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Dynamical density-matrix renormalization-group method

Eric Jeckelmann
Fachbereich Physik, Philipps-Universita¨t, D-35032 Marburg, Germany

~Received 25 March 2002; published 26 July 2002!

A density-matrix renormalization-group~DMRG! method for calculating dynamical properties and excited
states in low-dimensional lattice quantum many-body systems is presented. The method is based on an exact
variational principle for dynamical correlation functions and the excited states contributing to them. This
dynamical DMRG is an alternate formulation of the correction vector DMRG but is both simpler and more
accurate. The finite-size scaling of spectral functions is discussed and a method for analyzing the scaling of
dense spectra is described. The key idea of the method is a size-dependent broadening of the spectrum. The
dynamical DMRG and the finite-size scaling analysis are demonstrated on the optical conductivity of the
one-dimensional Peierls-Hubbard model. Comparisons with analytical results show that the spectral functions
of infinite systems can be reproduced almost exactly with these techniques. The optical conductivity of the
Mott-Peierls insulator is investigated and it is shown that its spectrum is qualitatively different from the simple
spectra observed in Peierls~band! insulators and one-dimensional Mott-Hubbard insulators.
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I. INTRODUCTION

The density-matrix renormalization group1,2 ~DMRG! is a
very successful numerical method for calculating static pr
erties of ground states and low-lying eigenstates in quan
many-body systems. For low-dimensional strongly cor
lated systems, DMRG is as accurate as exact diagonaliza
techniques but can be used to study much larger systems
with those techniques~currently, up to;103 sites!. Using a
finite-size-scaling analysis, it is thus possible to determ
the static properties of a system in the thermodynamic li
with great accuracy.

The calculation of dynamical properties and high
energy excitations with DMRG has proved to be more di
cult. Several approaches have been proposed but calcula
have been carried out successfully for few problems o
The simplest of these methods is the Lanczos DMRG.3,4 In
practice, this method gives accurate results for the first
moments of a dynamical spectrum. Therefore, it works w
for simple discrete spectra made of a few peaks but it usu
fails for more complicated spectra. An alternate method
calculating dynamical properties is the correction vec
DMRG.4,5 Contrary to the Lanczos DMRG, this method c
describe complex or dense spectra accurately. Neverthe
there have been few applications6,7 of correction vector
DMRG until now because this method is more difficult a
requires significantly more computer resources than the u
DMRG method for calculating static properties at low e
ergy.

In this paper I describe a simple and efficient meth
called the dynamical DMRG~DDMRG!, for calculating dy-
namical properties and excited states with DMRG. This
proach is based on a variational principle for dynamical c
relation functions and the related excited states. T
variational principle is essentially an elegant formulation
the correction vector technique. Because of the variatio
formulation, however, the DDMRG method is easier to u
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and significantly more accurate than the correction vec
DMRG method.

While the spectrum of a finite system is necessarily d
crete, continuous excitation bands are often found in the t
modynamic limit. It is possible to broaden finite-size spec
to simulate the continuum of an infinite-system spectru
Usually, the broadening is arbitrarily large and no systema
quantitative analysis of finite-size effects is performed for
spectrum. Here I show that dynamical properties of infin
systems can be obtained reliably using an appropriate fin
size-scaling analysis. The key to the analysis is the use
broadening that scales systematically with the system siz

The DDMRG method and the finite-size-scaling tec
nique for a dynamical spectrum have already been succ
fully used to investigate the optical properties of on
dimensional Mott insulators.8,9 Here I apply these technique
to the calculation of optical conductivity in the one
dimensional Peierls-Hubbard model of conjugat
polymers.10 Much effort has been devoted to understand
the optical properties of these materials. In particular,
optical conductivity of the Peierls-Hubbard model has be
studied extensively and analytical results have been obta
for various special cases, such as the Mott-Hubbard insul
and the Peierls~band! insulator limits. Leaving out these
special limits the Peierls-Hubbard model describes a M
Peierls insulator and its optical properties are still poo
understood. In this paper I show that DDMRG can acc
rately reproduce the known analytical results for the opti
spectrum in the thermodynamic limit. Then I investigate t
optical conductivity of a Mott-Peierls insulator usin
DDMRG and show that it displays specific features.

The paper is organized as follows. The variational pr
ciple for dynamical correlation functions and related excit
states is presented in the following section. I describe
dynamical DMRG method in Sec. III. The finite-size-scalin
analysis is presented in Sec. IV. I report and discuss
results for the optical conductivity of the Peierls-Hubba
model in Sec. V. Finally, I conclude in the last section.
©2002 The American Physical Society14-1
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II. VARIATIONAL PRINCIPLE

The dynamic response of a quantum system to a ti
dependent perturbation is often given by dynamical corre
tion functions such as

GA~v1 ih!52
1

p K c0UA†
1

E01v1 ih2H
AUc0L , ~1!

whereH is the time-independent Hamiltonian of the syste
E0 anduc0& are its ground-state energy and wave functionA
is the quantum operator corresponding to the physical qu
tity which is analyzed, andA† is the Hermitian conjugate o
A. A small real numberh.0 is used in the calculation to
shift the poles of the correlation function into the compl
plane.~I set \51 in Secs. II–IV.!

In general, we are interested in calculating the imagin
part of the correlation function

I A~v1 ih!5Im GA~v1 ih!

5
1

p K c0UA†
h

~E01v2H !21h2
AUc0L ~2!

in the limit h→0,

I A~v!5 lim
h→0

I A~v1 ih!>0. ~3!

It should be noted that the spectrumI A(v1 ih) for any finite
h.0 can be calculated from the spectrumI A(v) by convo-
lution with a Lorentzian distribution,

I A~v1 ih!5Ch@ I A~v!#.0, ~4!

where I use the notationCh@ f (v)# to represent the convolu
tion of a spectral functionf (v) with a Lorentzian distribu-
tion of width h,

Ch@ f ~v!#5E
2`

1`

dv8 f ~v8!
1

p

h

~v2v8!21h2
. ~5!

The moments of the spectrumI A(v) fulfill sum rules such as

E
2`

1`

dvI A~v!5^c0uA†Auc0&,

E
2`

1`

dvI A~v!v5^c0uA†@H,A#uc0&, ~6!

E
2`

1`

dvI A~v!v25^c0u@A†,H#@H,A#uc0&,

where@A,B#5AB2BA.
A dynamical correlation function~1! can be calculated

using the correction vector method. The correction vec
associated withGA(v1 ih) is defined by

ucA~v1 ih!&5
1

E01v1 ih2H
uA&, ~7!
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where uA&5Auc0&. If the correction vector is known, the
dynamical correlation function can be calculated directly,

GA~v1 ih!52
1

p
^AucA~v1 ih!&. ~8!

To calculate a correction vector one first solves an inhom
geneous linear equation

@~E01v2H !21h2#uc&52huA&, ~9!

which always has a unique solutionuc&5uYA(v1 ih)& for
hÞ0. The correction vector is then given by

ucA~v1 ih!&5uXA~v1 ih!&1 i uYA~v1 ih!& ~10!

with

uXA~v1 ih!&5
H2E02v

h
uYA~v1 ih!&. ~11!

One should note that the statesuXA(v1 ih)& and uYA(v
1 ih)& are complex if the stateuA& is not real, but they
always determine the real part and imaginary part of
dynamical correlation functionGA(v1 ih), respectively,

Re GA~v1 ih!52
1

p
^AuXA~v1 ih!&, ~12a!

Im GA~v1 ih!52
1

p
^AuYA~v1 ih!&. ~12b!

The derivatives of the real and imaginary parts can also
calculated from these states,

d

dv
ReGA~v1 ih!5

1

p
@^XA~v1 ih!uXA~v1 ih!&

2^YA~v1 ih!uYA~v1 ih!&#,

~13!

d

dv
ImGA~v1 ih!5

2

p
^XA~v1 ih!uYA~v1 ih!&.

A well-established approach for solving an inhomog
neous linear equation~9! is to formulate it as a minimization
problem. One considers the functional

WA,h~v,c!5^cu~E01v2H !21h2uc&

1h^Auc&1h^cuA&. ~14!

For anyhÞ0 and a fixed frequencyv, this functional has a
well-defined and nondegenerate minimum for the quant
state which is a solution of Eq.~9!,

ucmin&5uYA~v1 ih!&. ~15!

It is easy to show that the value of the minimum is relat
to the imaginary part of the dynamical correlation functio

WA,h~v,cmin!52phI A~v1 ih!. ~16!
4-2
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Therefore, the calculation of spectral functions can be form
lated as a minimization problem. To determineI A(v1 ih) at
any frequencyv and for anyh.0, one minimizes the cor
responding functionalWA,h(v,c). Once this minimization
has been carried out, the real part of the correlation func
GA(v1 ih) can be calculated using Eqs.~11! and ~12a! if
necessary. This is the variational principle for dynamical c
relation functions.

