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A density-matrix renormalization-grouMRG) method for calculating dynamical properties and excited
states in low-dimensional lattice quantum many-body systems is presented. The method is based on an exact
variational principle for dynamical correlation functions and the excited states contributing to them. This
dynamical DMRG is an alternate formulation of the correction vector DMRG but is both simpler and more
accurate. The finite-size scaling of spectral functions is discussed and a method for analyzing the scaling of
dense spectra is described. The key idea of the method is a size-dependent broadening of the spectrum. The
dynamical DMRG and the finite-size scaling analysis are demonstrated on the optical conductivity of the
one-dimensional Peierls-Hubbard model. Comparisons with analytical results show that the spectral functions
of infinite systems can be reproduced almost exactly with these techniques. The optical conductivity of the
Mott-Peierls insulator is investigated and it is shown that its spectrum is qualitatively different from the simple
spectra observed in Peieflsand insulators and one-dimensional Mott-Hubbard insulators.
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[. INTRODUCTION and significantly more accurate than the correction vector
DMRG method.
The density-matrix renormalization grotfpDMRG) is a While the spectrum of a finite system is necessarily dis-

very successful numerical method for calculating static prop€rete, continuous excitation bands are often found in the ther-
erties of ground states and low-lying eigenstates in quanturWOdynam'C limit. It is possible to broaden finite-size spectra

many-body systems. For low-dimensional strongly correl0 simulate the continuum of an infinite-system spectrum.

lated systems, DMRG is as accurate as exact diagonalizati UsuaI_Iy, 'ghe broadgning .is' arbi.trarily Iargg and no systematic
; ' Ocﬂlantltatlve analysis of finite-size effects is performed for the
te_chmques but can be used to study much Ia_lrger sy;tems th"é,ll.tiectrum. Here | show that dynamical properties of infinite
with those techniquegcurrently, up to~ 10° sites. Using & gystems can be obtained reliably using an appropriate finite-
f|n|te—5|ze—scallng. analysis, it is t_hus possible to det?rm'”f’size—scaling analysis. The key to the analysis is the use of a
the static properties of a system in the thermodynamic limifroadening that scales systematically with the system size.
with great accuracy. The DDMRG method and the finite-size-scaling tech-
The calculation of dynamical properties and higher-nique for a dynamical spectrum have already been success-
energy excitations with DMRG has proved to be more diffi-fully used to investigate the optical properties of one-
cult. Several approaches have been proposed but calculatiodnensional Mott insulator$® Here | apply these techniques
have been carried out successfully for few problems onlyto the calculation of optical conductivity in the one-
The simplest of these methods is the Lanczos DMR dimensional Peierls-Hubbard model of conjugated
practice, this method gives accurate results for the first fewpolymers'® Much effort has been devoted to understanding
moments of a dynamical spectrum. Therefore, it works wellthe optical properties of these materials. In particular, the
for simple discrete spectra made of a few peaks but it usuallgptical conductivity of the Peierls-Hubbard model has been
fails for more complicated spectra. An alternate method foistudied extensively and analytical results have been obtained
calculating dynamical properties is the correction vectorfor various special cases, such as the Mott-Hubbard insulator
DMRG.*® Contrary to the Lanczos DMRG, this method canand the Peierlgband insulator limits. Leaving out these
describe complex or dense spectra accurately. Neverthelespecial limits the Peierls-Hubbard model describes a Mott-
there have been few applicatiSsof correction vector Peierls insulator and its optical properties are still poorly
DMRG until now because this method is more difficult and understood. In this paper | show that DDMRG can accu-
requires significantly more computer resources than the usugtely reproduce the known analytical results for the optical
DMRG method for calculating static properties at low en-spectrum in the thermodynamic limit. Then | investigate the

ergy. optical conductivity of a Mott-Peierls insulator using
In this paper | describe a simple and efficient method DDMRG and show that it displays specific features.
called the dynamical DMRGDDMRG), for calculating dy- The paper is organized as follows. The variational prin-

namical properties and excited states with DMRG. This ap<iple for dynamical correlation functions and related excited
proach is based on a variational principle for dynamical corstates is presented in the following section. | describe the
relation functions and the related excited states. Thelynamical DMRG method in Sec. Ill. The finite-size-scaling

variational principle is essentially an elegant formulation ofanalysis is presented in Sec. IV. | report and discuss the
the correction vector technique. Because of the variationalesults for the optical conductivity of the Peierls-Hubbard

formulation, however, the DDMRG method is easier to usemodel in Sec. V. Finally, | conclude in the last section.
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Il. VARIATIONAL PRINCIPLE where |A)=A| ). If the correction vector is known, the

. . dynamical correlation function can be calculated directly,
The dynamic response of a quantum system to a time-

dependent perturbation is often given by dynamical correla-
tion functions such as

1
Galotin) == —(Alga(otin). ®

To calculate a correction vector one first solves an inhomo-

1
-
A E0+w+i77—HA’ 1//0>, @

geneous linear equation
whereH is the time-independent Hamiltonian of the system, [(Eo+ w—H)2+ 72| )= — 7|A), 9
Eo and| ) are its ground-state energy and wave functidn,
is the quantum operator corresponding to the physical quarwhich always has a unique solutios)=|YA(w+i7)) for
tity which is analyzed, and' is the Hermitian conjugate of 7% 0. The correction vector is then given by
A. A small real numberp>0 is used in the calculation to

] 1
GA(w+|77)=—;<l/fo

shift the poles of the correlation function into the complex [palw+in)=[Xa(w+in)+ilYa(o+in) (10
plane.(l setA=1 in Secs. lI-I1V) with
In general, we are interested in calculating the imaginary
part of the correlation function ) —Eo—w )
[Xa(w+i W)>:T|YA(‘U+| 7). (11)

[a(w+in)=Im Ga(w+in)

SEIAIN Z Ad) @
7\ T (Egrw—H)2+ 2 |0
in the limit —0,
Ia(w)=limls(w+in)=0. (3)

n—0

It should be noted that the spectrug({w +i ) for any finite
7>0 can be calculated from the spectrlig{w) by convo-
lution with a Lorentzian distribution,

Ia(@+in)=C,[Ir(w)]>0, 4)

where | use the notatio@,[ f(w)] to represent the convolu-

tion of a spectral functiorf(w) with a Lorentzian distribu-
tion of width #,

4o 1
Cltw= [ dort) - — ®

T (w—w' )2+ 5%

The moments of the spectrup(w) fulfill sum rules such as

+oo
fﬁw dwl a(w) = (ol ATAl ),

f_:deA(w)w=<lﬁo|AT[HyA]|¢O>v (6)

fwdeA(w)w2=<¢o|[AT-H][H:A]|<ﬂo>:

— o0

where[A,B]=AB—BA.
A dynamical correlation functiorfl) can be calculated

using the correction vector method. The correction vector

associated witlG,(w +17) is defined by

[ a0 +in))= IA), @)

One should note that the stat€$p(w+i7)) and |Ya(w
+in)) are complex if the stat¢éA) is not real, but they
always determine the real part and imaginary part of the
dynamical correlation functio®(w+i7), respectively,

1
Re Galw+in=——(AXa(otin), (123

Im GA(w+i7])=—%<A|YA(w+i7])>. (12b

The derivatives of the real and imaginary parts can also be
calculated from these states,

d 1
GRG0 ) =—[(Xa(@ i n)| Xa(w+i )

—(Ya(o+in)|Ya(w+in)],
(13

d 2
G2IMGA(@+i 7)== (Xa(@+i n)|Ya(0+in).

A well-established approach for solving an inhomoge-
neous linear equatiof®) is to formulate it as a minimization
problem. One considers the functional

W, ,(@,8)=(|(Eg+w—H)*+ 7% )
+n(Al) + (Y| A).

