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Semiclassical analysis of extended dynamical mean-field equations
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The extended dynamical mean field equations are analyzed using semiclassical methods for a model de-
scribing an interacting Fermi-Bose system. We compare the semiclassical approach with the exact quantum
Monte Carlo method. We found the transition to an ordered state to be of the first order for any dimension

below four.
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[. INTRODUCTION analysis applies to a very general class of models including
those used in Ref. 5.
The dynamical mean field theoffPMFT), a recently de- We also analyze the EDMFT equations in the ordered

veloped many-body approach to strongly correlated electrophase, for a simple spin model. This analysis clarifies the
systems, has been very successful in unraveling nonperturbtrengths and the limitations of the EDMFT approach, in a
tive problems such as the Mott metal-to-insulator transition. Very simple setting.

In spite of its many successes, this technique has several The paper is organized as follows. In Sec. Il we write the
limitations resulting from its single-site character and fromférmion boson model and the extended DMFT equations.

the lack of feedback of the nonlocal collective excitations on! €N We describe the semiclassical strategy for their analysis
both weak and strong electron-phonon coupling. In Sec.

the one-particle spectra. Several approaches are being pI - X ) ;
sued to extend the scope of the DMFT method. In this pap(j | we present results of solving the saddle-point equations
we explore an extension of the DMET method 'the extended®” 3d phonons coupled to electrons in different regimes and
DMET theory (EDMFT) 23* which maintains a local self- discuss the agreement with results in the QMC approach. In

hile | ting feedback effects of the ch Sec. IV we describe the results for 2d phonons. If the elec-
energy while incorporating feedback €fiects ot the Chargg,,,s 4re fully integrated out, the semiclassical treatment of

and spin dynamics in the one-electron properties. Thigp\ET has to reduce to a mean-field theory in classical
method gives rise to quantum impurity problems with fermi-giatistical mechanics. In Sec. V we compare EDMFT with

onic and bosonic baths that need to be solved selfyiner classical mean-field treatments such as the Weiss
consistently. This method has already been applied to Widg\ean-field approach and the Bloch-Langer method.
plass of modgls, such as the spin fermion médekmions  The stability analysis of the EDMFT is carried out in
interacting with long range(Coulomb electron-electron  Appendix D.
interaction® electron-phonon  systenfs,and frustrated
magnets. _ _ Il. MODEL AND SEMICLASSICAL APPROXIMATION

The EDMFT equations are more involved than the con- _ o _ _
ventional DMFT equations because they involve a solution The model under consideration is described by the lattice
of a self-consistency problem in an additional bosonic sectoamiltonian
and only recently was a full numerical analysis of the self-

) . ) . =Hg+ +
consistency conditions of EDMFT carried dufhe interpre- H=Her+ HpntHerpn, @
tation of the EDMFT instabilities is also not as straightfor- where
ward as in DMFT because bosonic and fermionic
ropagators involve very different regions of momentum
bropag Y g Helz_z tijCiTa'Cjov (2)

space, and a formulation of EDMFT for ordered phases was i
only obtained recently.
The purpose of this paper is to develop the EDMFT ap- piz Jij
proach further by analyzing several aspects of this method. th=2 W_Z > XX}, 3
(i) We implement a semiclassical technique for its : 4
solutiont®~*2and compare its results to the earlier quantum
Monte Carlo(QMC) study to test its accuracy. We show that H _ 2 AX: ( cte — E) (4)
the analytic treatment is in satisfactory agreement with exact ehph™ £ A\ Mot 3 )
(QMC) results in the high temperature regime of the three
dimensional(3d) model and provides analytic expressions The first term describes free electrons, @iid(c;,) cre-
for various physical quantitiesii) We extend this study to ates(annihilate$ an electron with spinr on a sitei. The
the case of two-dimension@Rd) phonons, which had not second term describes nonlogdispersive phonons, and;
been treated in Ref. 7. We demonstrate that in the 2d case tla@d p; are canonical variables. The last term couples the
EDMFT treatment at finite temperatures, if it produces anfermionic and the bosonic degrees of freedom. We consider a
ordering transition, is necessarily of the first order. Thishalf filled system of fermions.
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The second term could alternatively be written as the bottom is crucial for temperatures smaller than the pho-
non bandwidth. Fod-dimensional phonons the bottom of the
(d=2)/2 i ; ;
Hpn= E wq(a:;aq+ 1, (5) band has singularity. That is why to represent 3d and

2d phonons we chose semicircular and step-function-like

1 phonon densities of states, respectively:

where a,, a, are related to the phonon field by,
=(2Mwg) YHag+a’,) and wi=J,/M. Dispersion(mo-

2
mentum dependengef the bosgn frequency, stems from 3d: ppn(e)= —2\/w§—(e— wo)?, (12
the nonlocal character af;j. The local limit of J; corre- O,
sponds to the Holstein mod¥lso the model under consid- 1
SL%“noonn;S. an extension of the Holstein model to dispersive 2d: ppn(e)= Z_wle(wi_(e_w())z)' (13)
The extended DMFT equations for this modale a set of _ _ _
equations for Weiss functior, }(iw,) andDy (i wp): After replacing summations over wave vector by integra-

tions over energy, Eq6) and Eq.(7) read

GolGo.Dol(iwn) = fwn— G,[Go,Do] Yiw,
Ao Dolllen) 2q:['w ta* Gl Go.Do] o) Gg(iwn):fdepgef?’ (14
~Gogiwn)] ™, 6)
. - pph(f)
D[Go,Dol(iwn) =2 [M(iwy)?—J, D(Iwn)—J degz—ez’ (15)
q

1 1 a1 where (=iw,+G, (iw))—Goliow,), &E=M(io,)?
+DB[Go.Dol (iwn) =Do (iwn) "% L 514 y—D;Y(iw,), and the density of states(e)
(7) =dg/de,. For electronp,(€) and phonorp,(e€) the den-
where full Green's function,(iw,) andD(iw,) are ex- sities of states are, respectwe@d,:tq a.nd €q=Jq. For the_
pressed througt@gl(iwn) and Dal(iwn) in terms of the DOS defined in Eq_s(ll)—(lS) integrations over energy in
effective impurity action: Egs.(14) and(15) yield

