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The periodic Anderson model can be studied in the lichit . by employing the HubbarX operators to
project out the unwanted states. We had already studied this problem by employing the cumulant expansion
with the hybridization as perturbation, but the probability conservation of the local étaiepletenesss not
usually satisfied when partial expansions like the “chain approximat{@tA) are employed. To rectify this
situation, we modify the CHA by employing a procedure that was used in the mean-field approximation of
Coleman'’s slave-boson method. Our technique reproduces the features of that method in its region of validity,
but avoids the unwanted phase transition that appears in the same method both>aBemt low T and for
all values of the parameters at intermediate temperatures. Our method also has a dynamic character that is
absent from the mean-field slave-boson method.
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[. INTRODUCTION The X operators do not satisfy the usual commutation re-
lations, and therefore the diagrammatic methods based on
The present paper deals with the periodic AndersonWick’s theorem are not applicable. One has instead the prod-
model (PAM) in the limit of infinite Coulomb repulsiony uct rules
=), and we employ the Hubbar& operators to write its

Hamiltonian in the forrf Xj.ab-Xj,cd= Ob,cX] ad> ©)
as well as a diagrammatic cumulant expansion with a linked
H= kE Ek,(,CE,(,Ck,(,Jr 2 EtjoXj oo cluster theorem that was originally employed by Hubbaod
0 1,0

study his model. In the present work we shall use an exten-
sion of this expansion to the PARF that can be used to
+'Z (VJ-,k,,,X]T’O,,Ck,(,JrV}*’k,(,CE,,,XJ-,o(,). (1) calculate the Green’s function§&F’s), and the occupation
Jok numbersn; ,=(X; o) are then obtained from the appropriate
The X operators are very convenient for working with local one-electron GF. Assuming translational invariance we can
states associated to the sijesf a lattice, and are defined in Wwrite n; ,=n, (independent of)j so that from Eq.(2) it
general byX; ,,=|j,a)(j.b|, where the sef|j,a)} is an or-  follows that
thonormal basis in the space of local states of interest. There
are four local states in the PAM at each gitef the lattice: NotNn,+nz;=1 (4)
the vacuum stat§j,0), the two statesj,o) of one electron
with spin componentr, and the statej,2) with two local
electrons. Wheitd — o the statdj,2) is empty, and we have
used the Hubbard operators to project it out from the spac
of local states at sitg In this subspace of interest, the iden-
tity 1; at sitej should satisfy the relation

We shall call this relation “completeness,” and it is essential
that it would be satisfied to avoid distortions in the values of
hysical properties calculated with those GF's. We have
ound that completeness is not usually satisfied when only
approximate cumulant GF&Ref. 4 are employed to calcu-
late then,.
X; 00t X w0t X 5o=1; 2) In the present work we shall consider a fairly simple su_b- .
_ set of the one-electron diagrams of the cumulant expansion:
whereo is the spin component opposite & and the three  the “chain approximation”(CHA). This approximation was
X; aa are the projectors intfj,a). first employed by Hewson® and is the most general cumu-
The first term in Eq(1) is the Hamiltonian of the con- lant expansion with only second-order cumulants, as well as
duction electronsd electrong and the second term describes being @ derivable’® This subset of diagrams seems very
independent localized electrons€lectrong, where a simple  relevant, because in the absence of correlatiobsained by
index j is used to identify the sites. The last term is theneglecting spipit is the exact solution and transforms in a
hybridization Hamiltonian giving the interaction between natural way into the corresponding Feynman’s diagrammatic
the c electrons and thd electrons, ano\/j,k’(,:(ll\/N_S) expansiorf.? When correlations are considered, this approxi-
XV, (k)exp(k.R;), whereR; is the position of sit¢g andN; ~ mation presents two drawbacks: it does not show a Kondo
the number of sites. Note that this interaction conserves theesonance in the Kondo region, and it gives rather large de-
spin component. partures from completene$gq. (4)] in this parameter re-
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gion, while these departures are fairly small outside this rerequires now the solution of an Anderson impurity coupled
gion. In previous works we first recovered completeness byo the fermionic bath, as well as to additional bosonic baths,
an ad hoc renormalization of the GF, and we later that are again self-consistently determined. This extension
conjecturefl a way to achieve completeness by adding a sewas employed to study the competition between the local
of diagrams to any arbitrary family. This result was verified Kondo effect and the nonlocal Ruderman-Kittel-Kasuya-
for the CHA, although the resulting set of diagrams isdot  Yosida (RKKY) interaction;® as well as the related locally
derivable any more. Our attempts to obtain a Kondo resocfitical quantum phase transitioffs? _

nance were not successful before, but we recently realized ©Our method does not have the space dynamics character-
that a technique employed in the mean-field approximatiofstic of the extended DMFT, but it retains some time dynam-
of the slave-boson methB'would give the desired results. ICS; although of a much simpler type than that provided by
To avoid multiplef-electron occupancy in this last method, the DMFT (cf. our discussion of th&-boson self-energy in

the system’s free energy is minimized subject to a constrairftPPendix, Sec. L The X-boson method would then have,
formally equivalent to our Eq2), and this procedure renor- lIke the DMFT, only partial relevancein the study of the
malizes thef-electron energf; |, to a position close to the Competition between the Kondo effect and the magnetic in-
chemical potentiaj, where the peak in the spectral density teractionglike the RKKY |n_teract|on$ As_ in the case of_ the_
takes the place of the Kondo resonance. Our method thefsu@l slave-boson mean-field method, it is possible, in prin-
consists of renormalizing thielectron energy; ;, of our ciple, to consider a more complete subset of diagrams to
Eq. (2) by minimizing the thermodynamic potential, with Eq. include spatial fluctuatlon$|n_ter5|te diagramsas well as

