtained self-
theory of alloy bowing. Instead one usés*the observed consistently, and may even contain spatial nonloc&titff,
phenomenological bowing in modeling of alloy heterojunc-however, one considers physical systems made of a limited
tions. Even when an atomistic theory of bowing in bulk al- number of recurring chemical motifs, one could attempt to
loys is attempted®~*°such descriptions are not extended to decompose the global screening into atomiclike components,

alloy superlattices such as (IgGa,_,As),/(InP)y,, which  thereby definingscreened potentials, (Refs. 46—49via
represent a higher level of complexity. The use of different

theoretical approaches with widely varying degrees of accu-

racy to describe the various InAs/GaAs subsystems can be V=V (f)+2 2 u(r—R,—d,)
problematic not only because of potential inconsistencies sef r e nooe

(and lack of elegangebut also because the ranges of appli-

cability are currently unknown. For example, it is not obvi- ~2 2 v (r—R,—d,). )
ous what are the minimum layer periods,in) of A,B, n @ “
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The various InAs/GaAs systems discussed aliagewell T T T T
as other isovalent and isostructural semiconductor palfs

involve five basic atomic tetrahedra As (fBa_,) with O 201 (@) Hydrostatic | | Gahs | | (b) Biaxial |

<p=<4, where the pure binaries InAs and GaAs, respec- >~

tively, arep=0 andp=4, whereas mixed clusters hape 15 b \\\\\ [ |

=1, 2, and 3. Moreover, all of the systems we consider— o N cBM

alloys, superlattices, heterojunctions—have fully satisfieds

fourfold coordination without free surfaces, reconstructions, > 10 [ | — &dependent 1r T
= —— &-independent

or broken bonds. Thus, we wondered if just a few screenecg
potentials{v,,} could be constructed from some prototype ™
systems, and then used in a transferable way to describe th

full range of alloys, heterojunctions, and quantum dots via VEM hh th

00F —T—— Y q } IEmm=me—=T 4

1
—5VA 2 2 0 (r—Re—dy) (hi=ehi. (3

Our current understanding of the nonlinear nature of the Volume Change (%) Biaxial strain (%)
exchange-correlation screenfAgvithin V(r), and the po-
sitional nonlocality of the self-enerff/suggests that Eq2)
cannot hold universally for all eigenvalugsg} of the Schre
dinger equation(3), or for all structures(bulk as well as
surface. Nevertheless, it is interesting to explore if this an-
satz holds for a useful window of energy eigenval(eg., a
few eV around the band gamnd for a restricted rage of
structurege.qg., systems made of As(@a,_ ), without free
surfaces or undercoordinated atdm&an accurate represen-
tation such as Eq2) does exist, so that the band structure,
effective-mass, deformation potentials, and other relevant ex- 1
perimental properties can be reproduced within reasonable —|G+K|><Ey. (6)
accuracy via Eq(3), then we can deliver a uniform theoret- 2
ical description of alloys, superlattices, quantum wells, and ) o ) )
quantum dots within a single theoretical approach. This may 1his type of empirical potential was constructed in the
be computationally feasible since, given such a potential, Eqt960s(Refs. 46,47 and subsequently improved via nonlocal
(3) can be solved even for a million atorffe! provided we ~ €ms in the 19708 ThIS. class ofl potential was fit to the
restrict our attention to a fixed energy window around thePulk band structure of binary solids, producing good bulk
fundamental band gap. We next summarize our experience ieflectivity spectra. Howeyer, thls class of potentials is not
constructing an accurate pseudopotentigl of the form usable for our purposes |nvol\9/|ng quantum ngnostructures.
needed in Eqs(2) and (3). First, V(G) was constructéd=*° only at the reciprocal lat-

tice vectorsG,, of the binary bulk solids, whereas application
to large unit cell materials requiré4(G) at many interme-
diate valuesSecongthe all-important band offsets between
The traditional empirical pseudopotentir;*® designed different material€e.g., InAs and GaAswere not fittednot
for binary bulk semiconductors, used a plane-wave basid2€ing required for bulk calculationsso nanostructure con-

where the Hamiltonian matrix for reciprocal lattice vectGrs ~ finement energies cannot be  reproducethird, upon
andG’ was examinatiof® it was found that the traditional empirical

pseudopotentiafé*® gave very poor bulk effective masses,
1 so quantum-size dependence of energies could not be repro-
HGVG,=§G25QG,+V(G—G'). (4)  duced.Fourth, the dependence of the valence-band maxi-
mum (VBM) and conduction band minimuf€BM) band-
The first term represents the kinetic energy, and the seco ge energies on hydrostgtlc potgnhals was d.'SCO%?%d.
term represents the Fourier transform of the screene ften to have an incorrect sign. This problem is illustrated in

e : : o . for GaAs, where the solid lines depict the volume
pseudopotentidright-hand side of Eq(2)]. Spin-orbit inter- ~ 19- 1@ ' . .
actions, and other nonlocal terms can also be introdfited, dépendence of the VBM and CBM energies as a function of

Equation(2) and the Hamiltonian Eq4) are solved for the VOlUme, using conventional empirical pseudopotentials
bulk solid by expanding the wave function in plane waves, ¥(G) that depend only on momentum. Using this descrip-
tion, we see that the VBM energies move to more negative

Gumax values as the material is compressed hydrostaticlly,,
W, (=gl E A(kilGei(_B-[, (5) a\,=Vﬁevpm/aV is positiv@, whereas the CBM energies are
' G comparatively pressure independent. In contrast, accurate

FIG. 1. GaAs band-edge energy dependencéapmmydrostatic
pressure, andb) biaxial deformation, for strain independent and
strain dependent empirical pseudopotentialsanda. denote the
absolute valencewv() and conduction(c) deformation potentials.
Solid lines denote the available strain independent data and dashed
lines denote the explicitly strain dependent results.