For anyn# 0 and a fixed frequency, this functional has a
well-defined and nondegenerate minimum for the quantum
state which is a solution of Eq9),

|wmin>:|YA(w+i 7])>

It is easy to show that the value of the minimum is related
to the imaginary part of the dynamical correlation function

(14

(15

Wa, (@, Ymin) = — Tyl (@ +i 7). (16)
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Therefore, the calculation of spectral functions can be formuealculated exactly. In an approximate calculation, however,
lated as a minimization problem. To determingw+in) at  errors in the eigenenergies and spectral weights are of the
any frequencyw and for anyz>0, one minimizes the cor- order of e with the correction vector method, while they are
responding functionaW, ,(w,#). Once this minimization of the order ofe? with the variational formulation.

has been carried out, the real part of the correlation function
Ga(w+in) can be calculated using Egdll) and (1239 if
necessary. This is the variational principle for dynamical cor-

relation functions. _ DMRG is a numerical method for calculating the proper-
tis clear that if we can calculaté/a(w+i7)) exactly, ties of lattice quantum many-body systems. It is described in
this variational formulation is completely equivalent to the detail in several publication€or instance, see Refs. 1 and

correction vector method. However, if we can only calculatep). DMRG can be considered as a variational approach. The
an approximate solution with an error of the ordex1, system energy

|y =|Ya(w+in))+elp) with (¢|¢)=1, the variational
formulation is more accurate. In the correction vector

Ill. DYNAMICAL DMRG

method the error in the spectrug(w+i») calculated with E(y)= M (20)

Eq.(12b is also of the order of. In the variational approach (4l

it is easy to show that the error in the value of the minimum

Wiy (@, ¥min), @and thus inl \(w+i7), is of the order ofe?.  is minimized in a variational subspa¢#e DMRG basis of

With both methods the error in the real part®f(w+i») is  the system Hilbert space to find the ground-state wave func-

of the order ofe. tion |¢) and energyEy=E(y). If the ground-state wave
One can write the functiohy(w) in the spectral fornfor ~ function is calculated with an error of the orderes£1 (i.e.,

Lehmann representatipn |y =|1o) + €| @) with (p|p)=1), the energy obtained is an

upper bound to the exact result and the error in the energy is
of the order ofe? (as in all variational approachesn prin-
ciple, the DMRG energy error is proportional to the weight
) of the density-matrix eigenstates discarded in the renormal-
where| ) is the ground statés,),n>1, denotes the other jzation procedure. This discarded weight can be reduced by
eigenstates oH, andEg,E,, are their respective eigenener- jncreasing the numben of density-matrix eigenstates kept
gies. Obviously, only the eigenstates with a finite matrix el-in the calculation, which corresponds to an increase of the
ement( | Al ¢p) # O contribute to the spectrum and here we ariational subspace dimension. Therefore, the energy error
are only interested in those excited states. In the correctiogystematically decreases with increasingn a DMRG cal-
vector method the excitation energies— Ey and the spec-  cylation.
tral weights|( | Alo)| can be obtained from the poles of  The DMRG procedure used to minimize the energy func-
Ga(w+in). The corresponding wave functiops,) can be  tional (20) can also be used to minimize the functional
calculated by taking the— 0 limit of the correction vectors, W, ,(0,%) and thus to calculate the dynamical correlation

. . function Ga(w+in). | call this approach the dynamical

| hn) |'mO|YA(En_E0+' ). (18 DMRG method. The minimization of the functional
T W, ,(w,4) is easily integrated into the usual DMRG algo-

The excited states contributing @,(w+i7) correspond  fithm. At every step of a DMRG sweep through the system
to the local maxima of the spectrut(w+i») for small lattice, a superblock representing the system is built and the
enoughz,>0. Therefore, they can also be obtained by mini-following calculations are performed in the superblock sub-
mization of the functionaW, ,(w,) with respect to botly ~ SPac®-

|A<w>=;|<¢n|A|¢o>|25<w+Eo—En), (17)

and ¢. The local minima ofW, ,(w,) are given by the (1) The energy functionaE(¢) is minimized using a
conditions ' standard iterative algorithm for the eigenvalue problem. This
yields the ground-state vectpy,) and its energyg, in the
(Beninl H| i) superblock subspace.
Omint EO:Wa (2) The statgA) is calculated.
mintEmin (3) The functionalW, ,(w,) is minimized using an it-
i) =Y A(@min+17))- (19) erative minimization algorithm. This gives the first part of

the correction vectotY(w+i»)) and the imaginary part

In the limit »—0, wmint+Ey tends to the energf, of an  1,(w+i7) of the dynamical correlation function.
eigenstate with finite spectral weight/,) is equal to the (4) The second patiXa(w+in)) of the correction vector
corresponding eigenstates,) up to a normalization con- is calculated using Eq11).
stant, and—W, ,(@min,¥min) tends to the spectral weight (5) The real part and the derivatives of the dynamical
[ Alho)|2. This is the variational principle for excited correlation function can be calculated from E¢s2g and
states contributing to a dynamical correlation function(13), respectively.
Galw+in). (6) The four stategig), |A), |Ya(w+in)), and|Xa(w

Again this variational formulation is completely equiva- +i#)) are included as targets in the density-matrix renor-
lent to the correction vector method|¥ A(w+i7)) can be  malization to build a new superblock at the next step.
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The robust finite-system DMRG algorithm must be usedm of density-matrix eigenstates is increased. In practice, the
to perform several sweeps through a lattice of fixed sizeconvergence is not always regular because of two approxi-
Sweeps are repeated until the procedure has converged to thmations made to calculate the functiond, ,(w,) in a
minimum of both functional€ () andW, ,(w, ). DMRG basis. First, the ground-state enekyand the state

To obtain the dynamical correlation functio®(w |A) used in the definitiori14) of W, ,(w@,4) are not known
+in) over a range of frequencies, one has to repeat thiexactly but calculated with DMRG. If the numberof den-
calculation for several frequencies If the DDMRG calcu-  sity matrix eigenstates is increasét), and|A) are modified
lations are performed independently, the computational efforfthey become progressively more accuraaed the func-
is roughly proportional to the number of frequencies. It istional W, ,(w,#) is changed, which can affect its minimum
also possible to carry out a DDMRG calculation for severalarbitrarily. We also note that errors of the orderedh E, or
frequencies simultaneously, including several std¥eq o |A) result in errors of the same order lig(w+i 7). There-
+i7)) and|Ya(w+i7n)) with different frequencies as tar-  fore, to observe a regular convergence with increasirznd
get. The optimal number of different frequencies to be in-to obtain accurate results fog(w+i7%), it is necessary in
cluded in a single calculation depends strongly on the probthe first place to determine the ground state and the state
lem studied and the computer used. As calculations fowith great precisionand thus to include the stat@) as a
different frequencies are essentially independent, it would beargej.
easy and very efficient to perform these calculations on a To calculate the functional, ,(w,) in the third step of
parallel computer. the DDMRG algorithm, one needs an effective representa-

If one performs a DDMRG calculation for two close fre- tion of the operator i —E,— w)? in the superblock sub-
quenciesw; andw, simultaneously, it is possible to calculate space
the dynamical correlation function for additional frequencies
o betweenw; and w, without including the corresponding [(H—E¢—)?]ex=O"(H—Eo—w)?0, (21

states |[Xa(w+in)) and |Ya(w+izn)) as target in the o
density-matrix renormalization. This approach can signifi—Where the operatoD represents the projection onto the su

cantly reduce the computer time necessary to determine tk%erblOCk subspace. For a typical many-body Hamiltortn

spectrum over a frequency range, but the results obtained f J!JCh a qalcule}tmn Is excessively complicated anc_i computa-
: ijonally intensive. Therefore, | calculate an effective repre-
w# w,,w, are less accurate and not always reliable, as th

: —0ot
DMRG basis is optimized for the frequencies and w-, sentation oftf only, Heq=0"HO, and assume that
only. (A similar technique is the calculation of spectra with CE 82T CE.— )2
theyLanczos algorithm in the DMRG basis optimized for a [(H=Eo~w)Ter~(Her~Eo~ ) 22
pair of correction vectors, see Ref) Alternatively, between to calculateW, ,(w,#) in the superblock subspace. This
the frequencies for whicls,(w+i7) is determined directly second approximation can cause a violation of the variational
with DDMRG, we can calculate the dynamical correlationboundW, ,(w,¢)=—mnls(w+i7). Fortunately, the sub-
function by interpolation using the DDMRG data for the stitution (22) has no significant effect on the minimum of
function and its derivative. Wy ,(@,9) if the state H—Eq—)|Ya(w+in))<|Xs(w

If a complete spectruriy(w+i7) has been obtained, itis +i7)) is accurately represented in the DMRG bdsis., if
possible to calculate the moments of the spectral distributio®|X,(w+i7))~|Xa(w+in)) for all superblock sub-
[the left-hand side of Eq(6)]. The first few moment$the  space$ Therefore, to use the substitutio®2) without loss
right-hand side of Eq6)] can be calculated accurately using of accuracy it is necessary and sufficient to include the state
the Lanczos DMRG methatf This provides an independent |Xa(w+in)) as a target in a DDMRG calculation, even if
check of DDMRG results|Note that only the first sum rule the real part of the dynamical correlation function is not cal-
(6) is satisfied exactly fom>0.] culated.