(1) as a constraint, and using Lagrange’s method as was dof&o"e elaborate 'Iocaé Eluctuatlons, although these calculations
in the slave-boson method. Note that we have only employe@'® rather laboriou’™

that aspect of the slave-boson treatment, and we have not

split any of theX operators as a product of a fermion and a Il. X-BOSON CUMULANT METHOD

slave boson, but have used the CHA of the cumulant expan-
sion. Our method then gives satisfactory results, because t%r
results are very close to those obtained by the slave boson
the Kondo limit at low temperatures, while the method re- ; .
covers those of the CHA at high for all parameters. The :aer ertebsog(;iSHubt;i:jd( o;?:rr;tic())rnss.ai(_a p_r?s_f gt ?(f ordi
unphysical second-order phase transitions that appear in the y+ " © oo T R TL00
slave-boson approach in the Kondo regiQnXE; j,= Es) —b fJ\U’.Xi"TOHfW.bi’ and uses the equivalent of our E.q'
at low T, and also for all parameters at intermediate tempera(—4) to avo@_states with more_ than one el_ectrt_)n ft eact; site
turesT, are then eliminated by our treatment. Colefidras " the spirit of the mean-field approximation™ —(b;")
observed that these phase transitions are artifacts of thg!» @and the method of Lagrangian multipliers is then used to
theory, and the advantage of the present treatment is thipd the “best” Hamiltonian that satisfies E¢4). The prob-
those spurious phase transitions do not odeumore de- lem is then reduced to an uncorrelated Anderson lattice with

tailed comparison of our method with the slave-boson techfenormalized hybridizatioV —rV andf level e;— e;+\.

nique is given in Secs. Il and III)C ~ Our method consists of adding the product of each(Eg.
The PAM is one of several models of correlated electrondimes a Lagrange multiplied; to Eq. (1), and the new

that has been very useful to describe important physical Syg-JamlIto_nlan generates the functional that we shall minimize

tems, like heavy fermions, Kondo systems, and transitiorffMPloying Lagrange’s method. Instead of the paranvetes

metals. The fairly recent book of Hewsdndiscusses the introduce

techniques available to study these problems at the time of .

its publication, while the introduction of the limit of infinite R=(Xj,00): ©)

spatial dimensioff leads to the development of the dynami- and we call the method X boson” because the Hubbard
cal mean-field theoryDMFT), that gives exact results in that gperator; ,, has a “Bose-like” charactet,but note that in
limit. This powerful technique was discussed in a receniour method we do not write any operator as a product of
review,” and it can be said to be an extension of the Weisgrdinary Fermi or Bose operators but retain them in the
mean-field theory, but with a frequency-dependent moleculagriginal Eq.(1).

field. This field is obtained from the self-consistent solution  Considering Eqs(2) and (5), and employing a constant
of an Anderson impurity in the presence of a fermionic bathhypridization v, as well as site-independent local energies
that represents the effect of the remaining sites of the systeng, i »=Ef, and Lagrange parametefs=A, we obtain a

The one-electron self-energy is frequency dependent, thusew Hamiltonian with the same form of E¢{),
describing the local dynamics of the system, but it does not

depend on the wave vector, so that the nonlocal correlations + ~

are lost in this treatment. A fairly recent extensidH of the H= kE ExoCh oChot 2 Et,oXj oot NsA(R=1)
DMFT makes it possible to treat nonlocal correlations by 7 he

also considering the interaction of a pair of fermions at dif- + +

ferent sites but employing a modified scaling of the interac- "'V.; (Xj.00Ck,0 T Ck,o Xj 00) (6)
tion constants to avoid the disappearance of these terms in e

the limit of infinite dimensiort® The effective-field problem  but with a renormalized localized energy

The present work is a modification of a preliminary
siorf? that was partially inspired by the mean-field
Ypproximation of Coleman’s “slave-boson” methHH
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Ef,=Ef,+A. (7) G(jami ', ) =([X (7 X (T)])n, (12)

This procedure allows for an independent variation Fof .

when the free energy is minimized, even though the comwhere X; ,(7) =exp(H)X; ,exp(—7H) corresponds to the

pleteness relation Heisenberg representation and the subindexindicates
that the operators inside the parentheses are taken in the
order of increasing to the left, with a change of sign when

Rzl_g (Xoa) (8) the two Fermi-type operators have to be exchanged to ob-
tain this orderind. In a similar way one defines the
must be simultaneously satisfied. c-electron GFG®“(k,o,7;k’,0’,7’) as well as the mixed
In the slave-boson approach a one-body Hamiltonian ot5F's G'(j,a, 7;k’,¢',7') andG®'(k, o, 7;j",a’, 7).
uncorrelated particles is obtained at this stage, and 4ds The boundary conditions of these GF with respectrto

then necessary to avoid the occupation of more than ongakes possible to expand them in a Fourier ségesploy-

localized electron per sitghe conservation of probability in  ing the Matsubara frequencies,=(2n+ 1)i#/8, wheren

the space of the local states is automatically satisfied, bds any integer. Because of the invariance 7f against

cause normal fermion operators are employed in the transranslations we have frequency conservafiosp that

formed Hamiltonian Equation(6) on the other hand em- fo(j,a,iwn;j’,a’,iwg)=0 unless w,+ w,=0, and one

ploys X operators, that force the local states to be singlycan then write

occupied at most, but Ed4) (completenegsmust be im-

posed here because it is not automatically satisfied when ap-

proximate GF’s are employed to calculate tiye Although G'(j,a,io, ;j’,a’,iwg)zG;;;j,a,(zn) Alwp+ o))

the procedure is the same as employed in the slave-boson (13

method, the underlying physical meaning is rather different.

In the present work we shall employ the GF of the chaing 4 similar relations for th&°c, G'°, and G°'. Here we

approximation(CHA),>® because it gives a fair description e used,=iw,, and we shall keep this notation in what

of the system in spite of its simplicity. . follows, as well as employ (y)=4, ¢ (a modified notation
The present treatment_ employs the grand canonical ®Mor Kronecker's delta The “bare% GF's” (i.e., with all

semble of electrons, and instead of E). we shall use Vi .=0) take a fairly simple form because many of the

relevant operators become statistically independent, and we

H=H=u{ X ¢ Cuot 2 VaX]aal, (9)  then have
k,o ' ' ja '
wherev,=0,1 is the number of electrons in st3#. It is G(j,a,z,;] ',a"zr’])iG? JLZA (0t wﬁ)5j 1 Caars
then convenient to define ’ (19
8j,a:Ef,j,a_,uVa (10
Gk, @,zy;K" @’ ,20) =G (Zn) Al wn+ ©}) Sk St
and (15)
Eko ™ EkO'_Iu” (11)
Gi‘=G¢'=0. (16)

becauset; ; , and Ey , appear only in that form in all the

calculations. The exact and unperturbed averages of the 0513_— . )
eratorA are denoted in what follows bfA),, and(A), re-  Thed, . inthe bare GF follows from the commutation’af
spectively. with the z component of the spin. _

The diagrams in real space that contribute to the CHA are
schematized in Fig 1. The meaning of the symbols in the
cumulant diagrams is the following:

The CHA gives simple but useful approximate propaga- (a) the “vertex” @ =G¢ (z,)=—Dq,/(z,~ ¢ ,,) is the
tors, obtained in the cumulant expansion by taking the infif bare cumulant GF, wher®,,=(Xyo) +{Xs); (b) the
nite sum of all the diagrams that contain ionic vertices with“vertex” O = ng,,(zn) =—1/(z,— €y,) is thec bare cumu-
only two lines. The laborious calculation of the generallant GF;(c) the lines(edge$ determine an open loop with a
treatment is rather simplified in this case, and we shall give definite direction. When the line points to theertex, it is
a brief description of the technique, particularly when only<_:vjykyo, while it is ‘—:ka,a when it points to the con-
the imaginary time is Fourier transformed, because this induction vertex;(d) the cumbersome sign and symmetry
termediate situation is not discussed in Ref. 2 and it is necfactors? are rather simple in the CHA: it is only necessary
essary to calculate the impurity problem. The oMly and  to multiply the G'® and theG°®' times a minus signfe) as
XL operators of the Fermi-type that appear in the calculatiorboth thew and thes are conserved along the open loop, what
have a=(0,0), and thef-electron GF's in real space and only remains is to sum over all the interrjaandk.
imaginary time are We then obtaifjwith a=(00)]

IIl. THE CHAIN APPROXIMATION GREEN'S FUNCTIONS
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ks, k, FIG. 1. The Green’s-function
a) —<—.—<— = —= . - + - . - O - ~ + diagrams in the CHA. The filled
jor jo Foja, o, Lo, jo circles(vertices correspond to the
- - - - f-electron cumulants and the
Ka Kk, K, k, empty ones to those of theelec-

trons. The lines(edge$ joining
lrer 1,0, o 1% La, o 10 o two vertices represent the pertur-
bation (hybridization (cf. Sec.
Ill). (@) Diagrams for thef elec-
tron GF in the CHA. The CHA
diagram for the f electron

s K K- K, K, K G|l j,a(iwn) is represented by
Ul e e O — ——0O— the filled square to the left(b)
¢ © G O Jo s, © Diagrams for thec electron GF in

the CHA. The G;7 ., ,(z,) is
represented by the open square
symbol to the left.(c) Diagrams
for the f-c electron GF in the
CHA. The G5 (z,) is repre-

c) +:|—<— = —‘—.—‘—O—<— sented by the half filled square

jo ko symbol to the left.
it (z,) Employing the same technique, we obtain for the CHA
jra’;jar N cc ; : ; ;
the G*¢, that gives the scattering by the local impurity of a
=8,1,4GF o(Zn) conduction electrofk, o into k’,o":
G ’ I Z 0— T G o Z 5 ’
+G?,a(zn)k21 Vj’,klﬂ'Gg,klU(Zﬂ) j*,kl(r ‘f),a(zn) K'o ka'( " { ck ( n) kk
+Gc k'o (Zn)V*(k )Gja Ja(zn)
G?a(zn)kﬁ2 Vi ko 2,k2(,(zn)]§l) V} koG a(Z0) V,(K)G2 (o)}, (20)
as well as the mixed GRwith o’ =(00")],
X2 Vi oGl (ZVE G (Z)+ ... (1D
e Tk Zekyol SV ko2 al A cha, ko Z0) =841 451 JGJ %o (Zn)s (21
where we have already included the minus didiscussed in
A. The impurity case rule (d) abovd to give
When there i; a sin_gle impurity at a _givq'gneach of_ the G| kg(zn)— GJfL Ja(Zn)Vj,kaGg,kg(Zn)
sums over the interngl, reduces to a single term witpf
= i DoyVi ke 1
j, and we introduce - O Tik X . (22
Zn_sf,0+DOUMU(Zn) In— Ekeo
Mo (Zn)= 2 Vi k,0Gek,o(Zn) Vi k B. The lattice case
) 1KqC Ko J,Kq0 .
The case of the GF in reciprocal space and imaginary
:i 2 IV, (K)|2GC .(zy) (18) frequencies has been discussed in detail in Ref. 2 and in the
Ns % "7 e CHA one follows the same prescriptions given above, but

replaces the sum over interrjadndk by a conservation df
which is equal to the local GF at sijgimes|V,|? when the ~ &l0ng the whole chain, so that we have
hybridization is purely local, i.e., whe¥ (k)=V,. Equa- fErr,
tion (17) is then a geometric series that is easily summed: GU[K".(00"),2,:k,(00),2:]

=8k 0. Mopt 0))GL (2)), (23

Oa z ) ’ '
J a' ]a(zn) 5& a5J J I} L ( - Gcc(k’10,1zn;kVUvzn)z6k,k’6cr,o"A(wn+wn)GEE’(Zn)'
1_Gf,a(zn) M(r(zn) (24)
:5a’ aaj’ j _DOU . (19) ch[k,i(oo-,)rzl;;kio-!zr'l]:(sk,k'ﬁu',(r’A(w +w )Gku’(zn)
' ' Zn_ef,(r+ DO(rMa’(Zn) (25)
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where IV. THE SINGLE IMPURITY PROBLEM
D _ In the X-boson approacB ,= R+ n¢, must be calculated
ff o(Zn—€ke) . T .
Gy (z,) = — (20 self-consistently through minimization with respect to the
(Zn=&1,0)(Za— ko) —|Vo(K)[*D parameteR of an adequate thermodynamic potential. When
the total number of electrony;, the temperaturd, and the
—(Zy—&¢.4) volumeVy are kept constant one should minimize the Helm-

ko(Zn) = (Zn—1 o) (Zn—&1g) — |V (K)|2D . (27 holtz free energy, but the same minimum is obtained by em-
N Shelon Tke 7 7 ploying the thermodynamic potential)=—kgTIn(Q)
and (where @ is the grand partition functiorand keepindr, Vg,
and the chemical potentigk constant(this result is easily
— DyV,(k) 28 obtained by employing standard thermodynamic techniques
(Zn— &1 ) (Zn—£10) — |V (K)|2D . (28 A convenient way of calculating) is to employ the¢
noThenmn TR 7 7 parameter integration methé%.2° This method introduces a
&-dependent Hamiltoniamd (¢) =H,+ éH, through a cou-
C. The slave-boson GF vs the GF of the CHA pling constant¢ (with 0<¢<1), whereH; is the hybridiza-
The slave-boson GF in the mean-field approximaticin  tion in our case. For eachithere is an associated thermody-
Refs. 11, 13 and 23are just the GF of the uncorrelated namic potentiak)(§) which satisfies:
problem U=0) but with a renormalized hybridizatioW