where the highest momentum componént., in the basis
is determined by a cutoff energy,

Il. OUR CURRENT EMPIRICAL PSEUDOPOTENTIALS
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LDA calculation$**® predict alarge negative a<0 defor-  agreement with the limited experimental data. The largest
mation potential for the CBM, and small deformation poten-contribution to the band-gap deformation potential now
tials a, for the VBM.>®*" These trends cannot be fit by em- originates from the deformation potential of the CBM, which
pirical potentials that depend only on momentefm. is now strongly negative. Since &) =0 at equilibrium, the
The four problems with conventional EPM thus make it band structure of the equilibrium bulk band structure remains
unusable for nanostructures exhibiting quantum confinementnaltered. Furthermore, the crystal-field splitting under biax-
and strain. We have therefore generalized the form of théal strain is also preserved when the volume is kept constant.
EPM to remedy these problems. We describe these generalthis point is illustrated in Fig. (b), where biaxial strain is

zations below. applied to bulk GaAs while keeping the volume constant.
The EPM calculated heavy hole—light hole deformation po-
A. Continuous g-space form of the potential tential reproduces the observed value of 1.52 eV.

We chose a parametrized form of potential that is continu-
ous in reciprocal space, permitting application to large unit
cells and alloyed materials that require the potential at many To improve the transferability of the potential, we let it

C. Local environment dependence of the potential

g points. The analytic form adopted for the fit is depend on its local chemical environment. For example, the
) potentialv)(q,€) of the As atom depends on the numiper
v(q)=a (@°—ay) (77 ©of Ga and In atoms surrounding it in the (B, _, tetrahe-
0 [azea3q2_ 1] ’ dron. A simple approximation
whereay—as are the fitting parameters. This form is not only 4—p P
continuous ing space, but also specified @0, permitting vad GINg—pAS]=—7—va(INAS) + v ,a(GaAY
fits to the all-important band offsets between materials. (12)
is utilized.

B. Strain dependence of the potential

The problem illustrated in Fig.(&) results from the fact
that whenv , depends on position onlfor, equivalently, on
momentumg only) it cannot accurately represent the change Using the local strain dependence of E8). and the local
in potential resulting from deformation. This is unlike a self- environment dependence of H32) permits a good descrip-
consistent description, where the charge redistribution resultion of a range of relevant electronic properties. However, a
ing from a deformation is built directly into the screening further generalization of the EPM proved important for a
potential V.. Since in our approach(r) of Eq. (2) in-  good simultaneous fit of band gaps and effective masses: the
cludes both screening effects and the ionic pseudopotenti¥inetic energy in the single-particle equation was scaled
u,(r), we must build the response to deformation directly
into_the screened potential,(r). Thus, we add an explicit Hlﬁi:[ _ EV2+V(r)] b= €, (13)
strain (¢) dependent terrf 2

D. Kinetic-energy scaling

wherep is the scaling constant:>*The origin of this term is
V(r)=2 v(|r —RpaD[1+ v ale)]. (8) as follows. In an accurate description of the crystal band
ne structure, such as tH8W method** a general, spatially non-
To linear order under an arbitrary straij, the changesv,, ~ local potential V(r,r"), is needed to describe the self-energy
can be expressed as term. In the absence of such a term the occupied band width
of an inhomogeneous electron gas is too large compared to
the exact many-body result. To a first approximation, how-
6v a(e):% aij €ij - ©  ever, the leading effects of this nonlocal potentié(y,r’),
can be represented by scaling the kinetic energy. This can be
The T4 symmetry of the zincblende structure requigs ~ seen by Fourier transforming(r,r’) in reciprocal spaceg,
=ayy=3a,,, and thata;; =0 fori#j. Thus, then making a Taylor expansion gfabout zero. We find that
the introduction of such a kinetic-energy scalifg)permits
6V o( €)= Tr(€). 10 an improved simultaneous fit of both the effective masses

Then, our screened atomic pseudopotential takes the formand energy gaps. In this study, we fit=1.23 for both ma-

terials.
Vo(d,€)=04(9,0[ 1+ y,Tr(e)], (11

where y,, is a fitting parameter. Appendix A and the figure
therein describe how the Te) term is calculated. The eigenfunctions of the Hamiltonian, E¢), are solved
The dashed lines in Fig. 1 show the effect of adding thefor the bulk solid by expanding E@5) in plane waves. Typi-
extra term to the pseudopotential. The changes in energy aially we use a cutoff enerdy,.,; of 5 Ry, which corresponds
the individual bands are thus made consistent with the preto only ~60 plane waves at thé point of a two-atom primi-
dicted trends in LDA calculation$®® which are in broad tive cell of GaAs. As the lattice constant of the system is

E. G-space smoothing of the wave functions
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varied, plane waves are added or subtracted, potentially sig- TABLE I. Fitted bulk electronic properties for GaAs and InAs
nificantly increasing or decreasing the flexibility of the basisusing the screened atomic pseudopotentials. The hydrostatic defor-
set. In order to minimize this effect, we find it beneficial to mation potential of the band gap aiis, levels are denoted by

apply a weighting function to the individual plane waves @gap @ndar, . The biaxial deformation potential is denoted by
and the spin-orbit splittings at tHé;5, andL,, points are denoted

cogh)+1 by Ay andA;. The EPM calculated alloy bowing coefficient is 0.40
We= 2 , (14) eV [see Fig. 68)], and the valence-band offsets on different sub-
strates are given in Fig. 5.
Ec—vEcut

