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Semiclassical analysis of extended dynamical mean-field equations
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The extended dynamical mean field equations are analyzed using semiclassical methods for a model de-
scribing an interacting Fermi-Bose system. We compare the semiclassical approach with the exact quantum
Monte Carlo method. We found the transition to an ordered state to be of the first order for any dimension
below four.
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I. INTRODUCTION

The dynamical mean field theory~DMFT!, a recently de-
veloped many-body approach to strongly correlated elec
systems, has been very successful in unraveling nonpertu
tive problems such as the Mott metal-to-insulator transitio1

In spite of its many successes, this technique has sev
limitations resulting from its single-site character and fro
the lack of feedback of the nonlocal collective excitations
the one-particle spectra. Several approaches are being
sued to extend the scope of the DMFT method. In this pa
we explore an extension of the DMFT method, the exten
DMFT theory ~EDMFT!,2,3,4 which maintains a local self
energy while incorporating feedback effects of the cha
and spin dynamics in the one-electron properties. T
method gives rise to quantum impurity problems with ferm
onic and bosonic baths that need to be solved s
consistently. This method has already been applied to w
class of models, such as the spin fermion model,5 fermions
interacting with long range~Coulomb! electron-electron
interaction,6 electron-phonon systems,7 and frustrated
magnets.8

The EDMFT equations are more involved than the co
ventional DMFT equations because they involve a solut
of a self-consistency problem in an additional bosonic se
and only recently was a full numerical analysis of the se
consistency conditions of EDMFT carried out.7 The interpre-
tation of the EDMFT instabilities is also not as straightfo
ward as in DMFT because bosonic and fermion
propagators involve very different regions of momentu
space, and a formulation of EDMFT for ordered phases w
only obtained recently.9

The purpose of this paper is to develop the EDMFT a
proach further by analyzing several aspects of this meth
~i! We implement a semiclassical technique for
solution10–12 and compare its results to the earlier quant
Monte Carlo~QMC! study7 to test its accuracy. We show tha
the analytic treatment is in satisfactory agreement with ex
~QMC! results in the high temperature regime of the th
dimensional~3d! model and provides analytic expressio
for various physical quantities.~ii ! We extend this study to
the case of two-dimensional~2d! phonons, which had no
been treated in Ref. 7. We demonstrate that in the 2d cas
EDMFT treatment at finite temperatures, if it produces
ordering transition, is necessarily of the first order. T
0163-1829/2002/66~4!/045117~13!/$20.00 66 0451
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analysis applies to a very general class of models includ
those used in Ref. 5.

We also analyze the EDMFT equations in the orde
phase,9 for a simple spin model. This analysis clarifies th
strengths and the limitations of the EDMFT approach, in
very simple setting.

The paper is organized as follows. In Sec. II we write t
fermion boson model and the extended DMFT equatio
Then we describe the semiclassical strategy for their anal
in both weak and strong electron-phonon coupling. In S
III we present results of solving the saddle-point equatio
for 3d phonons coupled to electrons in different regimes a
discuss the agreement with results in the QMC approach
Sec. IV we describe the results for 2d phonons. If the el
trons are fully integrated out, the semiclassical treatmen
EDMFT has to reduce to a mean-field theory in classi
statistical mechanics. In Sec. V we compare EDMFT w
other classical mean-field treatments such as the W
mean-field approach and the Bloch-Langer method13

The stability analysis of the EDMFT is carried out
Appendix D.

II. MODEL AND SEMICLASSICAL APPROXIMATION

The model under consideration is described by the lat
Hamiltonian

H5Hel1Hph1Hel-ph , ~1!

where

Hel52(
i j ,s

t i j cis
† cj s , ~2!

Hph5(
i

pi
2

2M
2(

i j

Ji j

2
xixj , ~3!

Hel-ph5(
is

lxi S cis
† cis2

1

2D . ~4!

The first term describes free electrons, andcis
† (cis) cre-

ates ~annihilates! an electron with spins on a sitei. The
second term describes nonlocal~dispersive! phonons, andxi
and pi are canonical variables. The last term couples
fermionic and the bosonic degrees of freedom. We consid
half filled system of fermions.
©2002 The American Physical Society17-1
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The second term could alternatively be written as

Hph5(
q

vq~aq
†aq1 1

2 !, ~5!

where aq , aq
† are related to the phonon field byxq

5(2Mvq)21/2(aq1a2q
† ) and vq

25Jq /M . Dispersion~mo-
mentum dependence! of the boson frequencyvq stems from
the nonlocal character ofJi j . The local limit of Ji j corre-
sponds to the Holstein model,14 so the model under consid
eration is an extension of the Holstein model to dispers
phonons.

The extended DMFT equations for this model7 are a set of
equations for Weiss functionsG0s

21( ivn) andD0
21( ivn):

Gs@G0 ,D0#~ ivn!5(
q

@ ivn2tq1Gs@G0 ,D0#21~ ivn!

2G0s
21~ ivn!#21, ~6!

D@G0 ,D0#~ ivn!5(
q

@M ~ ivn!22Jq

1D@G0 ,D0#21~ ivn!2D0
21~ ivn!#21,

~7!

where full Green’s functionsGs( ivn) and D( ivn) are ex-
pressed throughG0s

21( ivn) and D0
21( ivn) in terms of the

effective impurity action:

Se f f5 (
vn ,vm ,s

cs
†~ ivn1 ivm!~G0s

21~ ivn!d0,vm

1lx~ ivm!!cs~ ivn!2
1

2
D0

21~ ivm!x2~ ivm!, ~8!

Gs~ ivn!5
*D@cs

† ,cs ,x#cs~ ivn!cs
†~ ivn!e2Se f f[cs

† ,cs ,x]

*D@cs
† ,cs ,x#e2Se f f[cs

† ,cs ,x]

5^cs~ ivn!cs
†~ ivn!&Se f f

, ~9!

Ds~ ivn!52^x2~ ivn!&Se f f
. ~10!