To calculate individual excited states contributing to the In practice, for sufficiently largen, | have found that the
spectrum in a given frequency range,(,»,), one includes absolute values of errors in a spectriipfw+i ) decrease
a minimization of W, ,(w,#) with respect tow (w;<w systematically with increasingn. Therefore, it is possible to
<w,) in the third step of the DDMRG algorithm described estimate the accuracy of a DDMRG calculation from the
above. In this casgYa(wmintin)) and |[Xa(wmint+in)) are  results obtained for different values of as one can do for
included as targets in the sixth step. The paramgteust be  static properties calculated with DMRG. Moreover, DDMRG
much smaller than the distanég ., ;— E,, between two suc- results forl ,(w+i %) tend to be smaller than the exact result
cessive eigenstates contributing to the dynamical correlatiofor almost all frequencies although they can exceed it occa-
function or must decrease during the calculation until thesionally.
desired accuracy is obtained. To make the procedure robust it Obviously, DDMRG is very similar to the correction vec-
is necessary to simultaneously target a second correctioor DMRG*® The same DMRG basis is built because the
vector|ya(w+i7)) with a fixed frequency and a parameter same target states are used in both methods. As numerical
7 of the order of the frequency range. Typically, | use errors are usually dominated by the DMRG basis truncation,
=(w1+ w,)/2 and p=(w,— w,)/4. the correction vector partsXx(w+in)) and|Ya(w+in))

Because of the variational principle, one naively expectsre calculated with the same precisiein both methods for
that the DDMRG results for (w+i7) must converge a given numbem of density-matrix eigenstates kept per
monotonically from below to the exact result as the numbemblock. Nevertheless, the variational formulation has two sig-
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nificant advantages. First, the errors in the spectiyf (@)= lim Iy (@)

+in), the excitation energie€,—Ey, and the spectral N—o0

weights are of the order of instead ofe in the correction

vector method, as explained in Sec. Il. If one uses the Lanc- — lim 1 S AL(N) n(N) (25
zos algorithm instead of Eq®8) in the correction vector NewT T [wn(N)— 02+ 72(N)

DMRG, errors become even larger. Therefore, DDMRG re-

sults are more accurate than those obtained with the corregrom the existence of both limits in E(R4) it can be dem-
tion vector DMRG for a given numben of density-matrix  onstrated that there exists a minimal broadeniggN)=0,
eigenstates. Second, a DDMRG calculation is essentially aghich decreases as a functiondfind converges to zero for
application of the standard DMRG algorithm to the minimi- N— 0, such that the above equation is valid for all functions

zation of a different functional. In particular, the numerical ,(N) with 7(N)> 7,(N) and ”mN 7(N)=0. The func-
accuracy and computational effort are controlled by the sol o
parametem in an optimized DDMRG calculation as in a
ground-state  DMRG calculation. The correction vector
DMRG (Refs. 4 and band Lanczos DMRGRefs. 3 and # ; .

are significantly more complicated than the standard DMRG'merVal of width e around the frgq_uencyb [i-e., [wn(N)
method. In particular, the numerical accuracy and computa— @l <€/2]- If M,, (N) remains finite for anye>0 asN
tional effort depend significantly and sometimes unpredict-— > the .spectral function(w) is d|screte.atlo ?nd VO(N)

ably on the specific stateéanczos vectors and correction —0- Equivalently, one can take thg—0 limit first in Eq.

vectors included as targets in the density-matrix renormal-(24- If M, (N) diverges for alle>0 asN—wx, the spec-
ization. Therefore, it is easier to implement and use DDMRGTUM is dense ab and a minimal broadeningo(N)>0 is

than the correction vector DMRG or the Lanczos DMRG. reduired for Eq.(25) to be valid. For instanceyo(N) must
be larger than the distanc& = w,, 1(N) — w,(N) between

two consecutive excited states in the spectrum. Note that
IV. FINITE-SIZE SCALING while a continuous spectrum is obviously dense, a dense
spectrum can be continuous or discrete. For instance, an in-
finite number of excited states with,(N)>0 can converge
to the same energy d¢— . This seems to happen for the
optical conductivity associated with an exciton in a open
chain?
The function 73(N) depends naturally on the specific
7 problem studiedi.e., the scaling of the energies,(N) and
(23)  spectral weight#\,(N)]. For the optical conductivity of one-
dimensional correlated electron systems such as the Peierls-
Hubbard model, | have found numerically that a sufficient
where w,(N) denotes the excitation energy aAd(N)>0  condition for all frequencies in a dense part of the optical
the spectral weight of the system eigenstates, lnd the  spectrum is

number of lattice sites. Such spectra are discretezfer0
because there is only a finite number of eigenstates in a finite

%on 1no(N) depends on the frequeney considered. For a
finite lattice with N sites, letM,, .(N) be the number of
excited states contributing to the spectral function in a small

DDMRG allows us to calculate spectral functions of a
correlated electroor spin system on a finite lattice with a
broadening given by the parametgr-0. They have the ge-
neric form

1
lN,n(w): = ; An(N/[wn(N)_w]2+ 772,

c

system. In the thermodynamic limit, a spectral function n= N (26)
(@)= lim lim Iy () (24) where the constart is comparable to the width of the dy-
7—ON—= namical spectruni(w), which is finite in such lattice mod-

els. Usually, one wants to keep the broadenings small as

can contain discrete and continuous pafitsshould be noted Possible because it reduces the resolution of the spectrum.

that the order of limits in the above formula is importaifo ~ Therefore, | use

determine the properties of a dynamical spectt(w) in the

thermodynamic limit one has to analyze the scaling of the _cC

corresponding spectii, ,(w) as a function of system size. 7(N)= N (27)

Here | present a finite-size-scaling technique for spectral

functions calculated with a numerical method such adn Eq.(25) to analyze the finite-size scaling of spectral func-

DDMRG. tions calculated with DDMRG and to extrapolate the finite-
Computing both limits in Eq(24) from numerical results size results to the thermodynamic limit. The conditi@®)

for Iy, () requires a lot of accurate data for different valueshas a very simple physical interpretation. The spectral func-

of » and N and can be the source of large extrapolationtion Iy ,(w) represents the dynamical response of the system

errors. A much better approach is to use a broadeningver a time period~ 1/ after one has started to apply an

7(N)>0 that decreases with increasifgand vanishes in external force. Typically, in a lattice model the spectral width

the thermodynamic limit. The dynamical spectrum is thenis proportional to the velocity of the excitations involved in

given by the system response. Thus the conditid6 means that ex-
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citations are too slow to travel the full lengthN of the  spectraly ,(w) has the same scaling properties fp(N)
system in the time interval 1/5 and do not “sense” that the —0. Thus it is possible to detect such a singularity and de-

system is finite. termine the exponentr from the finite-system numerical
An additional benefit of a broadening satisfying the con-data.
dition (26) is that the finite-system spectruiy , () be- Third, we consider a continuous infinite-system spectrum

comes indistinguishable from the infinite-system spectrunwith a singularity in its derivative,
with the same broadening for relatively smaliN,

In,(@)=C,[1(w)]. (28) ,

, ) for |w—wg|<A, where the functiord(x) and the constants
fTheigforle:(, ';c fone krllo]:/.vs't an e;(act Ezr conjecltL:red SE{’ECUaIIO anda are as in the previous example. Here the derivative
unction | () for an infinite system, its convolution with a ; ; -1
Lorentzian of width» can be compared directly with the of C”[l(-w)]- has & maximum that diverges s ~ for 7

7 P y <A, while its position converges t@, from above asy

numerical results for the finit_e-system spectrug, (o). 0. The maximum in the derivative dfy () has the
This approach has been applied successfully to the optical, j,o scaling properties fof(N)—0. Therefore, it is pos-

conductivity of one-dimensional Mott insulators in Refs. 8 sible to determine the exponeatfrom the finite-system nu-

and 9, a}nd additional examples are presented in the fOHOWr'nericaI data in this case t0o.
Ing section.

. . Finally, we consider a special function representing a con-
In practice, the extrapolation schern®b) works well at y b b 9

fixed f tor th ) d th d tinuous spectrum above a gap and a truncated divergence
ixed frequency for the continuous parts and the nondensg ca to the band edge,

discrete parts of a spectruiw) only. To detect singularities

I(@)=106(®—wo)|o—wg|*, (39

in I (w) and determine their properties, it is generally easier 2 ol o— ol
to analyze the scaling of maxima iy ,(w) orin its deriva- [(w)=1y0(w— wg) wf||w w°|| , (32
(O} w— Wo

tive asN— and »—0. To perform this scaling analysis
one can use a size-dependent broadenjffg) such that Eq. o, |w—wo|<A, where y is a constant such that<Oy

(29 is valid and Iy ,(w) is a good approximation of A/,  The functiond(x) and the other constants are as in
C,[!(w)] around the maximum. Then the scaling of @ maxi-ihe previous examples. For=0 this spectrum vanishes as a
mum inly ,(w) for 7(N)—0 gives the scaling of the cor- g4 are root at the band edgs, goes through a maximum

responding rnlaxim?nrwfiﬁ:,,[lﬁw_)] for nh_>(k)1 Here | Of“SIC]ESS H lo/\y at w=(1+ y)w,, then decreases monotonically. For
some exampies ol this technique whic are usetul for t ey<1 the maximum is very sharp and close to the band edge,
analysis of the Peierls-Hubbard model optical conductivity

presented in the following sectiofOne should also note that and| (w) appears to diverge aslk— wo| at higher energy

to detect the presence of a gap between two bands in a‘ﬁ>(1+7)w°' The continuous vanishing 6{) at the band

infinite-system spectruni(w), it is often faster and more €dge is apparent only_m a s_mall frequency ranges o
. ) ! . . . <(1+ y)wg. As y—0 this maximum becomes a square-root
reliable to investigate the scaling of minimalig ,(w) for

. . _singularity atwo. A qualitatively similar behavior is often
Zi(el;?—)O than to perform extrapolations at fixed frequen found in the optical conductivity of one-dimensional insula-