(15  Property GaAs InAs

O T = ) B
(1= ¥)Eeu EPM  Expt.(Ref. 60 EPM  Expt.(Ref. 60

where E¢ is the kinetic energy of the plane waJ&

+k|2/2. We find »=0.8 provides an improved fit to cell- Egap _1'25;7 _12'5926 _g'ggg _20';02
shape dependent properties such as hydrostatic and biaxfafs. : ' ' :
deformation potentials and alloy properties of stronegExlc 1.981 1.98 2.205 2.34
lattice-mismatched systems, e.g., GaAsN. X3c 2.52 2.50 2.719 2.54
EL,, —-1.01 -1.30 —5.76 —6.30
F. Fitting to experimental and LDA results Eiy, 2.36 181 1.668 17
o , _ _ me 0.066 0.067 0.024 0.023
The empirical potentials are fit to the best available X [100]  0.342 0.40 0.385 0.35
perimental dat& Where data are not available, or unreli- m*[111]  0.866 0.57 0.994 0.85
able, the best theoretical calculations are used to provid ’Ilh[lOO] 0.093 0.082 0.030 0.026
. . . . . . |h . . . .
;cggget fitting values. The potential fitting includes the follow Agap 788 833 _6.79 57
(i) The experimentally measured band enerffes. Ay, __1151519 :1(7) __01'%226 :1(7)
(i) The experimentally determined effective mas¥es. A 0 '34 0 ?;4 0'36 0'38
(iii) The experimentally measured hydrostatic deforma-"° : ' ' '
0.177 0.22 0.26 0.27

tion potentialsa, and biaxial deformation potentiats® 1
(iv) The LDA-calculate?® hydrostatic band-edge defor-
mation potentialsa, and a.. (Only the difference a—a,
=aq currently is accessible experimentally; the individual
components are not.
(v) The LDA-calculatef! unstrained valence-band o

Once we have the screened pseudopotentials(Fraqan
now be solved for the electronic structure for gien} and
f. 1Rn,d.} without additional approximations except those

sets between different semiconductors used to construdt ,}. This development is due to advances
. H “ ” : H : 51
(vi) The experimentally determined spin-orbit splitting of IN fast(“order N") diagonalization method® and the ease
the valence bantf of exactly calculating the matrix elementswf in a basis of

The screened pseudopotential contains a local part and Plane waves. In this approach all geometiiatoys, super-
a nonlocal, spin-orbit interaction part and is fit to the prop-/atticés, quantum dots, and wijeand systems are treated

erties described above. The nonlocal part of the potentigfduivalently, using a single input set,}- Thus, any discrep-
describes the spin-orbit interaction, ancy between predicted results and experimental results can

be traced to some approximation{n,k}. Here we will de-
~so B <o scribe the application of E@3) to the electronic structure of
Hso:nE Ve (Rna)=n2 Z tal =R [Dr L-SIlr, . various systems constructed from the InAs and GaAs build-
“ “ (16) ing blocks. This approach provides a uniform, atomistic de-
scription of the electronic structure of such systems.
where|I)Rna is a projector of angular momentuhrcentered
atR,,, L is the spatial angular momentum opera®is the

. . . . L. I1l. EQUILIBRIUM ATOMIC POSITIONS
Dirac spin operator, an\iﬁf;(r) is a potential describing the Q

spin-orbit(SO) interaction. We use a Gaussigronly poten- A full calculation for an alloy, superlattice, or quantum
tial for V3°, and evaluate Eq(16) using the method de- dot requires two steps.
scribed in Appendix B and Ref. 62. (a) Obtaining reliable equilibrium atomic positions for a

The properties to which the InAs and GaAs pseudopotengiven atomic configuration[e.g., (GaAs)/(InAs),, (001
tial parameters are fit are given in Table |. We see that unlikesuperlatticé
the LDA, here we accurately reproduce the bulk band gaps (b) Obtaining reliable electronic energy levels for this
and effective masses. We emphasize that a significant diffeetomic configuration and atomic positions.
ence in our parameter set to that used conventionalkpin For (a), we will use a valence force fift ®°fit to experi-
studie$**>%%is our choice of a negative magnitude for the ment. For(b), we will use a fast-diagonalization mett8d*
valence-band deformation potential,, which we have ob- to solve the pseudopotential ScHinger equation, Eq3), in
tained from FLAPW calculation:**The final EPM param- the plane-wave basis of E(5) and previously obtained em-
eters are given in Table II. pirical potentials.
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TABLE Il. Parameters of the InGaAs EPM used in this study. The potentials were fitted at a plane-wave
cutoff of 5 Ry, with kinetic-energy rescaling=1.23 and smoothing=0.8. We denote the potential to be
used for a Ga atom when bonded to an As atom as “Ga-As.”

Species ag a; a, as y Spin Orbit
Ga-As 432960.04 1.7842354 18880.626 0.20809693 2.5639153 0.0460
As-Ga 10.938638 3.0904963 1.1039588 0.23304077 0.0 0.0976
In-As 644.12963 1.5126251 15.200855 0.35374034 2.1821453 0.4800
As-In 26.468192 3.0312950 1.2464169 0.42129203 0.0 0.0976

A. Equilibrium atomic positions in superlattices
. » . _ 0= —2——¢ (22)
1. Continuum elasticity(CE) theory for strained superlattices L I

A film of a material grown epitaxially on a thick substrate ) o o
will strain so that its atoms grow in registry with those of the @d for the superlattice along tfi&11) direction, it is
substrate. Thus, its dimensiay, the lattice parameter of the
layer parallel to the interface, becomes equal to that of the 11 2C11t4C1,—4C,,
substrateag (coherency condition anda, , the lattice pa- € T T C.x2C.+4C,, G-
rameter of the layer perpendicular to the interface, is deter- t 12 4
mined by the strain tensor. Based on macroscopic continuum
elasticity theory,’~%°