2
Set= 2 Chiog+iog) (G (iwy) o, GU(iwn)=W(§—SM§2—W2), (16)

heres=sgrjIm{]:
+)‘X(iwm))ca(iwn)_%Dal(iwm)xz(iwm), ®) wheres=sgri Im{]

3d: D(iwn)=$(2§+ \/(§_wo)2_w§
w3

. . t
IDlcl . XIc (i wp)c)(iwy)e e o

Ga’(iwn)z t _ T
IDLc] ¢, x]e SerCs Co —J(£+wp)?— 0?), (17
= i 1‘ I
oottt N 2d: D(iwy)=5~—In (Ero)*- o (18
D, (0= (iwg)s,,.- (10 ' A0, | (- wy)2-wl]

Equations(6)—(10) in general have to be solved numeri-  We consider here a semiclassical treatment of the prob-
cally. In many cases though, a number of approximationdem. In its most general form, the approach has been de-
reducing numerical work but preserving a physical contenscribed in Ref. 10 and is an application of the saddle-point
of the problem is possible. One of the approximations is inmethod. In this paper we use a more limited form of this
using a model density of statg®0S for fermions and method that consists of evaluating Eq8) and (10) by a
bosons, so that momentum summations in EDMFT equationsaddle-point technique. It can be viewed as a combination of
could be performed analytically. It is convenient to chose @wo separate approximations: the static approximation
semicircular electron DOS, (equivalent to the phonon mass— o limit) and a saddle-

point analysis of the EDMFT equations in the static approxi-

2 mation.
peil€)= W2 VW2 — €7, (1) The approach of treating the collective excitations as clas-
sical, while the electrons are treated fully quantum mechani-
where W is the electron band half width. The particular cally, goes back to the Hubbard approximationit was
choice of semicircular electron DOS is qualitatively unim- pointed out that a static approximation of the impurity model
portant since we consider a half filled electron band. Forcoupled with the DMFT self-consistency conditions indeed
phonons, on the contrary, the shape of the phonon band negives a solution closely related to HubbartfsThis ap-
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proach has been used extensively in Refs. 11 and 12 in 2g\2
DMFT studies of the Holstein model. From the DMFT stud- D,'-D 1= -T> — 3 (24
ies of the Mott transitiort, we know that this approach be- n=0 (G+ wp)

comes insufficient in the correlated metallic regime at very
low temperatures, where a quasiparticle feature forms in ad”
dition to the spectral features produced in the semiclassic
approximation. It is worth pointing out that improvements of
the static or of the saddle-point approximati@nwill not
remedy this shortcoming, which requires a nonperturbative . ! ) )
resummation of instanton events. Still, we show here thaP?INtSX=*Xo. We discard fluctuations around these points

_ 2 . . . . . . . .
this simple analysis is able to reproduce all the trends of th&SO [D|=x5), since nontrivial information is contained in
solution of the EDMFT equations by the more expensivethe fact that we have two saddle points, and not in the Gauss-

here G=iG(iw,) and a?=\?D|T=—\?Tfdepyn(e)
[D™'—Dy'—€?]71, soa? is solved for the phonon self-
energy thus making the system of the saddle-point equations
closed.

In the strong-coupling regime we consider two saddle-

QMC method’ ian fluctuations, like it was in the case of weak coupling.
The EDMFT equations in the static approximation of Eqs.EPMFT Egs.(19) and (21) now read
(9) and(10) reduce to -~ ~ ) = ~
G(G+w)*—(G+w)+Ga“=0, (25
G(iwn):f dxP(x) ———, (19 B 2g\2
Gg Hiwy) +AX Dol=-T2 — : 26
o (lon) 0 n;) (G+wn)2+\2TD (20
D= —Bf dxP(x)x2, (20) Weak-coupling Egs(23) and (24) are a saddle-point ex-
pansion up to the first order in small paramexéDT, and

strong-coupling Eq925) and(26) are up to the first order in

large parametex?D/T. These equations have overlapped re-
1 B gions of applicability, provided < 1. This allows us to com-

P(x)= —eXp( gnz,o IN(1—Go(i wn)2\?x?) — EDglxz : bine weak- and strong-coupling equations into a unique set

where

N 21) of equations, controlled by the small paraméker
~(C 2_ (¢ . 2_
Equations(19)—(21) have to be solved together with Egs. G(G+w)*~(G+w)+Ga"=0, (27)
(6) and (7). In the static limit only the zero-phonon fre- &
qguency survives, so we drop the frequency index for the D-1-D 1= —2g\2T 28
phonon correlation function®y andD. In Egs. (19)—(21) 0 g néo é+wn' 28)

and everywhere below we considebeing the phonon field
amplitude, it is related to its Fourier transform as
=,8*1’2xa,m:0. We consider no symmetry breaking in the

electron-spin channel, so we dropped the spin index; fartor
(equals 2 for spin one-halin Eg. (21) appears from trace
over the spin indexN normalizesP(x) to unity. P(x) is the
probability distribution function of the phonon field ampli-
tudex.

We now evaluate Eq€19)—(21) in the saddle-point ap-
proximation in the variabl&. There are two limits, weak and
strong coupling. In the weak coupling the saddle-point is at
x=0, and in the strong coupling there are two equivalen
saddle-points at= = x,# 0. Deriving the saddle-point equa-
tions we explicitly use a semicircular electron DOS, Egs. ©
(11) and(16). The relation between the bare and full Green’s a<l: (i wn)=( — /14

These are our final semiclassical EDMFT equations. They
are exact in the limitMT?>w3, T<1. For 3d and 2d
phonons, Eqs27) and(28) have to be solved together with
Egs.(17) and(18), where£?=D ~*— D, *. Saddle-point Egs.
(27) and (28) are very simple; they can be solved rand

D, with minimal numerical effort. The left-hand sidkns) of

Eq. (27) is a third-degree polynomial, so the electron Green’s
function can be written as an elementary function determined
by a single parameten? which is a function of phonon
elf-energy and bare parameters of the model.

