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GW self-energy calculations for systems with huge supercells
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We present parameter-free calculations of the quasiparticle band structure of systems described by huge
supercells. They are based on a pseudopotential—plane-wave method to calculate the electronic structure in the
ground state. All-electron wave functions are constructed using the projector-augmented wave method. The
electronic self-energy is calculated within the GW approximation using an efficient approach to the screening.

It includes a simplified treatment of dynamical and local-field effects. The approach is carefully tested by
computing the quasiparticle band structure of group-1V semiconductors within nonprimitive unit cells contain-
ing 216 atoms. The success of the method is demonstrated by the calculation of the electronic structure of Ge
and Si nanocrystallites embedded in a SiC matrix.
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[. INTRODUCTION the method of electronic-structure calculations based on non-
norm-conserving pseudopotentials and the projector-
Now parameter-free calculations of systems with hugeaugmented wave method are briefly described. We present
unit cells containing more than 100 atoms are necessary aritie formulas used in the GW approximation. In Sec. Il we
possible. Such systems mainly occur due to keeping th@demonstrate how the method works for supercells with 216
three-dimensional translational symmetry in the descriptiordtoms. Resulting excitation energies are compared with those
of nanosized structures as surfaces, quantum dots, arfptained for group-1V semiconductors represented within the
nanocrystallites. Repeated slabs are used to model suffaceBlimitive two-atom cell. The method is applied to Ge and Si
while clusters of atonfs’ are embedded in a supercell which clusters embedded in a cubic SiC matrix. Finally, in Sec. IV
is repeated to form a new artificial crystal. The atomic ge-2 brief summary is given.
ometry and the electronic structure are typically described
using density-functional theoty(DFT) within the local-
density approximatiofLDA).® This is, however, a ground- Il. CALCULATIONAL METHODS
state theory. The resulting single-particle and two-particle
excitation energies do not account for the excitation aspect.
Consequently, energy gaps and optical transition energies are In a first step we calculate the one-electron states from
considerably underestimated for semiconductors andirst principles using DFT within the LDA.The electron-
insulators® A rigorous solution of this electronic excitation electron interaction is described within the parametrization
problem has been addressed by Hedin's GW approximationf Perdew and Zungér. Nonlinear core corrections are
to the exchange-correlation self-energy of the electfons. taken into account The interaction of the electrons with the
Applications of the GW theory beginning with the work atomic cores is treated by non-norm-conservaty initio
of Hybertsen and Loui& Godby, Schiter, and Sham,and  Vanderbilt pseudopotentials. They allow a substantial po-
other workers have proven very successfully that this schemigntial softening even for first-row elemerfsThe plane-
works essentially perfectly for a wide range of materials, inwave expansion of the eigenfunctions can be restricted by a
particular, for perfect crystals with usually two atoms in thekinetic-energy cutoff of 19.8 Rydiamond, 13.2 Ry(SiC),
unit cell® However, the GW method requires significant ad-9.6 Ry (Si), or 8.8 Ry (Ge). We use the Viennab initio
ditional computational effort over the DFT LDA because it Simulation Packag® It also allows efficient total-energy
involves the computation of the dielectric function and theminimizations. The DFT LDA yields cubic lattice constants
single-particle Green function, and relies on the solution ofay=3.531,4.332,5.398, and 5.627 A and fundamental en-
the Dyson equation, which is more demanding than theergy gapsE,=4.15,1.33,0.46, and 0.03 eV for diamo(@),
single-particle Kohn-Sham equatfodue to the energy de- cubic silicon carbide(SiC), silicon (Si), and germanium
pendence of the self-energy operator. For that reason, thet&e). The use of a plane-wave expansion requires a supercell
are only very few examples of application of the GW theoryapproach for the description of systems without translational
to complicated systems such as surfat&sand clusters?  symmetry, for instance, a nanocrystallite embedded in a crys-
The calculation of the electronic screening requires a restrictalline matrix. We consider an arrangement of simple cubic
tion to small supercells. In order to extend the calculation to(sc) cells. The use of the ultrasoft pseudopotentfals'S PP
several tens of atoms in the supercell, usually a model diallows to treat extremely large supercells with 512 atoms in
electric function has been uséf** the case of a tetrahedrally coordinated biflk\Ve demon-
In this paper, we follow this line. We demonstrate how- strate the quasiparticle calculations for sc supercells with 216
ever that quasiparticle band structures can be calculated fatoms. Their edge lengths are 1.1, 1.3, 1.6, and 1.7 nm for C,
supercells containing several hundreds of atoms. In Sec. BiC, Si, and Ge, respectively.

