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GW self-energy calculations for systems with huge supercells
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We present parameter-free calculations of the quasiparticle band structure of systems described by huge
supercells. They are based on a pseudopotential–plane-wave method to calculate the electronic structure in the
ground state. All-electron wave functions are constructed using the projector-augmented wave method. The
electronic self-energy is calculated within the GW approximation using an efficient approach to the screening.
It includes a simplified treatment of dynamical and local-field effects. The approach is carefully tested by
computing the quasiparticle band structure of group-IV semiconductors within nonprimitive unit cells contain-
ing 216 atoms. The success of the method is demonstrated by the calculation of the electronic structure of Ge
and Si nanocrystallites embedded in a SiC matrix.
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I. INTRODUCTION

Now parameter-free calculations of systems with hu
unit cells containing more than 100 atoms are necessary
possible. Such systems mainly occur due to keeping
three-dimensional translational symmetry in the descript
of nanosized structures as surfaces, quantum dots,
nanocrystallites. Repeated slabs are used to model surfa1

while clusters of atoms2,3 are embedded in a supercell whic
is repeated to form a new artificial crystal. The atomic g
ometry and the electronic structure are typically describ
using density-functional theory4 ~DFT! within the local-
density approximation~LDA !.5 This is, however, a ground
state theory. The resulting single-particle and two-parti
excitation energies do not account for the excitation asp
Consequently, energy gaps and optical transition energie
considerably underestimated for semiconductors
insulators.6 A rigorous solution of this electronic excitatio
problem has been addressed by Hedin’s GW approxima
to the exchange-correlation self-energy of the electrons.7

Applications of the GW theory beginning with the wor
of Hybertsen and Louie,8 Godby, Schlu¨ter, and Sham,9 and
other workers have proven very successfully that this sch
works essentially perfectly for a wide range of materials,
particular, for perfect crystals with usually two atoms in t
unit cell.6 However, the GW method requires significant a
ditional computational effort over the DFT LDA because
involves the computation of the dielectric function and t
single-particle Green function, and relies on the solution
the Dyson equation, which is more demanding than
single-particle Kohn-Sham equation5 due to the energy de
pendence of the self-energy operator. For that reason, t
are only very few examples of application of the GW theo
to complicated systems such as surfaces10,11 and clusters.12

The calculation of the electronic screening requires a res
tion to small supercells. In order to extend the calculation
several tens of atoms in the supercell, usually a model
electric function has been used.1,13,14

In this paper, we follow this line. We demonstrate ho
ever that quasiparticle band structures can be calculated
supercells containing several hundreds of atoms. In Se
0163-1829/2002/66~4!/045110~7!/$20.00 66 0451
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the method of electronic-structure calculations based on n
norm-conserving pseudopotentials and the projec
augmented wave method are briefly described. We pre
the formulas used in the GW approximation. In Sec. III w
demonstrate how the method works for supercells with 2
atoms. Resulting excitation energies are compared with th
obtained for group-IV semiconductors represented within
primitive two-atom cell. The method is applied to Ge and
clusters embedded in a cubic SiC matrix. Finally, in Sec.
a brief summary is given.

II. CALCULATIONAL METHODS

A. Electronic-structure calculations

In a first step we calculate the one-electron states fr
first principles using DFT within the LDA.5 The electron-
electron interaction is described within the parametrizat
of Perdew and Zunger.15 Nonlinear core corrections ar
taken into account.16 The interaction of the electrons with th
atomic cores is treated by non-norm-conservingab initio
Vanderbilt pseudopotentials.17 They allow a substantial po
tential softening even for first-row elements.18 The plane-
wave expansion of the eigenfunctions can be restricted b
kinetic-energy cutoff of 19.8 Ry~diamond!, 13.2 Ry ~SiC!,
9.6 Ry ~Si!, or 8.8 Ry ~Ge!. We use the ViennaAb initio
Simulation Package.19 It also allows efficient total-energy
minimizations. The DFT LDA yields cubic lattice constan
a053.531,4.332,5.398, and 5.627 Å and fundamental
ergy gapsEg54.15,1.33,0.46, and 0.03 eV for diamond~C!,
cubic silicon carbide~SiC!, silicon ~Si!, and germanium
~Ge!. The use of a plane-wave expansion requires a supe
approach for the description of systems without translatio
symmetry, for instance, a nanocrystallite embedded in a c
talline matrix. We consider an arrangement of simple cu
~sc! cells. The use of the ultrasoft pseudopotentials18 ~US PP!
allows to treat extremely large supercells with 512 atoms
the case of a tetrahedrally coordinated bulk.20 We demon-
strate the quasiparticle calculations for sc supercells with
atoms. Their edge lengths are 1.1, 1.3, 1.6, and 1.7 nm fo
SiC, Si, and Ge, respectively.
©2002 The American Physical Society10-1
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The use of non-norm-conserving pseudopotentials i
disadvantage if explicitly electronic wave functions a
needed, for example, to calculate optical transition ma
elements. To solve this problem we apply Blo¨chl’s projector-
augmented wave~PAW! approach to the electronic-structu
calculation.21 There is a formal relationship between ultras
Vanderbilt-type pseudopotentials and the PAW method.22 Us-
ing projectors onto the core regions of the free atoms
pseudoatoms, all-electron wave functions are constructed
the valence electrons.23 This approach gives indeed excelle
results for the optical transition matrix elements of bu
semiconductors.23