t In the limits of small and larger® (or \) Egs.(27) and
(28) can be solved completely for self-energies:

o2
n 2
2) )01, (29

functions is especially simple in this case: 2
. —1_; 42 . 4
Goliw, iw,—t°G(iw,), (22 Eph:_ﬁ)\z- (30

wheret=W/2. Everywhere below in this paper, energy is

measured in units of In this paper we restrict ourselves to Moreover, in the dispersionless case?=\?T/(w3

the particle-hole symmetric case. —[4g/3w]\?). This expression is valid everywhere except
In the weak-coupling regime in the saddle-point approxi-for the small regioPAN ~wyT below A .~ wy. We consider

mation, which includes Gaussian fluctuationsxofiround here a disordered phase solution.dis 3 the disorder solu-

zero, semiclassical EDMFT Eq&l9)—(21) read tion becomes unstable at- wy— w4 While it remains stable
o B for all coupling ind=2. The self-energies in the strong-
G(G+ w)3*—(G+w)?+a?=0, (23)  coupling regimea>1 are given by
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2

Selion =, (31
gr?
Soh= 5 (32)

In the strong-coupling the phonon field distribution function o

is split into two peaks. The peak separation ig 2 where
Xo=—gADy/2, D=—Bx§. In the dispersionless case®
=([9/2]\?/ »3)?; this is valid when\> wq. This is com-
pletely similar to the previous analysis.

In d=3 the instability to the ordered phase occurs already

at small o, ~ w3/ Bg>1/\?, so D, stays practically unrenor-
malized. Ind=2 at w,~ w3/ Bg?1/\? the system enters a
regime when the phonon energy is exponentially small:

. (33

w
Eph_ ((1)0_ w1)2%2wleX[{ - ,Bg _;)\2
®o

In the limit T— 0 one readily obtains the polaron forma-
tion condition, which happens at intermedialg {- wy) cou-

pling:
49

- —\2Dy=1,

3 (34)

where D= w, 2
found numerically for interacting phonons.

Ill. 3D PHONONS

PHYSICAL REVIEW B66, 045117 (2002
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FIG. 1. d=3. Effective phonon frequency* as a function of
)\Z/wg at w;=0.0, 0.1, 0.2, and 0.3. Comparison to QMC results.

the quantity characterizing the effective interactiod:
=\?/w3. The effective electron-electron interaction, medi-
ated by phonons, is given by.¢;=\2D,, evaluated at zero
frequency. When the phonon dispersion vanishésq=U.

The upper curve in Fig. 1 corresponds to the dispersionless
case. On the other hand, we find this is not the best way to
detect an instability to an ordered phase and we discuss in
Appendix D an alternative way to compute within EDMFT

in the dispersionless case, but has to bethe phonon self-energy which retains momentum depen-

dence.

The equations in Sec. Il do not include the possibility of
the phonon field symmetry breaking. They need to be modi-
fied to describe long-range orderilgnd we implement this

In this section we compare our semiclassical solution tdn Sec. V. A well-known property of mean-field theories is

the exact QMC result§ The saddle-point equations we de-

rived are exact when (@T)’°Mw,?>1 and Tt '<1. The
QMC results’ however, were obtained for ¢2T)°M wgz

~2.5 andTt 1~0.13. We want to show that even in these netic Mott

that they allow the analytic continuation of mean-field solu-
tions beyond the parameter regime where they are stable.
This was very fruitful in the understanding of the paramag-
insulating phase which is unstable to

cases when the parameters controlling the saddle-point equégrromagnetisnt.As was done by the QMC method in Ref.
tions are relatively close to 1, the semiclassical solution/, we study the continuation of the EDMFT equations be-
even without including the refinements outlined in Ref. 10,yond the paramagnetic phase. It may, hopefully, be under-
not only captures all the qualitative trends of the exact solustood as a metastable phase. This requires some care since

tion, but in many instances is quantitatively close to it.

the instability to a charge ordered phase is signaled by a

We study the case of three-dimensional phonons. We usgingularity appearing in the integrand in E@5) and this

the same parameters as in Ref. 7: inverse tempergtar@,
the phonon band is centered at)=0.5, electrons have
double spin degeneraaqy=2 and hopping amplitude=1,
and the phonon madd =1. The electron band is half filled.
To model 3D phonons, a semicircular DOS, ELR), is used.
We present the solution of Eq7) and(28), and Eq.(17).

In every figure in this section we plot both our own and
QMC curves. Our results are plotted using solid or dashed

instability cause® to acquire an imaginary part. As in Ref.
7, we take the principal part of the integrand, the imaginary
part of Dy, being equal to zero in every numerical iteration
loop, which allows us to compare our results with the results
of the QMC method.

A. Weak coupling

lines only, without symbols. QMC graphs are presented us- The finite dispersion treated within DMFT renormalizes

ing dotted lines and always with symbols.

D, [see Fig. 2a)]. Since the effective electron-electron inter-

A local instability, starting from the disordered phase,action is proportional t@,, the electron self-energy is en-
takes place within EDMFT when as discussed in Ref. 7 thehanced as wellsee Fig. 2b)]. While the features of the exact

effective phonon frequency* = \(wo— w1)?+11, given by

solution are qualitatively well reproduced in the semiclassi-

the pole in the phonon Green’s function, becomes equal teal approach, the approach lacks quantitative agreement.
zero. The phonon mode softening for different values of theMeak coupling is the worst case. The quantitative agreement

phonon dispersion are shown in Fig.d* is plotted versus

is better for intermediate and strong-coupling.
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FIG. 3. d=3, strong coupling\ =0.8.(a) Bare phonon Green'’s
function. (b) Imaginary part of the electron self-energy with the
spectral function in the insetv;=0.1, 0.2, 0.3, and 0.4.

FIG. 2. d=3, weak coupling\ =0.2, comparison to QMC re-
sults.(a) The bare phonon Green'’s functiaif) The imaginary part
of the electron self-energy with the spectral function in the inset.
®,=0.1, 0.2, and 0.3.

rise to a first-order transition at a critical coupling strength.
B. Strong coupling We study the disordered state solution continued along the
second-order transition branch, which is skipped in the first-
order transition.