Equations~6!–~10! in general have to be solved nume
cally. In many cases though, a number of approximati
reducing numerical work but preserving a physical cont
of the problem is possible. One of the approximations is
using a model density of states~DOS! for fermions and
bosons, so that momentum summations in EDMFT equat
could be performed analytically. It is convenient to chos
semicircular electron DOS,

rel~e!5
2

pW2
AW22e2, ~11!

where W is the electron band half width. The particul
choice of semicircular electron DOS is qualitatively unim
portant since we consider a half filled electron band. F
phonons, on the contrary, the shape of the phonon band
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e

s
t

n

ns
a

r
ear

the bottom is crucial for temperatures smaller than the p
non bandwidth. Ford-dimensional phonons the bottom of th
band hase (d22)/2 singularity. That is why to represent 3d an
2d phonons we chose semicircular and step-function-
phonon densities of states, respectively:

3d: rph~e!5
2

pv1
2
Av1

22~e2v0!2, ~12!

2d: rph~e!5
1

2v1
u~v1

22~e2v0!2!. ~13!

After replacing summations over wave vector by integ
tions over energy, Eq.~6! and Eq.~7! read

Gs~ ivn!5E de
rel~e!

z2e
, ~14!

D~ ivn!5E de
rph~e!

j22e2
, ~15!

where z5 ivn1Gs
21( ivn)2G0s

21( ivn), j25M ( ivn)2

1D21( ivn)2D0
21( ivn), and the density of statesr(e)

[dq/deq . For electronrel(e) and phononrph(e) the den-
sities of states are, respectively,eq5tq andeq

25Jq . For the
DOS defined in Eqs.~11!–~13! integrations over energy in
Eqs.~14! and ~15! yield

Gs~ ivn!5
2

W2
~z2sAz22W2!, ~16!

wheres5sgn@ Imz#:

3d: D~ ivn!5
1

jv1
2~2j1A~j2v0!22v1

2

2A~j1v0!22v1
2!, ~17!

2d: D~ ivn!5
1

4jv1
lnF ~j1v1!22v0

2

~j2v1!22v0
2G . ~18!

We consider here a semiclassical treatment of the pr
lem. In its most general form, the approach has been
scribed in Ref. 10 and is an application of the saddle-po
method. In this paper we use a more limited form of th
method that consists of evaluating Eqs.~9! and ~10! by a
saddle-point technique. It can be viewed as a combinatio
two separate approximations: the static approximat
~equivalent to the phonon massM→` limit ! and a saddle-
point analysis of the EDMFT equations in the static appro
mation.

The approach of treating the collective excitations as c
sical, while the electrons are treated fully quantum mecha
cally, goes back to the Hubbard approximation.15 It was
pointed out that a static approximation of the impurity mod
coupled with the DMFT self-consistency conditions inde
gives a solution closely related to Hubbard’s.16 This ap-
7-2
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proach has been used extensively in Refs. 11 and 1
DMFT studies of the Holstein model. From the DMFT stu
ies of the Mott transition,1 we know that this approach be
comes insufficient in the correlated metallic regime at v
low temperatures, where a quasiparticle feature forms in
dition to the spectral features produced in the semiclass
approximation. It is worth pointing out that improvements
the static or of the saddle-point approximation,10 will not
remedy this shortcoming, which requires a nonperturba
resummation of instanton events. Still, we show here t
this simple analysis is able to reproduce all the trends of
solution of the EDMFT equations by the more expens
QMC method.7

The EDMFT equations in the static approximation of Eq
~9! and ~10! reduce to

G~ ivn!5E dxP~x!
1

G0
21~ ivn!1lx

, ~19!

D52bE dxP~x!x2, ~20!

where

P~x!5
1

N
expS g(

n>0
ln~12G0~ ivn!2l2x2!2

b

2
D0

21x2D .

~21!

Equations~19!–~21! have to be solved together with Eq
~6! and ~7!. In the static limit only the zero-phonon fre
quency survives, so we drop the frequency index for
phonon correlation functionsD0 and D. In Eqs. ~19!–~21!
and everywhere below we considerx being the phonon field
amplitude, it is related to its Fourier transform asx
5b21/2xvm50. We consider no symmetry breaking in th
electron-spin channel, so we dropped the spin index; factg
~equals 2 for spin one-half! in Eq. ~21! appears from trace
over the spin index.N normalizesP(x) to unity. P(x) is the
probability distribution function of the phonon field ampl
tudex.

We now evaluate Eqs.~19!–~21! in the saddle-point ap
proximation in the variablex. There are two limits, weak an
strong coupling. In the weak coupling the saddle-point is
x50, and in the strong coupling there are two equival
saddle-points atx56x0Þ0. Deriving the saddle-point equa
tions we explicitly use a semicircular electron DOS, E
~11! and~16!. The relation between the bare and full Gree
functions is especially simple in this case:

G0~ ivn!215 ivn2t2G~ ivn!, ~22!

where t5W/2. Everywhere below in this paper, energy
measured in units oft. In this paper we restrict ourselves
the particle-hole symmetric case.

In the weak-coupling regime in the saddle-point appro
mation, which includes Gaussian fluctuations ofx around
zero, semiclassical EDMFT Eqs.~19!–~21! read

G̃~G̃1v!32~G̃1v!21a250, ~23!
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D0
212D2152T(

n>0

2gl2

~G̃1vn!2
, ~24!

where G̃5 iG( ivn) and a25l2uDuT52l2T*derph(e)
3@D212D0

212e2#21, so a2 is solved for the phonon self-
energy thus making the system of the saddle-point equat
closed.

In the strong-coupling regime we consider two sadd
pointsx56x0. We discard fluctuations around these poin
~so uDu5bx0

2), since nontrivial information is contained i
the fact that we have two saddle points, and not in the Ga
ian fluctuations, like it was in the case of weak couplin
EDMFT Eqs.~19! and ~21! now read

G̃~G̃1v!22~G̃1v!1G̃a250, ~25!

D0
2152T(

n>0

2gl2

~G̃1vn!21l2TD
. ~26!

Weak-coupling Eqs.~23! and ~24! are a saddle-point ex
pansion up to the first order in small parameterl2DT, and
strong-coupling Eqs.~25! and~26! are up to the first order in
large parameterl2D/T. These equations have overlapped
gions of applicability, providedT!1. This allows us to com-
bine weak- and strong-coupling equations into a unique
of equations, controlled by the small parameterT:

G̃~G̃1v!22~G̃1v!1G̃a250, ~27!