It is clear that if we can calculateuYA(v1 ih)& exactly,
this variational formulation is completely equivalent to t
correction vector method. However, if we can only calcul
an approximate solution with an error of the ordere!1,
uc&5uYA(v1 ih)&1euf& with ^fuf&51, the variational
formulation is more accurate. In the correction vec
method the error in the spectrumI A(v1 ih) calculated with
Eq. ~12b! is also of the order ofe. In the variational approach
it is easy to show that the error in the value of the minimu
WA,h(v,cmin), and thus inI A(v1 ih), is of the order ofe2.
With both methods the error in the real part ofGA(v1 ih) is
of the order ofe.

One can write the functionI A(v) in the spectral form~or
Lehmann representation!

I A~v!5(
n

u^cnuAuc0&u2d~v1E02En!, ~17!

whereuc0& is the ground state,ucn&,n.1, denotes the othe
eigenstates ofH, andE0 ,En are their respective eigenene
gies. Obviously, only the eigenstates with a finite matrix
ement̂ cnuAuc0&Þ0 contribute to the spectrum and here w
are only interested in those excited states. In the correc
vector method the excitation energiesEn2E0 and the spec-
tral weightsu^cnuAuc0&u2 can be obtained from the poles o
GA(v1 ih). The corresponding wave functionsucn& can be
calculated by taking theh→0 limit of the correction vectors

ucn&} lim
h→0

uYA~En2E01 ih!&. ~18!

The excited states contributing toGA(v1 ih) correspond
to the local maxima of the spectrumI A(v1 ih) for small
enoughh.0. Therefore, they can also be obtained by mi
mization of the functionalWA,h(v,c) with respect to bothv
and c. The local minima ofWA,h(v,c) are given by the
conditions

vmin1E05
^cminuHucmin&

^cminucmin&
,

ucmin&5uYA~vmin1 ih!&. ~19!

In the limit h→0, vmin1E0 tends to the energyEn of an
eigenstate with finite spectral weight,ucmin& is equal to the
corresponding eigenstateucn& up to a normalization con
stant, and2WA,h(vmin ,cmin) tends to the spectral weigh
u^cnuAuc0&u2. This is the variational principle for excite
states contributing to a dynamical correlation functi
GA(v1 ih).

Again this variational formulation is completely equiv
lent to the correction vector method ifuYA(v1 ih)& can be
04511
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calculated exactly. In an approximate calculation, howev
errors in the eigenenergies and spectral weights are of
order ofe with the correction vector method, while they a
of the order ofe2 with the variational formulation.

III. DYNAMICAL DMRG

DMRG is a numerical method for calculating the prope
ties of lattice quantum many-body systems. It is described
detail in several publications~for instance, see Refs. 1 an
2!. DMRG can be considered as a variational approach.
system energy

E~c!5
^cuHuc&

^cuc&
~20!

is minimized in a variational subspace~the DMRG basis! of
the system Hilbert space to find the ground-state wave fu
tion uc0& and energyE05E(c0). If the ground-state wave
function is calculated with an error of the order ofe!1 ~i.e.,
uc&5uc0&1euf& with ^fuf&51), the energy obtained is a
upper bound to the exact result and the error in the energ
of the order ofe2 ~as in all variational approaches!. In prin-
ciple, the DMRG energy error is proportional to the weig
of the density-matrix eigenstates discarded in the renorm
ization procedure. This discarded weight can be reduced
increasing the numberm of density-matrix eigenstates kep
in the calculation, which corresponds to an increase of
variational subspace dimension. Therefore, the energy e
systematically decreases with increasingm in a DMRG cal-
culation.

The DMRG procedure used to minimize the energy fun
tional ~20! can also be used to minimize the function
WA,h(v,c) and thus to calculate the dynamical correlati
function GA(v1 ih). I call this approach the dynamica
DMRG method. The minimization of the functiona
WA,h(v,c) is easily integrated into the usual DMRG alg
rithm. At every step of a DMRG sweep through the syste
lattice, a superblock representing the system is built and
following calculations are performed in the superblock su
space.

~1! The energy functionalE(c) is minimized using a
standard iterative algorithm for the eigenvalue problem. T
yields the ground-state vectoruc0& and its energyE0 in the
superblock subspace.

~2! The stateuA& is calculated.
~3! The functionalWA,h(v,c) is minimized using an it-

erative minimization algorithm. This gives the first part
the correction vectoruYA(v1 ih)& and the imaginary par
I A(v1 ih) of the dynamical correlation function.

~4! The second partuXA(v1 ih)& of the correction vector
is calculated using Eq.~11!.

~5! The real part and the derivatives of the dynamic
correlation function can be calculated from Eqs.~12a! and
~13!, respectively.

~6! The four statesuc0&, uA&, uYA(v1 ih)&, and uXA(v
1 ih)& are included as targets in the density-matrix ren
malization to build a new superblock at the next step.
4-3
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The robust finite-system DMRG algorithm must be us
to perform several sweeps through a lattice of fixed s
Sweeps are repeated until the procedure has converged t
minimum of both functionalsE(c) andWA,h(v,c).

To obtain the dynamical correlation functionGA(v
1 ih) over a range of frequencies, one has to repeat
calculation for several frequenciesv. If the DDMRG calcu-
lations are performed independently, the computational ef
is roughly proportional to the number of frequencies. It
also possible to carry out a DDMRG calculation for seve
frequencies simultaneously, including several statesuXA(v
1 ih)& anduYA(v1 ih)& with different frequenciesv as tar-
get. The optimal number of different frequencies to be
cluded in a single calculation depends strongly on the pr
lem studied and the computer used. As calculations
different frequencies are essentially independent, it would
easy and very efficient to perform these calculations o
parallel computer.

If one performs a DDMRG calculation for two close fre
quenciesv1 andv2 simultaneously, it is possible to calcula
the dynamical correlation function for additional frequenc
v betweenv1 and v2 without including the correspondin
states uXA(v1 ih)& and uYA(v1 ih)& as target in the
density-matrix renormalization. This approach can sign
cantly reduce the computer time necessary to determine
spectrum over a frequency range, but the results obtained
vÞv1 ,v2 are less accurate and not always reliable, as
DMRG basis is optimized for the frequenciesv1 and v2
only. ~A similar technique is the calculation of spectra wi
the Lanczos algorithm in the DMRG basis optimized for
pair of correction vectors, see Ref. 4.! Alternatively, between
the frequencies for whichGA(v1 ih) is determined directly
with DDMRG, we can calculate the dynamical correlati
function by interpolation using the DDMRG data for th
function and its derivative.

If a complete spectrumI A(v1 ih) has been obtained, it i
possible to calculate the moments of the spectral distribu
@the left-hand side of Eq.~6!#. The first few moments@the
right-hand side of Eq.~6!# can be calculated accurately usin
the Lanczos DMRG method.3,4 This provides an independen
check of DDMRG results.@Note that only the first sum rule
~6! is satisfied exactly forh.0.#

To calculate individual excited states contributing to t
spectrum in a given frequency range (v1 ,v2), one includes
a minimization of WA,h(v,c) with respect tov (v1,v
,v2) in the third step of the DDMRG algorithm describe
above. In this case,uYA(vmin1ih)& and uXA(vmin1ih)& are
included as targets in the sixth step. The parameterh must be
much smaller than the distanceEn112En between two suc-
cessive eigenstates contributing to the dynamical correla
function or must decrease during the calculation until
desired accuracy is obtained. To make the procedure robu
is necessary to simultaneously target a second correc
vector ucA(v1 ih)& with a fixed frequency and a paramet
h of the order of the frequency range. Typically, I usev
5(v11v2)/2 andh5(v22v1)/4.

Because of the variational principle, one naively expe
that the DDMRG results forI A(v1 ih) must converge
monotonically from below to the exact result as the num
04511
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m of density-matrix eigenstates is increased. In practice,
convergence is not always regular because of two appr
mations made to calculate the functionalWA,h(v,c) in a
DMRG basis. First, the ground-state energyE0 and the state
uA& used in the definition~14! of WA,h(v,c) are not known
exactly but calculated with DMRG. If the numberm of den-
sity matrix eigenstates is increased,E0 anduA& are modified
~they become progressively more accurate! and the func-
tional WA,h(v,c) is changed, which can affect its minimum
arbitrarily. We also note that errors of the order ofe in E0 or
uA& result in errors of the same order inI A(v1 ih). There-
fore, to observe a regular convergence with increasingm and
to obtain accurate results forI A(v1 ih), it is necessary in
the first place to determine the ground state and the stateuA&
with great precision~and thus to include the stateuA& as a
target!.

To calculate the functionalWA,h(v,c) in the third step of
the DDMRG algorithm, one needs an effective represen
tion of the operator (H2E02v)2 in the superblock sub-
space

@~H2E02v!2#eff5O†~H2E02v!2O, ~21!

where the operatorO represents the projection onto the s
perblock subspace. For a typical many-body HamiltonianH
such a calculation is excessively complicated and comp
tionally intensive. Therefore, I calculate an effective rep
sentation ofH only, Heff5O†HO, and assume that

@~H2E02v!2#eff'~Heff2E02v!2 ~22!

to calculateWA,h(v,c) in the superblock subspace. Th
second approximation can cause a violation of the variatio
bound WA,h(v,c)>2phI A(v1 ih). Fortunately, the sub-
stitution ~22! has no significant effect on the minimum o
WA,h(v,c) if the state (H2E02v)uYA(v1 ih)&}uXA(v
1 ih)& is accurately represented in the DMRG basis@i.e., if
OuXA(v1 ih)&'uXA(v1 ih)& for all superblock sub-
spaces#. Therefore, to use the substitution~22! without loss
of accuracy it is necessary and sufficient to include the s
uXA(v1 ih)& as a target in a DDMRG calculation, even
the real part of the dynamical correlation function is not c
culated.

