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X-boson cumulant approach to the periodic Anderson model
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The periodic Anderson model can be studied in the limitU5` by employing the HubbardX operators to
project out the unwanted states. We had already studied this problem by employing the cumulant expansion
with the hybridization as perturbation, but the probability conservation of the local states~completeness! is not
usually satisfied when partial expansions like the ‘‘chain approximation’’~CHA! are employed. To rectify this
situation, we modify the CHA by employing a procedure that was used in the mean-field approximation of
Coleman’s slave-boson method. Our technique reproduces the features of that method in its region of validity,
but avoids the unwanted phase transition that appears in the same method both whenm@Ef at low T and for
all values of the parameters at intermediate temperatures. Our method also has a dynamic character that is
absent from the mean-field slave-boson method.
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I. INTRODUCTION

The present paper deals with the periodic Anders
model ~PAM! in the limit of infinite Coulomb repulsion (U
5`), and we employ the Hubbard1 X operators to write its
Hamiltonian in the form2

H5(
k,s

Ek,sck,s
† ck,s1(

j ,s
Ef , j sXj ,ss

1 (
j ,s,k

~Vj ,k,sXj ,0s
† ck,s1Vj ,k,s* ck,s

† Xj ,0s!. ~1!

The X operators are very convenient for working with loc
states associated to the sitesj of a lattice, and are defined i
general byXj ,ab5u j ,a&^ j ,bu, where the set$u j ,a&% is an or-
thonormal basis in the space of local states of interest. Th
are four local states in the PAM at each sitej of the lattice:
the vacuum stateu j ,0&, the two statesu j ,s& of one electron
with spin components, and the stateu j ,2& with two local
electrons. WhenU→` the stateu j ,2& is empty, and we have
used the Hubbard operators to project it out from the sp
of local states at sitej. In this subspace of interest, the ide
tity I j at sitej should satisfy the relation

Xj ,001Xj ,ss1Xj ,s̄s̄5I j , ~2!

wheres̄ is the spin component opposite tos, and the three
Xj ,aa are the projectors intou j ,a&.

The first term in Eq.~1! is the Hamiltonian of the con
duction electrons (c electrons! and the second term describ
independent localized electrons (f electrons!, where a simple
index j is used to identify the sites. The last term is t
hybridization Hamiltonian giving the interaction betwee
the c electrons and thef electrons, andVj ,k,s5(1/ANs)
3Vs(k)exp(ik.Rj ), whereRj is the position of sitej andNs
the number of sites. Note that this interaction conserves
spin components.
0163-1829/2002/66~4!/045112~14!/$20.00 66 0451
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The X operators do not satisfy the usual commutation
lations, and therefore the diagrammatic methods based
Wick’s theorem are not applicable. One has instead the p
uct rules

Xj ,ab .Xj ,cd5db,cXj ,ad , ~3!

as well as a diagrammatic cumulant expansion with a link
cluster theorem that was originally employed by Hubbard1 to
study his model. In the present work we shall use an ext
sion of this expansion to the PAM,2,3 that can be used to
calculate the Green’s functions~GF’s!, and the occupation
numbersnj ,a5^Xj ,aa& are then obtained from the appropria
one-electron GF. Assuming translational invariance we
write nj ,a5na ~independent of j!, so that from Eq.~2! it
follows that

n01ns1ns̄51. ~4!

We shall call this relation ‘‘completeness,’’ and it is essent
that it would be satisfied to avoid distortions in the values
physical properties calculated with those GF’s. We ha
found that completeness is not usually satisfied when o
approximate cumulant GF’s~Ref. 4! are employed to calcu
late thena .

In the present work we shall consider a fairly simple su
set of the one-electron diagrams of the cumulant expans
the ‘‘chain approximation’’~CHA!. This approximation was
first employed by Hewson,5,6 and is the most general cumu
lant expansion with only second-order cumulants, as wel
being F derivable.7,8 This subset of diagrams seems ve
relevant, because in the absence of correlations~obtained by
neglecting spin! it is the exact solution and transforms in
natural way into the corresponding Feynman’s diagramm
expansion.2,9 When correlations are considered, this appro
mation presents two drawbacks: it does not show a Ko
resonance in the Kondo region, and it gives rather large
partures from completeness@Eq. ~4!# in this parameter re-
©2002 The American Physical Society12-1
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gion, while these departures are fairly small outside this
gion. In previous works we first recovered completeness
an ad hoc renormalization of the GF,2 and we later
conjectured8 a way to achieve completeness by adding a
of diagrams to any arbitrary family. This result was verifi
for the CHA, although the resulting set of diagrams is notF
derivable any more. Our attempts to obtain a Kondo re
nance were not successful before, but we recently real
that a technique employed in the mean-field approxima
of the slave-boson method10,11would give the desired results
To avoid multiplef-electron occupancy in this last metho
the system’s free energy is minimized subject to a constr
formally equivalent to our Eq.~2!, and this procedure renor
malizes thef-electron energyEf , j s to a position close to the
chemical potentialm, where the peak in the spectral dens
takes the place of the Kondo resonance. Our method
consists of renormalizing thef-electron energyEf , j s of our
Eq. ~2! by minimizing the thermodynamic potential, with E
~1! as a constraint, and using Lagrange’s method as was d
in the slave-boson method. Note that we have only emplo
that aspect of the slave-boson treatment, and we have
split any of theX operators as a product of a fermion and
slave boson, but have used the CHA of the cumulant exp
sion. Our method then gives satisfactory results, because
results are very close to those obtained by the slave boso
the Kondo limit at low temperatures, while the method
covers those of the CHA at highT for all parameters. The
unphysical second-order phase transitions that appear in
slave-boson approach in the Kondo region (m@Ef , j s5Ef)
at low T, and also for all parameters at intermediate tempe
turesT, are then eliminated by our treatment. Coleman12 has
observed that these phase transitions are artifacts of
theory, and the advantage of the present treatment is
those spurious phase transitions do not occur~a more de-
tailed comparison of our method with the slave-boson te
nique is given in Secs. II and III C!.