A. Electronic-structure calculations
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. The use of.non-npr_m-conservmg pseudopotentlals is aAn(k)=[EEEH+2§EX+Eﬂ§"[sn(k)]—fokc]/[1+,8n(k)],
disadvantage if explicitly electronic wave functions are
needed, for example, to calculate optical transition matrix 9
elements. To solve this problem we apply &idis projector- Bn(K)=— —Eﬁ?(’"(s)lsq ) - (3)
augmented wavéPAW) approach to the electronic-structure de "
calculation?! There is a formal relationship between ultrasoft
Vanderbilt-type pseudopotentials and the PAW metffdds-
ing projectors onto the core regions of the free atoms an§eSPect to the Kohn-Sham statés, (x). .
pseudoatoms, all-electron wave functions are constructed for FOF small systems, such as bulk crystals with two atoms

the valence electrorfs This approach gives indeed excellent !N the primitive unit cell, the screened potentiallis calcu-
results for the optical transition matrix elements of bulkl"’?'[ed from'ﬂrst p“”C'F"egl " However, the.calcul_atlon from
semiconductor& eigenfunctions and eigenvalues and the inversion of the full
dielectric matrix approximately takes 75% of the CPU time
needed for the calculation of the quasiparticle correction for
B. Quasiparticle shifts a single staté.Consequently, this procedure is too time con-
suming for systems with several hundreds of atoms in the
elementaryztéell. For that reason Bechstetlal?® and Cap-
. . : pellini et al=® suggested to combine the plasmon-pole ap-
cannot be described by the eigenvalugek) and eigenfunc- proximation for the treatment of the dynantiesith a model

EODTAS g:I;T;Sg tr?ifs Egea S%T;{ﬂ?;?e ?r?::rt;/orllng;;geazE;S;Sapielectric function. The basic idea (B to treat the local-field
y - . = . . . . —1 . _
ticle equatiofi® has to be solved. In this equation the local effects by an inverse dielectric functian "(q,0;n(x)) de

exchange-correlatiofXC) potentialVic of the Kohn-Sham pending on the actual electron density diglto replace this
theory is replaced by an XC self-eégr operatorwhich quantity by state-averaged values. This allows a simplified
theory P y a gy ope representation of all contributions to the shi®. The SEX

is, in general, nonlocal in space, non-Hermitian, and energ

dependent. The evaluation of the self-energy operator is ﬁarm can be written &5
very difficult task. An efficient approximation is the GW 5 occ
schemé;?* in which the self-energy is linearly expanded ESEXZ_“LG SIS S )2
with respect to the dynamically screened Coulomb potential nk V = 7o) "MK

W. The abbreviationG stands for the one-particle Green

function. In the majority of cases, it is sufficient to treat the e Y(k—k'+G,0)
self-energy effect within first-order perturbation theory. The — st Y Tk (0)]?
quasiparticle correctiod (k) to a Kohn-Sham eigenvalue [k=k'+G] k'(#k)

en(k) gives the quasiparticle energ{?"(k). It is defined as eI (k—k'.0)

Expression(3) only contains diagonal matrix elements with

The excitation of a patrticle, electron, or hole in a Bloch
bandn at a given wave vectdk in the Brillouin zone(BZ)

n’

XWJﬂsnnfzﬁEx(O)] (4)
An(K) = (W |2 (77 (k) = Vxc| W k) (D)

with V as the volume of the system aB¢=(0) the contri-
bution related to the Coulomb singularity knspace. In ex-