In practice, for sufficiently largem, I have found that the
absolute values of errors in a spectrumI A(v1 ih) decrease
systematically with increasingm. Therefore, it is possible to
estimate the accuracy of a DDMRG calculation from t
results obtained for different values ofm as one can do for
static properties calculated with DMRG. Moreover, DDMR
results forI A(v1 ih) tend to be smaller than the exact res
for almost all frequencies although they can exceed it oc
sionally.

Obviously, DDMRG is very similar to the correction vec
tor DMRG.4,5 The same DMRG basis is built because t
same target states are used in both methods. As nume
errors are usually dominated by the DMRG basis truncati
the correction vector partsuXA(v1 ih)& and uYA(v1 ih)&
are calculated with the same precisione in both methods for
a given numberm of density-matrix eigenstates kept p
block. Nevertheless, the variational formulation has two s
4-4
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nificant advantages. First, the errors in the spectrumI A(v
1 ih), the excitation energiesEn2E0, and the spectra
weights are of the order ofe2 instead ofe in the correction
vector method, as explained in Sec. II. If one uses the La
zos algorithm instead of Eq.~8! in the correction vector
DMRG, errors become even larger. Therefore, DDMRG
sults are more accurate than those obtained with the co
tion vector DMRG for a given numberm of density-matrix
eigenstates. Second, a DDMRG calculation is essentially
application of the standard DMRG algorithm to the minim
zation of a different functional. In particular, the numeric
accuracy and computational effort are controlled by the s
parameterm in an optimized DDMRG calculation as in
ground-state DMRG calculation. The correction vec
DMRG ~Refs. 4 and 5! and Lanczos DMRG~Refs. 3 and 4!
are significantly more complicated than the standard DM
method. In particular, the numerical accuracy and comp
tional effort depend significantly and sometimes unpred
ably on the specific states~Lanczos vectors and correctio
vectors! included as targets in the density-matrix renorm
ization. Therefore, it is easier to implement and use DDMR
than the correction vector DMRG or the Lanczos DMRG

IV. FINITE-SIZE SCALING

DDMRG allows us to calculate spectral functions of
correlated electron~or spin! system on a finite lattice with a
broadening given by the parameterh.0. They have the ge
neric form

I N,h~v!5
1

p (
n

An~N!
h

@vn~N!2v#21h2
, ~23!

wherevn(N) denotes the excitation energy andAn(N).0
the spectral weight of the system eigenstates, andN is the
number of lattice sites. Such spectra are discrete forh→0
because there is only a finite number of eigenstates in a fi
system. In the thermodynamic limit, a spectral function

I ~v!5 lim
h→0

lim
N→`

I N,h~v! ~24!

can contain discrete and continuous parts.~It should be noted
that the order of limits in the above formula is important.! To
determine the properties of a dynamical spectrumI (v) in the
thermodynamic limit one has to analyze the scaling of
corresponding spectraI N,h(v) as a function of system size
Here I present a finite-size-scaling technique for spec
functions calculated with a numerical method such
DDMRG.

Computing both limits in Eq.~24! from numerical results
for I N,h(v) requires a lot of accurate data for different valu
of h and N and can be the source of large extrapolat
errors. A much better approach is to use a broaden
h(N).0 that decreases with increasingN and vanishes in
the thermodynamic limit. The dynamical spectrum is th
given by
04511
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I ~v!5 lim
N→`

I N,h(N)~v!

5 lim
N→`

1

p (
n

An~N!
h~N!

@vn~N!2v#21h2~N!
. ~25!

From the existence of both limits in Eq.~24! it can be dem-
onstrated that there exists a minimal broadeningh0(N)>0,
which decreases as a function ofN and converges to zero fo
N→`, such that the above equation is valid for all functio
h(N) with h(N).h0(N) and lim

N→`
h(N)50. The func-

tion h0(N) depends on the frequencyv considered. For a
finite lattice with N sites, let Mv,e(N) be the number of
excited states contributing to the spectral function in a sm
interval of width e around the frequencyv @i.e., uvn(N)
2vu,e/2#. If Mv,e(N) remains finite for anye.0 as N
→`, the spectral functionI (v) is discrete atv andh0(N)
50. Equivalently, one can take theh→0 limit first in Eq.
~24!. If Mv,e(N) diverges for alle.0 asN→`, the spec-
trum is dense atv and a minimal broadeningh0(N).0 is
required for Eq.~25! to be valid. For instance,h0(N) must
be larger than the distancedv5vn11(N)2vn(N) between
two consecutive excited states in the spectrum. Note
while a continuous spectrum is obviously dense, a de
spectrum can be continuous or discrete. For instance, an
finite number of excited states withAn(N).0 can converge
to the same energy asN→`. This seems to happen for th
optical conductivity associated with an exciton in a op
chain.9

The function h0(N) depends naturally on the specifi
problem studied@i.e., the scaling of the energiesvn(N) and
spectral weightsAn(N)#. For the optical conductivity of one
dimensional correlated electron systems such as the Pe
Hubbard model, I have found numerically that a sufficie
condition for all frequenciesv in a dense part of the optica
spectrum is

h>
c

N
, ~26!

where the constantc is comparable to the width of the dy
namical spectrumI (v), which is finite in such lattice mod-
els. Usually, one wants to keep the broadeningh as small as
possible because it reduces the resolution of the spect
Therefore, I use

h~N!5
c

N
~27!

in Eq. ~25! to analyze the finite-size scaling of spectral fun
tions calculated with DDMRG and to extrapolate the finit
size results to the thermodynamic limit. The condition~26!
has a very simple physical interpretation. The spectral fu
tion I N,h(v) represents the dynamical response of the sys
over a time period;1/h after one has started to apply a
external force. Typically, in a lattice model the spectral wid
is proportional to the velocity of the excitations involved
the system response. Thus the condition~26! means that ex-
4-5
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citations are too slow to travel the full length;N of the
system in the time interval;1/h and do not ‘‘sense’’ that the
system is finite.

An additional benefit of a broadening satisfying the co
dition ~26! is that the finite-system spectrumI N,h(v) be-
comes indistinguishable from the infinite-system spectr
with the same broadeningh for relatively smallN,

I N,h~v!'Ch@ I ~v!#. ~28!

Therefore, if one knows an exact or conjectured spec
function I (v) for an infinite system, its convolution with
Lorentzian of widthh can be compared directly with th
numerical results for the finite-system spectrumI N,h(v).
This approach has been applied successfully to the op
conductivity of one-dimensional Mott insulators in Refs.
and 9, and additional examples are presented in the foll
ing section.

In practice, the extrapolation scheme~25! works well at
fixed frequency for the continuous parts and the nonde
discrete parts of a spectrumI (v) only. To detect singularities
in I (v) and determine their properties, it is generally eas
to analyze the scaling of maxima inI N,h(v) or in its deriva-
tive as N→` and h→0. To perform this scaling analysi
one can use a size-dependent broadeningh(N) such that Eq.
~25! is valid and I N,h(v) is a good approximation o
Ch@ I (v)# around the maximum. Then the scaling of a ma
mum in I N,h(v) for h(N)→0 gives the scaling of the cor
responding maximum inCh@ I (v)# for h→0. Here I discuss
some examples of this technique which are useful for
analysis of the Peierls-Hubbard model optical conductiv
presented in the following section.@One should also note tha
to detect the presence of a gap between two bands in
infinite-system spectrumI (v), it is often faster and more
reliable to investigate the scaling of minima inI N,h(v) for
h(N)→0 than to perform extrapolations at fixed freque
cies.#

First, we consider an infinite-system spectrum with a pe
in a continuous band,

I ~v!5I 0d~v2v0!1I cont~v!, ~29!

for uv2v0u,L, where I 0.0 and I cont(v) is a continuous
function. It is easy to show that forh!L the maximum of
Ch@ I (v)# diverges asI 0 /(ph) and that the position of the
maximum converges tov0 for h→0. The maximum of the
corresponding finite-system spectraI N,h(v) has the same
scaling properties forh(N)→0. Therefore, it is possible to
detect such ad peak and determine its weightI 0 in an
infinite-system spectrum, even ifI 0 is only a small fraction
of the total spectral weight ofI cont.

Second, we consider an infinite-system spectrum wit
power-law divergence at the band edge,

I ~v!5I 0u~v2v0!uv2v0u2a, ~30!

for uv2v0u,L, whereu(x)50 for x,0 andu(x)51 for
x.0, I 0.0, and 0,a,1. One can show that forh!L the
maximum ofCh@ I (v)# diverges ash2a and that the position
of the maximum converges tov0 from above forh→0.
Again, the maximum of the corresponding finite-syste
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spectraI N,h(v) has the same scaling properties forh(N)
→0. Thus it is possible to detect such a singularity and
termine the exponenta from the finite-system numerica
data.