: . o . tors (see the discussion in the following sectio®@bviously,
First, we consider an infinite-system spectrum with a peak ; . .
- : the maximum ofC,[1(w)] tends toly/+/y and its position
in a continuous band, 7
converges taw=(1+ y)wqg for —0. For y<1, however,
H(0)=1¢8(w— o)+ con( @), (29)  the convergence of the maximum becomes apparent only for
n<ywg. For largern the maximum appears to diverge as
1/\/7. Similarly, the maximum of the derivative diverges as
1/\/n for —0 as discussed in the previous example. In the
present case, however, this scaling is not observed as soon as
n<A but only if n<ywg. The finite-system spectrum
In,,(@) and its derivative have the same scaling properties
for »(N)—0. Therefore, with the scaling analysis of finite-
fini it | | I fract system spectra it is possible to distinguish an infinite-system
infinite-system spectrum, evenlig is only a small fraction gy o4rym with a truncated divergence above the band edge

of the total spectral weight dzop. from a spectrum with a real divergence at the band edge,

Second, we consider an infinite-system spectrum with &,\ided that one can do calculations with a resolution
power-law divergence at the band edge, 7(N) < yaws.

for |o—wo| <A, wherel;>0 andl () is a continuous
function. It is easy to show that fapy<<A the maximum of
C,[1(w)] diverges ad/(m7) and that the position of the
maximum converges ta, for —0. The maximum of the
corresponding finite-system spectig ,(w) has the same
scaling properties fory(N)— 0. Therefore, it is possible to
detect such a5 peak and determine its weight in an

_ _ _l-a In summary, the dynamical spectrum of an infinite system
l(@)=106(w—wo)|0—wg "%, (30) can be determined accurately and efficiently from numerical
for |w—wo| <A, where(x)=0 for x<0 andé(x)=1 for  data for finite-system spectra using a size-dependent broad-
x>0, 1,>0, and 6K a<1. One can show that faj<A the  ening »(N). The broadeningp(N) must be larger than a
maximum ofC,[1(w)] diverges as;~ “ and that the position minimal broadeningzny(N), which depends on the system
of the maximum converges te, from above forp—0. investigated and can vary with the frequency. Often this
Again, the maximum of the corresponding finite-systembroadening conceals the finite-size effects and one can di-

045114-6



DYNAMICAL DENSITY-MATRIX RENORMALIZATION -. .. PHYSICAL REVIEW B 66, 045114 (2002

rectly compare finite-system spectra to analytical results fooptical conductivity. Foro>0, o4(w) is related to the
infinite systems using a convolution with a Lorentzian distri-imaginary part of the current-current correlation function
bution, see Eq(298). If this comparison is not possible or not G;(Aw+i7n) by

sufficient, specific points of the spectrum can be extrapolated
to the thermodynamic limit using E@25). Finally, the scal-

71— . .
ing of maxima in finite-system spectra or their derivatives o1(w)= lim Im G,(hw+izn)

Naw

[for 7(N)— 0] allows us to find and analyze singularities in 0

the infinite-system spectrum. For one-dimensional correlated T )

electron systems a sufficient condition for the minimal =m§n: (ol I )| ?6(hw+Eo—E,). (37)

broadening is given by Eq26) and one can use a size-

dependent broadenin@?). Here |4) is the ground state of the Hamiltoniat, |,
(n>1) are the other eigenstatestdf andE,, E, are their

V. OPTICAL CONDUCTIVITY OF THE respective eigenenergies. In this model the current operator
PEIERLS-HUBBARD MODEL is
In this section, | apply the DDMRG method and the iae

A
finite-size-scaling analysis to the optical conductivity of the J= 5 (t—(— 1)! E) (CI(,CHL(,—CL 1.6C1,0)

one-dimensional Peierls-Hubbard mo#&This model is de-

[

fined by the Hamiltonian (38)
N 1 1 wherea is the lattice constant-e is the charge of an elec-
_ tron, and the index takes the same values depending on the
=T+ - = -= » : L
H=T U.Zl (n” 2)(”"l 2) 33 boundary conditions as in Edq34). Note that this is the

natural definition of the current operator for both types of
boundary conditions. The Parzen filter used for open bound-
A ary conditions in other work< is not necessary and thus is
T=- 2 (t_ ( - 1)| _> (ClTa'ClJrl,(r—i_ClTJrlUCI,(r)' (34) not used in this work.
Lo 2 ' ' In an open chain the optical absorption is also related to
It describes electrons with spin=1, |, which can hop be- the dynamical polarizabilitya(w), which is given by the
tween neighboring sites in a lattice with an even nuntbef ~ Imaginary part of the dipole-dipole correlation function
sites. In Eq(34) the indexl runs from 1 toN— 1 for an open Co(fw+in),
chain and from 1 tdN if periodic boundary conditions are
used. Here:f’(, andc, , are creation and annihilation opera- a(w)= l”m IMGp(hw+in)
tors for electrons with spimr at sitel andn, ,= c,T’,,c,,(, is the Na
corresponding density operator. The hopping integrad -
gives rise to a single-electron band of width Zhe dimer- =— > (ho|D| ) |28(hw+Eq—E,). (39
ization parameter € |A|<2t determines the strength of the Na “5
periodic lattice potential generated by the Peierls instability.
(For a finite open chain, | only us&=0 to avoid spurious
excitations at the chain endsThe Coulomb repulsion is N
mimicked by a local Hubbard interactic_hhzo_. The number D= —eaE I(n— 1) (40)
of electrons equals the number of lattice sites. =1
The ground-state, single-particle charge gap and spin gap. _ ) )
of this system can be calculated with a great accuracy oWith m=n;;+n; . Using the relationJ=—i[D,H]/% one
lattices with up toN~10® sites using DMRG. The single- €asily proves that
particle charge gap is given by

with

7—0

For a constant lattice spaciregthe dipole operator is

o(w)=wa(w) (42
E.(N)=Eg(N+1)+Eo(N—1)—2Ey(N), (35

where Eo(M) denotes the ground-state energy fdrelec-

trons in anN-site system. For an even numbe¢of sites and T . :

electrons, the Peierls-Hubbard model ground state is a (@)= a7 I|Ln0|m{(hw+| nGp(hotin). (42
singlet! and the spin gap is given by K

and

_ — 3\ _ The optical conductivity can be calculated with the
Es(N)=Eo(S:=7) = Eo(S,=0), (38 HPMRG method described in this paper. For an open chain,
whereS, is thez component of the total spin arie(S,) is  EQgs.(37), (39), and(42) provide us with three different ap-
the ground-state energy for a fixed valueSt proaches. First, one can calculate the imaginary part of the
Spectroscopy with electromagnetic radiation is a commorcurrent-current correlation function with DDMRG and use
experimental probe of solid-state materials. The linear optiEq. (37) to obtain the convolution of the reduced optical
cal absorption is proportional to the real parf(w) of the  conductivity,
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ditions would be almost identical. In all figures showing op-

o
Cilooi(w)]=57IMGy(ho+in) tical spectra | sea=e=#f=t=1. Thuso;(®) is shown in
units of e?alf, wo(w) in units of e?at/42, and the fre-
1 7ol | )2 quencyw in units oft/#.
(43 The sum ruleg6) take a simple form for the optical con-

Na“7 (ho+Eo—En*+n? ductivity in the Peierls-Hubbard model with open boundary
This is also the only approach possible with periodic boundconditions
ary conditions. Second, one can calculate the imaginary part
of the dipole-dipole correlation function with DDMRG and

ho[> 1
use Eq.(39) to obtain the convolution of the dynamical po- _f dwwo ()= —— (10| I/ ), (463
larizability, 7 Jo Na
C,[a(®)]= —=ImGp(fiw+in) hoe —aé
7 Na " P 7 ;fo dooy(w) =57 (tol Tlto), (46b
1 D 2
77|<¢0| |‘ﬁn>| (44)

“Na ¥ (hw+Eg—En)?+ 72

hf> oy(w) 1 )

;f do—— :m<l//o|D [$h0)- (460
The optical conductivity is then given by the relatiofl). 0
Finally, one can calculate the complete dipole-dipole correx,

. : . X 0 prove the second sum ruld6b) one uses the relation
lation functlon with DDMRG and use E@42) to obtain the [D,J]=—ia%e®T/%. With periodic boundary conditions,
convolution ofoq(w) directly,

only the first two sum rules remain valid. In the second sum
rule, however, one must take into account the coherent part

_m . . of the conductivity atw=0 and the proof is more compli-
Cilo(w)]= Gz IMi(ho+in)Gp(hotin)} cated than for an open chain.
The right-hand side of Eq46) can be calculated accu-
1 5 7{o|D| )| 2(En—Eo) rately with the ground-state or Lanczos DMRG method.