Because of the smallness of the quasiparticle gHift . .
usually a linear expansion of the self-energy arospk) is {:i)(r)isssmn(@ Fourier transforms of products of Bloch func-

used. This expansion suggests a division of the self-energy
into a static contributior® St and a part2¥"(¢) that is en-

tirely given by the effect of dynamical screening. Usually, in Lotk 0= ()WL, (X)

addition the static parEs! is divided into %124Coulomb hole

(COH) and a screened exchan@&EX) part,” zé el (k—k +G)xrnk’n,k,(G) (5)
1 occur. Meanwhile, the validity of the approximatio{® and

COH ry — ’ ’.
X =5 % W)W (XWX, 0) (4) has been tested by application to common
semiconductor&®?® wide-band-gap semiconductdrs?®

—v(x—x")], and insulating charge-transfer oxidéss well as semicon-

ductor surfaced? Efficient self-energy calculations can be

thus carried out on common workstations.
occ

SSEXx,x) == 2, W (X)WE (X )W(X,x";0 2
( ) % k(XWX W ) @ C. Computational details

The inverse dielectric functioa™ ! used in the self-energy

with the statically screened Coulomb potenti&f(x,x’;0)  calculationd® does not only depend on the electron density

and the bare Coulomb potentia{x—x’). As a consequence n(x) directly obtained from the DFT-LDA treatment of the

the quasiparticle shift can be written®as electronic system. It is also influenced by the electronic di-
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electric constant... For well-known materials this value tions in the PAW case. The quantitigfsb; g (x) D7 ()

can be taken from experiment. However, for unknown sys—_éiR(X)&)r’R(x)] correspond to the atomic augmentation

tems, e.g., systems consisting of embedded nanocrystals, th i
dielectric constant has to be calculated. We do this within th&ﬁarges also used for the augmentation of the total charge

independent-particle approximatiéh. For vanishing fre- Gensiy. Hence, the implementation of expressi@ is
P P PP L 9 straightforward even in the US-PP case. In the PAW case an
guency and wave vectore, follows directly from the

. . extra complication arises since a proper all-electron augmen-
Ehrenreich-Cohen formula and the Kohn-Sham eigenvalueg,ion requires an extra logarithmic radial support mesh

and eigenfunctions. Since local-field effects are not includedyiihin the core region of each atom. In order to limit the
we computee,, = 13.755 for bulk Si. This value is somewhat nymerical effort we restrict ourselves to a norm-conserving
larger than the experimental valag=11.3. We checked the pseudoaugmentation charge also in the PAW case. Although
effect of the variation of the dielectric constant on the qua+his procedure is not exact, the numerical errors introduced
siparticle shifts of four occupied and empty bands around thare negligible. The pseudopartial waves are usually non-
fundamental gap at thE and X points of the BZ. Typical norm-conserving as in the Vanderbilt pseudopotential
variations due to the different dielectric constants are smallegchemée’°The projector$BiR) introduced in the definition
than 50 meV. In the case of the lowest valence-band state @) of Pirnk are dual to the pseudopartial waves, i.e.,
I' we found the strongest variation to be 85 meV. Consery, I®;n/ )= 8 Sre . Inside an augmentation sphere the
quently, in the following we use the dielectric constants cal-

L . . o completeness relatiol;|®;g)(pir/=1 holds.
culated within Fhe mdependen.t-par.ncle appro>_<|mat|0n. The computational effort of the Fourier transforms of the
The evaluation of the quasiparticle correctigB$ to the

. - product(6) depends on the density of the real-space mesh. In
DFT-LDA band structures, especially of the SEX contribu-yhe case of the DFT-LDA calculations we use for two-atom

tion (4), needs to be done with some care due to the presenceyis of the bulk crystals under consideration axl®x 16