In the EDMFT approach]=2 appears as a lower critical
dimension for a finite temperature second-order transition.
This result describes accurately the situation with order pa-
_ ) rameters possessing a continuous symmetry, but it is a spu-

C. Intermediate coupling rious consequence of the inability of a local approximation to

At intermediate coupling, the system is in a crossoverdenerate spatial anomalous dimensions in the cases where
between weak- and strong-coupling regimes. &g in-  order breaks a discrete symmetry.
creases, the effective electron-electron interaction first be- First we illustrate the exponential softening of the collec-
comes stronger, an®, and the electron self-energy in- tive mode: in Fig. 5 we plot effective frequenay* versus
creases, like at weak coupling. Ab* =0, the behavior U. Figure 5 should be compared to Fig(3d case. In the
changes to the reverse, and the picture is similar to théatter the curves hit the) axis, which implies a second-order
strong-coupling case. This is illustrated in Figajand Fig. ~ transition. In Fig. 5 the curves rather gradually approach the
4A(b). U axis, never crossing it.

Phonons generate an effective electron-electron interac-
tion ~\?D,, so we are especially interestedDy behavior.

We investigate the 2d system for similar sets of parameters

In the previous section we calculated various functions aas we did in the 3d case. We obtained the plots for weak,
different parameters in thed3case. The saddle-point ap- intermediate-, and strong-coupling regimes in Figs. 6-8.
proximation is exact in the limit of infinite madd and zero The behavior of the 2d system is very similar to that of
temperatureT. At finite M and T the applicability of the the 3d system before the energy of the phonon mode van-
method in a wide region of parameters was established in thishes. In all case®, gets renormalized, as the dispersion
previous section by comparison to QMC data. In this sectiorand consequently the effective interaction increases. The
we study the 2d phonon ca$Egs. (27) and (28) and Eq. electron self-energy enhances correspondingly. The only dif-
(18)] in the same range of parameters. ference is the rate dd, renormalization in the weak, strong,

Unlike the 3d case, the 2d disorder solution is locallyand intermediate coupling®, renormalizes faster at larger
stable, and we focus on this solution in this section. As wex (see Fig. 9, since electrons are stronger coupled to
will show in Sec. V the EDMFT in dimensiond<4 gives  phonons.

In the strong-coupling regime as dispersion increabgs,
renormalizes downwardlsee Fig. 8)], together with the
electron self-energjsee Fig. 8)]. For strong coupling the
guantitative agreement with the QMC results is very good.

IV. 2D PHONONS
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—ImZ 02 b

0.1

FIG. 4. d=3, intermediate couplind=0.4, comparison to
QMC results(a) Bare phonon Green’s functioth) Imaginary part
of the electron self-energy with the spectral function in the inset.
0,=0.0, 0.2, and 0.4.

V. ORDERED PHASE AND CRITICAL TEMPERATURE

We now turn to the generalization of the EDMFT equa-
tions to the ordered phasésor simplicity we will consider a
classical model. This is justified, since in the semiclassical
limit we can always integrate out the electrons, reducing ED-
MFT equations to classical mean-field equations. For in-
stance, tracing out the electrons and performing a static ap
proximation in the electron-phonon field leaves us with an
action of the form(neglecting terms of orde® and highey:

0.5 T T T T

25

—-imz

8 - 4
o
I
6 - 4
4
0 04
0.1 . ; .
0.08 = .
0)1
0.08 | ]
-Imz N — 0.0
N R S B 0.1
004 1 N
~Z -—-03
0.02 The— :
0 L 1 1 Il TR
1 2 3 4 5 6

Jii
=Sod 1= 2 b ¢

FIG. 6. d=2, weak couplingA\=0.2. (8 The bare phonon
Green's function(b) The imaginary part of the electron self-energy
with the spectral function in the insat;=0.0, 0.1, 0.2, and 0.3.

s e Yo Jij
Sol=2 540+ 7412 65 ¢

(35

FIG. 7. d=2, intermediate couplingy=0.4. (a) The bare pho-

non Green's function(b) The imaginary part of the electron self

FIG. 5. d=2. Effective phonon frequency* as a function of
\?/ w3 at w;=0.0, 0.05, 0.1, 0.15, and 0.2.
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10

R e

=
' FIG. 10. Diagrammatic expansion &f up to the first two orders
61 1 in U.
diagram shown in Fig. 10, which contains no propagators.
4 0.05 o1 T 0.2 Thle veztices yield factors of 3!U, —3!Um, —3U mz,_ and
o, —zUm*" for four-, three-, two- and zero-legged vertices, re-
10° : : spectively. Each diagram i has an extra-1 factor.

In Fig. 10 we drew first- and second-ord@n U) dia-
grams enteringp. The extended DMFT equations in the or-
dered phase are derived by making the local approximation
on @ in the Baym-Kadanoff functional and solving the sta-
tionary conditions for the magnetization and the local propa-
gator resulting from the stationarity of E¢36) after this
local approximation is made. In the local approximation the
leading terms in a perturbative expansion in the quartic
coupling are given by ®=2iUum*+3UuDm?+32UD?
—3U%D*m?—3U?D*+ .. ..