The PAM is one of several models of correlated electro
that has been very useful to describe important physical
tems, like heavy fermions, Kondo systems, and transit
metals. The fairly recent book of Hewson13 discusses the
techniques available to study these problems at the tim
its publication, while the introduction of the limit of infinite
spatial dimension14 leads to the development of the dynam
cal mean-field theory~DMFT!, that gives exact results in tha
limit. This powerful technique was discussed in a rec
review,15 and it can be said to be an extension of the We
mean-field theory, but with a frequency-dependent molec
field. This field is obtained from the self-consistent soluti
of an Anderson impurity in the presence of a fermionic ba
that represents the effect of the remaining sites of the sys
The one-electron self-energy is frequency dependent,
describing the local dynamics of the system, but it does
depend on the wave vector, so that the nonlocal correlat
are lost in this treatment. A fairly recent extension16,17 of the
DMFT makes it possible to treat nonlocal correlations
also considering the interaction of a pair of fermions at d
ferent sites but employing a modified scaling of the inter
tion constants to avoid the disappearance of these term
the limit of infinite dimension.18 The effective-field problem
04511
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requires now the solution of an Anderson impurity coupl
to the fermionic bath, as well as to additional bosonic bat
that are again self-consistently determined. This extens
was employed to study the competition between the lo
Kondo effect and the nonlocal Ruderman-Kittel-Kasuy
Yosida ~RKKY ! interaction,19 as well as the related locally
critical quantum phase transitions.20,21

Our method does not have the space dynamics chara
istic of the extended DMFT, but it retains some time dyna
ics, although of a much simpler type than that provided
the DMFT ~cf. our discussion of theX-boson self-energy in
Appendix, Sec. 1!. The X-boson method would then have
like the DMFT, only partial relevance15 in the study of the
competition between the Kondo effect and the magnetic
teractions~like the RKKY interactions!. As in the case of the
usual slave-boson mean-field method, it is possible, in p
ciple, to consider a more complete subset of diagrams
include spatial fluctuations~intersite diagrams! as well as
more elaborate local fluctuations, although these calculat
are rather laborious.2,3,5

II. X-BOSON CUMULANT METHOD

The present work is a modification of a prelimina
version22 that was partially inspired by the mean-fie
approximation of Coleman’s ‘‘slave-boson’’ method.10,11

He writes the HubbardX operators as a product of ord
nary bosons and fermions: Xj ,oo→bj

1bj ,Xj ,os

→bj
1 f j ,s ,Xj ,so→ f j ,s

1 bj , and uses the equivalent of our E
~4! to avoid states with more than one electron at each sij.
In the spirit of the mean-field approximationbi

1→^bi
1&

5r , and the method of Lagrangian multipliers is then used
find the ‘‘best’’ Hamiltonian that satisfies Eq.~4!. The prob-
lem is then reduced to an uncorrelated Anderson lattice w
renormalized hybridizationV→rV and f level e f→e f1l.

Our method consists of adding the product of each Eq.~2!
times a Lagrange multiplierL j to Eq. ~1!, and the new
Hamiltonian generates the functional that we shall minim
employing Lagrange’s method. Instead of the parameterr we
introduce

R[^Xj ,oo&, ~5!

and we call the method ‘‘X boson’’ because the Hubbar
operatorXj ,oo has a ‘‘Bose-like’’ character,2 but note that in
our method we do not write anyX operator as a product o
ordinary Fermi or Bose operators but retain them in
original Eq.~1!.

Considering Eqs.~2! and ~5!, and employing a constan
hybridization V, as well as site-independent local energ
Ef , j ,s5Ef ,s and Lagrange parametersL j5L, we obtain a
new Hamiltonian with the same form of Eq.~1!,

H5(
k,s

Ek,sck,s
† ck,s1(

j ,s
Ẽf ,sXj ,ss1NsL~R21!

1V (
j ,k,s

~Xj ,0s
† ck,s1ck,s

† Xj ,0s!, ~6!

but with a renormalized localized energy
2-2



m

o

on

b
n

-
gl

a

os
n

ain
n

e

o

a
nfi
ith
ra
ve
ly
in
e

tio
d

the
n
ob-

e

t

e
we

are
the

a

ry
ry

at

X-BOSON CUMULANT APPROACH TO THE PERIODIC . . . PHYSICAL REVIEW B66, 045112 ~2002!
Ẽf ,s5Ef ,s1L. ~7!

This procedure allows for an independent variation ofR
when the free energy is minimized, even though the co
pleteness relation

R512(
s

^Xss& ~8!

must be simultaneously satisfied.
In the slave-boson approach a one-body Hamiltonian

uncorrelated particles is obtained at this stage, and Eq.~4! is
then necessary to avoid the occupation of more than
localized electron per site~the conservation of probability in
the space of the local states is automatically satisfied,
cause normal fermion operators are employed in the tra
formed Hamiltonian!. Equation~6! on the other hand em
ploys X operators, that force the local states to be sin
occupied at most, but Eq.~4! ~completeness! must be im-
posed here because it is not automatically satisfied when
proximate GF’s are employed to calculate thena . Although
the procedure is the same as employed in the slave-b
method, the underlying physical meaning is rather differe
In the present work we shall employ the GF of the ch
approximation~CHA!,5,6 because it gives a fair descriptio
of the system in spite of its simplicity.

The present treatment employs the grand canonical
semble of electrons, and instead of Eq.~1! we shall use

H5H2mH(
k,s

ck,s
† ck,s1(

ja
naXj ,aaJ , ~9!

wherena50,1 is the number of electrons in stateua&. It is
then convenient to define

« j ,a5Ef , j ,a2mna ~10!

and

«ks5Eks2m, ~11!

becauseEf , j ,a and Ek,s appear only in that form in all the
calculations. The exact and unperturbed averages of the
eratorA are denoted in what follows bŷA&H and ^A&, re-
spectively.

III. THE CHAIN APPROXIMATION GREEN’S FUNCTIONS

The CHA gives simple but useful approximate propag
tors, obtained in the cumulant expansion by taking the i
nite sum of all the diagrams that contain ionic vertices w
only two lines. The laborious calculation of the gene
treatment2 is rather simplified in this case, and we shall gi
a brief description of the technique, particularly when on
the imaginary time is Fourier transformed, because this
termediate situation is not discussed in Ref. 2 and it is n
essary to calculate the impurity problem. The onlyXa and
Xa

† operators of the Fermi-type that appear in the calcula
have a5~0,s!, and the f-electron GF’s in real space an
imaginary time are
04511
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Gf f~ j ,a,t; j 8,a8,t8!5^@X̂j ,a~t!;X̂j 8,a8
†

~t8!#1&H , ~12!

where X̂j ,a(t)5exp(tH)Xj ,aexp(2tH) corresponds to the
Heisenberg representation and the subindex1 indicates
that the operators inside the parentheses are taken in
order of increasingt to the left, with a change of sign whe
the two Fermi-type operators have to be exchanged to
tain this ordering.2 In a similar way one defines th
c-electron GFGcc(k,s,t;k8,s8,t8) as well as the mixed
GF’s Gf c( j ,a,t;k8,s8,t8) andGc f(k,s,t; j 8,a8,t8).