(23

2. Valence force field VFF) method

R R Although the continuum elasticity theory gives good esti-
a,(as,G)=aeq—[2—30(G)J(as—aey)- 17 mates of cell-external parameters for a super@ed., thea,
. value, it does not give any information as to the positions
Here, G is the direction of deformation and the epitaxial and local strains of the atoms inside the supercell. To calcu-
strain reduction factor is given by late the relaxed atomic positions within the supercell, we use
a generalizatior(generalized VFF, GVFFof the originaf®
valence force field model. Our implementation of the VFF
M’ (18 includes bond stretching, bond angle bending, and bond-
length/bond-angle interaction terms in the VFF Hamiltonian.
whereB is the bulk modulus, th€;; are elastic constants of This enables us to accurately reproduce the, C;,, and
the embedded material, and C,4 elastic constants in a zinc blende bulk matetfalve
have also included higher order bond stretching terms, which

qQG)=1-

1 give the correct dependence of the Young’s modulus with
A=Cas— E(Cll_ C1o) (19 pressure. The GVFF total energy can be expressed as
is the elastic anisotropyy is a purely geometric factor given o
by Ever=2 X glafad]+aAd]]
Y(G)=y(,0)=sirP(26) +sirt(0)sirP(¢),  (20) Yy
. ZPIK FR—R) - (Ru—R:
where ¢ are 6 the spherical angles formed I&. A general +Z k2>J 8deQk[(RJ Ri)- (Re—Ri)
~ | |
expression fog(G) is given in Ref. 67. Explicit expressions : .
for q(G) along the principal direction§001), (011), and _ 0 404072 - 30jk .
(111) are costjj di; diy | +§i: IZ:J _d?k Ady[(R;
q[001]= 2 1- Gz —Ry)-(Ry—R;) —cosé didi], (24)
3 Ci/’
whereAd? ={[(R,—R;)?—d;?]/d]}%. HereR; is the coor-
1101= 1 Cy;—Cp+6Cyy dinate of atom anddioj is the idealunrelaxed bond distance
a[110= 33C;;+C1,+2Cy,’ between atom types ofandj. Also, aﬂk is the ideal(unre-
laxed angle of the bond anglg—i—k. The =" denotes
Cu summation over the nearest neighbors of aiormhe bond
q[111]= Cit 2C, 1 4Co" (21)  stretching, bond angle bending, and bond-length/bond-angle

interaction coefficientsai(jl)(za), Bijik » o} are related to
Thus, for the superlattice along tti@01) direction the per- the elastic constants in a pure zinc blende structure in the
pendicular straire; =(a, —aeg)/aeq becomes following way:
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TABLE Ill. Input GVFF parametersy, B, o to Eq.(24) and their resulting elastic constar@g;, C»,

andC,,.
@ B o a? Cu Ci2 Cu
(10* dyne/cm) (18 dyne/cn?)
GaAs 32.153 9.370 —4.099 —105 12.11 5.48 6.04
InAs 21.674 5.760 —5.753 —112 8.33 453 3.80
3 calculation§® showed that the calculated deformation agreed
C11+2Cy5 ad. (3a+B—60), very well with that predicted by continuum elasticity. Better
0 experiments in 199%Refs. 9,10 and 1998(Ref. 11 have
indeed revealed that the earfle@xperiments were incorrect
Cyy—Copo= \/313' and that continuum elasticity is serviceable down to the
d monolayer limit.
We next compare CE and VFF for (GaA6hAs),, on
\/E[(a+,(3)(a,[3—az)—2cr3+ 2afB0] (001) GaAs. Continuum elasticity predicts the following for
Cas= d_o (a+B+20)2 - 29 the c/a(=a, /q)) ratio vs (n,m) for the (GaAs)(InAs),

superlattices on a GaAs substrate:
The second-order bond stretching coefficieft) is related

to the pressure derivative of the Young’s modulugi3/d P, c ma'inAS
whereB=(C,;+2C;,)/3 is the Young’s modulus. Note that (GaAs)n(lnAS)mgzl“Lm’
in the standartf VFF the last terms of Eq24) are missing,

so o=0 in Eq.(25). Thus there were onlywo free param- c a'l”AS
eters ,8) and therefore three elastic constants could not, in (GaA9(InAs),, —= ,
general, be fit exactly. The GVFF parameters and the result- a g

ing elastic constants are shown in Table Ill for GaAs and

InAs crystals. For an InGaAs alloy system, the bond angle (GaAs;w(InAs)lgzl,
and bond-length/bond-angle interaction parameggrs for a

the mixed cation Ga-As-In bond-angle are taken as the alge-

braic average of the In-As-In and Ga-As-Ga values. The c 1 a'fAS
ideal bond—angleﬁﬂk is 109° for the pure zinc blende crystal. (GaAgm(I”AS)WEZE 1+ a

However, to satisfy Vegard's law for the alloy volume, we o o
find that it is necessary to USQ%aA&m: 110.5° for the cat- These CE results are shown as solid lines in Fig. 2, whereas

ion mixed bond angle. the VFF results are shown as filled symbols. We see that CE
is reasonably accurate for tk@01) direction and also for the
3. CE vs VFF for superlattices (119 direction[Fig. 2b)].

) ) ) ) Finally, we compare CE and VFF results for
We first compare the straia, calculated with continuum (GaAs),(InAs),, on InP. Continuum elasticity predicts the

elasticity and with VFF for InAs and GaAs monolayers oniowing for the c/a ratio for (GaAs)(InAs),, superlattices
GaAs and InP substrates. We use the same elastic constagl$ an InP substrate:

in both calculationgTable Ill). The results shown in Table
IV demonstrate that continuum elasticity also works well for c nalStmahs
film thicknesses down to a single monolayer. It is of interest (GaA9,(InAS),—=
that Brandtet al® suggested in 1992 that continuum elastic- a
ity fails at the monolayer limit. In 1994, accurate LDA

(n+m)aH

GaAsg(InA c_a'l“AS
(GaAS(InAs). == —.