—V=rV plus a condition that forces the local electron to an o3k —(H 29
occupation less than or equal to one. The GF's of the CHA JE), + =(H1()e.
given above are formally very close to the uncorrelated s b

ones, but they cannot be reduced to them by any change Where<A>§ is the ensemble average of an operaidor a
scale[except forD,=1, when we recover the slave-boson system with Hamiltonia (£) and the given values of, T,
Green’s functions if we puV—rV=V in Egs.(19-(22)  andV,. Integrating this equation gives
and Eqs(23)—(28)]. The obvious changeD,,V—V leaves

an extra factoD,,, in the ijfa,;ja(zn) andG|' (z,), as well -0 ld

as Dy, in both G/ ,(z,) and G{&(z,), and these factors =it fo §H(E))e,
are responsible for the correlation in this approximation, and

lead to essential differences with the uncorrelated age. where(), is the thermodynamic potential of the system with
particular, they force the total occupatiop of thef electron  ¢=0. This value of corresponds to a system without hybrid-
ton;<1, while in the uncorrelated case the relatigr2 is  ization, and one obtainén the absence of magnetic field
satisfied. In the slave-boson method the imposed conditiop, =¢, andz,=%¢;)

n{=<1 is fulfilled by a shift in the local energyf,,,—Ef,(,

=g¢, TN and a reduction of the hybridization td—V B

=rV. From an operational point of view, a shift iy , QO__E ; In[1+exp(—Bew)]
might not be sufficient to forca;<1 because the hybridiza-

tion extends thd spectral density to the whole conduction
band, and reduciny helps to satisfy this condition. By in-

creasing the temperatuiie or the chemical potentigk the

valueV=0 is presently reached, leading to a decoupling ofand to calculate in Eq. (30) we use

the two types of electrons that can be interpreted, from a

more general point of view, as a change of phase related to a . N

symmetry breaking of the mean-field Hamiltonian. Although (Hp)e=2R % Vj,k,0<ckch00'>§ . (32
the condition that forces completeness in the CHA is identi-

cal to that employed in the slave-boson method to farce e averachI Xos)¢ is Obtained from the analytical con-
<1, it has a rather different origin, being only a conse-,. . 7o fe —fo .

. . ) . finuation of the Matsubar&;.y (z,,6)— G ,(z,§) into
guence of using a reduced set of diagrams in the perturbatlv% JK oA L
expansiorf, and the departures from completeness are usu- € complgx upper and lower semiplanes, Wr@k%vﬂ(z“’.g)
ally very moderate. In the formalism described in the presentS the GF in Eq(22) but forVj  ,— &V ;. One then finds
work, it is this essential difference between the two methods .
that eliminates the spurious phase transitions appearing in + L —3
the slave-boson method. An alternative explanation of this <Ck"’Xj'O">§_ﬂﬁwdwnF(a)){Gj
different behavior is that th&-boson solution retains some .
time-dependent dynamics that would remove the spurious —ijfka(w—io;g)}, (33
phase transitions, while the mean-field slave-boson method
does not have any relevant dynamics at &l the discussion where ng(x)=1[1+exp(BxX)] is the Fermi-Dirac distribu-
at the end of the Appendix, Sec). 1 tion. From Eqgs(18), (32) and(33) we then obtain

GL(ET(Zn) =

(30

- %In[l+2exr{—,876f)]+A(R— 1), (3

fk,,(w+io;§)
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1 (= the unperturbed system. The effect of the perturbation in the
(Hp)e=— ;J dong(w) present approximation is to redistribute the energy of the
o quasiparticles in the same way as in an uncorrelated system
EDo M (™) with hybridization constan¥; , ,= \/D_O(,Vj,kvg, and one
x> Im — Maah |’ (34)  could then expect Fermi-liquid behavior in the CHgee a
o @’ —eit Do Mo(0™) formal discussion in the Appendix
wherew ™ =w+i0. This equation has an interesting scaling The parameteA is obtained minimizing with respect
property: it is equal to the corresponding expression of thd0 R'® (at a constanj as discussed at the beginning of this
uncorrelated system for the scaled parametérk(, section. _To S|mpllfy the calculations we shall c0n5|der.a
_ \/D_ooVJ « (it is enough to remember that by replacing conduction band with a constant density of states and width
Do, =1 in the GF of the CHA one obtains the corresponding"" 2D and an hybridization constai,(k)=V. We then
GF of the uncorrelated systeniRather than performing thie obtain
and o integrations, we shall use the value of Q4 for the
uncorrelated system with,  ,= Do,V ., and employ —2 Ne( i ») (
Eq. (30) to calculateféd§<H1(§)>§—Q“ QY. where 7

+A=0. (41

The poles of the impurity GF satisfy

-2 ~
=5 | 2 In[1+exp(—Bey) |+ In[1+exi —fe)] vng)I ;oD
wj ;=g¢t D n 0., D (42
+A(R-1) (35 .
_ and calculating th&® derivative ofw;(k,o) we obtain
is the Q" for V; , ,=0. In our case the unperturbed Hamil-
tonian for the lattice problem is —V? wi y+ D\ (0?,—D?Nne(w; ,)
A= > In| — ] T (43
2D 5 \wi,~DJ(w?,-D2+V?D,)

HY=Y & ,Cf Chot > efl fi  +NA(R—1)
% Kook IZU Pl A In the absence of magnetic field, i.e., when the,= w; is

independent ofr, we can write this equation as

+D) (0?~D?)Ne(w)
(w?>—D2+V?D,)

+2 (Vjxof! e +vlko_ck0fJ o) (36)

=—f dwpi(w)In , (44

and in the impurity case the sum over sites reduces to the
impurity site andNGA (R—1)— A(R—1). This Hamiltonian

can be easily diagonalized, and the correspontirigcan be wherepy(w) =2;5(w—w;) is the density of states, and the

chemical potentialu of the electrons was included in the

written single-particle energigef. Eqs.(10) and (11)]. The Kondo
temperature
HUZZ wi’(,aiT’Uai’U-i-A(R—l), (37) 5
ef
wherea + (a; ,) are the creatioridestruction operators of Tk=D ex;{ ?) (45)
the composne particles of energies , (there areNg+1
states for each spiar). The calculation of 1.0 : — :
-1 ---- Slave boson /
0'=— 3 n1+exp— o )I*AR-1), (8 fos| xboson  /m ]
lo _Q ’
is straightforward, and employing Eq®0), (31), (35), and § 0.6
(38) we find <~
c
1 g
Q=00+ — 3 1+ exp~ Ba,) ]+ AR-1), (39 g 04
lo §
where o %
1 | 1+2exg—pe . LN .
0e=0,—Q=~"1In H g f)z , (40 00 107 107 10° 10'
B [1+exp(—Ber)] T
and the eigenvalues; , of the 7" are just given by the FIG. 2. Occupation numbers , and parametens® andR as a
poles of the GF in the CHAEQ. (19)]. function of T for both the slave-boson and theboson methods.