D0
212D21522gl2T(

n>0

G̃

G̃1vn

. ~28!

These are our final semiclassical EDMFT equations. Th
are exact in the limitMT2@v0

2, T!1. For 3d and 2d
phonons, Eqs.~27! and~28! have to be solved together wit
Eqs.~17! and~18!, wherej25D212D0

21. Saddle-point Eqs.
~27! and~28! are very simple; they can be solved forD and
D0 with minimal numerical effort. The left-hand side~lhs! of
Eq. ~27! is a third-degree polynomial, so the electron Gree
function can be written as an elementary function determi
by a single parametera2 which is a function of phonon
self-energy and bare parameters of the model.

In the limits of small and largea2 ~or l) Eqs. ~27! and
~28! can be solved completely for self-energies:

a!1: Sel~ ivn!5S 2
vn

2
1A11S vn

2 D 2Da2, ~29!

Sph52
4g

3p
l2. ~30!

Moreover, in the dispersionless casea25l2T/(v0
2

2@4g/3p#l2). This expression is valid everywhere exce
for the small regionDl;v0T below lc;v0. We consider
here a disordered phase solution. Ind53 the disorder solu-
tion becomes unstable atl;v02v1 while it remains stable
for all coupling in d52. The self-energies in the strong
coupling regimea@1 are given by
7-3
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Sel~ ivn!5
a2

vn
, ~31!

Sph52
gl2

2a
. ~32!

In the strong-coupling the phonon field distribution functi
is split into two peaks. The peak separation is 2x0 , where
x052glD0/2, D52bx0

2. In the dispersionless casea2

5(@g/2#l2/v0
2)2; this is valid whenl@v0. This is com-

pletely similar to the previous analysis.12

In d53 the instability to the ordered phase occurs alrea
at smallv1;v0

3/bg21/l2, so D0 stays practically unrenor
malized. In d52 at v1;v0

3/bg21/l2 the system enters
regime when the phonon energy is exponentially small:

Sph2~v02v1!2'2v1expF2bg
v1

v0
3
l2G . ~33!

In the limit T→0 one readily obtains the polaron form
tion condition, which happens at intermediate (lc;v0) cou-
pling:

2
4g

3p
lc

2D051, ~34!

where D05v0
22 in the dispersionless case, but has to

found numerically for interacting phonons.

III. 3D PHONONS

In this section we compare our semiclassical solution
the exact QMC results.7 The saddle-point equations we d
rived are exact when (2pT)2Mv0

22@1 andTt21!1. The
QMC results,7 however, were obtained for (2pT)2Mv0

22

'2.5 andTt21'0.13. We want to show that even in the
cases when the parameters controlling the saddle-point e
tions are relatively close to 1, the semiclassical soluti
even without including the refinements outlined in Ref. 1
not only captures all the qualitative trends of the exact so
tion, but in many instances is quantitatively close to it.

We study the case of three-dimensional phonons. We
the same parameters as in Ref. 7: inverse temperatureb58,
the phonon band is centered atv050.5, electrons have
double spin degeneracyg52 and hopping amplitudet51,
and the phonon massM51. The electron band is half filled
To model 3D phonons, a semicircular DOS, Eq.~12!, is used.
We present the solution of Eqs.~27! and ~28!, and Eq.~17!.

In every figure in this section we plot both our own a
QMC curves. Our results are plotted using solid or das
lines only, without symbols. QMC graphs are presented
ing dotted lines and always with symbols.

A local instability, starting from the disordered phas
takes place within EDMFT when as discussed in Ref. 7
effective phonon frequencyv* 5A(v02v1)21P, given by
the pole in the phonon Green’s function, becomes equa
zero. The phonon mode softening for different values of
phonon dispersion are shown in Fig. 1.v* is plotted versus
04511
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the quantity characterizing the effective interaction:U
5l2/v0

2. The effective electron-electron interaction, med
ated by phonons, is given byUe f f5l2D0, evaluated at zero
frequency. When the phonon dispersion vanishes,Ue f f5U.
The upper curve in Fig. 1 corresponds to the dispersion
case. On the other hand, we find this is not the best wa
detect an instability to an ordered phase and we discus
Appendix D an alternative way to compute within EDMF
the phonon self-energy which retains momentum dep
dence.

The equations in Sec. II do not include the possibility
the phonon field symmetry breaking. They need to be mo
fied to describe long-range ordering,9 and we implement this
in Sec. V. A well-known property of mean-field theories
that they allow the analytic continuation of mean-field so
tions beyond the parameter regime where they are sta
This was very fruitful in the understanding of the parama
netic Mott insulating phase which is unstable
ferromagnetism.1 As was done by the QMC method in Re
7, we study the continuation of the EDMFT equations b
yond the paramagnetic phase. It may, hopefully, be und
stood as a metastable phase. This requires some care
the instability to a charge ordered phase is signaled b
singularity appearing in the integrand in Eq.~15! and this
instability causesD to acquire an imaginary part. As in Re
7, we take the principal part of the integrand, the imagin
part of D0 , being equal to zero in every numerical iteratio
loop, which allows us to compare our results with the resu
of the QMC method.

A. Weak coupling

The finite dispersion treated within DMFT renormaliz
D0 @see Fig. 2~a!#. Since the effective electron-electron inte
action is proportional toD0, the electron self-energy is en
hanced as well@see Fig. 2~b!#. While the features of the exac
solution are qualitatively well reproduced in the semiclas
cal approach, the approach lacks quantitative agreem
Weak coupling is the worst case. The quantitative agreem
is better for intermediate and strong-coupling.