B. Quasiparticle shifts

The excitation of a particle, electron, or hole in a Blo
bandn at a given wave vectork in the Brillouin zone~BZ!
cannot be described by the eigenvalues«n(k) and eigenfunc-
tions Cnk(x) of the Kohn-Sham equation of the DFT i
LDA,5 since this is a ground-state theory. Instead a quasi
ticle equation8,9 has to be solved. In this equation the loc
exchange-correlation~XC! potentialVXC of the Kohn-Sham
theory is replaced by an XC self-energy operatorS, which
is, in general, nonlocal in space, non-Hermitian, and ene
dependent. The evaluation of the self-energy operator
very difficult task. An efficient approximation is the GW
scheme,7,24 in which the self-energy is linearly expande
with respect to the dynamically screened Coulomb poten
W. The abbreviationG stands for the one-particle Gree
function. In the majority of cases, it is sufficient to treat t
self-energy effect within first-order perturbation theory. T
quasiparticle correctionDn(k) to a Kohn-Sham eigenvalu
«n(k) gives the quasiparticle energy«n

QP(k). It is defined as

Dn~k!5^CnkuS~«n
QP~k!!2VXCuCnk&. ~1!

Because of the smallness of the quasiparticle shift~1!,
usually a linear expansion of the self-energy around«n(k) is
used. This expansion suggests a division of the self-en
into a static contributionSst and a partSdyn(«) that is en-
tirely given by the effect of dynamical screening. Usually,
addition the static partSst is divided into a Coulomb hole
~COH! and a screened exchange~SEX! part,8,24

SCOH~x,x8!5
1

2 (
n,k

Cnk~x!Cnk* ~x8!@W~x,x8;0!

2v~x2x8!#,

SSEX~x,x8!52(
n,k

occ

Cnk~x!Cnk* ~x8!W~x,x8;0! ~2!

with the statically screened Coulomb potentialW(x,x8;0)
and the bare Coulomb potentialv(x2x8). As a consequence
the quasiparticle shift can be written as6
04511
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Dn~k!5@Snk
COH1Snk

SEX1Snk
dyn@«n~k!#2Vnk

XC#/@11bn~k!#,

bn~k!52
]

]«
Snk

dyn~«!u«5«n(k) . ~3!

Expression~3! only contains diagonal matrix elements wi
respect to the Kohn-Sham statesCnk(x).

For small systems, such as bulk crystals with two ato
in the primitive unit cell, the screened potentialW is calcu-
lated from first principles.6,8,9 However, the calculation from
eigenfunctions and eigenvalues and the inversion of the
dielectric matrix approximately takes 75% of the CPU tim
needed for the calculation of the quasiparticle correction
a single state.6 Consequently, this procedure is too time co
suming for systems with several hundreds of atoms in
elementary cell. For that reason Bechstedtet al.25 and Cap-
pellini et al.26 suggested to combine the plasmon-pole a
proximation for the treatment of the dynamics8 with a model
dielectric function. The basic idea is~i! to treat the local-field
effects by an inverse dielectric functione21(q,0;n(x)) de-
pending on the actual electron density and~ii ! to replace this
quantity by state-averaged values. This allows a simplifi
representation of all contributions to the shift~3!. The SEX
term can be written as27

Snk
SEX52

4pe2

V (
n8

occ H (
k8

(
G(Þ0)

uGnk,n8k8~G!u2

3
e21~k2k81G,0!

uk2k81Gu2
1 (

k8(Þk)

uGnk,n8k8~0!u2

3
e21~k2k8,0!

uk2k8u2
1dnn8Sn

SEX~0!J ~4!

with V as the volume of the system andSn
SEX(0) the contri-

bution related to the Coulomb singularity ink space. In ex-
pression~4! Fourier transforms of products of Bloch func
tions

Gnk,n8k8~x!5Cnk~x!Cn8k8
* ~x!

5(
G

ei (k2k81G)xGnk,n8k8~G! ~5!

occur. Meanwhile, the validity of the approximations~3! and
~4! has been tested by application to comm
semiconductors,25,26 wide-band-gap semiconductors,27–29

and insulating charge-transfer oxides30 as well as semicon-
ductor surfaces.14 Efficient self-energy calculations can b
thus carried out on common workstations.