TABLE IV. Comparison of perpendicular stra# obtained for
monolayer insertions of InAs in GaAs or InP using continuum elas-
ticity (CE) and valence force fielVFF). c abahs
(GaAs..(InAs); - = :

Superlattice Direction €% (%) e’"F (%) a

(InAs),(GaAs), (001) 7.27 7.27 c aShspglnas

(InAs),(GaAs), (112) 3.81 3.77 (GaAg.(InAs),, - =—————

(GaAs)(InP). (001) —3.45 ~3.36 |

(InAs);(InP),, (001) 3.40 3.41 Figures 2c) and 2d), respectively, show the normalizeda
(GaAs)(InP)., (111 —-1.77 -1.77 values calculated with CE and VFF for (GaA@nAS),, su-
(InAs), (InP).. (112 1.78 1.73 perlattices along001) and(111) directions on GaAs and InP

substrates. The asymptotic valuesaf for m—o andn
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cfa of (GaAs)(InAs),, SLs

(GaAs)q(InAs)y, (GaAs)p(InAs)q (GaAs)p(InAs),

.08 ————————— — 1.04 1.06
m—>00 =CE
1.07} 1.03 1.05 « VFF
1.08} 1.02 1.04 | @ (001)
1.05} 1.01 1.03 on GaAs
1.04 100" >R 1.02
1.05 1.03 1.04
1.04¢ 1 1.02 1.03; FIG. 2. c/a from continuum
() (111) elasticity (CE) [solid lines, Eq.
1.03 1 101} 102t ! ;
on GaAs (17)] and from VFF(filled circles
102 100 o1 for (GaAs),(InAs),, superlattices
i 1" - (a) along (001) and (b) (111 di-
2 o1 0.99 100 rections on GaAs, andc) along
g 104 — ' ' (001 and (d) (111 directions on
S 1.00 1.02¢ InP substrates. The asymptotic
1.03 ' 00 ol —o values ofc/a are shown as
102 ' ’ dashed lines.
0.98 1.00F> (c) (001)
101k ' ’ on InP
0.97 0.99
1.00f
oo6l . . . . . . 1 o8
1.03 ————————r 101 1,02 ——————
102} 1 100 101}
(d) (111)
1'01;//’1' 099&_ i on InP
1.00 ] o8l 099}
S s6 78010 T 5456760085567 800
SL layer m SL layer n SL layern

e are shown as dashed fines in Fig. 2. We see that COMA first principles calculation by Bernard and Zunefor
tinuum elasticity also works well for the/a ratio. i d ;
y (InAs);(GaAs), (001) superlattice resulted ik, =7.73%.

4. VFF vs LDA for superlattices Our GVFF gives 7.36%.

As a simple test of our GVFF for alloy systems, we com-
pared the relaxed atomic positions from GVFF with pseudo- 5. Atomic relaxation and interlayer spacing in InASaAs
potential LDA results for 4100 (GaAs), /(InAs), superlat- superlattices
tice where thec/a ratio is fixed to 1, but we allow . . . .
energy minimizing changes in the overall lattice constant Figure 3 shows(001) and (111) interlayer distances in

L (GaAs)/(InAs)g superlattices. For an unrelaxe01)
]Si?]qu) and the atomic internal degrees of freedangj. We superlattice, the internal coordinate of the indium

plane is 0.25 with respect to theaxis. The straine, =(z
aéEA:5.8612 A, = Zequi Zequil _is shown in Fi_g. 3. For aflll) superlattice,
there are two internal coordinatest, andd,. The unrelaxed
ULPA— 0 2305 (idea) values are d;=+3/4 and d,=3/12. d; is
€d ' the distance between @Ga) and As atom layers where the
while the GVFF results are bond is along111) directions andi, is the distance between

Galn) and As atom layers where the bond is along_()lll
(111), or (111) directions. The strainse;=(d;

_dl,equil)/dl,equil and 52:(d2_d2,equil)/d2,equil are shown
Ugq ' =0.2305. in Fig. 3.

ag, =5.8611 A,
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Interatomic plane distance for (GaAs),(InAs); Superlattice

GaAs InAs | GaAs InAs
0.10 0.5 frrr—rr T 03
(001) Sl oal onGaAs s FIG. 3. (001) and (111 inter-
&> layer distances in
4°'°5' on InP p 03¢ /m on InP 01 (GaAs)/(InAs)g  superlattices.
w W02 - 3 _ 00 &S d, is the distance between Ga)
i unrelaxed §  Unsireined and As atom layers where the
3 o g £ anHE 3 bond is along(111) directions and
. 0. 02 d, is the distance between Gia)
005} B . oL unstrained | onGaAs s and As atom layers where the
5 10 15 20 25 30 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 bond is along (11} (111), and
Layer index along (001) Layer index along (111) (Tll) directions.