The boundary conditions of these GF with respect tot
makes possible to expand them in a Fourier series2 employ-
ing the Matsubara frequenciesvn5(2n11)ip/b, wheren
is any integer. Because of the invariance ofH againstt
translations we have frequency conservation,2 so that
Gf f( j ,a,ivn ; j 8,a8,ivn8)50 unless vn1vn850, and one
can then write

Gf f~ j ,a,ivn ; j 8,a8,ivn8!5Gj a; j 8a8
f f

~zn! D~vn1vn8!
~13!

and similar relations for theGcc, Gf c, and Gc f. Here we
have usedzn[ ivn , and we shall keep this notation in wha
follows, as well as employD(g)[dg,0 ~a modified notation
for Kronecker’s delta!. The ‘‘bare GF’s’’ ~i.e., with all
Vj ,k,s50) take a fairly simple form because many of th
relevant operators become statistically independent, and
then have

Gf f~ j ,a,zn ; j 8,a8,zn8!⇒Gf ,a
0 ~zn!D~vn1vn8!d j , j 8da,a8 ,

~14!

Gcc~k,a,zn ;k8,a8,zn8!⇒Gc,ks
0 ~zn!D~vn1vn8!dk,k8ds,s8 ,

~15!

Gf c⇒Gc f⇒0. ~16!

Theda,a8 in the bare GF follows from the commutation ofH
with the z component of the spin.

The diagrams in real space that contribute to the CHA
schematized in Fig 1. The meaning of the symbols in
cumulant diagrams is the following:

~a! the ‘‘vertex’’ d5Gf ,0s
o (zn)52D0s /(zn2« f ,s) is the

f bare cumulant GF, whereD0s5^Xoo&1^Xss&; ~b! the
‘‘vertex’’ s5Gc,ks

o (zn)521/(zn2«ks) is thec bare cumu-
lant GF;~c! the lines~edges! determine an open loop with
definite direction. When the line points to thef-vertex, it is
←5Vj ,k,s , while it is ←5Vj ,k,s* when it points to the con-
duction vertex; ~d! the cumbersome sign and symmet
factors1,2 are rather simple in the CHA: it is only necessa
to multiply the Gf c and theGc f times a minus sign;~e! as
both thev and thes are conserved along the open loop, wh
only remains is to sum over all the internalj andk.

We then obtain@with a5~0s!#
2-3
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FIG. 1. The Green’s-function
diagrams in the CHA. The filled
circles~vertices! correspond to the
f-electron cumulants and th
empty ones to those of thec elec-
trons. The lines~edges! joining
two vertices represent the pertu
bation ~hybridization! ~cf. Sec.
III !. ~a! Diagrams for thef elec-
tron GF in the CHA. The CHA
diagram for the f electron
Gj ia i , j fa f

f f ( ivn) is represented by
the filled square to the left.~b!
Diagrams for thec electron GF in
the CHA. The Gk8,s8;k,s

cc (zn) is
represented by the open squa
symbol to the left.~c! Diagrams
for the f-c electron GF in the
CHA. The Gj ;k,s

f c (zn) is repre-
sented by the half filled squar
symbol to the left.
:

A
a

ary
the

but
Gj 8a8; j a
f f

~zn!

5da8,aGf ,a
o ~zn!

1Gf ,a
o ~zn!(

k1

Vj 8,k1sGc,k1s
o ~zn!Vj ,k1s* Gf ,a

o ~zn!

1Gf ,a
o ~zn!(

k2

Vj 8,k2sGc,k2s
o ~zn!(

j 1

Vj 1 ,k2s* Gf ,a
o ~zn!

3(
k1

Vj 1 ,k1sGc,k1s
o ~zn!Vj ,k1s* Gf ,a

o ~zn!1 . . . . ~17!

A. The impurity case

When there is a single impurity at a givenj, each of the
sums over the internalj r reduces to a single term withj 8
5 j , and we introduce

Ms~zn!5(
k1

Vj ,k1sGc,k1s
o ~zn!Vj ,k1s*

5
1

Ns
(

k
uVs~k!u2Gc,ks

o ~zn!, ~18!

which is equal to the local GF at sitej times uVsu2 when the
hybridization is purely local, i.e., whenVs(k)5Vs . Equa-
tion ~17! is then a geometric series that is easily summed

Gj 8a8; j a
f f

~zn!5da8,ad j 8, j

Gf ,a
o ~zn!

12Gf ,a
o ~zn! Ms~zn!

5da8,ad j 8, j

2D0s

zn2« f ,s1D0sMs~zn!
. ~19!
04511
Employing the same technique, we obtain for the CH
the Gcc, that gives the scattering by the local impurity of
conduction electronk,s into k8,s8:

Gk8s8;ks
cc

~zn!5ds8,s$Gc,ks
o ~zn! dk,k8

1Gc,k8s
o

~zn!Vs* ~k8!Gj a; j a
f f ~zn!

3Vs~k!Gc,ks
o ~zn!%, ~20!

as well as the mixed GF@with a85(0s8)#,

Gj 8a8;ks
f c

~zn!5ds8,sd j 8, jGj ;ks
f c ~zn!, ~21!

where we have already included the minus sign@discussed in
rule ~d! above# to give

Gj ;ks
f c ~zn!52Gj a; j a

f f ~zn!Vj ,ksGc,ks
o ~zn!

52
D0sVj ,ks

zn2« f ,s1D0sMs~zn!
3

1

zn2«ks
. ~22!

B. The lattice case

The case of the GF in reciprocal space and imagin
frequencies has been discussed in detail in Ref. 2 and in
CHA one follows the same prescriptions given above,
replaces the sum over internalj andk by a conservation ofk
along the whole chain, so that we have

Gf f@k8,~0s8!,zn8 ;k,~0s!,zn#

5dk,k8ds,s8D~vn1vn8!Gks
f f ~zn!, ~23!

Gcc~k8,s8,zn8 ;k,s,zn!5dk,k8ds,s8D~vn1vn8!Gks
cc ~zn!,

~24!

Gf c@k8,~0s8!,zn8 ;k,s,zn#5dk,k8ds,s8D~vn1vn8!Gks
f c ~zn!,

~25!
2-4
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where

Gks
f f ~zn!5

2Ds~zn2«ks!

~zn2« f ,s!~zn2«ks!2uVs~k!u2Ds

, ~26!

Gks
cc ~zn!5

2~zn2« f ,s!

~zn2« f ,s!~zn2«ks!2uVs~k!u2Ds

, ~27!

and

Gks
f c ~zn!5

2 DsVs~k!

~zn2« f ,s!~zn2«ks!2uVs~k!u2Ds

. ~28!