“Nah =~ (ho+Eg—E,)%+ 2 - (49 Note that forp>0 an optical spectrum calculated from Eq.
n (43), (45), or (44) exactly fulfills the sum rulg46a, (46b),
C,[o1(w)] can also be formulated in terms of the currentor (460), respectively. For the DDMRG results presented in
matrix elements(o|J|n)|? [see Eq.(4) of Ref. 9. Al-  this paper, the sum rules are fulfilled within a few percent.
though the real part of a dynamical correlation function is  The optical gapE,,(N) is defined as the excitation en-
used in Eq(45) to calculate the optical conductivity, its rela- ergy (E,—E,) of the lowest eigenstate contributing to the
tive contribution toC,[ o;(w)] is of the order ¢/t)®. There-  optical conductivity(i.e.,(i,| 3| o) #0) in anN-site system.
fore, the numerical precision is not significantly reduced byE,(N) can be calculated with the DDMRG method for in-
the lower accuracy of DDMRG for the real part of dynamical dividual excited states described in Sec. Ill. As the Peierls-
correlation functions. Hubbard Hamiltoniar(33) has a particle-hole symmetry the
Clearly, all three approaches give the same spectruroptical gap can also be determined using the symmetrized
o1(w) for —0. In DDMRG calculations withy>0, how- DMRG method'? As expected, both approaches give the
ever, they are not equivalent. First, | have found that it issame results foE,,(N) within numerical errors. In the ther-
easier to calculate the dipole-dipole correlation functionmodynamic limit (N—) | have found that the optical gap
Gp(hw+in) than the current-current correlation function E, is equal to the single-particle charge dap[Eq. (35)]
G, (hw+in), except for very strong coupling>t. Second, for all U=0 and 2>A=0.[In the dimer limit A =2t) the
the finite-size scalindusing a size-dependent broadening Hamiltonian (33) describes independent dimers: the optical
(27n] is different for the three optical spectra weight is concentrated in a single peak corresponding to
C,[woi(w)]/o, oC,[a(w)], and C,[o1(w)], especially  Frenkel excitons localized on a dimer, and the ottuzlo-
for very small and very large frequencias. Usually, calized excitations above and below this peak carry no op-
C,lo1(w)] is the best approximation to,(w) but at low tical weight, thusE.<E,.] In a finite system or with addi-
energy (w<t), it can be more convenient to use tional electronic interactiofishe single-particle charge gap
oC,[a(w)] while at high energy fw>t) | prefer E; can be different from the optical gdfyy.
C,[woi(w)]. All DMRG methods have a truncation error which is re-
To calculate the optical spectrum of the Peierls-Hubbardluced by increasing the numharof retained density-matrix
model, | have used the third approach, E45), in most eigenstatesfor more details, see Refs. 1 angl ¥arying m
cases. Thug€,[ ()] is shown in the figures of this paper allows one to compute physical quantities for different trun-
unless | state explicitly otherwise. Only optical spectra cal-cation errors and thus to obtain error estimates on these
culated with open boundary conditions are presented. As thguantities. For some quantities, especially eigenenergies, it is
size-dependent broadenitig7) conceals most of the finite- possible to extrapolate the results to the limit of vanishing
size effects, spectra calculated with periodic boundary contruncation error and thus to achieve a greater accuracy. |

045114-8



DYNAMICAL DENSITY-MATRIX RENORMALIZATION -. .. PHYSICAL REVIEW B 66, 045114 (2002

have systematically used these procedures to estimate the
precision of my numerical calculations and adjusted the
maximal numbem of density matrix eigenstates to reach a
desired accuracy. This is especially important for DDMRG
calculations as truncation errors in dynamical spectra can
greatly vary as a function of the frequeneyfor fixed m. In

this work the largest number of density-matrix eigenstates
used ism=600. For all numerical results presented here
DMRG truncation errors are negligible.

In the following three sections, | demonstrate the finite-
size-scaling technigue and the accuracy of DDMRG on three
special limits of the Peierls-Hubbard model. Then the optical FIG. 1. Optical conductivity of a Peierls insulator with
conductivity of a Mott-Peierls insulator is presented and dis—=0.6 and a broadening/t=0.05. Both the DDMRG result for a
cussed in the fourth section. 128-site chain and the exact res(#¥) in the thermodynamic limit

are shown.

A. Peierls insulator
to n(N)/t=0.025, in excellent agreement with the exact
sult 0.243. If we did not know the exact res(4f7), we
ould nevertheless determine the existence of square-root di-
vergences at both band edges using a scaling analysis of the
é'_naxima in the DDMRG spectra. For instance, the height of
Fhe low-energy maximuniclose tozw=1.2t) diverges as

For U=0 the Hamiltonian[33) describes a system of in-
dependent electrons, which can be solved exactly for an
value of A, boundary conditions, or lattice size. This pro-
vides us with a perfect test case for the DDMRG method.
have checked that DDMRG can reproduce the optical spe
trum of this system on lattices with several hundred sites, fo X ™
any frequencyw, and with relative errors as small as 10 1/\/7 for n(N)—0 [see Fig. 2a)]. Moreover, the position of
using only a few hundred density-matrix eigenstates. Thidh€ maximum tends from above to the optical gBgy
demonstrates that one can obtain almost exact results for thg24 =12 for N—c [see Fig. 20)]. As explained in Sec.
optical conductivity of finite one-dimensional systems, suchlV these scaling properties correspond to a square-root diver-
as the Peierls-Hubbard model using DDMRG. gence at the band edge. FlgUl(b)Za_llso shows the finite-size

In the thermodynamic limit the Hamiltonia(33) de-  OPtical gapsEq,(N) calculated with the DDMRG method
scribes a Peierl¢band insulating phase foh#0 and U for individual excited states. They tend to the exact result

=0. The optical gafE,, the charge gafE., and the spin Eop=1.2 for N—o as expected.
gapE, equal 2A|. Optical excitations are made of one hole
in the valence band and one electron in the conduction band. B. Mott-Hubbard insulator

The opical conductivity is given by For A=0 the Peierls-Hubbard modéB3) becomes the
one-dimensional Hubbard model at half-filing. For>0
ae’(2A)%(4t)? this model deséaribes a Mott-Hubbard insulator with gapless
> > > > > spin excitations.’ The optical conductivity of this system has
2h(hw)*\[(hw)*=(28)") (40"~ (he) ](47) recently been determined using DDMRG and analytical
method< Here | only summarize the most important results
for 2|A|<Zw<4t and is zero elsewheré. This optical and give more information about the finite-size-scaling
spectrum contains a single band of width—2|A| with  analysis carried out in this previous work.
square-root divergences at both band edges. These diver- In the half-filled Hubbard model an optical excitation is
gences are a typical feature of a one-dimensional band insurade of a pair of spinless bosonic excitations carrying op-
lator. The convolution of Eq(47) with a Lorentzian distri- posite charges in the lowegholon and upper(doublon or
bution of width »/t=0.05 is shown in Fig. 1 foA=0.6t.  antiholor) Hubbard bands, respectively. As in a Peierls insu-
Both divergences are replaced by maxima 7ab~2A lator, the optical spectrum consists of a single band but its
=1.2 andAw=~4t. In Fig. 1, | also show the optical con- width is larger, about 8 A second distinctive feature of this
ductivity calculated with DDMRG on a 128-site lattice with spectrum is a square root vanishing,(w) ~ Vo —E,y, at
the same broadening. We see that the finite-system opticée band threshold,y. There is also a tiny peak in the
spectrum is indistinguishable from the infinite-system specmiddle of the band, at least fdJ=4t.
trum. The broadeningy/t=0.05 satisfies the conditiof26) In Ref. 8 it is shown that for weak couplingJ 3t) and
and thus conceals the finite-size effects as discussed in Sdn.the strong-coupling limit J/t— <) the finite-system op-
IV. In this case a broadening(N)/t=6.4N is enough be- tical spectra calculated with DDMRG agree perfectly with
cause the spectrum band width is smaller than 4 the analytical results obtained in the thermodynamic limit
With this size-dependent broadeningN) one can use using a field-theoretical approach and a strong-coupling
Eq. (25) to extrapolate the finite-size DDMRG results to the analysis, respectively. For instance, Fig. 3 shows the low-
thermodynamic limit. For instance, féro=2.6t, | have ob-  energy parts of DDMRG spectra calculated for three differ-
tainedo(w)=0.245(in units ofae?/%) using data for sys- ent lattice sizes atU=3t and the corresponding field-
tems with up toN=256 sitedi.e., with a broadening down theoretical spectrum for an infinite system. A size-dependent

o(w)=
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FIG. 2. (a) Maximum o, Of the optical spectrunor;(w) as a function of the broadening(N). (b) Position of the spectrum maximum
Emax=Tomax (Square and optical gapE,y (circle) as a function of system sizN. In both figures, filled symbols correspond to the
Mott-Hubbard insulatof U =4t, »(N)N=12.8] and open symbols to the Peierls insuldtar=0.6t, n(N)N=6.4t].