FIG. 1. d53. Effective phonon frequencyv* as a function of
l2/v0

2 at v150.0, 0.1, 0.2, and 0.3. Comparison to QMC result
7-4
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B. Strong coupling

In the strong-coupling regime as dispersion increases,D0
renormalizes downward@see Fig. 3~a!#, together with the
electron self-energy@see Fig. 3~b!#. For strong coupling the
quantitative agreement with the QMC results is very goo

C. Intermediate coupling

At intermediate coupling, the system is in a crosso
between weak- and strong-coupling regimes. Asv1 in-
creases, the effective electron-electron interaction first
comes stronger, andD0 and the electron self-energy in
creases, like at weak coupling. Atv* 50, the behavior
changes to the reverse, and the picture is similar to
strong-coupling case. This is illustrated in Fig. 4~a! and Fig.
4~b!.

IV. 2D PHONONS

In the previous section we calculated various functions
different parameters in the 3d case. The saddle-point ap
proximation is exact in the limit of infinite massM and zero
temperatureT. At finite M and T the applicability of the
method in a wide region of parameters was established in
previous section by comparison to QMC data. In this sect
we study the 2d phonon case@Eqs. ~27! and ~28! and Eq.
~18!# in the same range of parameters.

Unlike the 3d case, the 2d disorder solution is loca
stable, and we focus on this solution in this section. As
will show in Sec. V the EDMFT in dimensionsd,4 gives

FIG. 2. d53, weak couplingl50.2, comparison to QMC re
sults.~a! The bare phonon Green’s function.~b! The imaginary part
of the electron self-energy with the spectral function in the ins
v150.1, 0.2, and 0.3.
04511
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rise to a first-order transition at a critical coupling streng
We study the disordered state solution continued along
second-order transition branch, which is skipped in the fi
order transition.

In the EDMFT approach,d52 appears as a lower critica
dimension for a finite temperature second-order transiti
This result describes accurately the situation with order
rameters possessing a continuous symmetry, but it is a
rious consequence of the inability of a local approximation
generate spatial anomalous dimensions in the cases w
order breaks a discrete symmetry.

First we illustrate the exponential softening of the colle
tive mode: in Fig. 5 we plot effective frequencyv* versus
U. Figure 5 should be compared to Fig. 1~3d case!. In the
latter the curves hit theU axis, which implies a second-orde
transition. In Fig. 5 the curves rather gradually approach
U axis, never crossing it.

Phonons generate an effective electron-electron inte
tion ;l2D0, so we are especially interested inD0 behavior.
We investigate the 2d system for similar sets of parame
as we did in the 3d case. We obtained the plots for we
intermediate-, and strong-coupling regimes in Figs. 6–8.

The behavior of the 2d system is very similar to that
the 3d system before the energy of the phonon mode v
ishes. In all casesD0 gets renormalized, as the dispersio
and consequently the effective interaction increases.
electron self-energy enhances correspondingly. The only
ference is the rate ofD0 renormalization in the weak, strong
and intermediate couplings.D0 renormalizes faster at large
l ~see Fig. 9!, since electrons are stronger coupled
phonons.

t.

FIG. 3. d53, strong coupling,l50.8. ~a! Bare phonon Green’s
function. ~b! Imaginary part of the electron self-energy with th
spectral function in the inset.v150.1, 0.2, 0.3, and 0.4.
7-5
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V. ORDERED PHASE AND CRITICAL TEMPERATURE

We now turn to the generalization of the EDMFT equ
tions to the ordered phase.9 For simplicity we will consider a
classical model. This is justified, since in the semiclass
limit we can always integrate out the electrons, reducing E
MFT equations to classical mean-field equations. For
stance, tracing out the electrons and performing a static
proximation in the electron-phonon field leaves us with
action of the form~neglecting terms of orderf6 and higher!:

FIG. 4. d53, intermediate couplingl50.4, comparison to
QMC results.~a! Bare phonon Green’s function.~b! Imaginary part
of the electron self-energy with the spectral function in the ins
v150.0, 0.2, and 0.4.

FIG. 5. d52. Effective phonon frequencyv* as a function of
l2/v0

2 at v150.0, 0.05, 0.1, 0.15, and 0.2.
04511
-

l
-
-
p-
n

S@f#5(
i

r

2
f i

21
U

4
f i

42(
i j

f i

Ji j

2
f j

5Sloc@f#2(
i j

f i

Ji j

2
f j . ~35!

t.

FIG. 6. d52, weak coupling,l50.2. ~a! The bare phonon
Green’s function.~b! The imaginary part of the electron self-energ
with the spectral function in the inset.v150.0, 0.1, 0.2, and 0.3.

FIG. 7. d52, intermediate coupling,l50.4. ~a! The bare pho-
non Green’s function.~b! The imaginary part of the electron se
energy with the spectral function in the inset.v150.0, 0.1, 0.2, 0.3,
and 0.4.
7-6
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To extend the EDMFT approach to the ordered phase
useful to write the Baym-Kadanoff functional for the actio

G@m,D#52
1

2
Tr ln D1

1

2
TrD0

21D1
1

2
mD0

21m1F@m,D#,

~36!

where F is a sum of all two-particle irreducible diagram
constructed from phonon Green’s functionsD, phonon field
expectation valuem, and the four-legged interaction verte
23!U. We could also say thatF is a sum of all two-particle
irreducible diagrams constructed from phonon Green’s fu
tions D and four-, three-, two-legged vertices plus the fi

FIG. 8. d52, strong coupling,l50.8. ~a! The bare phonon
Green’s function.~b! The imaginary part of the electron self-energ
with the spectral function in the inset.v150.0, 0.1, 0.2, 0.3, and
0.4.

FIG. 9. d52, bare phonon Green’s function,l50.2, 0.3, 0.4,
and 0.8.
04511
is

-
t

diagram shown in Fig. 10, which contains no propagato
The vertices yield factors of23!U, 23!Um, 23Um2, and
2 1

4 Um4 for four-, three-, two- and zero-legged vertices, r
spectively. Each diagram inF has an extra21 factor.

In Fig. 10 we drew first- and second-order~in U) dia-
grams enteringF. The extended DMFT equations in the o
dered phase are derived by making the local approxima
on F in the Baym-Kadanoff functional and solving the st
tionary conditions for the magnetization and the local pro
gator resulting from the stationarity of Eq.~36! after this
local approximation is made. In the local approximation t
leading terms in a perturbative expansion in the qua
coupling are given by F5 1

4 Um41 3
2 UDm21 3

4 UD2

23U2D3m22 3
4 U2D41 . . . .