C. The slave-boson GF vs the GF of the CHA

The slave-boson GF in the mean-field approximation~cf.
Refs. 11, 13 and 23! are just the GF of the uncorrelate
problem (U50) but with a renormalized hybridizationV
→V̄[rV plus a condition that forces the local electron to
occupation less than or equal to one. The GF’s of the C
given above are formally very close to the uncorrela
ones, but they cannot be reduced to them by any chang
scale@except forDs51, when we recover the slave-boso
Green’s functions if we putV→rV5V̄ in Eqs. ~19!–~22!

and Eqs.~23!–~28!#. The obvious changeAD0sV→V̄ leaves
an extra factorD0s in theGj 8a8; j a

f f (zn) andGks
f f (zn), as well

asAD0s in both Gj ;k,s
f c (zn) and Gks

f c (zn), and these factors
are responsible for the correlation in this approximation, a
lead to essential differences with the uncorrelated case.23 In
particular, they force the total occupationnf of the f electron
to nf<1, while in the uncorrelated case the relationnf<2 is
satisfied. In the slave-boson method the imposed condi
nf<1 is fulfilled by a shift in the local energy« f ,s→ «̃ f ,s

[« f ,s1l and a reduction of the hybridization toV→Ṽ
[rV. From an operational point of view, a shift in« f ,s
might not be sufficient to forcenf<1 because the hybridiza
tion extends thef spectral density to the whole conductio
band, and reducingV helps to satisfy this condition. By in
creasing the temperatureT or the chemical potentialm the
value Ṽ50 is presently reached, leading to a decoupling
the two types of electrons that can be interpreted, from
more general point of view, as a change of phase related
symmetry breaking of the mean-field Hamiltonian. Althou
the condition that forces completeness in the CHA is ide
cal to that employed in the slave-boson method to forcenf
<1, it has a rather different origin, being only a cons
quence of using a reduced set of diagrams in the perturba
expansion,8 and the departures from completeness are u
ally very moderate. In the formalism described in the pres
work, it is this essential difference between the two meth
that eliminates the spurious phase transitions appearin
the slave-boson method. An alternative explanation of
different behavior is that theX-boson solution retains som
time-dependent dynamics that would remove the spuri
phase transitions, while the mean-field slave-boson met
does not have any relevant dynamics at all~cf. the discussion
at the end of the Appendix, Sec. 1!.
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IV. THE SINGLE IMPURITY PROBLEM

In theX-boson approachDs5R1nf s must be calculated
self-consistently through minimization with respect to t
parameterR of an adequate thermodynamic potential. Wh
the total number of electronsNt , the temperatureT, and the
volumeVs are kept constant one should minimize the Hel
holtz free energy, but the same minimum is obtained by e
ploying the thermodynamic potentialV52kBTln(Q)
~whereQ is the grand partition function! and keepingT, Vs ,
and the chemical potentialm constant~this result is easily
obtained by employing standard thermodynamic techniqu!.

A convenient way of calculatingV is to employ thej
parameter integration method.24–26This method introduces a
j-dependent HamiltonianH(j)5Ho1jH1 through a cou-
pling constantj ~with 0<j<1!, whereH1 is the hybridiza-
tion in our case. For eachj there is an associated thermod
namic potentialV~j! which satisfies:

S ]V

]j D
Vs ,T,m

5^H1~j!&j , ~29!

where^A&j is the ensemble average of an operatorA for a
system with HamiltonianH(j) and the given values ofm, T,
andVs . Integrating this equation gives

V5Vo1E
0

1

dj^H1~j!&j , ~30!

whereVo is the thermodynamic potential of the system w
j50. This value ofj corresponds to a system without hybri
ization, and one obtains~in the absence of magnetic fiel
«ks5«k and «̃ f s5 «̃ f)

Vo52
2

b (
k

ln@11exp~2b«k!#

2
1

b
ln@112exp~2b«̃ f !#1L~R21!, ~31!

and to calculateV in Eq. ~30! we use

^H1&j52ReF(
ks

Vj ,k,s* ^cks
† X0s&jG . ~32!

The averagêcks
† X0s&j is obtained from the analytical con

tinuation of the MatsubaraGj ;k,s
f c (zn ,j)→Ḡj ;k,s

f c (z,j) into
the complex upper and lower semiplanes, whereGj ;k,s

f c (zn ,j)
is the GF in Eq.~22! but for Vj ,k,s→jVj ,k,s . One then finds

^ck,s
† Xj ,0s&j5

i

2pE2`

`

dvnF~v!$Ḡj ,ks
f c ~v1 i0;j!

2Ḡj ,ks
f c ~v2 i0;j!%, ~33!

where nF(x)51/@11exp(bx)# is the Fermi-Dirac distribu-
tion. From Eqs.~18!, ~32! and ~33! we then obtain
2-5



ng
th

g
ing

il-

th

er

the
the
tem

is
a

idth

e

R. FRANCO, M. S. FIGUEIRA, AND M. E. FOGLIO PHYSICAL REVIEW B66, 045112 ~2002!
^H1&j52
1

pE2`

`

dvnF~v!

3(
s

ImH jD0sMs~v1!

v12 «̃ f1D0sj2Ms~v1!
J , ~34!

wherev15v1 i0. This equation has an interesting scali
property: it is equal to the corresponding expression of
uncorrelated system for the scaled parameterV̄j ,k,s

5AD0sVj ,k,s ~it is enough to remember that by replacin
D0s51 in the GF of the CHA one obtains the correspond
GF of the uncorrelated system!. Rather than performing thej
andv integrations, we shall use the value of theVu for the
uncorrelated system withV̄j ,k,s5AD0sVj ,k,s and employ
Eq. ~30! to calculate*0

1dj^H1
u(j)&j5Vu2Vo

u , where

Vo
u5

22

b F(
k

ln@11exp~2b«k!#1 ln@11exp~2b«̃ f !#G
1L~R21! ~35!

is theVu for V̄j ,k,s50. In our case the unperturbed Ham
tonian for the lattice problem is

Hu5(
k,s

«k,sck,s
† ck,s1(

j ,s
«̃ f f j ,s

† f j ,s1NsL~R21!