It is interesting that all the correlation effects on the ther-The figures correspond to the following parametdts= —0.15;
modynamic potential appear in ti&,, that corresponds to W=2.0; V=0.3; u=0.0.
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0.4 T . . 1.0 | o
R /’
---- Slave boson <_ n
—— X-boson 0 o8| ot E
0.3 b [0} ,I
_g X-boson /
S 06 | ! J
| =z /
c 7
Loaf / 1
(1] /
s /
| Q o2} oA 1
[&] e P N\
O /’//// N
/‘_//’/ \\\\\\
1 Il Il 00 1 L
0 1072 10 10° 10 -1.0 -0.5 0.0 0.5 1.0
T 15
FIG. 3. Evolution with temperatur@ of the renormalizingA FIG. 5. X boson:A, R, andn; vs u for the same model param-
and A, for the same model parameters used in Fig. 2. eters used in Fig. 4.

is defined as tha that makes the slave-boson parameter second-order phase transition,’ as suggested by _the mean-field
vanish, but another useful definition was given by Bernhardpl@ve-boson theorf.As the GF’s of the CHA retain the cor-
and Lacroi®’ by taking T as the crossover temperature, '€lation properties of the system, theboson approach
determined by the maximum of the derivative <mci‘rgfig> shows no decoupling nor spurious phase. transitions, as dis-
with respect tor. cussed in Se_c. III_C.' One can see in Fig. 2 that the two
approaches give similar results at low temperatures.
In Fig. 3 we represent the parametarand A as a func-
V. IMPURITY RESULTS tion of temperature. We observe that the slave-boson

The results presented in this section correspond to %reaks down at the Kondo temperatiiig whereas thex

Kondo regime with the following parameter&f= —0.15 _os_:onA goes contlnl_Joust to zero. In the high-temperature

_ - . 2 limit the results obtained with the usual CHA are recovered
W=2.0, andV=0.3. Figure 2 shows the evolution with by the X boson
of the parameteR, that measures the hole occupation, to- In Fig. 4 we. show the evolution of, r2, andn,, as a
gleat \t]ee-rbc\;\gghn tgi v(\:/glrlrzssptzgdtl\?vgz Oifcjlgztilésnuﬁbrmfgg_lizzld function of the chemical potential in the usual slave-boson
i ’ 5 - approach: the formalism breaks down at a valug where
figure shows that“— 0 at a finiteT (Kondo temperatur&y) ni—1. In Fig. 5 we show the evolution of the parametars
while R remains positive, avoiding the spurious phase tran-Rf andn as é function of the chemical potential for thé
sition. Thens—1 atTk for the slave boson, while it remains Xibosonf approach. The results of the two approaches are
lower than 1 for theX boson at allT. : . similar for u<ug, i.e., before the breakdown of the slave-

At high temperatures the system is well described by lo- oson methodcompare Fig. 4 and Fig)5The parameteA
calized moments coupled to the conduction electrons througBeaches 2 maximum in thé Kondo re.gion and goes to zero
a Cogblin-Schriefer-type Hamiltonian, and even at high tem-When ~E. wheren.—1. and in this limit we recover the
peratures there should not be a complete decoupling nor a K==t f '

usual CHA.
1.0 . . 8.0 . . .
<
~ P Slave boson Slave boson o
o8t 1 !
> |
8 ,
£ In
3 06 ! 1
p / |
S /
-5—3 04 / J
8 7
S / s |
. A
8ozt A |
O /’:"///
==
0.0 [ L L | |
-1.0 -0.5 0.0 0.5 1.0 0.6 1.0
n
FIG. 4. Slave boson, r?, andn; vs u for the same model FIG. 6. Slave bosonp;(u),pc() vs w for the same model
parameters used in Fig. 2 aiid=0.001. parameters used in Fig. 4.
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25 T

0.0
-1.0

-0.5

FIG. 7. X boson:ps(w),pc(u) vs u for the same model param-
eters used in Fig. 4.

The values of thef- and c-electron density of states
pi(m), andp.(un) at w=pu are shown as a function qf for
the slave-boson method in Fig. 6 and for tkéboson ap-
proach in Fig. 7. The slave-boson plot breaks dowruat
=uo (Wheren;—1) while for the X boson the density of

PHYSICAL REVIEW B6, 045112 (2002

The Q) is again obtained from Eq30) with adequate values
of Qg and(H()),:

2 Ns ~
Qo=— 2 X In[1+exp— Bey)]— — IN[1+2exy — Be()]
Bk B
+NA(R-1), (46)
(Hp)e
1 o
=;J7xdwn,:(w)
&V, (k)|*D,
X Im '
;rr [(w+_8fg)(w+_8ko-)_§2 IV (K)|°D,
(47)

wherew™ =w+i0. As in the impurity case, this expression
coincides with that obtained for an uncorrelated Hamil-
tonian, which in this case is E436) with a scaled hybrid-
izationV, (k) = VDo,V (k). The corresponding eigenvalues
can be calculated analytically in this case, because for each
spin componentr the Hamiltonian is reduced intdg matri-

statesps(«) is maximum in the Kondo region and goes to ces 2X2. They are the poles of the lattice GF’s, replacing the
zero whenu>E; . In both cases one observes the transfer oNg+ 1 eigenvaluesy; , of the impurity, and we denote them
conduction electrons to thieband giving rise to the Kondo as
resonance.