of an integrable divergence. A reduction of the numericalyegh for the wave functions and a224x 24 mesh for the
effort by using a limited number df points in the irreduc-  aygmentation charge density. Test calculations for Si showed
ible part of the BZ is possible applying the method proposeghat the SEX contribution to the self-energy is rather insen-
by Gygi and Balderescif. An analytical function possessing sitive to extreme reductions of the mesh size. Even for a
the Coulomb singularity irk space is introduced. One cal- huge 216-atom supercell a 8B0x 30 mesh is sufficient.
culates the integral over this function and substracts the reanother limiting quantity is the density of tHepoints in the
sulting approximate value from the exact integtdF(0) in  BZ integration. We use special points of the Monkhorst-Pack
expression(4). Since an integral over the BZ has to be per-(MP) type®® With the novel treatment of the Coulomb sin-
formed, the Gygi-Baldereschi procedure is related to two nugularity we found convergence already fox4x4 sam-
merical disadvantages. For each Bravais-lattice type anothé@ings with an accuracy of about 1 meV for the total quasi-
aux”iary function has to be Chosen’ and no improvement Opartide shift of states in a Si Crystal studied in two-atom
the k-sampling quality occurs for large supercells. For thatCells. Consequently, we use &2X2 MP mesh for sc 216-
reason, we use another procedure. A Gaussian muItipIithom cells. In order to keep the numerical effort as small as

with the Fourier-transformed Coulomb potential is intro- POSSible we restrict ourselves to thépoints in that irreduc-
hléle part of the BZ corresponding to the common minimum

ttle group of allk points. However, doing this a resymme-
trization of the quasiparticle shifts of initially degenerate
electronic levels becomes necessary via an averaging of the
. . shifts calculated for all members of a group of degenerate
The products qf.Bloch wave fun(.:t|orj(§) in the SEX states. In our implementation the energeticgl dege%eracy is
term (4) can t.)e divided into a con'tr|but|on from the NoN- getected empirically by comparison of the DFT-LDA eigen-
norm-conserving pseudowave functions and an augmentatiqpy,es. This works very reliably as long as too large artificial
contribution inside the core regions localized at atomic S'te%ymmetry breakings due to insufficient numerical accuracy

entire space can be carried out analytically, this procedur
can be used for all crystal structures, and systematic im
provements of thé&-sampling quality are possible.

21,23 - .

R.%+*One finds do not occur and as long as the spectrum of eigenvalues

becomes not so extremely dense that nearly degenerate and

T (=T (0T* . (x)+ P pP* trqu degenerate states cannot be dlstlngwshed anymore.
rkon'te () =W k(W g0 (X) ; ; IRMKITRTK With the real-space arkispace meshes mentioned for a sys-

_ _ tem with 216-atom elementary cells the quasiparticle calcu-
X[Pir(X)P5(X) = Dir(X)D5(x)], (6)  lation can be done for orlepoint and oné’ point in 30—40
hours using a common workstation. That means that the
DFT-LDA calculation for a 216-atom cell is still more time
consuming than the computation of the GW corrections

with \Tfnk(x) as the non-norm-conserving pseudowave func-W'thln our method.

tions. The index is a shorthand for the angullar momentum IIl. RESULTS AND DISCUSSION
guantum numbers and the reference energies at which we

construct the atomic pseudopartial waeg(x). The quan-
tities @;r(x) are either norm-conserving atomic pseudowave In order to test the GW scheme described in Sec. Il B for
functions in the US-PP case or all-electron wave funcdarge-supercell systems, we study the diamond-structure

Pirink={(Pirl ¥ i)

A. GW approximation: 216-atom versus two-atom cells
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TABLE |. Single-particle energies for Si bulk in DFT-LDA and quasiparti@@P) approximation. Qua-
siparticle shifts and contributions to the self-energy are listed. All values are in eV, with the exception of the
dimensionless satellite strengd(k). The quantities are calculated within two-atom cells and 216-atom cells
(in parentheses, where deviating

Band state  en(k) I ERFC O ZQM O VEE Bu(k) Ank) eR7(K)
'y, —12.082 —-8.712 —4.877 1.762 —-10.517 0.248 —1.049 —12.893
(—4.870 (—1.0449 (—12.887
| YO 0 —-9.197 —4.229 1.829 —-11.303 0.236 —0.239 0
(—4.229 (—0.239
s 2.529 —8.468 —2.789 1.713 —10.104 0.258 0.445 3.213
(—2.787 (0.446 (3.2149
Iy 3.347 —8.986 —3.144 1.794 —-10.952 0.242 0.496 4.082
(—3.13) (0.507 (4.093
X1y —7.888 —8.934 —4.677 1.790 -10.871 0.243 -—-0.764 —-8.413
(—4.67)) (—0.760 (—8.409
X4p —2.913 —-8.779 —4.033 1.769 —-10.621 0.247 —0.338 —-3.012
(—4.039 (—0.338 (=3.012
X1c 0.578 —7.859 —2.428 1.637 —9.165 0.275 0.404 1.221
(—2.426 (0.405 (1.223