1 (
j ,k,s

~V̄j ,k,s f j ,s
† ck,s1V̄j ,k,s* ck,s

† f j ,s!, ~36!

and in the impurity case the sum over sites reduces to
impurity site andNsL(R21)→L(R21). This Hamiltonian
can be easily diagonalized, and the correspondingH u can be
written

H u5(
i ,s

v i ,sa i ,s
† a i ,s1L~R21!, ~37!

wherea i ,s
† (a i ,s) are the creation~destruction! operators of

the composite particles of energiesv i ,s ~there areNs11
states for each spins). The calculation of

Vu5
21

b (
is

ln@11exp~2bv i ,s!#1L~R21!, ~38!

is straightforward, and employing Eqs.~30!, ~31!, ~35!, and
~38! we find

V5V̄01
21

b (
is

ln@11exp~2bv i ,s!#1L~R21!, ~39!

where

V̄0[Vo2Vo
u52

1

b
lnF 112 exp~2b«̃ f !

@11exp~2b«̃ f !#
2G , ~40!

and the eigenvaluesv i ,s of the H u are just given by the
poles of the GF in the CHA@Eq. ~19!#.

It is interesting that all the correlation effects on the th
modynamic potential appear in theVo , that corresponds to
04511
e

e

-

the unperturbed system. The effect of the perturbation in
present approximation is to redistribute the energy of
quasiparticles in the same way as in an uncorrelated sys
with hybridization constantV̄j ,k,s5AD0sVj ,k,s , and one
could then expect Fermi-liquid behavior in the CHA~see a
formal discussion in the Appendix!.

The parameterL is obtained minimizingV with respect
to R13 ~at a constantm as discussed at the beginning of th
section!. To simplify the calculations we shall consider
conduction band with a constant density of states and w
W52D, and an hybridization constantVs(k)5V. We then
obtain

]V

]R
5(

is
nF~v i ,s!S ]v i ,s

]R D1L50. ~41!

The poles of the impurity GF satisfy

v i ,s5« f1S V2Ds

2D D lnFv i ,s1D

v i ,s2DG , ~42!

and calculating theR derivative ofv i(kW ,s) we obtain

L5
2V2

2D (
is

lnS v i ,s1D

v i ,s2D D ~v i ,s
2 2D2!nF~v i ,s!

~v i ,s
2 2D21V2Ds!

. ~43!

In the absence of magnetic field, i.e., when thev i ,s5v i is
independent ofs, we can write this equation as

L5
2V2

D E
2`

`

dvr f~v!lnS v1D

v2D D ~v22D2!nF~v!

~v22D21V2Ds!
, ~44!

wherer f(v)5( id(v2v i) is the density off states, and the
chemical potentialm of the electrons was included in th
single-particle energies@cf. Eqs.~10! and ~11!#. The Kondo
temperature

TK.D expS «̃ f

V̄2D ~45!

FIG. 2. Occupation numbersnf , and parametersr 2 andR as a
function of T for both the slave-boson and theX-boson methods.
The figures correspond to the following parameters:Ef520.15;
W52.0; V50.3; m50.0.
2-6
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is defined as theT that makes the slave-boson parameter
vanish, but another useful definition was given by Bernh
and Lacroix27 by taking TK as the crossover temperatur
determined by the maximum of the derivative of^cis

† f is&
with respect toT.

V. IMPURITY RESULTS

The results presented in this section correspond t
Kondo regime with the following parameters:E f520.15,
W52.0, andV50.3. Figure 2 shows the evolution withT
of the parameterR, that measures the hole occupation,
gether with the correspondingr 2 of the usual mean-field
slave-boson, as well as the two occupation numbersnf . The
figure shows thatr 2→0 at a finiteT ~Kondo temperatureTK)
while R remains positive, avoiding the spurious phase tr
sition. Thenf→1 atTK for the slave boson, while it remain
lower than 1 for theX boson at allT.

At high temperatures the system is well described by
calized moments coupled to the conduction electrons thro
a Coqblin-Schriefer-type Hamiltonian, and even at high te
peratures there should not be a complete decoupling n

FIG. 3. Evolution with temperatureT of the renormalizingL
andl, for the same model parameters used in Fig. 2.

FIG. 4. Slave boson:l, r 2, and nf vs m for the same mode
parameters used in Fig. 2 andT50.001.
04511
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a

second-order phase transition, as suggested by the mean
slave-boson theory.28 As the GF’s of the CHA retain the cor
relation properties of the system, theX-boson approach
shows no decoupling nor spurious phase transitions, as
cussed in Sec. III C. One can see in Fig. 2 that the t
approaches give similar results at low temperatures.

In Fig. 3 we represent the parametersl andL as a func-
tion of temperature. We observe that the slave-bosonl
breaks down at the Kondo temperatureTK whereas theX
bosonL goes continuously to zero. In the high-temperatu
limit the results obtained with the usual CHA are recover
by theX boson.

In Fig. 4 we show the evolution ofl, r 2, andnf , as a
function of the chemical potentialm in the usual slave-boson
approach: the formalism breaks down at a valuem0, where
nf→1. In Fig. 5 we show the evolution of the parametersL,
R, andnf as a function of the chemical potentialm for the
X-boson approach. The results of the two approaches
similar for m,m0, i.e., before the breakdown of the slav
boson method~compare Fig. 4 and Fig. 5!. The parameterL
reaches a maximum in the Kondo region and goes to z
whenm@Ef , wherenf→1, and in this limit we recover the
usual CHA.

FIG. 5. X boson:L, R, andnf vs m for the same model param
eters used in Fig. 4.

FIG. 6. Slave boson:r f(m),rc(m) vs m for the same model
parameters used in Fig. 4.
2-7
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The values of thef- and c-electron density of state
r f(m), andrc(m) at v5m are shown as a function ofm for
the slave-boson method in Fig. 6 and for theX-boson ap-
proach in Fig. 7. The slave-boson plot breaks down am
5m0 ~where nf→1) while for the X boson the density o
statesr f(m) is maximum in the Kondo region and goes
zero whenm@Ef . In both cases one observes the transfe
conduction electrons to thef band giving rise to the Kondo
resonance.

In Fig. 8 we present the density of statesr f(v) andrc(v)
vs energyv in a typical Kondo situation, both for the slave
boson andX-boson treatments. The Kondo resonance
pears in the two cases with a similar shape, but it is l
pronounced in theX-boson treatment.

VI. THE LATTICE PROBLEM

For the lattice we follow the same technique employ
with the impurity: the parameterL is obtained by minimiz-
ing the thermodynamic potentialV52kBTln(Q) with re-
spect toR, and Ds5R1nf s is calculated self-consistently

FIG. 7. X boson:r f(m),rc(m) vs m for the same model param
eters used in Fig. 4.

FIG. 8. Density of states ofr f(v),rc(v) vs v in a typical
Kondo situation, in the two approaches, for the same model par
eters used in Fig. 4 andm50.0.
04511
f
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d

The V is again obtained from Eq.~30! with adequate values
of V0 and ^H1(j)&j :

Vo52
2

b (
k

ln@11exp~2b«k!#2
Ns

b
ln@112exp~2b«̃ f !#

1NsL~R21!, ~46!