— S Galln
As

(001) %ﬁ - celn (111) %ﬁ
As = Galln
‘L,Z¢ eain T—_’ &ain
EEL W e &

Galln GAaS/In

(110

We see that on a GaAs substrate, the atoms of the GaAsulting band edge energies,(as,a,) and ep(as.a,)
segment of the superlattid§L) are unrelaxed, whereas the are shown on the right-hand side of Fig. 4. Similarly, when
strain in the InAs segment is positive. Most atoms have coninAs is coherently compressed, we find the eigenvalues
stant strain, except the atoms next to the interface. On thehown on the left-hand side of Fig. 4. The center panel aligns
other hand, on an InP substrate, the GaAs segment is dilatede unstrained valence-band maximum of GaAs and InAs
(€, <0) and the InAs segment is compressed*0), even using our LDA calculated band offs&tWe see that expand-
though the lattice constant of the SL is almost matched tang GaAs leads to an upward shift of the light-hdle) band,

that of the substrate. but a downward shift of the heavy-holéh) band. Com-
pressing InAs leads, concomitantly, to an upward shift of hh,
B. Equilibrium atomic positions in random alloys but in this case, |h also rises. The conduction-band minimum

) ) T . shifts to higher energies upon compression. Figure 4 also
The GVFF also is used to determine equilibrium atomicspoys that the band offset depends sensitively on the sub-

positions in random alloys. Here we create a supercell andirate ysed. One can read from this figure the value of the
randomly occupy cation sites with Ga and In atoms, accord-

ing to the concentration in,GaAs. We then minimize the
GVFF elastic energy by displacing atoms to their relaxed Compressed Unstrained Expanded
positions. We use a conjugate gradient algorithm using ana InAs GaAs
lytically calculated forces for both atomic positions aad.

In a previous studi? we reported the results for the closely
related In_,GaP alloy, so we will not repeat the results for I ] I
In,_,GaAs here. In both cases we find a bimodal distribu- I ] i G%,C
tion of the nearest-neighbor anion-cation bond lengths, and z% A As, e I i ]
multimodal distribution of the cation-cation distances. De- 3 -5.0 |- — — —{-5.0
tails are given in Ref. 66.

| | h J
I 1 InAs, vbm | 1
L h 4 hh d
IV. STRAIN-MODIFIED BAND OFFSETS I |GaAs, vbm| ]

: S : . 80 so = e 30 , {60
Once we have determined the equilibrium atomic posi- | |
tions, and have a reliable screened pseudopotential, we ca

4.0 . . . T T T -4.0

Energ
Vg

-0.08 -0.06 -0.04 -0.02 0.00 0.00 0.02 0.04 006 0.08

solve the Schidinger equation, Eq(3), in the plane-wave

basis of Eq(5). We first solve the simplest case, epitaxially on on on on
deformed InAs and GaAs. Here, we imagine that GaAs is GaAs  InP InP InAs
coherently strained on a substrate whose lattice constant +<——— strain strain ———

ranges from that of GaAs to that of InAs. The tetragonal FIG. 4. The CBM and highest three VBM levels for strained

deformationa, (as,G) in the perpendicular directiofs is  binary GaAs and InAs calculated using the LDA values for the
given by EQ.(17) if one uses continuum elasticity. We then unstrained binarie&entral pang| as well as the LDA deformation
solve the Schrdinger equation as a function af. The re-  potentials. The lines represent the EPM fit.
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Band Offsets between strained InAs and GaAs

o] [

1.526
1.251
0.833 0.786 0.424 I
— h (a) (001)
hh e 0:383 hh_ 0316 0249 _<’ 0.279
0.198 0.173 0.0 -0.261
0.0 In/hh ‘
1.526
0.532
(b) (111)
hh 2 hh  0.383 0.213 -0.172
Ih =0 389 h — | linbh 0.0 t'h
0.0 -0.468
0.0 Ih/hh
on GaAs on InP on InAs

FIG. 5. Calculated strained band offsets of InAs/GaAs on various substrates and two layer orientations.

InAs/GaAs band offsets for various substrates such as GaAsith composition due to repulsion of the lowest conduction
InP, and InAs. The calculated strained offsets on these sulibband(cations like, I's.) by higher lyingLg. and Xg. cation
strates are given in Fig. 5 for two orientation®01) and  slike states'’?In contrast to the bulk alloys, however, the

(111). epitaxial alloys [Fig. 6(b)] show anupward bowing CBM
(b:<0), leading to a total band-gap bowirrg0 eV on
V. BAND-EDGE STATES IN RANDOM In «Ga;_,As GaAs,—0.4 eV on InP, which is much smaller than that of
ALLOYS the bulk alloy. The reason for this reversal is strain effects.

Wthen the alloy izompressede.g., In-rich InGa, _,As/InP)

Figure 6 shows the band-edge states and the band gapsipS CBM and VBM both move ugmuch like in the zinc

() relaxed(*bulk” ) InGg; - As random alloys, ant) ep- blende constituents, see Fig. #lative to the unstrained al-

itaxial In,Ga,_,As alloys on GaAs and InP substrates, cal- .
ftaxial In,a —x y loy. For InAs/InP these shifts aret+213 meV and

culated using the empirical pseudopotential. For the calcula- ) )
tion of the relaxed alloy we have used the Vegard lattice™ 194 meV, respectively. Conversely, when the allogxs

constant. For the epitaxial alloy the in-plane lattice constanPanded (e.g., Ga-rich 1nGa, _,As/InP) its CBM moves

mized. The bowing parameter is very small for the are—390 meV and+ 119 meV, respectively. At the lattice-

In,Ga _,As alloys, being 0.4 eV for the bulk alloy, 0.0 eV matched composition, §3Ga 4As/INP, the CBM is un-

for the alloy on GaAs, and-0.3 eV for the alloy on InP. changed. Due to the displacements of the In-rich and Ga-rich

The three highest valence-band states are shown in Fig. 6gegments, the bowingotal, and for the CBM and VBM

i.e., light hole, heavy hole, and split off states. We note theseparately changes sign via epitaxy.

following: (ii) Hole localization The thin dashed horizontal line in
(i) Epitaxy-induced reversal of bowing parametefhie  Fig. 6(b) depicts the energy of the unstrained GaAs VBM.