Stationarity of the functional in Eq36) would give exact
FIG. 8. d=2, strong couplingA=0.8. (a) The bare phonon equations forD and m. In the local approximation these
Green'’s function(b) The imaginary part of the electron self-energy equations reduce to EDMFT equations in zero magnetization

with the spectral function in the inse;=0.0, 0.1, 0.2, 0.3, and gnd therefore generalize those to the ordered p%a':’.my

—Imz

0.4. are given by
To extend the EDMFT approach to the ordered phase it is 5D
useful to write the Baym-Kadanoff functional for the action, m(r—Jg-o) + sm= 0,
1 1 1
1“[m,D]=—§TrInD+§TrDO D+§mDO m+®[m,D], Sh11
D= |r—Jg+2—| , (37)
(36 q 49" ~6D

where® is a sum of all two-particle irreducible diagrams \here only local graphs are included dn. Diagram series
constructed from phonon Green’s functiobs phonon field equivalent to the first equation are shown in Fig. 11.

expectation valuen, and the four-legged interaction vertex gqor the practical solution of the EDMFT, E€37), it is
—3!U. We could also say thab is a sum of all two-particle sefy| to follow the dynamical mean-field procedure of in-
wedumble diagrams constructed from pho_non Green'’s fL_'”Ctroducing an impurity local effective actibh’ to sum up the
tions D and four-, three-, two-legged vertices plus the firstgraphs generated by the functional fbrand its functional
derivativesé®/ 6D and 6P/ ém in terms of the cavity fields

50 ' ' ‘ / h andA. The effective action
40 y A )
5EDMFT[¢]:S|oc[¢]_h¢_§¢ (38)
°3° ] generates the correct local quantities provided that the Weiss
g fields h and A are chosen to obey the EDMFT self-
20 - consistency conditions:
; | V.M
* — ——I—o + + + oo
0 1 1 1 U
0 0.1 0.2 0.3 0.4
0)1

FIG. 11. Diagrammatic expansion ofup to the first two orders
FIG. 9. d=2, bare phonon Green’s function=0.2, 0.3, 0.4, in U. Thin lines are the free phonon propagaiy, thick lines are
and 0.8. the full phonon propagator, and a full dot stands rfor
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0.6 ' ' ' ' T4.45
0.5 | ——- Exact 7
04 |

B. 0.3 |

Free Energy

0.2 r

0.1 -

FIG. 12. Top to bottom: BL, EDMFT, exact solution, and MFT;
critical J. vs nearest-neighbors number FIG. 14. Free-energy evolution with. The free energy has a
single minimum =0) aboveT=4.45; atT=4.45 the solution
bifurcates atm=0.45. There are free extrema at 3<96<4.45
r—A-D '=- D (39  corresponding to @ml<m2<m3. As T approachesT,=3.96,
m2 merges withm1.

@
h=—m(r—A)—§—m. (40) D=(¢?)s_, ., — M (44)

) The equations above are consistent in describing the transi-
Equations(37) and Eqs(39) and (40) are a closed set of jon. magnetization vanishes in the ordered phase, and diver-
EDMFT equations, describing both ordered and disorderedence of spin susceptibility across the transition occurs at the

phases of the classical system, E8f): same critical temperature.
When U—®, r——o, and U/r=—1 the system, de-
D=> [D1+A-J, 1, (41)  scribed by the action of E¢35), reduces to a classical Ising
q a model with spin valuest1. In this limit the standard Weiss
mean-field equation
A
Seomrtl 1= Socl d]1—M(Jg=0—A) p— §¢>2- (42 m=tanhmJ,_ (45)
can be compared with the EDMFT equations which now
M=(b)s_, v (43  read
1 . ; m=tanhm(Jg-o—A4),
1-m?=2) [(1-m?) t+A-J] % (46)
q

We will also compare the EDMFT equations to an exten-
sion of mean-field theoryyMFT) from Bloch and Langer

(BL):*®
+o0 (MJg_o—X)?
M= J' dx(27G,)  Y2expg — ——2=2 = ltanhx,
—= 2G,
(47)
0 . e (M1dg-0—X)?
0 2 4 M.= 2 -1 _ \Whidg=0"7")" 2
T 2 f,w dx(27G,)” Yex 2G, (coshx) ™ ~,
. . (48)
FIG. 13. Magnetization vs temperature on a cubic lattice. There
are three branches at 398 <4.45: m3>m,>m;=0; m; andmg J
are physical solutions, whilen, is not. Classical*=1 spin Ising G2:2 4 (49)
model. q 1_~]qu
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whereM is the magnetization. It can be shown that EDMFTor the Bloch-Langer methotd. It could be used to obtain

counts(without overcountiny more terms in diagrammatic better estimates of ferromagnetic transition temperatures

expansion of various physical quantities, like correlationwhere spatial fluctuations of the order parameter substan-

function or free energy, than the BL method. One can alsdially decrease the Curie temperature below the DMFT esti-

check that for the classicat 1 spin model, EDMFT gives a mates. This is the case of bcc irbha problem which will

better estimate fofl . than the BL method. require a more realistic investigation of EDMFT. Further in-
We computed the critical temperatuie for the Ising  vestigation of the quantum problem will require zero-

model on a Bethe lattice with finite coordination following temperature methods which go beyond the semiclassical ap-

the paramagnetic solution until it disappears using the differproximation.

ent approximations described in this section. The results are

shown in Fig. 12. The EDMFT result shows significant im- ACKNOWLEDGMENT

provement over MFT, and is slightly better than the BL _ L .

method. Some more technical details comparing the approxi- | NiS research was supported by the Division of Materials

mation schemes are relegated to Appendix A. Science of the National Science Foundation under Grant No.
In spite of the quantitative improvement ©f, the order DMR 89-15895-01.

of the transition is incorrectly given by the EDMFT approxi-

mation. In Fig. 13 we present the result of solving EDMFT APPENDIX A: CRITICAL TEMPERATURE

equations for the simplest 1 spin model ind=3. We plot- The transition to the ordered state for a classical model in

tgd magnetization as a function of_ temperature. At suffithe BL method is signaled by the divergence in the zero-
ciently low temperature the solution consists of threeqomentum term in the sum:

branches with magnetizationsn;>m,>m;=0. These

branches are extrema of the free energy, which is shown Jq

schematically in Fig. 14m; and m; correspond to local G,=> 1M (A1)

minima in the free energy, while, corresponds to a local a are

maximum and is unphysical. The transition is clearly of theThis equation is analogous to the self-consistency equation

first order. The order of the transition does not change up tef the EDMFT, as it arises when summing ring diagrams.