^H1&j

5
1

pE2`

`

dvnF~v!

3(
k,s

ImH juVs~k!u2Ds

~v12« f s!~v12«ks!2j2 uVs~k!u2Ds
J ,

~47!

wherev15v1 i0. As in the impurity case, this expressio
coincides with that obtained for an uncorrelated Ham
tonian, which in this case is Eq.~36! with a scaled hybrid-
ization V̄s(k)5AD0sVs(k). The corresponding eigenvalue
can be calculated analytically in this case, because for e
spin components the Hamiltonian is reduced intoNs matri-
ces 232. They are the poles of the lattice GF’s, replacing t
Ns11 eigenvaluesv i ,s of the impurity, and we denote them
as

vk,s~6 !5
1

2
~«k,s1 «̃ f !6

1

2
A~«k,s2 «̃ f !

214uVs~k!u2Ds.

~48!

Following the same arguments employed for the impurity
obtain

V5V̄01
21

b (
k,s,l 56

ln$11exp@2bvk,s~ l !#%

1NsL~R21!, ~49!

where

V̄052
Ns

b
lnF 112exp~2b«̃ f !

@11exp~2b«̃ f !#
2G . ~50!

The same result was obtained by direct analytical integrat
thus confirming the arguments employed in the derivation
Eqs.~39! and~49!. A more complete analysis of the behavi
of the thermodynamic potential can be found in Ref. 29.
in the impurity case, all the correlation effects on the th
modynamic potential appear in theVo , and one expects
again a Fermi-liquid behavior of the quasiparticles in t
X-boson approximation~cf. the Appendix!.

As in the impurity case we obtain an equation forL by
minimizing V with respect toR:

L5
1

Ns
(
k,s

uVs~k!u2
nF@vk,s~1 !#2nF@vk,s~2 !#

A~«k,s2 «̃ f ,s!214uVs~k!u2Ds

,

~51!
-

2-8
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X-BOSON CUMULANT APPROACH TO THE PERIODIC . . . PHYSICAL REVIEW B66, 045112 ~2002!
where nF(x) is the Fermi-Dirac distribution. Employing
uVs(k)u5V as well as a conduction band of a constant d
sity of states and widthW52D, we find for«k,s5«k

L5
V2

D
E

2D

D

d«k

nF@vk~1 !#2nF@vk~2 !#

A~«k2 «̃ f !
214V2Ds

. ~52!

The quasiparticle properties of a heavy fermion system
be described by an effective Hamiltonian, characterized
two hybridized bands coupled by an effective hybridizati
matrix elementV̄.28 In the slave-boson method

V̄S2b
2 5~12nf !V

2, ~53!

while in the present approach we have

V̄X2b
2 5DsV25~12nf /2!V2. ~54!

The hybridization reduction factor is related to the effect
probability that ac electron jumps into anf state, and when
U→` this transition can only take place if thef level of the
final site is empty. Rice and Ueda30 argued that the effective
hybridization should be

V̄RU
2 5

12nf

12nf /2
V2, ~55!

and variational calculations were performed by them30 and
by Fazekas.31,32 These variational calculations present t
same spurious phase transitions shown by the slave-b
method, because in all these treatments the reduction fa
goes to zero at a critical temperature. On the other hand
reduction factor does not vanish in the whole range of te
peratures for theX-boson approach, and thef andc electrons
do not decouple. All these approaches produce similar res
at low temperatures.

VII. LATTICE RESULTS

We have employed for the lattice the same system par
eters used to discuss the impurity, and a similar type of

FIG. 9. Kondo case: Occupation numbersnf , and parametersr 2

andR as a function ofT for both the slave-boson and theX-boson
methods, for the same model parameters used in Fig. 2.
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havior is observed. The evolution of theX-boson parameters
R andnf are shown in Fig. 9 as a function ofT, and thef and
c electrons do not decouple in this treatment because the
occupationR.0 in the whole range of temperatures, whi
the corresponding parameterr 2 of the usual slave-boson
treatment vanishes at a critical temperature~Kondo tempera-
ture TK). The two approaches yield similar results at lo
temperatures. The dependence with temperature ofl ~slave-
boson! andL (X boson! is presented in Fig. 10, and the slav
bosonl breaks down at the Kondo temperatureTK whereas
the X boson L goes continuously to zero, recovering th
CHA behavior at high temperatures.

The evolution ofnf , l, andr 2, with the chemical poten-
tial m, is presented in Fig. 11 for the slave-boson treatme
In this case we do not recover the three characteristic
gimes of the PAM: Kondo, intermediate valence, and m
netic, because the formalism breaks down whennf→1. The
corresponding quantities in theX-boson approach,nf , L,
andR, are also given as a function ofm in Fig. 12, and the
three characteristic regimes of the PAM are clearly show
There is a plateau in this figure when the chemical poten
crosses the hybridization gap, and the parameterL is maxi-

FIG. 10. Kondo case:L, andl vs T for the same model param
eters used in Fig. 9.

FIG. 11. slave-boson: Occupation numbers,l, r 2, andnf vs m
for the same model parameters used in Fig. 4.
2-9
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R. FRANCO, M. S. FIGUEIRA, AND M. E. FOGLIO PHYSICAL REVIEW B66, 045112 ~2002!
mum in the Kondo region, and goes smoothly to zero
gether withR when m increases, whilenf→1. The CHA is
recovered in this region by theX-boson treatment.

The value of the density of statesr f(m),rc(m) as func-
tion of m is presented in Fig. 13 for the slave-boson tre
ment: the approach breaks down in the Kondo region w
nf→1 and the same quantities are plotted in Fig. 14 for
X-boson approach. The density of statesr f(v),rc(v) vs v
are shown in Fig. 15 for both the slave-boson andX-boson
approaches in a typical Kondo situation. The density of
states atm is practically the same in the two cases.

VIII. SPECIFIC HEAT

In this section we apply the theory developed in this wo
to calculate the specific heat of the Kondo insulators, but
simplicity, we shall not try to fit the experimental results
some particular compound. This class of materials has b
extensively studied in the last decade since its characte
tion by Aeppli and Fisk33 as Kondo insulators. Some of th
compounds that we can include in this family are Fe
Ce3Bi4Pt3 , SmB6, and YbB12. The slave boson was applie
to Kondo insulators initially by Riseborough34 and by

FIG. 12. X boson: Occupation numbers,L, R, andnf vs m for
the same model parameters used in Fig. 4.