crystal Si. The primitive cell of the fcc crystal contains two or even ionic bonds. For diamond we observe a small in-
Si atoms. In addition, we describe this material in a noncrease of the deviations to a maximum value of 0.03 eV. For
primitive sc cell with 216 atoms. For folding reasons theSiC this deviation even increases. The largest variations of
electronic structure is only studied at theand X points of  the SEX term occur fof ;5. with —6.988(—7.077) eV or

the fcc BZ. The most important band states are consideredor X,. with —3.295(—3.162) eV in two-atom216-atom
They are the valence banflg,I',5 , X1, andX,. In the case  cells. This results in a maximum variation of the quasiparti-
of the conduction bands we consider the sta¢ed 15, and  cle energies by about 0.08 eV. We conclude that the simpli-
I',, . The results are presented in Table I. The data computefied self-energy calculation described in Sec. Il B can be
for the two different cells are practically identical. Only a performed in small and huge unit cells with the same accu-
tiny variation of the SEX term of few meV occurs as a con-racy.

sequence of the different real-space &aspace meshes. In The quality of the self-energy calculations within 216-
particular the extreme reduction of the real-space meshes &om cells and the simplified GW scheme becomes obvious
responsible for the major fraction of the total error. However,by the comparison with results of other calculations using
this variation is small compared to the accuracy of the quatwo-atom cells and a more accurate screehifigs well as
siparticle energies of about 0.1 eV. The question arisewith experimental daf2>%in Table Il. The quasiparticle
whether this agreement is still valid for crystals with strongershifts are calculated using the computed values

TABLE II. Quasiparticle energies of important band states with respect tb thealence-band maximum
(in eV). For comparison the Kohn-Sha(KS) values from the DFT LDA are also given. The values are
compared with previous theoretical and experimental regeks,) (second column(Refs. 8 and 34—-36

Crystal Method Indirect gap Direct gap Valence bandwidth

Diamond KS 4.19 3.9 5.62 55 21.69 21.6
QP 5.66 5.6 7.42 7.5 24.07 23.0
exp. 5.48 7.3 2421,21+1

SiC KS 1.34 1.22 6.56 6.57 15.44 15.07
QP 2.57 2.37 7.90 7.81 16.85 16.13
exp. 2.42 7.4

Si KS 0.44 0.52 2.43 2.57 12.08 11.93
QP 1.06 1.29 3.21 3.35 12.89 12.04
exp. 1.17 34 1250.6

Ge KS 0.12 0.07 0.03 12.91
QP 0.57 0.75 0.45 0.71 13.71 12.86
exp. 0.774 0.89 12.6, 12490.2
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TABLE Ill. Kohn-Sham and quasiparticle energieslabf the 3
lowest empty (=433) and highest occupied<@32) bands of the (a) (b) -
composite material with supercells of 17 Ge, 95 Si, and 104 C /
atoms. All values are in eV. )
n £n(0) eq(0) _
>
438-440 11.020 11.732 %
436-437 10.989 11.699 % 1
433-434 9.786 10.421 5 I ]
432-430 8.860 8.431 e
429-427 8.243 7.711 0
425-426 8.215 7.697 —— —
—5.864,7.132, and 13.755 for C, SiC, and Si. For the critical ™' 1 XT X

case of Ge with its practically vanishing gap and hence al- . _
FIG. 1. Projected bulk SiC band structughaded areaand

most infinite calculated., we use a value.,= 16 reflecting Ge-induced gap statésolid ined of a 17-atom Ge cluster embed
approximately the room-temperature experimental value;~ " b : § . i
The overall agreement for the energy gaps is excellent. Thlge?h'e': ?Oiﬁ:’s'c;}'Sir:natBrg'asrgpceorrf;':jse?;:)lgﬁ?&iagﬁg'?be)
deviations approach the predicted accuracy of about 0.1 e P 9 ’