Third, we consider a continuous infinite-system spectr
with a singularity in its derivative,

I ~v!5I 0u~v2v0!uv2v0ua, ~31!

for uv2v0u,L, where the functionu(x) and the constants
I 0 anda are as in the previous example. Here the derivat
of Ch@ I (v)# has a maximum that diverges asha21 for h
!L, while its position converges tov0 from above ash
→0. The maximum in the derivative ofI N,h(v) has the
same scaling properties forh(N)→0. Therefore, it is pos-
sible to determine the exponenta from the finite-system nu-
merical data in this case too.

Finally, we consider a special function representing a c
tinuous spectrum above a gap and a truncated diverge
close to the band edge,

I ~v!5I 0u~v2v0!
2Av0uv2v0u
gv01uv2v0u

, ~32!

for uv2v0u,L, where g is a constant such that 0<g
,L/v0. The functionu(x) and the other constants are as
the previous examples. Forg.0 this spectrum vanishes as
square root at the band edgev0, goes through a maximum
I 0 /Ag at v5(11g)v0, then decreases monotonically. F
g!1 the maximum is very sharp and close to the band ed
andI (v) appears to diverge as 1/Auv2v0u at higher energy
v.(11g)v0. The continuous vanishing ofI (v) at the band
edge is apparent only in a small frequency rangev0,v
,(11g)v0. As g→0 this maximum becomes a square-ro
singularity atv0. A qualitatively similar behavior is often
found in the optical conductivity of one-dimensional insul
tors ~see the discussion in the following section!. Obviously,
the maximum ofCh@ I (v)# tends toI 0 /Ag and its position
converges tov5(11g)v0 for h→0. For g,1, however,
the convergence of the maximum becomes apparent only
h!gv0. For largerh the maximum appears to diverge a
1/Ah. Similarly, the maximum of the derivative diverges
1/Ah for h→0 as discussed in the previous example. In
present case, however, this scaling is not observed as so
h!L but only if h!gv0. The finite-system spectrum
I N,h(v) and its derivative have the same scaling proper
for h(N)→0. Therefore, with the scaling analysis of finite
system spectra it is possible to distinguish an infinite-sys
spectrum with a truncated divergence above the band e
from a spectrum with a real divergence at the band ed
provided that one can do calculations with a resolut
h(N)!gv0.

In summary, the dynamical spectrum of an infinite syst
can be determined accurately and efficiently from numer
data for finite-system spectra using a size-dependent br
ening h(N). The broadeningh(N) must be larger than a
minimal broadeningh0(N), which depends on the system
investigated and can vary with the frequency. Often t
broadening conceals the finite-size effects and one can
4-6
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rectly compare finite-system spectra to analytical results
infinite systems using a convolution with a Lorentzian dis
bution, see Eq.~28!. If this comparison is not possible or no
sufficient, specific points of the spectrum can be extrapola
to the thermodynamic limit using Eq.~25!. Finally, the scal-
ing of maxima in finite-system spectra or their derivativ
@for h(N)→0# allows us to find and analyze singularities
the infinite-system spectrum. For one-dimensional correla
electron systems a sufficient condition for the minim
broadening is given by Eq.~26! and one can use a size
dependent broadening~27!.

V. OPTICAL CONDUCTIVITY OF THE
PEIERLS-HUBBARD MODEL

In this section, I apply the DDMRG method and th
finite-size-scaling analysis to the optical conductivity of t
one-dimensional Peierls-Hubbard model.10 This model is de-
fined by the Hamiltonian

H5T1U(
l 51

N S nl ,↑2
1

2D S nl ,↓2
1

2D ~33!

with

T52(
l ;s

S t2~21! l
D

2 D ~cl ,s
† cl 11,s1cl 11,s

† cl ,s!. ~34!

It describes electrons with spins5↑,↓, which can hop be-
tween neighboring sites in a lattice with an even numberN of
sites. In Eq.~34! the indexl runs from 1 toN21 for an open
chain and from 1 toN if periodic boundary conditions ar
used. Herecl ,s

† andcl ,s are creation and annihilation oper
tors for electrons with spins at sitel andnl ,s5cl ,s

† cl ,s is the
corresponding density operator. The hopping integralt.0
gives rise to a single-electron band of width 4t. The dimer-
ization parameter 0<uDu<2t determines the strength of th
periodic lattice potential generated by the Peierls instabi
~For a finite open chain, I only useD>0 to avoid spurious
excitations at the chain ends.! The Coulomb repulsion is
mimicked by a local Hubbard interactionU>0. The number
of electrons equals the number of lattice sites.

The ground-state, single-particle charge gap and spin
of this system can be calculated with a great accuracy
lattices with up toN;103 sites using DMRG. The single
particle charge gap is given by

Ec~N!5E0~N11!1E0~N21!22E0~N!, ~35!

whereE0(M ) denotes the ground-state energy forM elec-
trons in anN-site system. For an even numberN of sites and
electrons, the Peierls-Hubbard model ground state i
singlet11 and the spin gap is given by

Es~N!5E0~Sz5\!2E0~Sz50!, ~36!

whereSz is thez component of the total spin andE0(Sz) is
the ground-state energy for a fixed value ofSz .

Spectroscopy with electromagnetic radiation is a comm
experimental probe of solid-state materials. The linear o
cal absorption is proportional to the real parts1(v) of the
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optical conductivity. Forv.0, s1(v) is related to the
imaginary part of the current-current correlation functi
GJ(\v1 ih) by

s1~v!5
p

Nav
lim
h→0

Im GJ~\v1 ih!

5
p

Nav (
n

u^c0uJucn&u2d~\v1E02En!. ~37!

Here uc0& is the ground state of the HamiltonianH, ucn&
(n.1) are the other eigenstates ofH, andE0 , En are their
respective eigenenergies. In this model the current oper
is

J5
iae

\ (
l ;s

S t2~21! l
D

2 D ~cl ,s
† cl 11,s2cl 11,s

† cl ,s!,

~38!

wherea is the lattice constant,2e is the charge of an elec
tron, and the indexl takes the same values depending on
boundary conditions as in Eq.~34!. Note that this is the
natural definition of the current operator for both types
boundary conditions. The Parzen filter used for open bou
ary conditions in other works6,7 is not necessary and thus
not used in this work.

In an open chain the optical absorption is also related
the dynamical polarizabilitya(v), which is given by the
imaginary part of the dipole-dipole correlation functio
GD(\v1 ih),

a~v!5
p

Na
lim
h→0

ImGD~\v1 ih!

5
p

Na (
n

u^c0uDucn&u2d~\v1E02En!. ~39!

For a constant lattice spacinga the dipole operator is

D52ea(
l 51

N

l ~nl21! ~40!

with nl5nl ,↑1nl ,↓ . Using the relationJ52 i @D,H#/\ one
easily proves that

s1~v!5va~v! ~41!

and

s1~v!5
p

Na\
lim
h→0

Im$~\v1 ih!GD~\v1 ih!%. ~42!

The optical conductivity can be calculated with th
DDMRG method described in this paper. For an open ch
Eqs.~37!, ~39!, and~42! provide us with three different ap
proaches. First, one can calculate the imaginary part of
current-current correlation function with DDMRG and u
Eq. ~37! to obtain the convolution of the reduced optic
conductivity,
4-7
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Ch@vs1~v!#5
p

Na
Im GJ~\v1 ih!

5
1

Na (
n

hu^c0uJucn&u2

~\v1E02En!21h2
. ~43!

This is also the only approach possible with periodic bou
ary conditions. Second, one can calculate the imaginary
of the dipole-dipole correlation function with DDMRG an
use Eq.~39! to obtain the convolution of the dynamical po
larizability,

Ch@a~v!#5
p

Na
Im GD~\v1 ih!

5
1

Na (
n

hu^c0uDucn&u2

~\v1E02En!21h2
. ~44!

The optical conductivity is then given by the relation~41!.
Finally, one can calculate the complete dipole-dipole cor
lation function with DDMRG and use Eq.~42! to obtain the
convolution ofs1(v) directly,

Ch@s1~v!#5
p

Na\
Im$~\v1 ih!GD~\v1 ih!%

5
1

Na\ (
n

hu^c0uDucn&u2~En2E0!

~\v1E02En!21h2
. ~45!

Ch@s1(v)# can also be formulated in terms of the curre
matrix elementsu^c0uJucn&u2 @see Eq.~4! of Ref. 9#. Al-
though the real part of a dynamical correlation function
used in Eq.~45! to calculate the optical conductivity, its rela
tive contribution toCh@s1(v)# is of the order (h/t)2. There-
fore, the numerical precision is not significantly reduced
the lower accuracy of DDMRG for the real part of dynamic
correlation functions.