Stationarity of the functional in Eq.~36! would give exact
equations forD and m. In the local approximation thes
equations reduce to EDMFT equations in zero magnetiza
and therefore generalize those to the ordered phase.9 They
are given by

m~r 2Jq50!1
dF

dm
50,

D5(
q

F r 2Jq12
dF

dD G21

, ~37!

where only local graphs are included inF. Diagram series
equivalent to the first equation are shown in Fig. 11.

For the practical solution of the EDMFT, Eq.~37!, it is
useful to follow the dynamical mean-field procedure of i
troducing an impurity local effective action1,17 to sum up the
graphs generated by the functional forF and its functional
derivativesdF/dD anddF/dm in terms of the cavity fields
h andD. The effective action

SEDMFT@f#5Sloc@f#2hf2
D

2
f2 ~38!

generates the correct local quantities provided that the W
fields h and D are chosen to obey the EDMFT sel
consistency conditions:

FIG. 10. Diagrammatic expansion ofF up to the first two orders
in U.

FIG. 11. Diagrammatic expansion ofm up to the first two orders
in U. Thin lines are the free phonon propagatorD0, thick lines are
the full phonon propagator, and a full dot stands form.
7-7
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r 2D2D21522
dF

dD
, ~39!

h52m~r 2D!2
dF

dm
. ~40!

Equations~37! and Eqs.~39! and ~40! are a closed set o
EDMFT equations, describing both ordered and disorde
phases of the classical system, Eq.~35!:

D5(
q

@D211D2Jq#21, ~41!

SEDMFT@f#5Sloc@f#2m~Jq502D!f2
D

2
f2, ~42!

m5^f&SEDMFT
, ~43!

FIG. 12. Top to bottom: BL, EDMFT, exact solution, and MF
critical Jc vs nearest-neighbors numberz.

FIG. 13. Magnetization vs temperature on a cubic lattice. Th
are three branches at 3.96,T,4.45: m3.m2.m150; m1 andm3

are physical solutions, whilem2 is not. Classical61 spin Ising
model.
04511
d

D5^f2&SEDMFT
2m2. ~44!

The equations above are consistent in describing the tra
tion: magnetization vanishes in the ordered phase, and d
gence of spin susceptibility across the transition occurs at
same critical temperature.

When U→`, r→2`, and U/r 521 the system, de-
scribed by the action of Eq.~35!, reduces to a classical Isin
model with spin values61. In this limit the standard Weiss
mean-field equation

m5tanhmJq50 ~45!

can be compared with the EDMFT equations which n
read

m5tanhm~Jq502D!,

12m25(
q

@~12m2!211D2Jq#21. ~46!

We will also compare the EDMFT equations to an exte
sion of mean-field theory~MFT! from Bloch and Langer
~BL!:13

M15E
2`

1`

dx~2pG2!21/2expF2
~M1Jq502x!2

2G2
G tanhx,

~47!

M25E
2`

1`

dx~2pG2!21/2expF2
~M1Jq502x!2

2G2
G~coshx!22,

~48!

G25(
q

Jq

12JqM2
, ~49!

e

FIG. 14. Free-energy evolution withT. The free energy has a
single minimum (m50) aboveT54.45; atT54.45 the solution
bifurcates atm50.45. There are free extrema at 3.96,T,4.45
corresponding to 05m1,m2,m3. As T approachesTc53.96,
m2 merges withm1.
7-8
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whereM1 is the magnetization. It can be shown that EDMF
counts~without overcounting! more terms in diagrammati
expansion of various physical quantities, like correlati
function or free energy, than the BL method. One can a
check that for the classical61 spin model, EDMFT gives a
better estimate forTc than the BL method.

We computed the critical temperatureTc for the Ising
model on a Bethe lattice with finite coordination followin
the paramagnetic solution until it disappears using the dif
ent approximations described in this section. The results
shown in Fig. 12. The EDMFT result shows significant im
provement over MFT, and is slightly better than the B
method. Some more technical details comparing the appr
mation schemes are relegated to Appendix A.

In spite of the quantitative improvement ofTc , the order
of the transition is incorrectly given by the EDMFT approx
mation. In Fig. 13 we present the result of solving EDMF
equations for the simplest61 spin model ind53. We plot-
ted magnetization as a function of temperature. At su
ciently low temperature the solution consists of thr
branches with magnetizationsm3.m2.m150. These
branches are extrema of the free energy, which is sho
schematically in Fig. 14.m3 and m1 correspond to loca
minima in the free energy, whilem2 corresponds to a loca
maximum and is unphysical. The transition is clearly of t
first order. The order of the transition does not change u
d54.

The inability of EDMFT to predict the correct order of th
transition is related to the inability of a local theory to pr
duce anomalous dimensions, and persists in quantum p
lems when the dynamical critical exponent and the dim
sionality are such that they require the introduction of spa
anomalous dimensions. Details are given in Appendice
and C.

VI. CONCLUSION

We have performed a semiclassical analysis of the E
MFT equations for a simple fermion boson model. Compa
son with earlier QMC treatments of the same problem
veals that this method reproduces semiquantitatively all
trends found in the previous study.7 It can be used, therefore
in the study of more complicated systems, such as ferm
interacting with spin fluctuations. We have also investiga
this approach in the ordered phase revealing some inade
cies of the approach which are closely related to the e
tence of anomalous dimensions in finite-dimensional s
tems. Since this nontrivialk dependence, which is
characteristic of low-dimensional systems, cannot be ge
ated by a local theory, EDMFT produces spurious res
such as the existence of a first-order phase transitiond
,4. Since at zero temperature the dynamical critical ex
nent is such that in two dimensions an ansatz without ano
lous dimensions is internally consistent,5 a continuation of
the disordered state, beyond the first-order phase transi
might be useful to study this system. In this spirit we point
out that a continuation of the EDMFT, at finite temperatu
suitably interpreted, gives improved estimates of the criti
temperature compared to the simplest mean-field treatm
04511
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or the Bloch-Langer method.13 It could be used to obtain
better estimates of ferromagnetic transition temperatu
where spatial fluctuations of the order parameter subs
tially decrease the Curie temperature below the DMFT e
mates. This is the case of bcc iron,18 a problem which will
require a more realistic investigation of EDMFT. Further i
vestigation of the quantum problem will require zer
temperature methods which go beyond the semiclassica
proximation.
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APPENDIX A: CRITICAL TEMPERATURE

The transition to the ordered state for a classical mode
the BL method is signaled by the divergence in the ze
momentum term in the sum:

G25(
q

Jq

12JqM2
. ~A1!