d=4. is a vertex and);; is a line in the ring diagramG,(i)M; is
The inability of EDMFT to predict the correct order of the the sum of all ring diagrams which covers the $it&1, and

transition is related to the inability of a local theory to pro- G, are related td in EDMFT:

duce anomalous dimensions, and persists in quantum prob-

lems when the dynamical critical exponent and the dimen- D=Mz+M;G:M;. (A2)

sionality are such that they require the introduction of spatiaBelow we explicitly sum ring graphs on a Bethe lattice to
anomalous dimensions. Details are given in Appendices %xpresst through M. We introduce notation&,(i) and

and C. ~
Q(i): Gy(i) equalsG,(i) when the latter is computed on a
lattice with all but one bond cut out from sife Q(i)M,

VI. CONCLUSION includes those diagrams froB,(i)M, which have only one

We have performed a semiclassical analysis of the EDYertex belonging to site , _
MFT equations for a simple fermion boson model. Compari- 1he following relations can be established:
son with earlier QMC treatments of the same problem re- = ~ ~
veals that this method reproduces semiquantitatively all the G2=2G,+2Gy(2-1)M3G,
trends found in the previous studyt can be used, therefore, +26)(2— 1M ,Go(2— 1)M,Gp+

. - ; ., (A3
in the study of more complicated systems, such as fermions (A3)
interacting with spin fluctuations. We have also investigated =

this approach in the ordered phase revealing some inadequa- G2=Q+QMQ+QMQMQ+ ..., (A4)
cies of the approach which are closely related to the exis- B ~

tence of anomalous dimensions in finite-dimensional sys- Q=JIMJ+IMy(z2=1)G,M>J

tems. Sl_nc_e this n_ontnwglk dependence, which is +IMy(z— 1)@2M2(z—2)62M2J
characteristic of low-dimensional systems, cannot be gener-

ated by a local theory, EDMFT produces spurious results +IMy(z—1)G,My(z—2)

such as the existence of a first-order phase transitiod in

<4. Since at zero temperature the dynamical critical expo- X GoMy(z—2)G,MpJ+ .. ., (A5)

nent is such that in two dimensions an ansatz without anoma—here is the number of nearest neiahbors. arig a bond
lous dimensions is internally consisténg continuation of w z u '9 '

the disordered state, beyond the first-order phase transitioR,n éh?nlrititr;ce. metrical series. we obtain
might be useful to study this system. In this spirit we pointed u g geometrical series, we obta

out that a continuation of the EDMFT, at finite temperature, e
suitably interpreted, gives improved estimates of the critical G2=—2~, (A6)
temperature compared to the simplest mean-field treatment 1-(z2-2)M;,G;
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~ Q
Gfm, (A7)
1+M,G
Q=0M,—— 22— (A8)
l—(Z—2)M2G2
Solving these equations we get
zQ
1-V1—(z—1)(2M,J)?
_1-31-(z-1)(2M,J) A10

(z—1)2M,

Equation(A9) and Eq.(A10) solve G, for M,,.

CurvesJ. vs z for the BL theory and EDMFT, together
with the MFT solutiond.=1/z, are presented in Fig. 12 and
compared to the exact solution:

1
2

z

|n§.

Je (A11)

APPENDIX B: ORDER OF THE PHASE TRANSITION

Here we prove that the EDMFT equations give a transi
tion of the first order fod<<4 and of the second order in the
higher dimensions. For classical phonons EDMFT equation
read

S®[m,D]
m(r—Jq:o)=—T,
5®[m,D] -1
D-% [H—ZT—JLJ . (B1)
It is easily seen that
5°®[m,D] 5D[0,D]
— =2 (B2)
5m2 B oD
m=0

Solving Eq.(B1) for r using the above relation for deriva-
tives, up to the second order in, we have

-1
><q>[m,D]|m0m2+Jqo—Jq] :

2 1 &8

22— — = —

sD2 6 sm*

2
m ”n
=5 Dlm-0=Dlm-0—2
q

(B3)

The coefficient in front oim? in the right-hand sidérhs) is
positive. The |hs of Eq(B3) is «m?, while the rhs has two
contributions, onexm®~2 and the other<58, where 58
=B— .. For d<4 the termem’~? is dominant ands3
«—md4~2<0. A negativesB implies the first-order transi-
tion. Ford>4 the termm? from the Ihs becomes dominant

PHYSICAL REVIEW B66, 045117 (2002

andsBoxm?>0. This is the usual mean-field behavior result-
ing in a second-order transition.

We showed that in a classical model the transition is of
the first order below the upper critical dimension. The same
is true for a quantum transition as well. We show it in Ap-
pendix C considering the larde limit.

As discussed earlier in connection with the order of the
transition, this artifact of the EDMFT results from the inabil-
ity of a local theory to capture physics that requires the in-
troduction of anomalous dimensions. In spite of this short-
coming, when properly interpreted, EDMFT results in
improved estimates of the critical temperature relative to
DMFT.

APPENDIX C: QUANTUM PHASE TRANSITION

In this Appendix we investigate the phase transition in the
quantum version of theé* model. We compare EDMFT and
a full lattice model using the largdl technique. We will
show that above the upper critical dimensrd, =4z
the exact critical exponents and the critical exponents ob-
tained in EDMFT coincide. Belovd,,. the EDMFT and the
lattice model exhibit different critical exponents. In the ED-
MFT the transition is of the first order fgrd,<d<2 and of
the second order otherwise. The transition is of the second
order in the lattice case. Moreover, in EDMFT the exponents
have a universal value fat<3d,. and a nonuniversal value
for %duc<0_|<duc- _ _ _

The lattice model is described by the action

1 u
—Tp-lg20 = 42)2
S$=5Do %+ 4 (677, (D
whereDg, (=1 +|w|??+q?, ¢?==]_, ¢35, U=u/N, andr
is a variable parameter which drives the phase transition.
Corresponding EDMFT equations are

. S®[m,D]
MDgug-0" —5m— =0 (C2
s®[m,D]] "t
D=, |Dgl+2—— (C3)
= |0 sD

The functional®[ m,D] includes all two-particle irreduc-
ible diagrams which are constructed frdsee Fig. 10 the
magnetizatiorm (dot), the particle propagatdp (line), and
the interaction termJ (four-legged vertex @ satisfies the
following equation:

5°®[m,D]

o6P[0,D
)| _,50100]

) (€4

om m—0

Expanding® in small m and using Eq.(C4) we write
EDMFT equations as

5*®[m,D]
sm?