Clearly, all three approaches give the same spect
s1(v) for h→0. In DDMRG calculations withh.0, how-
ever, they are not equivalent. First, I have found that it
easier to calculate the dipole-dipole correlation funct
GD(\v1 ih) than the current-current correlation functio
GJ(\v1 ih), except for very strong couplingU@t. Second,
the finite-size scaling@using a size-dependent broadeni
~27!# is different for the three optical spectr
Ch@vs1(v)#/v, vCh@a(v)#, and Ch@s1(v)#, especially
for very small and very large frequenciesv. Usually,
Ch@s1(v)# is the best approximation tos1(v) but at low
energy (\v,t), it can be more convenient to us
vCh@a(v)# while at high energy (\v@t) I prefer
Ch@vs1(v)#.

To calculate the optical spectrum of the Peierls-Hubb
model, I have used the third approach, Eq.~45!, in most
cases. ThusCh@s1(v)# is shown in the figures of this pape
unless I state explicitly otherwise. Only optical spectra c
culated with open boundary conditions are presented. As
size-dependent broadening~27! conceals most of the finite
size effects, spectra calculated with periodic boundary c
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ditions would be almost identical. In all figures showing o
tical spectra I seta5e5\5t51. Thuss1(v) is shown in
units of e2a/\, vs1(v) in units of e2at/\2, and the fre-
quencyv in units of t/\.

The sum rules~6! take a simple form for the optical con
ductivity in the Peierls-Hubbard model with open bounda
conditions

\

pE0

`

dvvs1~v!5
1

Na
^c0uJ2uc0&, ~46a!

\

pE0

`

dvs1~v!5
2ae2

2N\
^c0uTuc0&, ~46b!

\

pE0

`

dv
s1~v!

v
5

1

Na
^c0uD2uc0&. ~46c!

To prove the second sum rule~46b! one uses the relation
@D,J#52 ia2e2T/\. With periodic boundary conditions
only the first two sum rules remain valid. In the second s
rule, however, one must take into account the coherent
of the conductivity atv50 and the proof is more compli
cated than for an open chain.

The right-hand side of Eq.~46! can be calculated accu
rately with the ground-state or Lanczos DMRG metho
Note that forh.0 an optical spectrum calculated from E
~43!, ~45!, or ~44! exactly fulfills the sum rule~46a!, ~46b!,
or ~46c!, respectively. For the DDMRG results presented
this paper, the sum rules are fulfilled within a few percen

The optical gapEopt(N) is defined as the excitation en
ergy (En2E0) of the lowest eigenstate contributing to th
optical conductivity~i.e., ^cnuJuc0&Þ0) in anN-site system.
Eopt(N) can be calculated with the DDMRG method for in
dividual excited states described in Sec. III. As the Peie
Hubbard Hamiltonian~33! has a particle-hole symmetry th
optical gap can also be determined using the symmetr
DMRG method.12 As expected, both approaches give t
same results forEopt(N) within numerical errors. In the ther
modynamic limit (N→`) I have found that the optical ga
Eopt is equal to the single-particle charge gapEc @Eq. ~35!#
for all U>0 and 2t.D>0. @In the dimer limit (D52t) the
Hamiltonian ~33! describes independent dimers: the optic
weight is concentrated in a single peak corresponding
Frenkel excitons localized on a dimer, and the other~delo-
calized! excitations above and below this peak carry no o
tical weight, thusEc,Eopt.# In a finite system or with addi-
tional electronic interactions9 the single-particle charge ga
Ec can be different from the optical gapEopt.

All DMRG methods have a truncation error which is r
duced by increasing the numberm of retained density-matrix
eigenstates~for more details, see Refs. 1 and 2!. Varying m
allows one to compute physical quantities for different tru
cation errors and thus to obtain error estimates on th
quantities. For some quantities, especially eigenenergies,
possible to extrapolate the results to the limit of vanish
truncation error and thus to achieve a greater accurac
4-8
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have systematically used these procedures to estimate
precision of my numerical calculations and adjusted
maximal numberm of density matrix eigenstates to reach
desired accuracy. This is especially important for DDMR
calculations as truncation errors in dynamical spectra
greatly vary as a function of the frequencyv for fixed m. In
this work the largest number of density-matrix eigensta
used ism5600. For all numerical results presented he
DMRG truncation errors are negligible.

In the following three sections, I demonstrate the fini
size-scaling technique and the accuracy of DDMRG on th
special limits of the Peierls-Hubbard model. Then the opti
conductivity of a Mott-Peierls insulator is presented and d
cussed in the fourth section.

A. Peierls insulator

For U50 the Hamiltonian~33! describes a system of in
dependent electrons, which can be solved exactly for
value of D, boundary conditions, or lattice size. This pr
vides us with a perfect test case for the DDMRG method
have checked that DDMRG can reproduce the optical sp
trum of this system on lattices with several hundred sites,
any frequencyv, and with relative errors as small as 1024

using only a few hundred density-matrix eigenstates. T
demonstrates that one can obtain almost exact results fo
optical conductivity of finite one-dimensional systems, su
as the Peierls-Hubbard model using DDMRG.

In the thermodynamic limit the Hamiltonian~33! de-
scribes a Peierls~band! insulating phase forDÞ0 and U
50. The optical gapEopt, the charge gapEc , and the spin
gapEs equal 2uDu. Optical excitations are made of one ho
in the valence band and one electron in the conduction b
The optical conductivity is given by

s1~v!5
ae2~2D!2~4t !2

2\~\v!2A@~\v!22~2D!2#@~4t !22~\v!2#
~47!

for 2uDu,\v,4t and is zero elsewhere.13 This optical
spectrum contains a single band of width 4t22uDu with
square-root divergences at both band edges. These d
gences are a typical feature of a one-dimensional band i
lator. The convolution of Eq.~47! with a Lorentzian distri-
bution of width h/t50.05 is shown in Fig. 1 forD50.6t.
Both divergences are replaced by maxima at\v'2D
51.2t and \v'4t. In Fig. 1, I also show the optical con
ductivity calculated with DDMRG on a 128-site lattice wit
the same broadening. We see that the finite-system op
spectrum is indistinguishable from the infinite-system sp
trum. The broadeningh/t50.05 satisfies the condition~26!
and thus conceals the finite-size effects as discussed in
IV. In this case a broadeningh(N)/t56.4/N is enough be-
cause the spectrum band width is smaller than 4t.

With this size-dependent broadeningh(N) one can use
Eq. ~25! to extrapolate the finite-size DDMRG results to t
thermodynamic limit. For instance, for\v52.6t, I have ob-
taineds1(v)50.245~in units of ae2/\) using data for sys-
tems with up toN5256 sites@i.e., with a broadening down
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to h(N)/t50.025#, in excellent agreement with the exa
result 0.243. If we did not know the exact result~47!, we
could nevertheless determine the existence of square-roo
vergences at both band edges using a scaling analysis o
maxima in the DDMRG spectra. For instance, the height
the low-energy maximum~close to\v51.2t) diverges as
1/Ah for h(N)→0 @see Fig. 2~a!#. Moreover, the position of
the maximum tends from above to the optical gapEopt
52D51.2t for N→` @see Fig. 2~b!#. As explained in Sec.
IV these scaling properties correspond to a square-root di
gence at the band edge. Figure 2~b! also shows the finite-size
optical gapsEopt(N) calculated with the DDMRG method
for individual excited states. They tend to the exact res
Eopt51.2t for N→` as expected.

B. Mott-Hubbard insulator

For D50 the Peierls-Hubbard model~33! becomes the
one-dimensional Hubbard model at half-filling. ForU.0
this model describes a Mott-Hubbard insulator with gapl
spin excitations.14 The optical conductivity of this system ha
recently been determined using DDMRG and analyti
methods.8 Here I only summarize the most important resu
and give more information about the finite-size-scali
analysis carried out in this previous work.

In the half-filled Hubbard model an optical excitation
made of a pair of spinless bosonic excitations carrying
posite charges in the lower~holon! and upper~doublon or
antiholon! Hubbard bands, respectively. As in a Peierls ins
lator, the optical spectrum consists of a single band but
width is larger, about 8t. A second distinctive feature of thi
spectrum is a square root vanishing,s1(v);A\v2Eopt, at
the band thresholdEopt. There is also a tiny peak in th
middle of the band, at least forU>4t.

In Ref. 8 it is shown that for weak coupling (U<3t) and
in the strong-coupling limit (U/t→`) the finite-system op-
tical spectra calculated with DDMRG agree perfectly w
the analytical results obtained in the thermodynamic lim
using a field-theoretical approach and a strong-coup
analysis, respectively. For instance, Fig. 3 shows the lo
energy parts of DDMRG spectra calculated for three diff
ent lattice sizes atU53t and the corresponding field
theoretical spectrum for an infinite system. A size-depend

FIG. 1. Optical conductivity of a Peierls insulator withD
50.6t and a broadeningh/t50.05. Both the DDMRG result for a
128-site chain and the exact result~47! in the thermodynamic limit
are shown.
4-9
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FIG. 2. ~a! Maximumsmax of the optical spectrums1(v) as a function of the broadeningh(N). ~b! Position of the spectrum maximum
Emax5\vmax ~square! and optical gapEopt ~circle! as a function of system sizeN. In both figures, filled symbols correspond to th
Mott-Hubbard insulator@U54t,h(N)N512.8t# and open symbols to the Peierls insulator@D50.6t,h(N)N56.4t#.
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broadeningh(N)/t512.8/N is used in this case. One clear
sees the convergence of the finite-size spectra toward
field-theoretical result ash(N) decreases. To make a quan
tative comparison one can calculate the convolution of
field-theoretical spectrum with a Lorentzian of widthh sat-
isfying the condition~26! as discussed in Sec. IV. One find
then that finite-size effects are completely concealed by
broadening even for relatively small system sizes. For
stance, it is shown in Fig. 3 of Ref. 8 that the low-ener
optical spectrum calculated on a 128-site lattice forU53t is
indistinguishable from the field-theoretical spectrum with t
same broadeningh/t50.1. In the strong-coupling limit,
DDMRG and analytical results agree even better and fin
size effects are no longer visible for systems as small aN
532.