broadeningn(N)/t=12.8N is used in this case. One clearly threshold and there is a maximum in(w) at a frequency
sees the convergence of the finite-size spectra toward the=(1+ y)E,y/%, wherey is a small number. Field theory
field-theoretical result ag(N) decreases. To make a quanti- predicts the same behavior witly=~0.24 in the weak-
tative comparison one can calculate the convolution of theoupling limit, while the strong-coupling analysis gives a
field-theoretical spectrum with a Lorentzian of widthsat- maximum athw=U = Eopt4t, and thusy vanishes as/U
|Sfy|ng the Cond|t|0n(26) as discussed in Sec. IV. One finds for U>t. The distancq,Eopt between the Spectrum thresho'd
then that finite-size effects are completely concealed by thg§ the maximum increases with/t. For U=4t this dis-
broadening even for relatively small system sizes. For inyance is Jarge enough to determine the finite-size scaling of
stance, it is shown in Fig. 3 of Ref. 8 that the Iow-energythe lower band edge using systems with upNte 256 sites.

optical spectrum calculated on a 128-site latticeUot 3t is ; ) ; ;
indistinguishable from the field-theoretical spectrum with theAS an gxample, Fig. (@) shows the low energy maximum in

: . . ..~ “the optical spectruno;(w) calculated with DDMRG folJ
same broadeningy/t=0.1. In the strong-coupling limit,

DDMRG and analytical results agree even better and finite-; 4tt)bas da' funclztlton Of%(tNh). gh.e (iorjtrasit tbetlwe?r.lkt.he M%ttt'h
size effects are no longer visible for systems as small as ubbard insufator and the Feierls insulator Is striking and the

—32 maximum in the Mott-Hubbard insulator optical spectrum

For other coupling strengths &U/t<c) it is necessary Cl€arly tends to a constant fay(N)—0. [For U=4t the
to analyze the scaling of the finite-system DDMRG spectra?Ptical gap of the Hubbard model is comparable to that of
to determine the optical conductivity of the Hubbard modelthe Peierls insulator with=0.&, so that a direct compari-
in the thermodynamic limit. Using numerical results for lat- SOn of both systems is relevahin Fig. 2(b) one sees that the
tices with up toN= 256 siteqi.e., a resolutiony(N)/t down finite-size optical gaps calculated with DDMRG converge to
t0 0.05, I have found that for alU/t the optical conductivity the exact resulf E,,=1.287 in the thermodynamic limit,
at the lower band edge has the qualitative behavior describdelt the maximum tends to a higher enefgy~1.7t. There-
by Eq. (32: oy(w) vanishes asyiiw—E,y at the band fore, one can conclude that there is no divergence at the

optical conductivity thresholdiw=E,y. Moreover, it is
1.5 . . " possible to confirm that, () vanishes as/fiw —E, at the
— =0 lower band edge using either a similar scaling analysis for
——-- =0.1 the derivative of DDMRG spectra or a direct comparison
——- =0.2 with the convolution of functions such as E@2) or the
field-theoretical optical spectrufh.

For very weak coupling one would need to calculate
o,(w) for very large system sizes in order to perform the
same scaling analysis. Becausg, vanishes exponentially
with U/t and the scaling analysis must be performed in the
asymptotic regimep(N) < yE,y, the required system siz¢
increases exponentially a4, for U/t— 0. Fortunately, it

FIG. 3. Optical conductivity of the Hubbard model with IS not necessary to carry out this analysis for the Hubbard
=3t for several values of;. Results forp(N)>0 have been cal- model because the optical conductivity of the weak-coupling
culated with DDMRG onN-site lattices withp(N)N=12.&. For  field theory is already in excellent agreement with the optical
7=0 the field-theoretical result for an infinite system is shown. conductivity of the lattice model fo = 3t.

1.0

G,(®)

05t

0.0 =
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C. Strong-coupling limit

In this section, | discuss the special case of a Mott-Peierls 10
insulator A #0,U>0) in the strong-coupling limitJ/t— oo,
for which the shape of the optical spectrum is known
analytically®® In this limit there is exactly one electron on
each site in the ground state of the Peierls-Hubbard Hamil-
tonian(33). An optical excitation moves one electron from a 107
site to another and thus creates a double occupdton-
blon) and an empty sitéholon). Therefore, the optical gap is
of the order ofU. These elementary charge excitations are
spinless bosons as in the Hubbard model. The properties of 5 4 Reduced optical conductivig, [ wo,(w)] as a func-
the spin degrees of freedom are determined by an effectivgy, of 20=%w—U in the Strong_coup]’ing limitUst for A
Heisenberg model with alternating exchange couplidgs =g.a. The solid line is the DDMRG result, E¢43), for a 128-site
~(t+A/2)’/U andJ,~(t—A/2)?/U. The spin gafEs van- |attice with a broadeningy/t=0.1. The dot-dashed line is a Lorent-
ishes in the limitU—oc. However, as there is a gap in the zian distribution of widths/t=0.1 centered abw=U. The two
spin excitation spectrum for any finité/t (see also the fol- dashed lines represent the analytical regi8) for the continuum of
lowing section, the structure of the spin ground state in thean infinite system =0). Note the logarithmic scale of the ordi-
limit U/t— o is actually similar to that of a gapped state. For nate axis.
instance, the antiferromagnetic spin-spin correlations de-

creases exponentially with increasing distance. Thus, thiﬁqake visible the weak bands on both sides of the strong
strong-coupling Iimi.t o_f_the Peierls-l_—|ubbard mode_l Is differ- entral peak. In Fig. 4 one can recognize the spectral shape
ent from the two limiting cases _dlscussed prewousl_y an(ﬁredicted by the strong-coupling analysis. To make a quan-
from the general case presented in the following section. . . : h it is first necessary o deter-
In the thermodynamic limit the optical conductivity can t't‘.”‘tlve comparison, Nowevetr, 1t . y
be calculated analytically using some reasonablé "€ Yo andg, using th? finite-size-scaling anal¥5|s of Sec.
assumptiondS If 0<|A|<2t, the spectrum consists of two ¥~ Here | use a size-dependent broadeningN)/t
bands for 2A|<|kw—U|<2t, =.12.8-,N as for the Hubbard model because the spectral
width is also of the order of 8 For iw=U—2t, DDMRG
) 5 5 5 5 results forC,[ wo(w)] tend to 0.78(in units of e?at/#?)
oyw)= goe”a V[(hQ)*—(28)%][(40)* - (hQ) ], for N—oo, Cgmparison with Eq(48) then yieldsgo~2.2. In
8fi holhQ Fig. 4, | also show the two bandd8) with this value ofg,
(48) (without broadening The agreement with the finite-system
whereQ)=hw—U, and ad peak atho=U, DDMRG spectrum is excellent. The small deviations visible
close to the band edges are due to the different values of
g, e?at? broadening used for the numerical resuff{(=0.1) and for
—g  dhe—U) (49)  the analytical result#=0). They vanish if the same broad-
ening is used in both calculations. Once more this confirms
in the middle of the gap |A| separating the bands. FAr  that a broadening satisfying E(R6) hides most finite-size
—0 one recovers the optical spectrum of the Hubbard modegffects in this model as already shown by other examples in
in the strong-coupling limit, which consists of a single bandSec. V A of this paper and in Refs. 8 and 9. In the DDMRG
and as peak in the middle of this barfti'> The prefactorg, spectraC,[ woy(w)] the height of the central peak diverges
and g, are spin form factors given by ground-state spin-as 2 4%/ (in units ofeat/#2) for decreasingy(N) but its
correlation functions. They are functions of the effectiveyosition does not change. This confirms that it corresponds to
exchange-(_:oupllng ratid,/J; and thus ofs=|A/2t|. As- a & peak athw=U and gives an estimaig, ~2.42. Thisd
suming a dimer spin ground stdiee., J,>0 andJ,=0) one  neak proadened with a Lorentzian distribution of widit
obtainsg,=9/4 and =0.1 is also shown in Fig. 4. One sees that the agreement
with the DDMRG result is perfect. A similar finite-size scal-
1+ 326+ 6252+ 325%+ &* ing was performed to determine the form factpy in the
97= 2 2 (50 Hubbard modet.
(1+96) .
One notes the surprisingly good agreement between the
This result becomes exact in the dimer lifit| =2t, where  form factors determined numerically with DDMRGg(
g,=8. ForA—0 the dimer spin ground state does not give~2.2 andg,~2.42) and those obtained using the approxi-
the correct form factors because it is known exactly titat mation of a dimer spin ground statgy=2.25 andg,
+9,=41In(2) and it was found numerically tha,/go ~2.52). For the valueA=0.6 used in this example, the
~10 2 (see Ref. B ratio J,/J,~0.29 of the effective exchange coupling is al-
Figure 4 shows the reduced optical conductivityready quite small and thus the dimer spin ground state is
C,[woi(w)] calculated using DDMRG on a 128-site lattice probably a very good approximation of the actual spin
for A=0.6t and 7/t=0.1. A logarithmic scale is used to ground state.