This equation is analogous to the self-consistency equa
of the EDMFT, as it arises when summing ring diagrams.M2
is a vertex andJi j is a line in the ring diagram.G2( i )M2 is
the sum of all ring diagrams which covers the sitei. M2 and
G2 are related toD in EDMFT:

D5M21M2G2M2 . ~A2!

Below we explicitly sum ring graphs on a Bethe lattice
expressG2 throughM2. We introduce notationsG̃2( i ) and
Q( i ): G̃2( i ) equalsG2( i ) when the latter is computed on
lattice with all but one bond cut out from sitei. Q( i )M2

includes those diagrams fromG̃2( i )M2 which have only one
vertex belonging to sitei.

The following relations can be established:

G25zG̃21zG̃2~z21!M2G̃2

1zG̃2~z21!M2G̃2~z21!M2G̃21 . . . , ~A3!

G̃25Q1QM2Q1QM2QM2Q1 . . . , ~A4!

Q5JM2J1JM2~z21!G̃2M2J

1JM2~z21!G̃2M2~z22!G̃2M2J

1JM2~z21!G̃2M2~z22!

3G̃2M2~z22!G̃2M2J1 . . . , ~A5!

wherez is the number of nearest neighbors, andJ is a bond
on the lattice.

Summing geometrical series, we obtain

G25
zG̃2

12~z22!M2G̃2

, ~A6!
7-9



r
d

s
e
on

-

-
t

lt-

of
me
p-

he
il-
in-
rt-
in
to

the

ob-

-

ond
nts

ion.

SERGEY PANKOV, GABRIEL KOTLIAR, AND YUKITOSHI MOTOME PHYSICAL REVIEW B66, 045117 ~2002!
G̃25
Q

12M2Q
, ~A7!

Q5J2M2

11M2G̃2

12~z22!M2G̃2

. ~A8!

Solving these equations we get

G25
zQ

12zM22Q
, ~A9!

Q5
12A12~z21!~2M2J!2

~z21!2M2
. ~A10!

Equation~A9! and Eq.~A10! solveG2 for M2.
CurvesJc vs z for the BL theory and EDMFT, togethe

with the MFT solutionJc51/z, are presented in Fig. 12 an
compared to the exact solution:

Jc5
1

2
ln

z

z22
. ~A11!

APPENDIX B: ORDER OF THE PHASE TRANSITION

Here we prove that the EDMFT equations give a tran
tion of the first order ford,4 and of the second order in th
higher dimensions. For classical phonons EDMFT equati
read

m~r 2Jq50!52
dF@m,D#

dm
,

D5(
q

F r 12
dF@m,D#

dD
2JqG21

. ~B1!

It is easily seen that

d2F@m,D#

dm2 U
m50

52
dF@0,D#

dD
. ~B2!

Solving Eq.~B1! for r using the above relation for deriva
tives, up to the second order inm, we have

2
m2

2
D9um505Dum502(

q
F S 2

d2

dD2
2

1

6

d4

dm4D
3F@m,D#um50m21Jq502JqG21

.

~B3!

The coefficient in front ofm2 in the right-hand side~rhs! is
positive. The lhs of Eq.~B3! is }m2, while the rhs has two
contributions, one}md22 and the other}db, where db
5b2bc . For d,4 the term}md22 is dominant anddb
}2md22,0. A negativedb implies the first-order transi
tion. For d.4 the termm2 from the lhs becomes dominan
04511
i-

s

anddb}m2.0. This is the usual mean-field behavior resu
ing in a second-order transition.

We showed that in a classical model the transition is
the first order below the upper critical dimension. The sa
is true for a quantum transition as well. We show it in A
pendix C considering the largeN limit.

As discussed earlier in connection with the order of t
transition, this artifact of the EDMFT results from the inab
ity of a local theory to capture physics that requires the
troduction of anomalous dimensions. In spite of this sho
coming, when properly interpreted, EDMFT results
improved estimates of the critical temperature relative
DMFT.

APPENDIX C: QUANTUM PHASE TRANSITION

In this Appendix we investigate the phase transition in
quantum version of thef4 model. We compare EDMFT and
a full lattice model using the largeN technique. We will
show that above the upper critical dimensiond.duc542z
the exact critical exponents and the critical exponents
tained in EDMFT coincide. Belowduc the EDMFT and the
lattice model exhibit different critical exponents. In the ED
MFT the transition is of the first order for12 duc,d,2 and of
the second order otherwise. The transition is of the sec
order in the lattice case. Moreover, in EDMFT the expone
have a universal value ford, 1

2 duc and a nonuniversal value
for 1

2 duc,d,duc .
The lattice model is described by the action

S5
1

2
D0

21f21
U

4
~f2!2, ~C1!

whereD0v,q
21 5r 1uvu2/z1q2, f25(a51

N fa
2 , U5u/N, andr

is a variable parameter which drives the phase transit
Corresponding EDMFT equations are

mD0v,q50
21 1

dF@m,D#

dm
50, ~C2!

D5(
q

FD0q
2112

dF@m,D#

dD G21

. ~C3!

The functionalF@m,D# includes all two-particle irreduc-
ible diagrams which are constructed from~see Fig. 10! the
magnetizationm ~dot!, the particle propagatorD ~line!, and
the interaction termU ~four-legged vertex!. F satisfies the
following equation:

d2F@m,D#

dm2 U
m50

52
dF@0,D#

dD
. ~C4!