In Fig. 8 we present the density of stajgéw) andp.(w)
VS energyw in a typical Kondo situation, both for the slave-
boson andX-boson treatments. The Kondo resonance ap-

1 - . =2 2
Ok o(£)= 5 (oot 8D 25V (Bk,0— 5024V, (K) D,

(48)
pears in the two cases with a similar shape, but it is less ] . .
pronounced in th&-boson treatment. thllqwmg the same arguments employed for the impurity we
obtain
VI. THE LATTICE PROBLEM a=0 -1 | { q (I)]}
=00+ — n1+exd — Loy,
For the lattice we follow the same technique employed " B kT ’
with the impurity: the parametek is obtained by minimiz- _
ing the thermodynamic potentid) = —kgTIn(Q) with re- FNAR=D), (49
spect toR, andD ,=R+ny,, is calculated self-consistently. \where
5.0 T T T —_
---- Slave boson b (_)0:_& n 1+2exp fsf) ] (50)
ol —— X-boson AP | B[ [1+exp—Bep)]?
N 1
," \ The same result was obtained by direct analytical integration,
) o thus confirming the arguments employed in the derivation of
S \
\gja.o i ;' ! | Egs.(39) and(49). A more complete analysis of the behavior
< ! of the thermodynamic potential can be found in Ref. 29. As
3_2.0 '\| in the impurity case, all the correlation effects on the ther-
=3 modynamic potential appear in tH@,, and one expects
10 again a Fermi-liquid behavior of the quasiparticles in the
: X-boson approximatioiicf. the Appendix.
As in the impurity case we obtain an equation forby
0.0

' ; minimizing () with respect toR:
-1.0 -0.6 -0.2 0.6 1.0

[0}
nF[wk,(r( + )] - nF[wk,a( - )]

FIG. 8. Density of states op¢(w),p.(w) VS w in a typical —
\/(8k,a'_8f,0')2+4|V0'(k)|2D0'

Kondo situation, in the two approaches, for the same model param-
eters used in Fig. 4 and=0.0.

1
— 2
A= & VoKl
(5)
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where ng(x) is the Fermi-Dirac distribution. Employing 0.4 . . '
|V,(k)|=V as well as a conduction band of a constant den-

" ’ . —— X-boson
sity of states and widthV=2D, we find forg, ,=¢ ---- Slave boson
0.3 .
VZ (o Nefwk(+)]—Nefow(—)]
A: - dsk — . (52)
Do " Ve —zp2+aviD, <

<02
The quasiparticle properties of a heavy fermion system car
be described by an effective Hamiltonian, characterized by
two hybridized bands coupled by an effective hybridization 0.1

matrix element/.?8 In the slave-boson method

21 2 . . .
Vg_p=(1—ng)V7, (53 0.0 o o o 7
while in the present approach we have T

FIG. 10. Kondo caseA, andA vs T for the same model param-

v>2<*b= D V2= (1-ng/2)V2. (54 aters used in Fig. 9. P
The hybridization reduction factor is related to the effective
probability that ac electron jumps into af state, and when havior is observed. The evolution of tikeboson parameters
U— o this transition can only take place if tiidevel of the ~ Randn; are shown in Fig. 9 as a function of and thef and
final site is empty. Rice and Uetfaargued that the effective ¢ electrons do not decouple in this treatment because the hole
hybridization should be occupationR>0 in the whole range of temperatures, while
the corresponding parametef of the usual slave-boson
treatment vanishes at a critical temperat{itendo tempera-
ture Tx). The two approaches yield similar results at low
temperatures. The dependence with temperatuie (sfave-

132 - , boson andA (X boson is presented in Fig. 10, and the slave
by Fazekas!? These variational calculations present theyosonn breaks down at the Kondo temperatdie whereas

same spurious phase transitions shown by the slave-bosgfly x 1oson A goes continuously to zero, recovering the
method, because in all these treatments the reduction fact@*HA behavior at high temperatures.

goes to zero at a critical temperature. On the other hand, the The evolution ofn;, A, andr?2, with the chemical poten-
reduction ;actc;lr dges not vamshk:n thg v'zholg ralnge of teMsia) . is presented in Fig. 11 for the slave-boson treatment.
peratures for th&-boson approach, and thandc electrons |, his case we do not recover the three characteristic re-

do not decouple. All these approaches produce similar resul@mes of the PAM: Kondo, intermediate valence, and mag-

1-n
L2 (55)

\/2 _
VRu=1= ne2 "’

and variational calculations were performed by tfi¢and

at low temperatures.

VII. LATTICE RESULTS

netic, because the formalism breaks down when 1. The
corresponding quantities in th¥-boson approachn;, A,
andR, are also given as a function @f in Fig. 12, and the

We have employed for the lattice the same system paranjfhree qharacteristic_ reg?mgs of the PAM are clgarly shovv_n.
eters used to discuss the impurity, and a similar type of be‘_l'here is a plateau in this figure when the chemical potential

crosses the hybridization gap, and the paramé&té maxi-

1.0 T T 7 T
/- 1.0
---- Slave boson !
w 7/
o 08 —— X-boson K | <<“
Pl / 0 08 Slave boson |
£ , g
Z 0. ’,r b E
c Eeeoo=-—77 = 3 06 _
g = = <
= S i [
© 0.4 N
o * -..% 0.4 .
3 . @©
8 0.2 \\ g—
. 2 N
o N 8 o2 ]
1 o
0.0 ' K '
10 107 10° 10' 0.0 ‘
T -1.0 0.6 1.0

FIG. 9. Kondo case: Occupation numbegs and parametens’

andR as a function ofT for both the slave-boson and tixeboson
methods, for the same model parameters used in Fig. 2.

FIG. 11. slave-boson: Occupation numbexsr?, and N: VS 1
for the same model parameters used in Fig. 4.
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1.0 : o —em—— :
-
< )
- I'n,

@ 0.8 | b 5
8 X-boson i

E J

S 06 1 .
=z

c

S o4 ] ]
(1)

o

3 g

oz} P . 1
O S I Y SO0 SN Ut [ I

00 b===""" R St T
-1.0 -0.5 0.0 0.5 1.0 0.5 1.0
1
FIG. 12. X boson: Occupation number4, R, andn; vs u for FIG. 14. X boson:p¢(u),pc(n) vs u for the same model pa-

the same model parameters used in Fig. 4. rameters used in Fig. 4.