For other coupling strengths (4<U/t,`) it is necessary
to analyze the scaling of the finite-system DDMRG spec
to determine the optical conductivity of the Hubbard mod
in the thermodynamic limit. Using numerical results for la
tices with up toN5256 sites@i.e., a resolutionh(N)/t down
to 0.05#, I have found that for allU/t the optical conductivity
at the lower band edge has the qualitative behavior descr
by Eq. ~32!: s1(v) vanishes asA\v2Eopt at the band

FIG. 3. Optical conductivity of the Hubbard model withU
53t for several values ofh. Results forh(N).0 have been cal-
culated with DDMRG onN-site lattices withh(N)N512.8t. For
h50 the field-theoretical result for an infinite system is shown.
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threshold and there is a maximum ins1(v) at a frequency
v5(11g)Eopt/\, whereg is a small number. Field theory
predicts the same behavior withg'0.24 in the weak-
coupling limit, while the strong-coupling analysis gives
maximum at\v5U5Eopt14t, and thusg vanishes ast/U
for U@t. The distancegEopt between the spectrum thresho
and the maximum increases withU/t. For U>4t this dis-
tance is large enough to determine the finite-size scaling
the lower band edge using systems with up toN5256 sites.
As an example, Fig. 2~a! shows the low-energy maximum i
the optical spectrums1(v) calculated with DDMRG forU
54t as a function ofh(N). The contrast between the Mot
Hubbard insulator and the Peierls insulator is striking and
maximum in the Mott-Hubbard insulator optical spectru
clearly tends to a constant forh(N)→0. @For U54t the
optical gap of the Hubbard model is comparable to that
the Peierls insulator withD50.6t, so that a direct compari
son of both systems is relevant.# In Fig. 2~b! one sees that the
finite-size optical gaps calculated with DDMRG converge
the exact result14 Eopt51.287t in the thermodynamic limit,
but the maximum tends to a higher energy\v'1.7t. There-
fore, one can conclude that there is no divergence at
optical conductivity threshold\v5Eopt. Moreover, it is
possible to confirm thats1(v) vanishes asA\v2Eopt at the
lower band edge using either a similar scaling analysis
the derivative of DDMRG spectra or a direct comparis
with the convolution of functions such as Eq.~32! or the
field-theoretical optical spectrum.8

For very weak coupling one would need to calcula
s1(v) for very large system sizes in order to perform t
same scaling analysis. BecauseEopt vanishes exponentially
with U/t and the scaling analysis must be performed in
asymptotic regimeh(N),gEopt, the required system sizeN
increases exponentially ast/Eopt for U/t→0. Fortunately, it
is not necessary to carry out this analysis for the Hubb
model because the optical conductivity of the weak-coupl
field theory is already in excellent agreement with the opti
conductivity of the lattice model forU53t.
4-10
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C. Strong-coupling limit

In this section, I discuss the special case of a Mott-Pei
insulator (DÞ0,U.0) in the strong-coupling limitU/t→`,
for which the shape of the optical spectrum is know
analytically.15 In this limit there is exactly one electron o
each site in the ground state of the Peierls-Hubbard Ha
tonian~33!. An optical excitation moves one electron from
site to another and thus creates a double occupation~dou-
blon! and an empty site~holon!. Therefore, the optical gap i
of the order ofU. These elementary charge excitations a
spinless bosons as in the Hubbard model. The propertie
the spin degrees of freedom are determined by an effec
Heisenberg model with alternating exchange couplingsJ1
;(t1D/2)2/U andJ2;(t2D/2)2/U. The spin gapEs van-
ishes in the limitU→`. However, as there is a gap in th
spin excitation spectrum for any finiteU/t ~see also the fol-
lowing section!, the structure of the spin ground state in t
limit U/t→` is actually similar to that of a gapped state. F
instance, the antiferromagnetic spin-spin correlations
creases exponentially with increasing distance. Thus,
strong-coupling limit of the Peierls-Hubbard model is diffe
ent from the two limiting cases discussed previously a
from the general case presented in the following section

In the thermodynamic limit the optical conductivity ca
be calculated analytically using some reasona
assumptions.15 If 0 ,uDu,2t, the spectrum consists of tw
bands for 2uDu<u\v2Uu<2t,

s1~v!5
g0e2a

8\

A@~\V!22~2D!2#@~4t !22~\V!2#

\vu\Vu
,

~48!

where\V5\v2U, and ad peak at\v5U,

s1~v!5
pgpe2at2

\U
d~\v2U ! ~49!

in the middle of the gap 4uDu separating the bands. ForD
→0 one recovers the optical spectrum of the Hubbard mo
in the strong-coupling limit, which consists of a single ba
and ad peak in the middle of this band.8,15The prefactorsg0
and gp are spin form factors given by ground-state sp
correlation functions. They are functions of the effecti
exchange-coupling ratioJ2 /J1 and thus ofd5uD/2tu. As-
suming a dimer spin ground state~i.e.,J1.0 andJ250) one
obtainsg059/4 and

gp5
1132d162d2132d31d4

4~11d!2
. ~50!

This result becomes exact in the dimer limituDu52t, where
gp58. ForD→0 the dimer spin ground state does not gi
the correct form factors because it is known exactly thatg0
1gp54 ln(2) and it was found numerically thatgp /g0
'1022 ~see Ref. 8!.

Figure 4 shows the reduced optical conductiv
Ch@vs1(v)# calculated using DDMRG on a 128-site lattic
for D50.6t and h/t50.1. A logarithmic scale is used t
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make visible the weak bands on both sides of the str
central peak. In Fig. 4 one can recognize the spectral sh
predicted by the strong-coupling analysis. To make a qu
titative comparison, however, it is first necessary to de
mine g0 andgp using the finite-size-scaling analysis of Se
IV. Here I use a size-dependent broadeningh(N)/t
512.8/N as for the Hubbard model because the spec
width is also of the order of 8t. For \v5U22t, DDMRG
results forCh@vs1(v)# tend to 0.78~in units of e2at/\2)
for N→`. Comparison with Eq.~48! then yieldsg0'2.2. In
Fig. 4, I also show the two bands~48! with this value ofg0

~without broadening!. The agreement with the finite-syste
DDMRG spectrum is excellent. The small deviations visib
close to the band edges are due to the different value
broadening used for the numerical result (h/t50.1) and for
the analytical result (h50). They vanish if the same broad
ening is used in both calculations. Once more this confir
that a broadening satisfying Eq.~26! hides most finite-size
effects in this model as already shown by other example
Sec. V A of this paper and in Refs. 8 and 9. In the DDMR
spectraCh@vs1(v)# the height of the central peak diverge
as 2.42t/h ~in units of e2at/\2) for decreasingh(N) but its
position does not change. This confirms that it correspond
a d peak at\v5U and gives an estimategp'2.42. Thisd
peak broadened with a Lorentzian distribution of widthh/t
50.1 is also shown in Fig. 4. One sees that the agreem
with the DDMRG result is perfect. A similar finite-size sca
ing was performed to determine the form factorgp in the
Hubbard model.8

One notes the surprisingly good agreement between
form factors determined numerically with DDMRG (g0
'2.2 andgp'2.42) and those obtained using the appro
mation of a dimer spin ground state (g052.25 and gp

'2.52). For the valueD50.6t used in this example, the
ratio J2 /J1'0.29 of the effective exchange coupling is a
ready quite small and thus the dimer spin ground state
probably a very good approximation of the actual sp
ground state.