ExpandingF in small m and using Eq.~C4! we write
EDMFT equations as

D0v,q50
21 12

dF@0,D#

dD
1

1

6

d4F@m,D#

dm4
um→0m250,

~C5!
7-10
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Dv5E
0

L

dqdF uvu2/z1q2

1H 2G2
1

6

d4F@m,D#

dm4 U
m→0

J m2G21

, ~C6!

whereG5d2F@0,D#/dD2.
Let D0c , Dc , and r c be values ofD0 , D, and r respec-

tively, in the transition point. SubtractingD0cv,q50
21

12(dF@0,Dc#/dD)50 from Eq. ~C5! and keeping lowest-
order terms, we have

dr 12GdD1
1

6

d4F

dm4
m250, ~C7!

wheredr 5r 2r c , anddD5D2Dc . This equation provides
a relation between the variation of the driving termr and the
order parameterm. We will show that ford.duc the last
term in the left-hand side wins over the second term,
transition is mean-field-like. The second term becomes
portant and determines the character of the transition fod
,duc .

We will consider the largeN limit up to the order of 1/N.
Diagrams which enterG are chains of bubbles~see Fig. 15!,
which can be summed as a geometrical series:

G5
1

N S u

2
1

u

11
u

2
xD , ~C8!

wherexv;*dnDnDn1v in the quantum problem orx5D2

in the classical problem. The only term of the order 1N
which entersd4F/d4m is 6u/N. All other terms are of order
O(1/N3).

Equation~C7! and Eq.~C8! holds in case of a lattice a
well, but D now depends on both momentum and frequen
and summations now run over wave vectors as well. T
upper and lower critical dimensions are determined by
convergence of integrals TrdD and TrD in the ultraviolet and
infrared limits, respectively:

Tr dD;E dvdq
qd21

~ uvu2/z1q2!2
, ~C9!

Tr D;E dvdq
qd21

~ uvu2/z1q2!
. ~C10!

These equations are the same for the mean-field and
tice models, they yield the upper critical dimensionduc54
2z and the lower critical dimensiondlc522z5duc22.

We first consider EDMFT. In a crude way one can es
mate:

FIG. 15. 1/N expansion ofG. All diagrams are of the order 1/N.
04511
e
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d.2, Dv;E ddq~ uvu2/z1q2!21

;~d22!21~Lq
(d22)2uvu~d22!/z!, ~C11!

d,2, Dv;2~d22!21uvu~d22!/z ~C12!

and

d.2, xv;E dnDnDn1v;~d22!22uvu~d22!/z11,

~C13!

d,2, xv;2~d22!22S 2
d22

z
11D 21

uvu2~d22!/z11.

~C14!

Lq is a momentum cutoff. We see from Eq.~C14! that for
d,duc/2 the susceptibilityxv is divergent at low frequency
it leads to a universal critical behavior ford,duc/2, as fol-
lows from the self-energy calculation below. The self-ene
in the largeN limit is dS;2GD:

duc

2
,d,duc , Sv;

1

N
~d22!21uuvu~d22!/z11

~C15!

dlc,d,
duc

2
, Sv;

1

NE dnxn
21Dn1v

;
1

N
~d22!S 2

d22

z
11D uvu2~d22!/z.

~C16!

In a similar way we can calculate a contribution fromm to
GdD,

duc

2
,d,duc , GdD;

1

N
~d22!21umd221z, ~C17!

dlc,d,
duc

2
, GdD;

1

N
~d22!S 2

d22

z
11Dm2d12.

~C18!

This result together with Eq.~C7! suggests that the transitio
is the first order for12 duc,d,2.

Now we consider the lattice model:

xv,q;E dnddp@ un1vu2/z1~p1q!2#21~ unu2/z1p2!21

;~d1z24!21~ uvu2/z1q2!~d1z!/222, ~C19!

Sv,q;
1

NE dndpxn,p
21Dn1v,p1q

;
1

N
~d1z24!~ uvu2/zlnuvu.1q2ln q!. ~C20!

In this case the frequency-dependent part of the self-ene
can be conveniently exponentiated to yieldD;@ uvu2/z̃
7-11
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1q22h#21 with z̃522N21(d2duc)c1(d) and h
52N21(d2duc)c2(d), where c1(d) and c2(d) are some
smooth functions ofd.

We also calculate a contribution fromm to GdD
;N21(d2duc)m

2ln m. It yields dr;m1/b with b5 1
2 1(d

2duc)(1/N)c3(d). The transition is the second order in th
case.

APPENDIX D: INSTABILITY ANALYSIS

Let us consider a very general electron-phonon Ham
tonian which describes an electron-phonon system w
electron-electron interaction~local or long range!, electron-
phonon interaction, and phonon-phonon interaction~phonon
unharmonicity!. We can always use a Hubbard-Stratonov
decoupling on electron-electron interaction, so we assu
that information about long-range electron-electron inter
tion is stored in the phonon dispersion and we will not wr
the long-range interaction explicitly. We can introduce
source-dependent actionS where the sources are coupled
different fields. The free energyW52 ln *eS is the generat-
ing functional for expectation values of those fields:

S5E dxdx8cs
†~x!G0s

21~x2x8!cs~x8!

1 1
2 f~x!D0

21~x2x8!f~x8!

1d~x2x8!~Un↑~x!n↓~x!1V4f4~x!

1lf~x!cs
†~x!cs~x!!2Js~x,x8!cs

†~x!cs~x8!

2 1
2 f~x!K~x,x8!f~x8!2d~x2x8!L~x!f~x!. ~D1!

The x variable includes both space and time in the abo
formula and repeated indices imply summation. Expecta
values of the fields coupled to the sources are given by

G5
dW

dJ
, K52

dW

dK
, m5

dW

dL
, ~D2!

Exact Green’s functions correspond to the limit of ze
sources. To study phase transitions, like the transition w
the phonon field acquires a nonzero expectation value,
needs to have the free energy as a functional of correla
functions only. Such a functional can be derived as a L
endre transform of the free energy:G5W2JG2K/2D
2Lm. The sourcesJ,K andL have to be solved forG,D and
m. The functionalG is called a Baym-Kadanoff functiona
and its stationarity yields equations for zero source corr
tion functions. We present the functional without derivatio

GBK@G,D,m#5Tr ln G2Tr~G0
212G21!G2 1

2 Tr ln D

1 1
2 Tr D0

21D1 1
2 mD0

21m1F@G,D,m#.