10° |

00, (o)

o(w)=
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D. Mott-Peierls insulator peak(49) in theU/t— e limit. The optical spectrum starts as

The optical conductivity of the Peierls-Hubbard model is V7@~ Eop at the lower band edggqy for all [A|<2t. Fig-
not known for general interaction parametéts-0 and 2~ uré 6 shows the reduced optical conductivty[ wo,(w)]
>|A|>0. In this regime the system is in a Mott-Peierls in- for U=40t andA =0.&. The spectrum looks very similar to
sulating phasé® both a periodic lattice potentidi.e., the the spectrum fokJ/t— o, which is again shown in this fig-
alternating hopping termsand electronic correlations con- Ure. A f|n|te—3|ze-sca!|ng analysis _shows however that the
tribute to the formation of a charge g&i>0 and there is a  Strong central peak is not & function for U=40Qt but a
finite spin gapE<>0. Numerical investigations of the charge narrow band with at least one singularity divergingas’®.
and spin gaps and of static correlation functions reveal nd & spectra in Fig. 6 are made of three bands: the gaps
phase transition at finite) and intermediate\ (see also Ref. Petween the bands appear as local minima on both sides of
10 and references thergirThus the entire parameter space the central peak because of the relatively large broadening
(0<U/t<e,0<|A|<2t) belongs to a single Mott-Peierls usgd (y/t=0.1). The flnlte—S|ze-scaI|ng_ analysis confirms the
insulating phase. Figure 5 shows charge and spin gaps asS¥istence of these gaps. For decreasing paraméfters A |
function of U and A. These gaps have been calculated onfi'St the lower gap, then the upper gap close. Therefore, the
lattices with up toN =400 sites using DMRG and extrapo- _number o.f bands in the optical spectrum of thg Mott—l_3e|erls
lated to the thermodynamic limit. The charge gap of thelnsulator is not constant but depends on the interaction pa-
Mott-Peierls insulator is always larger than the gap of thegametersu andA. _ o _
Mott-Hubbard and Peierls insulators in the=0 andU=0 The evolution of the optical conductivity as a function of

limits, respectively. The spin gap is always smaller than theJ iS Very interesting. For decreasitg't one observes that
charge gap in the Mott-Peierls phase. the central peak breaks into two peaks appearing as local

In the thermodynamic limit the optical g, is equal to maxima in the broadened spectrum of finite-size systems.
the charge gap. The nature of the optical excitations in thd e first peakiat the lowest energytakes over most of the
Mott-Peierls insulator is not well understood. Despite theOPtical weight of the central peak. Its weight decreases pro-
obvious difference between charge and spin excitation enefressively with decreasing/t but remains strong even for
gies, Ec<E,, it is not even known if there is a spin-charge small U. In Fig. 7, it is cIe_arIy visible(at 2 w>4t) even for
separation for single-particle excitations. Optical excitations) =2t (with A=0.6t). This peak corresponds to a power-
could consist of a pair of fermionic quasiparticles with op- law divergence within a band.v.vnh an exponent that tends to
posite spins= o and opposite chargese as in a Peierls —1/2 forU—0. The peak position moves to lower energy as
insulator (Sec. V A. They could as well be made of two U decreases and reachke =4t for U=0. Therefore, the
spinless bosonic excitations carrying opposite chargesass ~ ¢entral peak observed at strong couplldg-t corresponds
in the Mott-Hubbard insulatofSec. V B and in the strong- 0 the upper square-root divergence in the Peierls insulator
coupling limit (Sec. V Q. spectrum(47). (In Fig. 7 this divergence is barely visible as

The investigation of spin and charge gaps and static cor-
relation functions clearly shows that the three special cases
described in the preceding sections are singular limits of the
Peierls-Hubbard model. Unsurprisingly, | have found that the -
optical conductivity in the Mott-Peierls phase is unlike the & 10° b
simple spectrum observed in these limf#ll optical spectra g
presented in this section have been calculated using
DDMRG and the finite-size-scaling analysis has always been
performed using a size-dependent broadeningN)/t
=12.8N.]

For large but finiteU the optical spectrum consists of
three bands: a narrow band with a strong singularity around F|G. 6. Reduced optical conductivitg,[ wo,(w)] calculated
hw=U and one weak band on each side of this central peakyith DDMRG [see Eq(43)] on a 128-site lattice/t=0.1) in the
The singularity seems to be made of two very close powerstrong-coupling regime foA=0.6 as a function ofiQ=%w—U.
law divergences which merge to form the single isolaed Note the logarithmic scale of the ordinate axis.
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FIG. 7. Optical conductivityr,(w) calculated with DDMRG on

a 64-site lattice §/t=0.2) for A=0.6 and several values dJ. FIG. 8. Optical conductivity wC,[a(w)] calculated with

DDMRG [see Eq(44)] on a 128-site lattice#/t=0.1) in the small

local maximum ~4 f the relativelv large 98P regime: Mott-Hubbard insulator witd=3t (dashe¢, Peierls
alocal ma um afw~4t because of the relatively large insulator withA =0.3t (dot-dashef and Peierls-Hubbard insulator

broadeningn/t=0.2 used. The second peak has very little _ o B . )
optical weight(it is not visible in Fig. 7 and | have not been v_vugh6éljt— %’3; ar::i g;g&l? (SO“S\)/' lThe optical gaps ar o,
able to determine its structure. — 0ok B8, and 8. L% respectively.
For U>t the optical weight is distributed symmetrically

around the central peak, as seen in Fig. 6.\Aglecreases, discussed previously, the Mott-Hubbard insulafer;(w)
there is a progressive transfer of optical weight from high~ \Aw—E,,], and the Peierls insulator[o;(w)
frequency(above the central peako low frequency(below 1y, /ﬁw_Eopt], with similar optical gaps Eou/t=0.6
the central pegk see Fig. 7. The hig_h-frequency sp_ectrum —0.7) and the same broadening Clearly, the Mott-Peierls
becomes very weak for small/t but it completely disap- jnsylator spectrum looks like an intermediate case between
pears only aU=0. It is difficult to determine the spectral o gpectra observed in both limiting cases. The position of
width for general parameters because the optical conductivye mayimum in the Mott-Peierls insulator spectrum tends to
ity !s very weak anql vanishes smoothly a}t high frequency. |0.78 for n(N)—0, while the charge gafand optical gap
gtst;(r;abe;gat_rtgg Zvr;?;nezft t/r\]/ﬁjtipgcgeuarzh“e?js fgre?;vgaer:ﬁ equals 0.70din the thermodynamic limit. Certainly, there is

) no divergence in the low-energy optical spectrum. However,
small U, the largest for smallA and largeU. The low- ) :
frequency spectrum becomes strongetJadiminishes. The the maximum seems to diverge as/#/even for t.he smallest

broadening | have usedzn(t=0.05). Thus this spectrum

local maximum below the central pe&keen in Fig. b pro- N S :
gressively rises, moves closer to the lower band edge, artf€Ms to be qualitatively similar to a function such as Eq.

transforms into a strong narrow peak, visible in the spectr432), but the maximum is so close to the optical gap that
shown in Fig. 7(at Aw<4t). For small enougHJ/t this  broadeningsy significantly smaller than 0.@5(i.e., system
low-energy peak contains more optical weight than the censizes much larger thai=256) would be necessary to reach
tral peak. ForU—0 the low-energy peak becomes the the asymptotic regime as discussed in Sec. IV. For the same
square-root divergence of the Peierls insulator spectdiin  reason it is not possible to determine how the spectrum van-
at the band thresholl,;. ishes foriw— Eopﬁo+ in such a case

For U>0, however, my results suggest that the optical In the Hubbard model it is possible to confirm the absence
spectrum always vanishes smoothly at the optical gap. of a singularity and the square-root vanishing at the band
think that the low-energy optical spectrum of the Peierls-threshold even if the optical gap is as smallEg=0.4,
Hubbard model at weak coupling has a qualitative behaviobecause we know the optical spectrum of an infinite system
similar to that of the Hubbard model: am—EOPtdecreases, for Eqp— 0 from field theory? The field theory approach
o1(w) first appears to diverge ad ¢ — Eop,)*lz, then goes does not only apply to the Hubbard model, but more gener-
through a maximum just above the optical gégy, and ally, gives the low-energy optical spectrum of one-
vanishes smoothly fotiw— Ey. For large enoughy it is  dimensional Mott insulators with small Mott gap%’ The
possible to carry out a finite-size-scaling analysis similar todifferent spectral functions depend only on an interaction
that performed for the Hubbard modske Sec. V B Thusit  paramete3®<1. In addition, the optical gaRq>0 and a
is possible to check that the low-energy spectrum maximunmormalization constant set the frequency scale and the con-
is finite and lies at a higher energy than the optical gap, anductivity scale. For 1/2 8°<1 these optical spectra de-
to show explicitly thato(w)~Vhw—Egy for im—E,y,  scribed truncated square-root divergence with a square-root
—0". vanishing at the band threshold as in Eg2). For g?=1

For smallerU it becomes increasingly difficult to distin- (Hubbard modglthe spectrum has the shape shown in Fig. 3
guish a smooth spectrum with a truncated divergence from with a maximum at 1.28,,. As B? decreases the peak be-
true divergence. For instance, Fig. 8 shows the low-comes sharper and the maximum moves closer to the band
frequency optical conductivityC,[o1(w)/w] for U=2.3  edge. ForB2=1/2 the optical spectrum is similar to that of a
and A=0.1% with a broadeningp/t=0.1 (N=128 sites. Peierls band insulator with a square-root divergence at the
For comparison, | also show the spectra in the two limitsband threshold.
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2.0 - - y - insulators and in one-dimensional Mott insulators have simi-

lar shapes just above the optical gap.