. . . W iparticle bands. Th I -band i f SIC i
Only in the Ge case do our calculations underestimate thgsedq:saigir;;g;n S. The vajence-band maximum of it 18

gaps. However, this is more a consequence of the overesti-

mation of the repulsion between Gé and Ge $ states. The stallite in 3C-SiC. Resulting band structures are presented
simplified GW treatment tends to overestimate the QP shiffyS® ' ng e prese
in Figs. 1 and 2 for two different approximations. In Figs.

of states far away from the fundamental gap, e.g.I'gf. :
. . . . . 1(a) and 2a) the Kohn-Sham eigenvalues are plotted,
Perhaps, this tendency results in a tiny overestimation of thev%/hereas in Figs. (b) and 2b) the GW quasiparticle correc-

valence-band widths. Altogether, we can again conclude thaﬂons (3) are added. The alignment between the DFT-LDA

the method developed in Sec. Il allows reliable quasiparticl . -
calculations for systems with several hundreds of atoms i(:g)and structuregand in a §|m|lar procedure of the .GW band
structure$ of the pure SiC bulk and the composite system

the unit cell has been made using characteristic SiC-related contributions
to the densities of states. Those of the composite systems are

B. Quasiparticle bands of a composite: plotted in Fig. 3 in the energy range of the highest occupied
Ge and Si nanocrystals in a SiC matrix and lowest unoccupied states. Independent of the treatment

Recently composite systems with very interesting opto-of the many-body effects, the Ge nanocrystallites induce oc-
electronic properties have been prepared. Self-assemblégpied electronic states in the fundamental gap of cubic SiC
germanium nanocrystallites have been grown on @@l  near the valence-band maximum. The bound states in the gap
surface during a molecular-beam depositiéton implanta- ~ ¢an be interpreted as hole levels, the wave functions of
tion with subsequent annealing yields Ge or mixed Gesvhich are localized in the central Ge cluster. The quasiparti-
nanocrystallites in a hexagonal SiC mafifxthe band struc-  cle effects leave the energy region around the valence-band
tures and the accompanying optical properties of such sygnaximum(VBM) of SiC and the occupied Ge-induced states
tems are completely unknown. A first step of the understand-

ing of these systems could be the calculation of the 3

guasiparticle band structure. In order to perform such a cal- @ (b) -y
culation we study sc 216-atom supercells filled with cubic | Z
SiC. The Si and C atoms at atomic sites in the center of each

supercell are replaced by 17 Ge or Si atoms. The atomic
structure is assumed to remain unchanged, i.e., the atoms
keep the tetrahedral coordination and all bonds in the inter-
face between nanocrystallite and host are saturated. The clus-
ters possess nearly spherical symmetry. The point group of
the supercell system is still;. The resulting G&Si) nanoc-
rystallites are highly strained due to the large lattice misfit. 5 \\
We study only systems with Ge-Si-C) interface bonds. ‘

An effective dielectric constané,.=8.0 (7.5) is com- |
puted for the Ge/SiCSi/SiC) composite system. To illustrate

Energy [eV]

the quasiparticle effect the Kohn-Sham and quasiparticle ei- =5 XT X
genvalues of the highest occupied supercell bands and the
lowest empty bands are listed in Table Il for the Ge nanoc- FIG. 2. As in Fig. 1 but for a Si nanocrystallite.
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0.5

states appear close to the SiC conduction-band edge already
within the DFT-LDA approach. The corresponding wave
functions are weakly localized in the Si nanocrystal. There-
fore, the composite system of highly strained Si crystallites
embedded in a SiC matrix tends to a type-l heterostructure
system. As in the Ge cas@ee Fig. 1 this tendency is
strengthened within the GW approach.