FIG. 4. Reduced optical conductivityCh@vs1(v)# as a func-
tion of \V5\v2U in the strong-coupling limitU@t for D
50.6t. The solid line is the DDMRG result, Eq.~43!, for a 128-site
lattice with a broadeningh/t50.1. The dot-dashed line is a Loren
zian distribution of widthh/t50.1 centered at\v5U. The two
dashed lines represent the analytical result~48! for the continuum of
an infinite system (h50). Note the logarithmic scale of the ord
nate axis.
4-11
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FIG. 5. Charge~diamond! and
spin ~circle! gaps extrapolated to
the thermodynamic limit.~a! As a
function of U for D50.6t. ~b! As
a function ofD for U54t.
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D. Mott-Peierls insulator

The optical conductivity of the Peierls-Hubbard model
not known for general interaction parametersU.0 and 2t
.uDu.0. In this regime the system is in a Mott-Peierls i
sulating phase:10 both a periodic lattice potential~i.e., the
alternating hopping terms! and electronic correlations con
tribute to the formation of a charge gapEc.0 and there is a
finite spin gapEs.0. Numerical investigations of the charg
and spin gaps and of static correlation functions reveal
phase transition at finiteU and intermediateD ~see also Ref.
10 and references therein!. Thus the entire parameter spa
(0,U/t,`,0,uDu,2t) belongs to a single Mott-Peierl
insulating phase. Figure 5 shows charge and spin gaps
function of U and D. These gaps have been calculated
lattices with up toN5400 sites using DMRG and extrapo
lated to the thermodynamic limit. The charge gap of t
Mott-Peierls insulator is always larger than the gap of
Mott-Hubbard and Peierls insulators in theD50 andU50
limits, respectively. The spin gap is always smaller than
charge gap in the Mott-Peierls phase.

In the thermodynamic limit the optical gapEopt is equal to
the charge gap. The nature of the optical excitations in
Mott-Peierls insulator is not well understood. Despite t
obvious difference between charge and spin excitation e
gies,Es,Ec , it is not even known if there is a spin-charg
separation for single-particle excitations. Optical excitatio
could consist of a pair of fermionic quasiparticles with o
posite spins6s and opposite charges6e as in a Peierls
insulator ~Sec. V A!. They could as well be made of tw
spinless bosonic excitations carrying opposite charges6e as
in the Mott-Hubbard insulator~Sec. V B! and in the strong-
coupling limit ~Sec. V C!.

The investigation of spin and charge gaps and static
relation functions clearly shows that the three special ca
described in the preceding sections are singular limits of
Peierls-Hubbard model. Unsurprisingly, I have found that
optical conductivity in the Mott-Peierls phase is unlike t
simple spectrum observed in these limits.@All optical spectra
presented in this section have been calculated u
DDMRG and the finite-size-scaling analysis has always b
performed using a size-dependent broadeningh(N)/t
512.8/N.#

For large but finiteU the optical spectrum consists o
three bands: a narrow band with a strong singularity aro
\v5U and one weak band on each side of this central pe
The singularity seems to be made of two very close pow
law divergences which merge to form the single isolatedd
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peak~49! in theU/t→` limit. The optical spectrum starts a
A\v2Eopt at the lower band edgeEopt for all uDu,2t. Fig-
ure 6 shows the reduced optical conductivityCh@vs1(v)#
for U540t andD50.6t. The spectrum looks very similar to
the spectrum forU/t→`, which is again shown in this fig-
ure. A finite-size-scaling analysis shows however that
strong central peak is not ad function for U540t but a
narrow band with at least one singularity diverging ash20.8.
The spectra in Fig. 6 are made of three bands: the g
between the bands appear as local minima on both side
the central peak because of the relatively large broaden
used (h/t50.1). The finite-size-scaling analysis confirms t
existence of these gaps. For decreasing parametersU or uDu
first the lower gap, then the upper gap close. Therefore,
number of bands in the optical spectrum of the Mott-Peie
insulator is not constant but depends on the interaction
rametersU andD.

The evolution of the optical conductivity as a function
U is very interesting. For decreasingU/t one observes tha
the central peak breaks into two peaks appearing as l
maxima in the broadened spectrum of finite-size syste
The first peak~at the lowest energy! takes over most of the
optical weight of the central peak. Its weight decreases p
gressively with decreasingU/t but remains strong even fo
small U. In Fig. 7, it is clearly visible~at \v.4t) even for
U52t ~with D50.6t). This peak corresponds to a powe
law divergence within a band with an exponent that tends
21/2 for U→0. The peak position moves to lower energy
U decreases and reaches\v54t for U50. Therefore, the
central peak observed at strong couplingU@t corresponds
to the upper square-root divergence in the Peierls insul
spectrum~47!. ~In Fig. 7 this divergence is barely visible a

FIG. 6. Reduced optical conductivityCh@vs1(v)# calculated
with DDMRG @see Eq.~43!# on a 128-site lattice (h/t50.1) in the
strong-coupling regime forD50.6t as a function of\V5\v2U.
Note the logarithmic scale of the ordinate axis.
4-12
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a local maximum at\v'4t because of the relatively larg
broadeningh/t50.2 used.! The second peak has very littl
optical weight~it is not visible in Fig. 7! and I have not been
able to determine its structure.

For U@t the optical weight is distributed symmetrical
around the central peak, as seen in Fig. 6. AsU decreases
there is a progressive transfer of optical weight from h
frequency~above the central peak! to low frequency~below
the central peak!, see Fig. 7. The high-frequency spectru
becomes very weak for smallU/t but it completely disap-
pears only atU50. It is difficult to determine the spectra
width for general parameters because the optical condu
ity is very weak and vanishes smoothly at high frequenc
estimate that the width of the spectrum lies between 4t and
8t for U.0. The smallest width is reached for largeD and
small U, the largest for smallD and largeU. The low-
frequency spectrum becomes stronger asU diminishes. The
local maximum below the central peak~seen in Fig. 6! pro-
gressively rises, moves closer to the lower band edge,
transforms into a strong narrow peak, visible in the spec
shown in Fig. 7~at \v,4t). For small enoughU/t this
low-energy peak contains more optical weight than the c
tral peak. ForU→0 the low-energy peak becomes th
square-root divergence of the Peierls insulator spectrum~47!
at the band thresholdEopt.

For U.0, however, my results suggest that the opti
spectrum always vanishes smoothly at the optical ga
think that the low-energy optical spectrum of the Peier
Hubbard model at weak coupling has a qualitative beha
similar to that of the Hubbard model: as\v2Eopt decreases
s1(v) first appears to diverge as (\v2Eopt)

21/2, then goes
through a maximum just above the optical gapEopt, and
vanishes smoothly for\v→Eopt. For large enoughU it is
possible to carry out a finite-size-scaling analysis similar
that performed for the Hubbard model~see Sec. V B!. Thus it
is possible to check that the low-energy spectrum maxim
is finite and lies at a higher energy than the optical gap,
to show explicitly thats1(v);A\v2Eopt for \v2Eopt
→01.

For smallerU it becomes increasingly difficult to distin
guish a smooth spectrum with a truncated divergence fro
true divergence. For instance, Fig. 8 shows the lo
frequency optical conductivityvCh@s1(v)/v# for U52.3t
and D50.15t with a broadeningh/t50.1 (N5128 sites!.
For comparison, I also show the spectra in the two lim

FIG. 7. Optical conductivitys1(v) calculated with DDMRG on
a 64-site lattice (h/t50.2) for D50.6t and several values ofU.
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discussed previously, the Mott-Hubbard insulator@s1(v)
;A\v2Eopt#, and the Peierls insulator @s1(v)
;1/A\v2Eopt#, with similar optical gaps (Eopt/t50.6
20.7) and the same broadeningh. Clearly, the Mott-Peierls
insulator spectrum looks like an intermediate case betw
the spectra observed in both limiting cases. The position
the maximum in the Mott-Peierls insulator spectrum tends
0.78t for h(N)→0, while the charge gap~and optical gap!
equals 0.704t in the thermodynamic limit. Certainly, there i
no divergence in the low-energy optical spectrum. Howev
the maximum seems to diverge as 1/Ah even for the smalles
broadening I have used (h/t50.05). Thus this spectrum
seems to be qualitatively similar to a function such as E
~32!, but the maximum is so close to the optical gap th
broadeningsh significantly smaller than 0.05t ~i.e., system
sizes much larger thanN5256) would be necessary to reac
the asymptotic regime as discussed in Sec. IV. For the s
reason it is not possible to determine how the spectrum v
ishes for\v2Eopt→01 in such a case

In the Hubbard model it is possible to confirm the absen
of a singularity and the square-root vanishing at the ba
threshold even if the optical gap is as small asEopt50.4t,
because we know the optical spectrum of an infinite sys
for Eopt→0 from field theory.8 The field theory approach
does not only apply to the Hubbard model, but more gen
ally, gives the low-energy optical spectrum of on
dimensional Mott insulators with small Mott gaps.9,16 The
different spectral functions depend only on an interact
parameterb2<1. In addition, the optical gapEopt.0 and a
normalization constant set the frequency scale and the
ductivity scale. For 1/2,b2<1 these optical spectra de
scribed truncated square-root divergence with a square-
vanishing at the band threshold as in Eq.~32!. For b251
~Hubbard model! the spectrum has the shape shown in Fig
with a maximum at 1.24Eopt. As b2 decreases the peak be
comes sharper and the maximum moves closer to the b
edge. Forb251/2 the optical spectrum is similar to that of
Peierls band insulator with a square-root divergence at
band threshold.