C. Computational details

The inverse dielectric functione21 used in the self-energy
calculations26 does not only depend on the electron dens
n(x) directly obtained from the DFT-LDA treatment of th
electronic system. It is also influenced by the electronic
0-2
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electric constante` . For well-known materials this value
can be taken from experiment. However, for unknown s
tems, e.g., systems consisting of embedded nanocrystals
dielectric constant has to be calculated. We do this within
independent-particle approximation.31 For vanishing fre-
quency and wave vector,e` follows directly from the
Ehrenreich-Cohen formula and the Kohn-Sham eigenva
and eigenfunctions. Since local-field effects are not includ
we computee`513.755 for bulk Si. This value is somewh
larger than the experimental valuee`511.3. We checked the
effect of the variation of the dielectric constant on the qu
siparticle shifts of four occupied and empty bands around
fundamental gap at theG and X points of the BZ. Typical
variations due to the different dielectric constants are sma
than 50 meV. In the case of the lowest valence-band sta
G we found the strongest variation to be 85 meV. Con
quently, in the following we use the dielectric constants c
culated within the independent-particle approximation.

The evaluation of the quasiparticle corrections~3! to the
DFT-LDA band structures, especially of the SEX contrib
tion ~4!, needs to be done with some care due to the prese
of an integrable divergence. A reduction of the numeri
effort by using a limited number ofk points in the irreduc-
ible part of the BZ is possible applying the method propos
by Gygi and Baldereschi.32 An analytical function possessin
the Coulomb singularity ink space is introduced. One ca
culates the integral over this function and substracts the
sulting approximate value from the exact integralSn

SEX(0) in
expression~4!. Since an integral over the BZ has to be p
formed, the Gygi-Baldereschi procedure is related to two
merical disadvantages. For each Bravais-lattice type ano
auxiliary function has to be chosen, and no improvemen
the k-sampling quality occurs for large supercells. For th
reason, we use another procedure. A Gaussian multip
with the Fourier-transformed Coulomb potential is intr
duced. The advantages are that, since the integral ove
entire space can be carried out analytically, this proced
can be used for all crystal structures, and systematic
provements of thek-sampling quality are possible.

The products of Bloch wave functions~5! in the SEX
term ~4! can be divided into a contribution from the no
norm-conserving pseudowave functions and an augmenta
contribution inside the core regions localized at atomic s
R.21,23 One finds

Gnk,n8k8~x!5C̃nk~x!C̃n8k8
* ~x!1(

R
(
i ,i 8

PiR,nkPi 8R,n8k8
*

3@F iR~x!F i 8R
* ~x!2F̃ iR~x!F̃ i 8R

* ~x!#, ~6!

PiR,nk5^ p̃iRuC̃nk&

with C̃nk(x) as the non-norm-conserving pseudowave fu
tions. The indexi is a shorthand for the angular momentu
quantum numbers and the reference energies at which
construct the atomic pseudopartial wavesF̃ iR(x). The quan-
tities F iR(x) are either norm-conserving atomic pseudowa
functions in the US-PP case or all-electron wave fu
04511
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tions in the PAW case. The quantities@F iR(x)F i 8R
* (x)

2F̃ iR(x)F̃ i 8R
* (x)# correspond to the atomic augmentatio

charges also used for the augmentation of the total cha
density. Hence, the implementation of expression~6! is
straightforward even in the US-PP case. In the PAW case
extra complication arises since a proper all-electron augm
tation requires an extra logarithmic radial support me
within the core region of each atom. In order to limit th
numerical effort we restrict ourselves to a norm-conserv
pseudoaugmentation charge also in the PAW case. Altho
this procedure is not exact, the numerical errors introdu
are negligible. The pseudopartial waves are usually n
norm-conserving as in the Vanderbilt pseudopoten
scheme.17–19The projectorsu p̃iR& introduced in the definition
~6! of PiR,nk are dual to the pseudopartial waves, i.
^ p̃iRuF̃ i 8R8&5d i i 8dRR8 . Inside an augmentation sphere th
completeness relationS i uF̃ iR&^ p̃iRu51 holds.