5O[0,D]
5D + |m4,0m2:0,

(CH

B 1
DOa},qzo g
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r-x +><>< +><><><+<><><>+ 4>2, Dw~Jddq(|w|2’z+q2)_1

FIG. 15. 1N expansion of". All diagrams are of the order M/ _ _ 3
’V(d_Z) l(A((]d 2)_|w|(d 2)/2), (Cll)

Dw:f/\dqd[|w|2/z+q2 d<2, D, ~—(d—2) Yo|d"2" (C12
0 and
15°p[m,D] -
+[2F—W ]mz ,  (CH d>2, Xa,~fduDVDV+u,~(d—2)*2|w|<d*2>’2+1,
m—0 (C13

wherel’ = §2®[0,D]/5D2.

Let Dyc, D, andr. be values oD,, D, andr respec- d<2, x ~—(d—2)2(2d_—2+1
tively, in the transition point. SubtractingDog, 4o Lone z
+2(6P[0,D.]/6D)=0 from Eq.(C5) and keeping lowest- (C19
order terms, we have A4 is a momentum cutoff. We see from E@C14) that for

d<d, /2 the susceptibilityy,, is divergent at low frequency,
St 42T 8D + 1 ﬁmz: ) it leads to a universal critical behavior fd<d, /2, as fol-
6 sm? ' lows from the self-energy calculation below. The self-energy
in the largeN limit is 6%~ 2I'D:

—1
|| 282241,

wheredr=r—r., andéD=D—D,. This equation provides

. . . LR d 1
a relation between the variation of the driving terrand the Quegedy,, S~ N(d—Z)‘1u|w|(d‘2)’Z+1

order parametem. We will show that ford>d,. the last 2

term in the left-hand side wins over the second term, the (C15
transition is mean-field-like. The second term becomes im-

portant and determines the character of the transitiordfor dyc 1 1

<dyc- de<d<—-, Ewﬁf dvx, D,y

We will consider the largd&l limit up to the order of IN.

Diagrams which entel" are chains of bubblesee Fig. 15 1 d—2 —(d-2)iz
: : o ~—(d=2)| 2—+1/|w| .
which can be summed as a geometrical series: N z
= Ly + ! (C8) e
~N| 2 u |’ In a similar way we can calculate a contribution fromio
1+5x 8D,

wherey,~ fdvD,D,., in the quantum problem gg=D?
in the classical problem. The only term of the ordeN 1/

d 1
7“°<d<duc, F5D~N(d—2)‘1um“‘2“, (C17)
which enterss*®/5*m is 6u/N. All other terms are of order

O(1/N3). duc 1 d-2 442
Equation(C7) and Eq.(C8) holds in case of a lattice as dlc<d<71 I'éD~ N(d_z) 2——+1m :
well, butD now depends on both momentum and frequency, (c18

and summations now run over wave vectors as well. The ) N
upper and lower critical dimensions are determined by the his result together with EqC7) suggests that the transition
convergence of integrals 3D and TD in the ultravioletand IS the first order forzd,<d<2.

infrared limits, respectively: Now we consider the lattice model:
- 5D~J~ dwdq d-1 | (Cg) Xw,qwf dVddp[lV+w|2/2+(p+q)2]_1(|7/|2/z+ p2)—1
(|lw]?*+?)?
~(d+z_4)*l(|w|2/1+qZ)(d+Z)/272, (Clg)
d-1
TrD~ | dodg————. C10 1 _
j w q(|w|2/z+ q2) ( ) Ew,q~ Nj dvd p)(V’éDVﬂ,'erq

These equations are the same for the mean-field and lat- 1 oty )
tice models, they yield the upper critical dimensidp.= 4 ~ N(d+z_4)(|w| Injo|.+g%nqg).  (C20
—z and the lower critical dimensiod,;=2—z=d,.— 2.
We first consider EDMFT. In a crude way one can esti-In this case the frequency-dependent part of the self-energy

mate: can be conveniently exponentiated to yiel~[|w|??
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+0? 7Y with Zz=2-N"(d-dy)ci(d) and » fices generated by shifting the phonon field yand from

= — Nfl(d—duc)cz(d), where Cl(d) and Cz(d) are some full correlation functionsG andD.

smooth functions ofl. The charge ordering instability can be studied by looking
We also calculate a contribution fronm to T'sD  at the zero-frequency-momentum phonon propagator behav-

~N"Y(d—d,)mAnm. It yields or~mY8 with g=1+(d  ior: the propagator diverges in a charge-density-w&@W)

—d, o) (1/N)cs(d). The transition is the second order in this tran3|t|0n._Alternatlvely one can study the transition fror_n the

case. ordered side, by observing the order parameter vanistimg (

in our cas¢ The two approaches should give consistent re-

sults. We will first show that this is indeed the case in the

exact theory, then we explain how a similar approach can be
Let us consider a very general electron-phonon Hamil-applied in the EDMFT.

tonian which describes an electron-phonon system with Let us introduce some compact notations we are going to

electron-electron interactioflocal or long rangg electron-  use.o? is a field operator of kind at & space-time point.

phonon interaction, and phonon-phonon interactjgmonon  a=G specifies an electron field operator amd D specifies

unharmonicity. We can always use a Hubbard-Stratonovichg phonon field opera’[(‘_noab is a four-point function,

- . - aB,yé
decoupling on electron-electron interaction, so we assumghich is a subset of all connected diagrams in the perturba-

that information about long-range electron-electron interactjye expansion O(OiTo%ogTog : rules for selecting the sub-

tion is stored in the phonon dispersion and we will not writeset of diagrams depend on a particular operator. Multiplica-
the long-range interaction explicitly. We can introduce aton of two operators is defined b)[O(l)O(Z)]aﬁ v5
source-dependent acti@where the sources are coupled to =x,,08 0@ . We introduce three four-point opera-

. . _ S . aB,uv~puv,yé "
different fields. The free energy/=—In Je”is the generat- 55+ (i) v.'inciudes all graphs which enter skeleton graphs
ing functional for expectation values of those fields:

without interaction vertices(ii) 2 includes all one-particle
irreducible with respect to a phonon li(gD) diagrams, and