bulk alloy [Fig. 6(a)] shows a downward-bowing CBM and We see that the alloy hh energy is above the VBM of pure

an upward-bowing VBM, with a total band-gap bowing co- GaAs. Thus, the wave function would be localized on the

efficientbg,,=b.—b, of +0.4 eV, in good agreement with alloy material, not on GaAs both in the bulk and in the epi-

experiment” ! and with LDA calculation§?! taxial alloy on GaAs. However, at low In concentrations
The reason thak, bows upwardswith composition is  (x,,<10%) the |h in the InGaAs/GaAs system has a very
that the highest valence staténion p like, I'g,) are el- low offset with GaAs, so the hole is expected to be delocal-

evated by the lower-lyingl"g, -folding stateL, s, , which is  ized. Forx,,>10%, this hole is always localized on the In-
also anionp like.”? On the other handg, bows downwards rich material. For the epitaxial alloy on InP, we find a Ih-hh
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CBM & VBM levels and bandgaps of InGaAs alloys

Individual Levels | | Band gap |
4.00 2.00
b.=0.1eV
450} 1.50
b=04¢eVv
5.00} 1.00 (a) Bulk
b,=-0.3eV
650 4 e e OV 00
SRR ___SO
-6.00 = 000
-.00 2.00 FIG. 6. Calculated band-edge
b= -0.1eV states of InGaAs random alloys
< 450 1.50 « o
E b=00eV for (a) the free—f!oat_lng bulk al-
= CBM 100 (b) on GaAs loy, (b) the epitaxial alloy on
g 500 b=-0.1eV  VBM ‘ GaAs, and(c) the epitaxial alloy
. ,,,.’*/'MH’A on InP.
5.50 M 0.50
o GaAs VBM
-6.00 0.00
450 —e b= -02eV 1.50
InP CBM
CBM j
b=-03eV
-5.00 100 ] (c)on InP
b,=0.2 eV VBM
-5.50{ I 050
s SO
-6.0p HOEYEM 0.00
0 20 40 60 80 100 0 20 40 60 80 100
GaAs In composition InAs GaAs In composition InAs

crossovet® around 50% In, and a very shallow offset, sug- (GaAs)(InAs), (Fig. 9 levels becomes those of epitaxial

gesting rather delocalized holes. _ GaAs (horizontal solid lines and InAs (horizontal dashed
(iii) Electron localization In the bulk alloy and in the |ineg), respectively.

epitaxial alloy on GaAs the electrons always are localized on (jj) The levels of (GaAs)InAs), (Fig. 7) go eventually

the In-rich material. The CBM of unstrained InP is shown asi, |nas levels but the convergence is slower. Since the ef-
a.dashed horizontal line in Fig(@, exhibiting a crossover fective mass of InAs is very small, it takes a very long period
W'th the alloy CBM: forx,,<30% the electrons are local- superlattice to localize the wave function within the cell. The
ized on the InP substrate, whereas #gf>30% they are localization of states is shown in Table V.
localized on the alloy? (iii ) For (n,n) and (1n) superlattices, the highest VBM is
for the (111) superlattice but the lowest CBM is for tli@01)
VI. SHORT-PERIOD InAs /GaAs SUPERLATTICES superlattice. Forr{,1) superlattice, it is the opposite, i.e. the

Figures 7, 8, and 9 show the CBM and VBM levels anghighest VBM s for the(001) superlattice but the lowest
band gaps fof001) and(111) (GaAs (InAs),, superlattices CBM is for the (111 superlattice. o
on GaAs and InP. To understand the asymptotic results of the (Iv) For the symmetricif,n) SL, the CBM rises in en-
superlattice ah—x we have also calculated the energy lev- €9y, and the VBM moves down in energy as the perod
els of the epitaxial binary compounds InAs on InP, InAs ondecreases, as suggested by quantum confinement. On the
GaAs, GaAs on GaAs, and GaAs on InP. These levels aréther hand, these trends are reversed for the asymmetric
shown as a bar diagram to the right-hand side of each framgn,1) SL(Fig. 8, where band-folding effects are greater than
in Figs. 7, 8, and 9. Arrows connect energy levels inquantum-confinement effects. As a result, the band gap in-
the superlattice with energy levels in the strained binarycreases am decreases in then(n) SLs, but in the (,1) SL
constituents, showing the limiting behavior. The epitaxialthe gap decreases.
binaries were calculated by constraining each material to (v) (111) superlattices have smaller gaps thi@@1) super-
the substrate lattice constant and relaxing the atomic poslattices, as the former exhibit folding that repels thd" ;.
tions in the perpendicular direction. We see the followingCBM to lower energies more than the folding, akin to
trends. (001) superlattices?

(i) For large n, the (GaAs)(InAs); (Fig. 8 and Figure 10 shows the planar average of the wave functions
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CBM / VBM levels and bandgap energies for (GaAs),(InAs), SL
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FIG. 7. The CBM and VBM
levels for (001) and (111
(GaAs),(InAs),, superlattices on
GaAs and InP. The boxes on the
right-hand side of each panel de-
pict the band edges of pure GaAs
(dashed lines and pure InAs
(solid lineg binaries strained epi-
taxially on the corresponding sub-
strate for the corresponding orien-
tation. The two lower panels
depict the band gaps.