mum in the Kondo region, and goes smoothly to zero to-Sanchez-Castret aI.,'°j5 and we have recently studied the
gether withR when w increases, while,—1. The CHA is  Kondo insulator FeSi using the atomic mqa%WWe have
recovered in this region by thé-boson treatment. bee_n _able to adjust S|mult§1neously the_: static conductlv_lty, the
The value of the density of states(u),p.(x) as func- resistivity, and the dyna_rmcal cor_1duct|V|ty to the experimen-
tion of u is presented in Fig. 13 for the slave-boson treat-tal results, and we obtained gfaw agreement. !n this se_ctlon,
ment: the approach breaks down in the Kondo region wheM/@ Present th&-boson form_ahsm as an alternative that gives
ni—1 and the same quantities are plotted in Fig. 14 for thg®Sults close to those obtained by the slave-boson method in
X-boson approach. The density of statgéw),p.(w) Vs its region of validity, while it makes it possible to extend the
are shown in Fig. 15 for both the slave-boson atboson _results to the_ whole range of t_e_mperatures,_wnhout present-
approaches in a typical Kondo situation. The densityf of N9 the spurious phase transitions appearing in the usual

states afu is practically the same in the two cases. slave-boson method. , _
To calculate the specific heat employifigwe first show

by standard thermodynamic techniques that

(&F B (aQ)
- - ﬁ MYVI (56)

VIII. SPECIFIC HEAT

In this section we apply the theory developed in this work S=—|— _
to calculate the specific heat of the Kondo insulators, but for IT /v
simplicity, we shall not try to fit the experimental results of
some particular compound. This class of materials has beet’
extensively studied in the last decade since its characteriza- 9S 520 P oN
tion by Aeppli and Fisk® as Kondo insulators. Some of the CUIT(— = _) +T (_'“> (_) )
compounds that we can include in this family are FeSi, a N,V JT? PRy a N,V al wV
Ce;BisPt;, SmB;, and YbB,. The slave boson was applied (57
to Kondo insulators initially by Riseborouth and by

d then that

15 T
15.0 "
P ---- Slave boson
Slave boson — X-boson ! P

12.0 - ] 10| ] |

8 ! it

—_ ~5 fl Iy

3. 90 , oY 4 h

= ° I

—_
1

= 8 o
2 60 1 & 5r : : i

a ! '

[}

30 | ] b

pc ! :

Pe 0 T i -l L
0.0 —=—=—== \ -0.4 -0.2 0.0 0.2 0.4
-1.0 0.5 1.0 ()]

FIG. 15. Density of states in a typical Kondo situation in the two
FIG. 13. Slave bosorp:(u),pc(w) vs w for the same model approachesp(w) vs o for the same model parameters used in Fig.
parameters used in Fig. 4. 4 andT=0.001.
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21.0 T T T 1.5 T T T
18.0 ---=- Slave boson —— X-boson

—— X-boson ---- Slave boson
15.0

[
I
'
'
'
'
1.0 !
'
'
'
'
'
'
'
'

3.0 .

01 02 03 04 05

0.0

FIG. 16. Density of states in a typical Kondo insulator situation FIG. 17. Kondo insulator: Specific heat of a typical Kondo in-
in the two approachegii(w) vs w with the following parameters: sulator for the same model parameters used in Fig. 16 but as a
E;=0.3; W=2.0; V=0.35; ©=0.5; T=0.001. function of temperature.

Assuming a conduction band with a constant density of
states, widthW=2D, and the absence of magnetic field, we the specific heat presents a discontinuity at the transition
find from Egs.(49) and (50) that but the curve obtained by théboson method is continuous.

9%Q)
-7 JT? v IX. CONCLUSIONS
'
(92(_10 ks,32 2 The slave-boson formalisthhas been extensively used in
=T + f dxof(X)Ne[@1(X)]  the mean-field approximatidh*®to study strongly correlated
electron systems, because it captures the essential physics of

P AR-1)] the Kondo effect at low temperatures and its implementation
—) , (58 in the Kondo limit is very simple. One drawback of this
JT? PR method is that above a temperatig (cf. Sec. I\V) or when
u>E;, it develops a spurious second-order phase transition
where ; . . .
into a phase with decoupled conduction and localized elec-
1 5 5 trons. In the present work we present an approach that was
0.+ (X)= 5 (X+8f)+ \/(X e)?+4|V|?D, (59 inspired by some of the features of the mean-field approxi-
mation of the slave-boson method, and we obtain essentially
and the same results at low temperatures. We keep Xhe
operator$ even at the final stages of the calculation, while

X{1=ne[w(X)]} =T Ny

Y
_ 9o = —9N. kaB%s2 ~ two hybridized but uncorrelated bands appear in the slave-
> = s keBerexp(Bey) _
aT v boson method at the same stage. What we employ is the
CHA (chain approximation an approximate solution that
[3+2 exp Bes)] 60 retains electronic correlations and is a subset of the infinite
~ ~ . diagrams of the cumulant expansion of the PAM in the limit
+272 +17?
[exp(Beo) + 2] exp fer) + 1] of U—o. The CHA corresponds to the most general set of

We compare the specific heat obtained by the slave-boso#iagrams with only second-order cumulants, and has inter-
vs X-boson methods employing in the two cases the samesting properties such as beifigderivable’? The advantage
parameters, corresponding to a typical Kondo insulatoof our method is that it does not have the spurious phase
situation with the chemical potential inside the gap. In Figuretransitions that the mean-field slave-boson method presents
16 we present the corresponding density of statés) vs  at higher temperatures or chemical potentials, where our pro-
w, for the following parameter€;=0.3,V=0.35,W=2.0, cedure behaves like the CHA solution.

T=0.001, andu=0.5. We have developed théboson method both for a single

In Fig. 17 we presentC, vs T, employing the same local impurity and for a lattice. The correlation appears in
parameters of Fig. 16. We have calculatedthis approximation only through the presence of a constant
T(dul dT)Nv(dN/JT),, v numerically, and its contribution D, at critical places of the corresponding GEf. Egs.
to Cy is negligible for these parameters. The calculation(19)—(28)], but it has profound effect on the system descrip-
above the Kondo temperatufg in the slave-boson case was tion, forcing the local electron occupation to he<1, and
performed for the phase of uncouplédndc electrons, and eliminating the spurious phase transitions of the slave-boson
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method. WherD,,<1 the GF's of theX boson have a dy- SUU(Z)

namic charactefcf. the Appendix, Sec.)lthat is absent in GLL(Z)_ 5 o (A3)
the mean-field slave-boson meth(tbat is recovered by set- |V(k | GC ko(2) M2iq(2)
ting Dg,=1). and
From the computational point of view th&-boson
method is equivalent to the slave-boson technique, and the
possibility of using it for all temperatures or chemical poten- GS(2)=