APPENDIX D: INSTABILITY ANALYSIS

S=f dxdx ¢! ()G (x—x")c (X)) (iii ) I" includes all two-particlé2P) irreducible diagrams. In
our case reducibility 0D, ,s is understood as disconnect-
41 D-l(x—x' / ing thea B part from theys pgrt.Xo is trivially expressed in
2¢(X)Do (x=x1)$(x") terms of correlation functionsig°=x5°=0, Xgap.ys
+3(x—x")(Un;(x)n | (X) + V4*(x) =G,,Gps: andxons y56=DayD st D,sDg, -
t ot , We can write the following Dyson equations for the com-
+)\¢(X)CU(X)CU(X))_JU(X1X )CU'(X)C(T(X ) ponents of the, operator:
— 3 pOOK(x, X" )p(x') = S(x—x")L(X)p(x). (D) 366 8G \CCPGOy GG ) GCGDy DG,
The x variable includes both space and time in the above EGD=X§GFGGEGD+)(8GFGDEDD,

formula and repeated indices imply summation. Expectation
values of the fields coupled to the sources are given by EDG=X8DFDDEDG+X8DFDGEGG,
oW oW oW
DD_ DD DD~DDs DD DD-DGy GD
= S = = + r + r D4
) _ or we could simply write
Exact Green'’s functions correspond to the limit of zero

sources. To study phase transitions, like the transition when S=xot+xol'2. (D5)
the phonon field acquires a nonzero expectation value, one _ _ .
needs to have the free energy as a functional of correlation Solving for % we find S=[xo*~I'] 1= —(dT'gx) "
functions only. Such a functional can be derived as a LegThe second derivativé’I'g is a 2x 2 matrix defined by
endre transform of the free energy:=W-JG—K/2D 2p
—Lm. The sourced,K andL have to be solved foG,D and (02T 51) ap= 9T sk
m. The functionall’ is called a Baym-Kadanoff functional ' 9CL0Cy"
e_md its st_at|onar|ty yields equatlons. for zero source.cor.relg\—NhereC is a two-component vectds=G,Cp=D.
tion functions. We present the functional without derivation: The S matrix is related to the phonon self-eneByy, in

B 1 ot L a simple way, as can be seen from the diagrammatic series in
Ieg[G,D,m]=TrInG—Tr(Gy"—G *)G—3TrinD Fig. 16.

1 1 1 1 3, comprises all four-legged 1P irreducible graphs, while

+3TrDo "D+ 3 mDy 'm+@[G,D,m]. 3 pn comprises all two-legged 1P irreducible graphs. The 2P
(D3) irreducible four-legged block is nothing blit Two horizon-

tal lines represent a couple of correlation functions of the

Gy and Dy, are free fields of the action, and tde func-  same kind,GG or DD (we assume that a summation runs
tional is the sum of all two-particle irreducible graphs con-over each couple of horizontal lingswhile 2P irreducible
structed from the original bare interaction vertices, from ver-four-legged blocks are understood as 2 matrices. The first

(D6)
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[} -= ok - ol

o R = R = = R

line is a diagrammatic analog of E¢D5). The second line
provides connection betweeh and2 ,,. That can be writ-
ten as

s = P*D . P sab ) o7
PR mom ' amaC,~ dC,m (O7)
or in a slightly different way,
Pd P Tk | - T
Eph:_ + BK BK BK . (D8)
amdm  dmaC\ pcoC’ JC’om

The condition for the CDW instability at wave vectqris
Dog —2pn=0.

PHYSICAL REVIEW B66, 045117 (2002

FIG. 16. Diagrammatic expansions f&rand
2oh-

The locall'@® can be computed using the impurity action
of EDMFT. For simplicity we consider electron-phonon in-
teraction only, with the coupling =1. Equations similar to
Eq. (D4) can be written for the susceptibilityy®”
=(0%T0%0""a"). In short notation it reads:

X=Xo+ xol X, (D11)

whereT is different fromI" of Eq. (D5), because now it

includes 1D reducible diagrams. The relation betwEeand
I' is simple:

We will reproduce the above result studying the CDWwhere Dy is a 2x2 matrix, D§®=D,, and Dg®=DgP
transition from the ordered phadég is the free energy, so :DgDzo_ Using Eq.(D5), Eq. (D11), and Eg.(D12) we

in the transition point

dmdm

0. (D9)

From the wayl'gx is constructed it followsiI'gx/dC=0
anddl'gx/dm=dl'gx/dm. If we used(dl' gx/IC)/dm=0
and Eq.(D9) we find

R

dC’'om

Tz
aCacC’

PTex T ek
omom JdmdC

—0. (D10

This equation is identical to E4D8), as it should be in exact
theory. In the EDMFT approach we take the local approxi-
mation for the two-particle irreducible graphs. All 2P irre-

ducible graphs id'gk are contained byp. So the condition
for m vanishing is still given by Eq(D10) with & being
local. Alternatively we can use Eq(D5) where I'2P

can express the self-ener@y through the quantities which
are directly computed from the impurity action:

2:(I:Ximp:lil_|:X0imp:|7l+If\)oimp"'l:)(o]il)ila (D13
WhereX?nEp:<O;angob>imp- Xgibmp: 5abC§! and DOimp is
the Weiss field of the impurity action

Simp= f d7d7'cy(7)Ggimp,o( 7= 7)Co(7)

1 -1 ’ ’
+ EQS(T)DOimp(T_T Yo(7")

+8(r— 1) p(7)cl(T)c (7).

The described method is exact in the limit> oo, At finite
d it yields a higherT. than a naive local approximation
2 pp= 6P/ 6D. Assuming2 ,,= 6®/ 5D would be equivalent

(D14)

=9?®/9C,IC, is local, in which case these two methods to taking'gx as being local in Eq(D8), while the correct
are equivalent. Let us consider the second method, when trepproach is to take a local approximation on thefunc-

transition is approached from the disordered phase.

tional only, not on the whole Baym-Kadanoff functional.
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