025

IV. SUMMARY

Density of states

Summarizing, a quasiparticle computational scheme has
been developed that is applicable to nonmetallic systems
with large unit cells containing several hundreds of atoms.
This scheme represents a generalization of an efficient GW
method for the evaluation of the first-order quasiparticle cor-
rections to the electronic band structure obtained within DFT
LDA. The screening function of the system is replaced by a
model function. Aside from this model the theory remains

FIG. 3. Electronic density of states witho(dashed linpand  parameter-free. The electronic charge density and the elec-
with (solid line) quasiparticle effects for 17-atom nanocrystallites in tronic dielectric constant, which governs the screening of the
SiC. (a) Ge; (b) Si. Coulomb interaction, are taken from an independent-particle
calculation within the DFT-LDA.

In order to determine the structure and the electronic

within the fundamental gap practically unchanged. WithinStates of systems with huge unit Ce"Ez.OO atomy, in par-
ticular, when first-row elements are involved, non-norm-

the DFT LDA the lowest electron states are built up by wave ) q ial d d ibe th
functions of the SiC system. The composite system consis£2NSErVINg pseudopotentials are used to describe the

ing of Ge and SiC can therefore be interpreted as a type_|(?Iectron—|on interaction. The corresponding electronic-

heterostructure with a staggered alignment of thestructure calculations do not g'ive an or_thonormalized and
conduction- and valence-band edd®sThis finding is in c_omplete set of wave functions m_the entire space. However,
agreement with the positions of the valence-band edges ggince only the atomic augmentation cha_\rges_ are needed "J?”d
rived within a tight-binding theoA? and using the experi- no reaj full reconstruction of wave functhns iS necessary, it
mental energy gaps given in Table II. With quasiparticle of.Is straightforward to implement the matrix elements of the

fects [see Fig. tb)] supercell bands appear close to theself-energy operator even in the US-PP case. Nevertheless,

conduction-band edge of SiC. This seems to be a cons&onsidering the strict similarities between the PAW method

quence of the fact that in the composite system with G@nd the ul_trasoft non-norm-conserving pseudopotentials it is
atoms the electronic screening is slightly less effective inaISO possible to use the PAW approach. The PAW method

comparison to that of the pure SiC system. The wave func<_31llows the construction of aII—eIectrqn wave functlons for the
alence electrons. This becomes important if one likes to

tions of these supercell states remain strongly delocalized’ bine th lculati t optical i ith th |
Consequently, the type-Il heterostructure is conserved taking)m Iné the caiculation ot optical properties wi € calcu-

the excitation aspect into account. tion of quasiparticle energies.

Interestingly the quasiparticle shifts in Table Ill do not The method developed as_well as th_e nu_mencal ap-
strongly vary with their character as states localized in th®f0aches are tested by calculating the quasiparticle bands for

Ge nanocrystals or bulklike SiC states. This is mainly a con:[r;]e sta:Ie grrloup-l\( crystals.dialmond,”SiQ,hSZi,lgnd Ge. \;]Ve
sequence of the joint screening function of the composite?‘ ow that when using nonprimitive cefls wit atoms the

that is used for all states. The main influence of the quasi-s_ame quasiparticle shifts are qbtained as in the limit of primi-
tive two-atom cells. The efficiency of the method has been

particle effects results in a widening of the fundamental en- df _ Wi died G 4 Si
ergy gap of the SiC host. The dispersion of the bands, on thgemonstrate or composite systems. We studied Ge and Si

other hand, remains widely unchanged. This is clearly demganocrystallltes embedded in cubic SiC.
onstrated by the density of states in Fig. 3 for the Ge but also
for the Si nanocrystal embedded in a SiC matrix. Much more
than in the band structures the influence in the fundamental We acknowledge financial support from the Deutsche For-
gap region seems to be characterizable by a rigid shift of thechungsgemeinschaffonderforschungsbereich 196, Project
empty states with respect to the occupied states. No. A8) and the European community within a research

The behavior of the electronic states of the compositeraining network(Contract No. HPRN-CT-2000-0016Part
system consisting of a Si nanocrystal embedded in a Si@f the numerical calculations has been done using the facili-
matrix is very similar to that of the Ge/SiC caigee Fig. 2 ties of the J. v. Neumann Institute for Computing idichu
There are, however, two differences. The Si-induced occuG. Cappellini would like to thank Luciano Colombo for
pied states are closer to the VBM of SiC, and unoccupiednany useful discussions.
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