FIG. 8. The CBM and VBM
levels and band gaps f@01) and
(111) (GaAs),(InAs); superlat-
tices on GaAs and InP. The boxes
on the right-hand side of each
panel depict the band edges of
pure GaAs and pure InAs binaries
strained epitaxially on the corre-
sponding substrate for the corre-
sponding orientation.
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CBM / VBM levels and bandgap energies for (GaAs),(InAs),, SL

on GaAs =~ = on InP o o
S = 8 =
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-4.00 E ; -4.00 — =
E -4.25 E—(111) BM — R i
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° SSOW VBM 1 550 > o - 4 = e s—Ju on the right-hand side of each
s F Eg- cos (001) L] L GaAs panel depict the band edges of
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(GaAs),(InAs),, SL period m

of the (001) (GaAs),(InAS),, superlattice on InP fon=2, 6,  considered in Fig. 10 the Ihl state is rather delocalized
and 10. For the largest period showns 10, the CBM states with a preferred amplitude on GaAs. This reflects the
are localized on InAs, just as in the asymptotic behaviorsmall, <0.1 eV Ih band offset on an InP substrékeg. 5).
noted in Fig. 6. However, for shorter periods, Fig. 10 showslhe asymptotic,n— localization is on GaAs. On the
that the CBM is delocalized both on InAs and GaAs as preother hand, the hhl wave function is strongly localized on
dicted from first-principles calculation8. This shows that InAs, reflecting the larger hh offset of 0.32 eV for the InP
our EPM closely follows LDA calculations down to the substrate. The hh2 wave function is localized mostly on the
monolayer regime. interface.

As to the hole states, we see that for the largest period Figure 11 depicts the calculated dipole matrix element

squared for interband transitions. We see that the transition to

TABLE V. Localization of states. Asterisks denote whether the lowest electron statel, is polarized mostly in plane for

(001) or (111) orientation gives highest VBM or lowest CBM. hhl—el and se~el components, whereas for transitions
from the lh1l level toel, the strongest amplitude is for the

VBM CBM out-of-plane transition. The dependence on superlattice pe-

Superlattice  Substrate Direction localized on localized on fiod is rather weak.

(n,n) GaAs (00D InAs InAs*

(n,n) GaAs (111 InAs* InAs VIl. CONCLUSIONS

(n,n) InP (00D InAs InAs* We find that an atomistic description of the electronic

(n,n) InP (111 InAs* InAs structure and a well-fit, modern empirical pseudopotential

(n,1) GaAs (001) GaAs GaAs can d(_aliver an accurate,.detailed picture of randqm alloys,

(n.1) GaAs (111) GaAs GaAd epitaxial alloys, superlattices, and quantum dbtshis ap-

(n.1) InP (001) GaAs GaAs proac_h does not suffer from the Ilmltat_|ons of continuum

(nyl) InP (111) GaAs GaAs effective-mass _models, and can be applied to complex alloy

' systems of arbitrary geometry.

(1n) GaAs (00D InAs InAs*

(1n) GaAs (111 InAs* InAs ACKNOWLEDGMENTS

(1n) InP (001 InAs InAs*
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| (001) (GaAs) (InAs), SL on InP |
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APPENDIX A: CALCULATION OF THE LOCAL STRAIN local strain tensore;; is calculated at each atomic site by

To use the empirical pseudopotential, one needsamethod)nSIderIng the tetrahedron formed by the four nearest

to calculate the local strain for arbitrary systems. Figure 1J1eighbor atoms. The distorted tetrahedron ed&gs, Rys,
illustrates how the local strain is calculated. After the atomic@"d Rg4 are related to the ideal tetrahedron edgds, R2;,
positions are relaxed by minimizing the elastic energy, thedndR3, via which

(001) (GaAs),(InAs),SL on InP

] WN——————————————————— 020 —————
045 (h1>e1), 1 0151 (hh1ée1)Xy 0181

éo.m- ] ot0f ool (Soee”xx{
a

005F N\ . ([h1 eil)xy L] 00sp (hh1->e1),=0 oosl (so>el),]
0T 3 4 5 6 7 6 s 10 C 1 2 5 45 6 7 8 90 5 s

(GaAs)(InAs), SL period m
FIG. 11. The dipole elements for interband transitionddl) (GaAs),(InAs),, SL on InP.

045208-13



KIM, KENT, ZUNGER, AND GELLER

FIG. 12. Geometries of the atom centered tetrahedra used for

calculation of the strain tensor.

Riox Razx  Raax 1+ ey
R12,y R23,y R34,y = 1+6xy
Ri2; Ros; Ras, €xz
0
Ri2x
0
X R12,y
0
Rl2z

The

matrix inversion as

1+ €,y
1+eyy

€yx €zx

1+ €yy €4y

€z €yz 1+e,,

R12)( R23,)( R34x

= R12,y R23,y R34,y

RlZz I:223,2 R34Z

wherel is the unit matrix.

€yx €7x
1+eyy €2y
€yz 1+e,,

0 0
R23,)( R34><
0 0
R23,y R34,y

0 0
R23,z R34,2

0 0 0
R12,>( R23,)( R34,)(

0 0 0
R12,y R23,y R34,y

0 0 0
R12,z R231 R34,Z

-1

(A1)

ideal tetrahedron edges aréR%={[110]a/

2,[011]a/2[110]a/2}, wherea denotes the equilibrium lat-
tice constant. The local strair;; is then calculated by a

(A2)

PHYSICAL REVIEW B66, 045208 (2002

AV (R;,XR15)R,4/6
TI’(E)=7=( 12 Vl3) 14/ _1,

whereV is the volume of the ideal, undistorted tetrahedron,
i.e., V=(R%,XRIHR? /6.

(A3)

APPENDIX B: CALCULATION OF THE SPIN-ORBIT
INTERACTION

The spin-orbit interaction is included in the Hamiltonian
via a nonlocal, atom-centergatlike potential. In order to
maintain linear scaling with system size, we use the “small
box” implementation of Ref. 62 to evaluate the potential.

The spin-orbit term in the Hamiltonian, E(L6), consists
of finite-ranged, atom-centered potentials, assumed zero for
r=r¢,. Only the part ofys within r.,; has contributions to

Vsozp(r), which leads to the following implementation. For
a given atom aR;, on the real-space numerical grid, we
consider a small box centered dR;. Defining q(r)
=(r) for grid points inside the small bo®, we then treat
q as if it were periodic within the small box. This permits
us to use the fast Fourier transform ¢t(r), #o(Go),
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