1.5 Finally, it is interesting to examine the evolution of the
— optical spectrum from weak to strong bond alternation for
% 1.0 fixed U. It has been shown in Ref.@ee also Sec. V Bthat

for A=0 (Hubbard modeglthe spectrum consists of a single

0.5 band, with a maximum close to the lower band edge and a

tiny peak in the centefat least forU=4t). If |A| increases

0.0

one observes in Fig. 18 that the maximum moves closer to
the optical gap and corresponds to a sharper peak. The opti-
cal spectrum still starts a\%hw—Eopt at the band threshold
FIG. 9. Optical conductivityr;(w) of a Mott-Peierls insulator  as discussed above. The central peak, which is too weak to
calculated with DDMRG on a 128-site Iatticey/(t:O.l) for U be seen in F|g 1(@_) for A:O' becomes rap|d|y Stronger as
=2.3 andA=0.1% (dashed and the fitted field-theoretical spec- |A| increases and is clearly visible far=0.4t. As discussed
trum for Mott insulators with3?=0.58 and the same broadening previously this peak becomes & function in the strong-
nit (solid). coupling limitU>t and corresponds to the upper square-root
divergence of the Peierls insulatorlf vanishes. For moder-
Therefore, this field theofy'® can describe the optical ate |A| the ratio between the hopping integralA)=(t
spectrum in both the limiting case@Viott-Hubbard and —|A|/2)/(t+]A|/2) is not too small and the optical weight is
Peierls insulatonsof the Peierls-Hubbard model in the small mostly concentrated below the central peak. If this ratio be-
gap regime, and the field-theoretical spectrum evolves corcomes small, however, the central peak becomes the spec-
tinuously from one limit to the other witg? going from 1to  trum dominant feature, see Fig.(b0 The proportion of the
1/2. Using 1= 8%=1/2, the optical gafEp, and the normal-  optical weight that is in the central peak increases as 1
ization constant as fit parameters, | have compared the low-r2(A) for r(A)—0. A finite-size-scaling analysis confirms
energy optical conductivity calculated with DDMRG for however that this peak is not&function but is still a power-
small gaps Eq<0.71) to field-theoretical spectra with law divergence within an excitation band. Only in the dimer
similar broadening as explained in Sec. IV. For instance, limit |A|=2t[r(A)=0] the optical spectrum is made of a
show in Fig. 9 the DDMRG spectrum for the lattice model single § peak, which corresponds to the excitation of Frenkel
(33) with U=2.3 and A=0.1% and the fitted field- excitons localized on a dimer.
theoretical spectrum wit3?=0.58. Both spectra agree upto  In summary, the optical spectrum of a Mott-Peierls insu-
hiw=1.2~1.7E,;. Generally, | have found that the optical lator consists of one or more bands with a total spectral
spectrum of a Mott-Peierls insulator can be fitted by a field-width ranging from 4 to 8t. The distinctive features of the
theoretical spectrum witiB?>1/2 over a finite frequency spectrum are a square-root vanishingsgf ) at the lower
range, fromw=0 to a frequencyw, which lies between the band edge and a peak due to a power-law singularity around
position of the low-energy maximum andEg,/A. (Natu-  the middle of the spectrum. For strong couplings>t and
rally, for U—0 the best fit is always obtained wif=1/2)  r(|A|)<1] most of the optical weight is in the central peak,
Therefore, | think that for any >0 (and O<|A|<2t) the  while for weak couplingsfU<4t and r(]A|)>1/2] it is
optical spectrum vanishes 8% w—Eqy for fw—Eq,—0".  mostly concentrated in a narrow peak just above the optical
Note that | do not assume that the field-theoretical calcugap. In the limit of a vanishing gapg{— 0 andA—0) this
lations in Refs. 9 and 16 are also valid for the Peierls-narrow peak becomes a Drude peakvat 0. For intermedi-
Hubbard model with general interaction parameters. Actuate couplings most of the optical weight is distributed over a
ally, there are visible discrepancies starting at rather lowbroad frequency range between the optical gap and the cen-
energy between field theory and DDMRG results for the lattral peak andr;(w) goes through a maximum in this range.
tice model, as shown in Fig. 9. The agreement between field The central peak always appears at an energy larger than
theory and DDMRG results in the region of the band threshthe bare bandwidth t4 For parameters that are realistic for
old simply means that the optical spectra in Mott-Peierlsconjugated polymer¥ most of the optical weight lies below

4
— A/t=0.8 i
3 ——-an=1s n FIG. 10. Optical conductivity
= i o,(w) calculated with DDMRG
P 2r l'll b on a 64-site lattice /t=0.2) for
I (b) U=4t and several values aA.
1F n Y . (@ For r(A)>0.5. (b) For r(A)
AR <0.5.
0 Panidi .
12 0 2 4 6 8 10 12
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this peak. Therefore, | believe that it is not possible to ob-been used to calculate nonlinear dynamic response functions,
serve such a structure in the optical spectrum of conjugatesuch as third-order dynamical polarizabiliteSimilarly, the
polymers, because it occurs at too high an energyariational principle presented in Sec. Il can be generalized
(>10 eV) and its intensity is too weak. to dynamical correlation functions describing these nonlinear
The optical spectrum of Mott-Peierls insulators is unlikeresponses. Thus | believe that it is possible to develop an
that of Mott-Hubbard and Peierls insulators. However, mosefficient DDMRG method for calculating these quantities. A
of its main features are found in the strong-coupling limitlimitation of the DDMRG approach is the restriction to zero
investigated in Ref. 15 and discussed in Sec. V C. This sugiemperature. It would be desirable to extend the variational
gests that the optical excitations of a Mott-Peierls insulatoprinciple and the DDMRG approach to finite-temperature
could be made of a pair of spinless bosonic excitations wittdynamical properties.
opposite charges as in the strong-coupling ligaibd in a The computational resources used by the DDMRG
Mott-Hubbard insulator Nevertheless, understanding the method are relatively modest. For instance, all calculations
nature of the system’s elementary excitations requires thpresented in this paper were carried out on workstations with
study of additional dynamical properties, such as the onea single 500-MHz Alpha processor and required less than 1
particle Green’s functions. The DDMRG method will enable Gbyte of memory. It would be easy and very efficient to run

us to carry out this further investigation. DDMRG on a parallel computer as calculations for different
frequencies are almost independent. This would permit one
VI. CONCLUSION to investigate much larger or more complicated systems than
in this work.

In this paper | have presented a dynamical DMRG |y summary, the DDMRG method and the finite-size-
method which allows one to calculate the optical conductiv-scajing technique for dynamical spectra appear extremely ac-
ity of one-dimensional correlated electron systems on larg@yrate and versatile. They provide a powerful approach for
lattices with great accuracy. The DDMRG approach to thenyestigating the dynamical properties in low-dimensional
qalculauon of dynamical properties is essentially an applicatattice quantum many-body systems.
tion of the standard DMRG algorithm for ground-state cal-  Finally, it should be kept in mind that the variational prin-
culations. Therefore, both methods have the same advantaggpie for dynamical correlation functions and their related
but also the same limitations. In particular, DDMRG will excited states is completely independent from the DMRG
directly benefit from recent and future improvements ofmethod. Therefore, it is possible to combine this principle
DMRG such as the use of additional symmetries. _with other variational methods to calculate dynamical prop-

With DDMRG it is possible to calculate the dynamical erties. For instance, one could build a trial wave function
response of correlated systems with hundreds of sites aqgj({)\i}»:R({)\i})WO)’ whereR({\;}) is an operator de-
particles. Relative errors of the order of T0can be pending on a few parametexs, such that the calculation of
achieved for the optical spectrum of finite systems with W({Ni}) =Wy (o, ({\i})) reduces to the evaluation of
”_102 sites. Using a finite-size-scaling analysis based on @round-state correlation functions. Then the minimization of
size-dependent broadening of the discrete finite-system SPegy({\;}) with respect to the variational parametefs;}

tra, one can then calculate a dynamical spectrum in the the{gouid give a lower bound and an approximate value of the
modynamic limit with a resolution of the order of 1% of the gynamical spectrumy(w+i 7).

spectral width and even investigate singularities in a con-
tinuum.

Th(.a.DDMRG approach can be_useq for various dynam_lcal ACKNOWLEDGMENTS
guantities, such as dynamical spin-spin correlation functions
or single-particle Green'’s functions. It can also be applied to | am grateful to F. Essler and F. Gebhard for many stimu-
other lattice quantum many-body models, in higher dimendating conversations. | also acknowledge useful discussions
sion, including spin or boson degrees of freedom, or longwith T. D. Kuhner and S. R. White about the correction
range interactions. The correction vector DMRG method hasector DMRG method.
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