FIG. 8. Optical conductivity vCh@a(v)# calculated with
DDMRG @see Eq.~44!# on a 128-site lattice (h/t50.1) in the small
gap regime: Mott-Hubbard insulator withU53t ~dashed!, Peierls
insulator withD50.3t ~dot-dashed!, and Peierls-Hubbard insulato
with U52.3t and D50.15t ~solid!. The optical gaps areEopt

50.631t, 0.6t, and 0.704t, respectively.
4-13
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ERIC JECKELMANN PHYSICAL REVIEW B66, 045114 ~2002!
Therefore, this field theory9,16 can describe the optica
spectrum in both the limiting cases~Mott-Hubbard and
Peierls insulators! of the Peierls-Hubbard model in the sma
gap regime, and the field-theoretical spectrum evolves c
tinuously from one limit to the other withb2 going from 1 to
1/2. Using 1>b2>1/2, the optical gapEopt, and the normal-
ization constant as fit parameters, I have compared the
energy optical conductivity calculated with DDMRG fo
small gaps (Eopt,0.71t) to field-theoretical spectra with
similar broadening as explained in Sec. IV. For instance
show in Fig. 9 the DDMRG spectrum for the lattice mod
~33! with U52.3t and D50.15t and the fitted field-
theoretical spectrum withb250.58. Both spectra agree up
\v51.2t'1.7Eopt. Generally, I have found that the optic
spectrum of a Mott-Peierls insulator can be fitted by a fie
theoretical spectrum withb2.1/2 over a finite frequency
range, fromv50 to a frequencyv, which lies between the
position of the low-energy maximum and 2Eopt/\. ~Natu-
rally, for U→0 the best fit is always obtained withb251/2.!
Therefore, I think that for anyU.0 ~and 0<uDu,2t) the
optical spectrum vanishes asA\v2Eopt for \v2Eopt→01.

Note that I do not assume that the field-theoretical cal
lations in Refs. 9 and 16 are also valid for the Peier
Hubbard model with general interaction parameters. Ac
ally, there are visible discrepancies starting at rather
energy between field theory and DDMRG results for the
tice model, as shown in Fig. 9. The agreement between fi
theory and DDMRG results in the region of the band thre
old simply means that the optical spectra in Mott-Peie

FIG. 9. Optical conductivitys1(v) of a Mott-Peierls insulator
calculated with DDMRG on a 128-site lattice (h/t50.1) for U
52.3t and D50.15t ~dashed! and the fitted field-theoretical spec
trum for Mott insulators withb250.58 and the same broadenin
h/t ~solid!.
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insulators and in one-dimensional Mott insulators have si
lar shapes just above the optical gap.

Finally, it is interesting to examine the evolution of th
optical spectrum from weak to strong bond alternation
fixed U. It has been shown in Ref. 8~see also Sec. V B! that
for D50 ~Hubbard model! the spectrum consists of a sing
band, with a maximum close to the lower band edge an
tiny peak in the center~at least forU>4t). If uDu increases
one observes in Fig. 10~a! that the maximum moves closer t
the optical gap and corresponds to a sharper peak. The
cal spectrum still starts asA\v2Eopt at the band threshold
as discussed above. The central peak, which is too wea
be seen in Fig. 10~a! for D50, becomes rapidly stronger a
uDu increases and is clearly visible forD50.4t. As discussed
previously this peak becomes ad function in the strong-
coupling limit U@t and corresponds to the upper square-r
divergence of the Peierls insulator ifU vanishes. For moder
ate uDu the ratio between the hopping integralsr (D)5(t
2uDu/2)/(t1uDu/2) is not too small and the optical weight
mostly concentrated below the central peak. If this ratio
comes small, however, the central peak becomes the s
trum dominant feature, see Fig. 10~b!. The proportion of the
optical weight that is in the central peak increases as
2r 2(D) for r (D)→0. A finite-size-scaling analysis confirm
however that this peak is not ad function but is still a power-
law divergence within an excitation band. Only in the dim
limit uDu52t@r (D)50# the optical spectrum is made of
singled peak, which corresponds to the excitation of Fren
excitons localized on a dimer.

In summary, the optical spectrum of a Mott-Peierls ins
lator consists of one or more bands with a total spec
width ranging from 4t to 8t. The distinctive features of the
spectrum are a square-root vanishing ofs1(v) at the lower
band edge and a peak due to a power-law singularity aro
the middle of the spectrum. For strong couplings@U@t and
r (uDu)!1# most of the optical weight is in the central pea
while for weak couplings@U!4t and r (uDu).1/2# it is
mostly concentrated in a narrow peak just above the opt
gap. In the limit of a vanishing gap (U→0 andD→0) this
narrow peak becomes a Drude peak atv50. For intermedi-
ate couplings most of the optical weight is distributed ove
broad frequency range between the optical gap and the
tral peak ands1(v) goes through a maximum in this rang

The central peak always appears at an energy larger
the bare bandwidth 4t. For parameters that are realistic fo
conjugated polymers,10 most of the optical weight lies below
FIG. 10. Optical conductivity
s1(v) calculated with DDMRG
on a 64-site lattice (h/t50.2) for
U54t and several values ofD.
~a! For r (D).0.5. ~b! For r (D)
,0.5.
4-14



b
te

rg

ke
os
i

u
to
it

e
th
n
le

G
tiv
rg
th
ca
al
ta
ill
o

al
a

n
pe
he
e
on

ica
on

t
en
ng
ha

ons,

zed
ear
an
A

ro
nal
re

G
ons

ith
n 1
un
nt
one
han

e-
ac-
for
al

-
ed

G
le
p-
on

f
f
of

the

u-
ons
n

DYNAMICAL DENSITY-MATRIX RENORMALIZATION - . . . PHYSICAL REVIEW B 66, 045114 ~2002!
this peak. Therefore, I believe that it is not possible to o
serve such a structure in the optical spectrum of conjuga
polymers, because it occurs at too high an ene
(.10 eV) and its intensity is too weak.

The optical spectrum of Mott-Peierls insulators is unli
that of Mott-Hubbard and Peierls insulators. However, m
of its main features are found in the strong-coupling lim
investigated in Ref. 15 and discussed in Sec. V C. This s
gests that the optical excitations of a Mott-Peierls insula
could be made of a pair of spinless bosonic excitations w
opposite charges as in the strong-coupling limit~and in a
Mott-Hubbard insulator!. Nevertheless, understanding th
nature of the system’s elementary excitations requires
study of additional dynamical properties, such as the o
particle Green’s functions. The DDMRG method will enab
us to carry out this further investigation.

VI. CONCLUSION

In this paper I have presented a dynamical DMR
method which allows one to calculate the optical conduc
ity of one-dimensional correlated electron systems on la
lattices with great accuracy. The DDMRG approach to
calculation of dynamical properties is essentially an appli
tion of the standard DMRG algorithm for ground-state c
culations. Therefore, both methods have the same advan
but also the same limitations. In particular, DDMRG w
directly benefit from recent and future improvements
DMRG such as the use of additional symmetries.

With DDMRG it is possible to calculate the dynamic
response of correlated systems with hundreds of sites
particles. Relative errors of the order of 1024 can be
achieved for the optical spectrum of finite systems withN
;102 sites. Using a finite-size-scaling analysis based o
size-dependent broadening of the discrete finite-system s
tra, one can then calculate a dynamical spectrum in the t
modynamic limit with a resolution of the order of 1% of th
spectral width and even investigate singularities in a c
tinuum.

The DDMRG approach can be used for various dynam
quantities, such as dynamical spin-spin correlation functi
or single-particle Green’s functions. It can also be applied
other lattice quantum many-body models, in higher dim
sion, including spin or boson degrees of freedom, or lo
range interactions. The correction vector DMRG method
,
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been used to calculate nonlinear dynamic response functi
such as third-order dynamical polarizabilities.5 Similarly, the
variational principle presented in Sec. II can be generali
to dynamical correlation functions describing these nonlin
responses. Thus I believe that it is possible to develop
efficient DDMRG method for calculating these quantities.
limitation of the DDMRG approach is the restriction to ze
temperature. It would be desirable to extend the variatio
principle and the DDMRG approach to finite-temperatu
dynamical properties.

The computational resources used by the DDMR
method are relatively modest. For instance, all calculati
presented in this paper were carried out on workstations w
a single 500-MHz Alpha processor and required less tha
Gbyte of memory. It would be easy and very efficient to r
DDMRG on a parallel computer as calculations for differe
frequencies are almost independent. This would permit
to investigate much larger or more complicated systems t
in this work.

In summary, the DDMRG method and the finite-siz
scaling technique for dynamical spectra appear extremely
curate and versatile. They provide a powerful approach
investigating the dynamical properties in low-dimension
lattice quantum many-body systems.

Finally, it should be kept in mind that the variational prin
ciple for dynamical correlation functions and their relat
excited states is completely independent from the DMR
method. Therefore, it is possible to combine this princip
with other variational methods to calculate dynamical pro
erties. For instance, one could build a trial wave functi
uc($l i%)&5R($l i%)uc0&, whereR($l i%) is an operator de-
pending on a few parametersl i , such that the calculation o
W($l i%)5WA,h„v,c($l i%)… reduces to the evaluation o
ground-state correlation functions. Then the minimization
W($l i%) with respect to the variational parameters$l i%
would give a lower bound and an approximate value of
dynamical spectrumI A(v1 ih).
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