(ci) ku’( Z)
ko

tials » makes it useful as the starting point to study several 1-|V(K)[?GY. kg(Z)Mg,fkfg(Z)
interesting problems: competition between the Kondo effect
and RKKY interaction in heavy fermion systerifs;**impu- _ -1
. . : A . = , (A4)
rity bands in Kondo insulator, non-Fermi-liquid behavior Z— ey, + | V(K)2MEY (2)
in disordered systenf¢ and the Kondo effect in quantum 7 o
dots***4To give an example we have considered a Kondowhere
insulator and calculated its specific heat: the slave-boson
method shows a discontinuity &k , while it is continuous -1
in the X-boson method. Although it i€, that is usually Ckv(z) (z—exy)
measured, the differendg,—C, is usually small in liquids
and solids, and shows a dependence Withimilar to that IS the unperturbed GF of the electrons. The exact self-
obtained with thex-boson methodsee, for example, the, ~ energies defined above are then
of FeSi measured by Jaccarino and co-workrs

In conclusion, we have presented an approach that gives 3(k,2)=z—¢¢ ,+[M5i0(2)] 1= |V(K)|2G2,,(2)
essentially the same results as Coleman’s slave-boson treat- (A6)
ment at low temperatures, but without the spurious phasegnd
transitions at intermediate temperatufiesr large values of
w. Our method has a dynamic character that is absent from 2\ eff
the mean-field slave-boson method, and its results approach Se(k,z2)==[V(K)|* M3,(2), (A7)

those of the cumulant expansion in the chain approximation g to recover the CHA self- energies it is sufficient to

(A5)

for large values off or . replacé the effective cumulanii S’fkfg(z) by the contribution
of its simplest diagram, namely, the unperturbed GF offthe
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for their financial support. (279 from Ref. 15. This is because our unperturbed prob-
lem[i.e., Eq.(1) with V;, ,=0] already contains the elec-
APPENDIX: SELF-ENERGIES AND FERMI-LIQUID tronic correlation U —) through theX; ,,, operators, while
BEHAVIOR IN THE X-BOSON METHOD the perturbative term in the cumulant expansion is the hy-
bridization that affects the self-energigsee Eqs(A6) and
1. The self-energies in theX-boson method (A7)]. Taking =¢(k,z)=0 gives GLL(Z)HG?’OU(Z) [cf. Eq.

To discuss the Fermi-liquid properties of the PAM in the (A8)], which still depends on the electronic correlation
X-boson treatment, we shall first consider the correspondingrough theD,,, factor.

f- and c-electron self-energie€(k,z) and 3.(k,z). We The term|V(k)|*Gg ,(2) in our Eq.(A6) does not ap-
shall relate these quantities to the exact GF's by the equapear in the usual self-energ@sbecause they only give the
tions effect of the Coulomb repulsion on the two hybridized bands

without correlation, as becomes apparent by putting
S ¢(iw,)=0 in both Eqs(277) and (278 of Ref. 15.

GLf (2)= -1 (A1) From this discussion, it seems clear that to analyze the

7 [z—%; ,—321(k,2)] relevant dynamics in our description of the PAM, we have
first to subtract th¢V(k)|?G ,(z) present in Eq(A6). This

1 term is responsible for the usual fluctuations that appear in

G%(2) (A2) two hybridized but uncorrelated bands, when we look at the

[z2—exo—2c(k,2)]" correlations of the locaf states rather than consider the
Bloch extended states. Only the relevant space and time dy-
where we employ the with the u already subtracteficf.  namics are left, when tH(!g/(k)|ZGc o (2) is eliminated from
Egs. (10) and (11)]. Introducing an effective cumulafi®’  our exactS(k,z), and then we obtain for the CHp&f. Eq.

MS$If.(2) it is possible to write the exact GF’s, (A8)]
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3 p(k,2) = 2= o+ [MEN (2)] 7
(A9)

The same arguments can be employed¥gg(k,z), and
one finds that the relevant self-energy for our purpose is

PHYSICAL REVIEW B6, 045112 (2002

z— e+ |V(K)[2MSL (2)=0. (A12)

The Réz] corresponds to the energies of the elementary
excitations, while their imaginary parts give their decay
properties, and the Fermi surface is given by the sdtgof
such that Rgz,,]=0, because we already subtracted the
from thez. The M$}(2) in the numerator of EqA3) does
not introduce new poles, becau@éﬁ,(z) is finite at those

1 poles. _
Ec(,(k,Z)—>—|V(|Z)|2 MgLfU(Z)JF ——|, (A10) From Eg.(A12) we obtain
Z_Sf'o.
Z f—
and employing Eq(A8) for the CHA we then find MSi(Zeo) = — |k\‘;(—k()9|k2”
_ . 1-Dgy, ey i ;
S (K, 2)— — [V(R)|2 = O (A11) and replacing in Eq(A6) we find
% ~
he 24K, Zke) = 2o~ €10 (AL13)
Equations(A9) and(A11) show that although there is no \yhjle from Eqgs.(A8) and (A12) we obtain
relevant spatial dependence in the self-energies of the CHA,
they do retain some local time dependence. As discussed in 2 (K Zky) = Zg— Ekor - (A14)
Sec. Il C, the mean-field slave-boson GF is recovered by; then follows that
replacingDy,—1, and the corresponding self-energy van-
ishes, showing that all the local time dependence is com- IM[2c(K,zo) ]=IM[2¢(K,2,) |=1M[Z,].  (ALD)

pletely lost in the self-energies of that method. The spurious . S
phase transition observed in the slave-boson method is ab- An essential property of the Fermi-liquid is that the gua-

sent from theX-boson description, and this result seems tooiparticles on the Fermi surface have an infinite lifetime

indicate that the time dynamics retained in the CHA is able\l’)"hen T—0, and this property follows from EJALS) fqr
to suppress those transitions. oth thef and c electrons when the poles_ on the Ferm|_sur-
face are real, because the corresponding self-energies are
then also real.
From Eq.(48) we conclude that the GF poles of the PAM
The essential property of a Fermi-liquid is that at low in the CHA are all real, and the same property holds for the
temperatures it has a behavior close to that of a system of-boson solution. These two approximations therefore de-
free fermions. It is described by a system of quasiparticlescribe the PAM as a Fermi-liquid, because they satisfy the
that replace the elementary excitations of the free system, bebndition above. Because the infinite lifetime is valid for all
they have a finite lifetime caused by the interactions that ar& and for all T, the quasiparticles in these two approxima-
absent in the free system. Instead of the elementary particldons behave more elementary excitations than like the usual
energies we have to analyze the poles of the relevant Gluasiparticles, that have a finite lifetime outside the Fermi
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given in our problem by the solutiorg,, of the equation
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