FIG. 13. Slave boson:r f(m),rc(m) vs m for the same mode
parameters used in Fig. 4.
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Sanchez-Castroet al.,35 and we have recently studied th
Kondo insulator FeSi using the atomic model.36,37 We have
been able to adjust simultaneously the static conductivity,
resistivity, and the dynamical conductivity to the experime
tal results, and we obtained a fair agreement. In this sect
we present theX-boson formalism as an alternative that giv
results close to those obtained by the slave-boson metho
its region of validity, while it makes it possible to extend th
results to the whole range of temperatures, without pres
ing the spurious phase transitions appearing in the u
slave-boson method.

To calculate the specific heat employingV we first show
by standard thermodynamic techniques that

S52S ]F

]TD
N,V

52S ]V

]T D
m,V

, ~56!

and then that

Cv5TS ]S

]TD
N,V

52T S ]2V

]T2 D
m,V

1T S ]m

]T D
N,V

S ]N

]T D
m,V

.

~57!

FIG. 14. X boson:r f(m),rc(m) vs m for the same model pa
rameters used in Fig. 4.

FIG. 15. Density of states in a typical Kondo situation in the tw
approaches:r(v) vs v for the same model parameters used in F
4 andT50.001.
2-10
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X-BOSON CUMULANT APPROACH TO THE PERIODIC . . . PHYSICAL REVIEW B66, 045112 ~2002!
Assuming a conduction band with a constant density
states, widthW52D, and the absence of magnetic field, w
find from Eqs.~49! and ~50! that

2TS ]2V

]T2 D
m,V

52T S ]2V̄0

]T2 D
m,V

1
kBb2

D (
l 56

2 E
2D

D

dxv l
2~x!nF@v l~x!#

3$12nF@v l~x!#%2T NsS ]2@L~R21!#

]T2 D
m,V

, ~58!

where

v6~x!5
1

2
~x1 «̃ f !6

1

2
A~x2 «̃ f !

214uVu2Ds ~59!

and

2TS ]2V̄0

]T2 D
m,V

522Ns kBb2«̃ f
2exp~b«̃ f !

3
@312 exp~b«̃ f !#

@exp~b«̃ f !12#2@exp~b«̃ f !11#2
. ~60!

We compare the specific heat obtained by the slave-bo
vs X-boson methods employing in the two cases the sa
parameters, corresponding to a typical Kondo insula
situation with the chemical potential inside the gap. In Figu
16 we present the corresponding density of statesr f(v) vs
v, for the following parameters:Ef50.3, V50.35,W52.0,
T50.001, andm50.5.

In Fig. 17 we presentCv vs T, employing the same
parameters of Fig. 16. We have calculat
T(]m/]T)N,V(]N/]T)m,V numerically, and its contribution
to CV is negligible for these parameters. The calculat
above the Kondo temperatureTK in the slave-boson case wa
performed for the phase of uncoupledf andc electrons, and

FIG. 16. Density of states in a typical Kondo insulator situati
in the two approaches:r f(v) vs v with the following parameters
Ef50.3; W52.0; V50.35; m50.5; T50.001.
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the specific heat presents a discontinuity at the transitionTK ,
but the curve obtained by theX-boson method is continuous

IX. CONCLUSIONS

The slave-boson formalism10 has been extensively used
the mean-field approximation11,13to study strongly correlated
electron systems, because it captures the essential phys
the Kondo effect at low temperatures and its implementat
in the Kondo limit is very simple. One drawback of th
method is that above a temperatureTK ~cf. Sec. IV! or when
m@Ef , it develops a spurious second-order phase transi
into a phase with decoupled conduction and localized e
trons. In the present work we present an approach that
inspired by some of the features of the mean-field appro
mation of the slave-boson method, and we obtain essent
the same results at low temperatures. We keep theX
operators1 even at the final stages of the calculation, wh
two hybridized but uncorrelated bands appear in the sla
boson method at the same stage. What we employ is
CHA ~chain approximation!, an approximate solution tha
retains electronic correlations and is a subset of the infi
diagrams of the cumulant expansion of the PAM in the lim
of U→`. The CHA corresponds to the most general set
diagrams with only second-order cumulants, and has in
esting properties such as beingF derivable.8 The advantage
of our method is that it does not have the spurious ph
transitions that the mean-field slave-boson method pres
at higher temperatures or chemical potentials, where our
cedure behaves like the CHA solution.

We have developed theX-boson method both for a singl
local impurity and for a lattice. The correlation appears
this approximation only through the presence of a cons
D0s at critical places of the corresponding GF@cf. Eqs.
~19!–~28!#, but it has profound effect on the system descr
tion, forcing the local electron occupation to benf,1, and
eliminating the spurious phase transitions of the slave-bo

FIG. 17. Kondo insulator: Specific heat of a typical Kondo i
sulator for the same model parameters used in Fig. 16 but
function of temperature.
2-11
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R. FRANCO, M. S. FIGUEIRA, AND M. E. FOGLIO PHYSICAL REVIEW B66, 045112 ~2002!
method. WhenD0s,1 the GF’s of theX boson have a dy-
namic character~cf. the Appendix, Sec. 1! that is absent in
the mean-field slave-boson method~that is recovered by set
ting D0s51).

From the computational point of view theX-boson
method is equivalent to the slave-boson technique, and
possibility of using it for all temperatures or chemical pote
tials m makes it useful as the starting point to study seve
interesting problems: competition between the Kondo eff
and RKKY interaction in heavy fermion systems,38–40 impu-
rity bands in Kondo insulators,41 non-Fermi-liquid behavior
in disordered systems,42 and the Kondo effect in quantum
dots.43,44 To give an example we have considered a Kon
insulator and calculated its specific heat: the slave-bo
method shows a discontinuity atTK , while it is continuous
in the X-boson method. Although it isCp that is usually
measured, the differenceCp2Cv is usually small in liquids
and solids, and shows a dependence withT similar to that
obtained with theX-boson method~see, for example, theCp
of FeSi measured by Jaccarino and co-workers45!.

In conclusion, we have presented an approach that g
essentially the same results as Coleman’s slave-boson t
ment at low temperatures, but without the spurious pha
transitions at intermediate temperaturesT or large values of
m. Our method has a dynamic character that is absent f
the mean-field slave-boson method, and its results appro
those of the cumulant expansion in the chain approxima
for large values ofT or m.

ACKNOWLEDGMENTS

We would like to acknowledge Professors Mucio A. Co
tinentino, E. Miranda, and E. V. Anda for helpful discussion
We are also grateful to the Sa˜o Paulo State Research Fou
dation~FAPESP! and the National Research Council~CNPq!
for their financial support.