~D3!

G0 andD0 are free fields of the action, and theF func-
tional is the sum of all two-particle irreducible graphs co
structed from the original bare interaction vertices, from v
04511
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e
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tices generated by shifting the phonon field bym and from
full correlation functionsG andD.

The charge ordering instability can be studied by looki
at the zero-frequency-momentum phonon propagator be
ior: the propagator diverges in a charge-density-wave~CDW!
transition. Alternatively one can study the transition from t
ordered side, by observing the order parameter vanishingm
in our case!. The two approaches should give consistent
sults. We will first show that this is indeed the case in t
exact theory, then we explain how a similar approach can
applied in the EDMFT.

Let us introduce some compact notations we are going
use.oa

a is a field operator ofa kind at a space-time point.
a5G specifies an electron field operator anda5D specifies
a phonon field operator.Oab,gd

ab is a four-point function,
which is a subset of all connected diagrams in the pertur
tive expansion of̂ oa

a†ob
aod

b†og
b&; rules for selecting the sub

set of diagrams depend on a particular operator. Multipli
tion of two operators is defined by@O(1)O(2)#ab,gd

5(mnOab,mn
(1) Omn,gd

(2) . We introduce three four-point opera
tors: ~i! x0 includes all graphs which enter skeleton grap
without interaction vertices,~ii ! S includes all one-particle
irreducible with respect to a phonon line~1D! diagrams, and
~iii ! G includes all two-particle~2P! irreducible diagrams. In
our case reducibility ofOab,gd is understood as disconnec
ing theab part from thegd part.x0 is trivially expressed in
terms of correlation functions:x0

GD5x0
DG50, x0ab,gd

GG

5GagGbd , andx0ab,gd
DD 5DagDbd1DadDbg .

We can write the following Dyson equations for the com
ponents of theS operator:

SGG5x0
GG1x0

GGGGGSGG1x0
GGGGDSDG,

SGD5x0
GGGGGSGD1x0

GGGGDSDD,

SDG5x0
DDGDDSDG1x0

DDGDGSGG,

SDD5x0
DD1x0

DDGDDSDD1x0
DDGDGSGD ~D4!

or we could simply write

S5x01x0GS. ~D5!

Solving for S we find S5@x0
212G#2152(]2GBK)21.

The second derivative]2GBK is a 232 matrix defined by

~]2GBK!ab5
]2GBK

]Ca]Cb
, ~D6!

whereC is a two-component vectorCG5G,CD5D.
The S matrix is related to the phonon self-energySph in

a simple way, as can be seen from the diagrammatic serie
Fig. 16.

S comprises all four-legged 1P irreducible graphs, wh
Sph comprises all two-legged 1P irreducible graphs. The
irreducible four-legged block is nothing butG. Two horizon-
tal lines represent a couple of correlation functions of
same kind,GG or DD ~we assume that a summation ru
over each couple of horizontal lines!, while 2P irreducible
four-legged blocks are understood as 232 matrices. The first
7-12
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FIG. 16. Diagrammatic expansions forS and
Sph .
W

t
xi
-
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t
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line is a diagrammatic analog of Eq.~D5!. The second line
provides connection betweenS andSph . That can be writ-
ten as

Sph52
]2F

]m]m
1

]2F

]m]Ca
Sab

]2F

]Cb]m
~D7!

or in a slightly different way,

Sph52
]2F

]m]m
1

]2GBK

]m]C S ]2GBK

]C]C8
D 21

]2GBK

]C8]m
. ~D8!

The condition for the CDW instability at wave vectorq is
D0q

212Sph50.
We will reproduce the above result studying the CD

transition from the ordered phase.GBK is the free energy, so
in the transition point

d2GBK

dmdm
50. ~D9!

From the wayGBK is constructed it follows]GBK /]C50
and dGBK /dm5]GBK /]m. If we used(]GBK /]C)/dm50
and Eq.~D9! we find

]2GBK

]m]m
2

]2GBK

]m]C S ]2GBK

]C]C8
D 21

]2GBK

]C8]m
50. ~D10!

This equation is identical to Eq.~D8!, as it should be in exac
theory. In the EDMFT approach we take the local appro
mation for the two-particle irreducible graphs. All 2P irre
ducible graphs inGBK are contained byF. So the condition
for m vanishing is still given by Eq.~D10! with F being
local. Alternatively we can use Eq.~D5! where Gab

5]2F/]Ca]Cb is local, in which case these two method
are equivalent. Let us consider the second method, when
transition is approached from the disordered phase.
o

v

R

04511
-

he

The localGab can be computed using the impurity actio
of EDMFT. For simplicity we consider electron-phonon i
teraction only, with the couplingl51. Equations similar to
Eq. ~D4! can be written for the susceptibilityxab

5^oa†oaob†ob&. In short notation it reads:

x5x01x0G̃x, ~D11!

where G̃ is different from G of Eq. ~D5!, because now it
includes 1D reducible diagrams. The relation betweenG̃ and
G is simple:

G̃5G1D̂0 , ~D12!

where D̂0 is a 232 matrix, D̂0
GG5D0, and D̂0

DG5D̂0
GD

5D̂0
DD50. Using Eq.~D5!, Eq. ~D11!, and Eq.~D12! we

can express the self-energyS through the quantities which
are directly computed from the impurity action:

S5~@x imp#
212@x0imp#

211D̂0imp1@x0#21!21, ~D13!

where x imp
ab 5^oa

†oaob
†ob& imp , x0imp

ab 5dabCa
2 , and D0imp is

the Weiss field of the impurity action

Simp5E dtdt8cs
†~t!G0imp,s

21 ~t2t8!cs~t8!

1
1

2
f~t!D0imp

21 ~t2t8!f~t8!

1d~t2t8!f~t!cs
†~t!cs~t!. ~D14!

The described method is exact in the limitd→`. At finite
d it yields a higherTc than a naive local approximatio
Sph5dF/dD. AssumingSph5dF/dD would be equivalent
to taking GBK as being local in Eq.~D8!, while the correct
approach is to take a local approximation on theF func-
tional only, not on the whole Baym-Kadanoff functional.
tt.
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