APPENDIX: SELF-ENERGIES AND FERMI-LIQUID
BEHAVIOR IN THE X-BOSON METHOD

1. The self-energies in theX-boson method

To discuss the Fermi-liquid properties of the PAM in t
X-boson treatment, we shall first consider the correspond
f- and c-electron self-energiesS f(k,z) and Sc(k,z). We
shall relate these quantities to the exact GF’s by the eq
tions

Gks
f f ~z!5

21

@z2 «̃ f ,s2S f~k,z!#
, ~A1!

Gks
cc ~z!5

21

@z2«k,s2Sc~k,z!#
, ~A2!

where we employ thez with the m already subtracted@cf.
Eqs. ~10! and ~11!#. Introducing an effective cumulant36,37

M2,ks
e f f (z) it is possible to write the exact GF’s,
04511
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Gks
f f ~z!5

M2,ks
e f f ~z!

12uV~kW !u2Gc,ks
o ~z! M2,ks

e f f ~z!
~A3!

and

Gks
cc ~z!5

Gc,ks
o ~z!

12uV~k!u2Gc,ks
o ~z!M2,ks

e f f ~z!

5
21

z2«ks1uV~k!u2M2,ks
e f f ~z!

, ~A4!

where

Gc,ks
o ~z!5

21

~z2«ks!
~A5!

is the unperturbed GF of thec electrons. The exact self
energies defined above are then

S f~k,z!5z2 «̃ f ,s1@M2,ks
e f f ~z!#212uV~k!u2Gc,ks

o ~z!
~A6!

and

Sc~k,z!52uV~k!u2 M2,ks
e f f ~z!, ~A7!

and to recover the CHA self-energies it is sufficient
replace3 the effective cumulantM2,ks

e f f (z) by the contribution
of its simplest diagram, namely, the unperturbed GF of thf
electrons:

M2,ks
e f f ~z!→Gf ,0s

o ~z!52D0s /~z2 «̃ f ,s!. ~A8!

It is important to notice that our definition of the sel
energies differs from the usual one@see, e.g., Eqs.~277! and
~278! from Ref. 15#. This is because our unperturbed pro
lem @i.e., Eq.~1! with Vj ,k,s50# already contains the elec
tronic correlation (U→`) through theXj ,ss operators, while
the perturbative term in the cumulant expansion is the
bridization that affects the self-energies@see Eqs.~A6! and
~A7!#. Taking S f(k,z)50 givesGks

f f (z)→Gf ,0s
o (z) @cf. Eq.

~A8!#, which still depends on the electronic correlatio
through theD0s factor.

The termuV(k)u2Gc,ks
o (z) in our Eq. ~A6! does not ap-

pear in the usual self-energies,15 because they only give th
effect of the Coulomb repulsion on the two hybridized ban
without correlation, as becomes apparent by putt
S f( ivn)50 in both Eqs.~277! and ~278! of Ref. 15.

From this discussion, it seems clear that to analyze
relevant dynamics in our description of the PAM, we ha
first to subtract theuV(k)u2Gc,ks

o (z) present in Eq.~A6!. This
term is responsible for the usual fluctuations that appea
two hybridized but uncorrelated bands, when we look at
correlations of the localf states rather than consider th
Bloch extended states. Only the relevant space and time
namics are left, when theuV(k)u2Gc,ks

o (z) is eliminated from
our exactS f(k,z), and then we obtain for the CHA@cf. Eq.
~A8!#
2-12
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S f s~k,z!→z2 «̃ f ,s1@M2,ks
e f f ~z!#21

52~z2 «̃ f ,s!
12D0s

D0s
. ~A9!

The same arguments can be employed forScs(k,z), and
one finds that the relevant self-energy for our purpose is

Scs~k,z!→2uV~kW !u2FM2,ks
e f f ~z!1

1

z2 «̃ f ,s
G , ~A10!

and employing Eq.~A8! for the CHA we then find

Scs~k,z!→2uV~kW !u2
12D0s

z2 «̃ f ,s

. ~A11!

Equations~A9! and ~A11! show that although there is n
relevant spatial dependence in the self-energies of the C
they do retain some local time dependence. As discusse
Sec. III C, the mean-field slave-boson GF is recovered
replacingD0s→1, and the corresponding self-energy va
ishes, showing that all the local time dependence is co
pletely lost in the self-energies of that method. The spuri
phase transition observed in the slave-boson method is
sent from theX-boson description, and this result seems
indicate that the time dynamics retained in the CHA is a
to suppress those transitions.

2. Fermi-liquid properties in the X-boson method

The essential property of a Fermi-liquid is that at lo
temperatures it has a behavior close to that of a system
free fermions. It is described by a system of quasipartic
that replace the elementary excitations of the free system
they have a finite lifetime caused by the interactions that
absent in the free system. Instead of the elementary par
energies we have to analyze the poles of the relevant
given in our problem by the solutionszks of the equation
d

04511
A,
in
y
-
-
s
b-

o
e

of
s
ut

re
le
F,

z2«ks1uV~k!u2M2,ks
e f f ~z!50. ~A12!

The Re@zks# corresponds to the energies of the element
excitations, while their imaginary parts give their dec
properties, and the Fermi surface is given by the set ofkF
such that Re@zks#50, because we already subtracted them
from thez. The M2,ks

e f f (z) in the numerator of Eq.~A3! does
not introduce new poles, becauseGks

f f (z) is finite at those
poles.

From Eq.~A12! we obtain

M2,ks
e f f ~zks!52

zks2«ks

uV~k!u2
,

and replacing in Eq.~A6! we find

S f~k,zks!5zks2 «̃ f ,s , ~A13!

while from Eqs.~A8! and ~A12! we obtain

Sc~k,zks!5zks2«ks . ~A14!

It then follows that

Im@Sc~k,zks!#5Im@S f~k,zks!#5Im@zks#. ~A15!

An essential property of the Fermi-liquid is that the qu
siparticles on the Fermi surface have an infinite lifetim
when T→0, and this property follows from Eq.~A15! for
both thef andc electrons when the poles on the Fermi su
face are real, because the corresponding self-energies
then also real.

From Eq.~48! we conclude that the GF poles of the PA
in the CHA are all real, and the same property holds for
X-boson solution. These two approximations therefore
scribe the PAM as a Fermi-liquid, because they satisfy
condition above. Because the infinite lifetime is valid for a
k and for all T, the quasiparticles in these two approxim
tions behave more elementary excitations than like the u
quasiparticles, that have a finite lifetime outside the Fe
surface, even atT→0.
ev.
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