The computational effort of the Fourier transforms of t
product~6! depends on the density of the real-space mesh
the case of the DFT-LDA calculations we use for two-ato
cells of the bulk crystals under consideration a 16316316
mesh for the wave functions and a 24324324 mesh for the
augmentation charge density. Test calculations for Si sho
that the SEX contribution to the self-energy is rather ins
sitive to extreme reductions of the mesh size. Even fo
huge 216-atom supercell a 30330330 mesh is sufficient.
Another limiting quantity is the density of thek points in the
BZ integration. We use special points of the Monkhorst-Pa
~MP! type.33 With the novel treatment of the Coulomb sin
gularity we found convergence already for 43434 sam-
plings with an accuracy of about 1 meV for the total qua
particle shift of states in a Si crystal studied in two-ato
cells. Consequently, we use a 23232 MP mesh for sc 216-
atom cells. In order to keep the numerical effort as small
possible we restrict ourselves to thek8 points in that irreduc-
ible part of the BZ corresponding to the common minimu
little group of all k points. However, doing this a resymme
trization of the quasiparticle shifts of initially degenera
electronic levels becomes necessary via an averaging o
shifts calculated for all members of a group of degener
states. In our implementation the energetical degenerac
detected empirically by comparison of the DFT-LDA eige
values. This works very reliably as long as too large artific
symmetry breakings due to insufficient numerical accura
do not occur and as long as the spectrum of eigenva
becomes not so extremely dense that nearly degenerate
truly degenerate states cannot be distinguished anym
With the real-space andk-space meshes mentioned for a sy
tem with 216-atom elementary cells the quasiparticle cal
lation can be done for onek point and onek8 point in 30–40
hours using a common workstation. That means that
DFT-LDA calculation for a 216-atom cell is still more tim
consuming than the computation of the GW correctio
within our method.

III. RESULTS AND DISCUSSION

A. GW approximation: 216-atom versus two-atom cells

In order to test the GW scheme described in Sec. II B
large-supercell systems, we study the diamond-struc
0-3
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TABLE I. Single-particle energies for Si bulk in DFT-LDA and quasiparticle~QP! approximation. Qua-
siparticle shifts and contributions to the self-energy are listed. All values are in eV, with the exception
dimensionless satellite strengthbn(k). The quantities are calculated within two-atom cells and 216-atom c
~in parentheses, where deviating!.

Band state «n(k) Snk
COH Snk

SEX Snk
dyn Vnk

XC bn(k) Dn(k) «n
QP(k)

G1v 212.082 28.712 24.877 1.762 210.517 0.248 21.049 212.893
~24.870! ~21.044! ~212.887!

G258v 0 29.197 24.229 1.829 211.303 0.236 20.239 0
~24.229! ~20.239!

G15c 2.529 28.468 22.789 1.713 210.104 0.258 0.445 3.213
~22.787! ~0.446! ~3.214!

G28c 3.347 28.986 23.144 1.794 210.952 0.242 0.496 4.082
~23.131! ~0.507! ~4.093!

X1v 27.888 28.934 24.677 1.790 210.871 0.243 20.764 28.413
~24.671! ~20.760! ~28.409!

X4v 22.913 28.779 24.033 1.769 210.621 0.247 20.338 23.012
~24.034! ~20.338! ~23.012!

X1c 0.578 27.859 22.428 1.637 29.165 0.275 0.404 1.221
~22.426! ~0.405! ~1.223!
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crystal Si. The primitive cell of the fcc crystal contains tw
Si atoms. In addition, we describe this material in a no
primitive sc cell with 216 atoms. For folding reasons t
electronic structure is only studied at theG andX points of
the fcc BZ. The most important band states are conside
They are the valence bandsG1 ,G258 ,X1, andX4. In the case
of the conduction bands we consider the statesX1 ,G15, and
G28 . The results are presented in Table I. The data comp
for the two different cells are practically identical. Only
tiny variation of the SEX term of few meV occurs as a co
sequence of the different real-space andk-space meshes. In
particular the extreme reduction of the real-space meshe
responsible for the major fraction of the total error. Howev
this variation is small compared to the accuracy of the q
siparticle energies of about 0.1 eV. The question ari
whether this agreement is still valid for crystals with strong
04511
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or even ionic bonds. For diamond we observe a small
crease of the deviations to a maximum value of 0.03 eV.
SiC this deviation even increases. The largest variations
the SEX term occur forG15c with 26.988(27.077) eV or
for X1c with 23.295(23.162) eV in two-atom~216-atom!
cells. This results in a maximum variation of the quasipa
cle energies by about 0.08 eV. We conclude that the sim
fied self-energy calculation described in Sec. II B can
performed in small and huge unit cells with the same ac
racy.

The quality of the self-energy calculations within 21
atom cells and the simplified GW scheme becomes obvi
by the comparison with results of other calculations us
two-atom cells and a more accurate screening8,34 as well as
with experimental data8,35,36 in Table II. The quasiparticle
shifts are calculated using the computed valuese`
re

TABLE II. Quasiparticle energies of important band states with respect to theG258 valence-band maximum

~in eV!. For comparison the Kohn-Sham~KS! values from the DFT LDA are also given. The values a
compared with previous theoretical and experimental results~exp.! ~second column! ~Refs. 8 and 34–36!.

Crystal Method Indirect gap Direct gap Valence bandwidth

Diamond KS 4.19 3.9 5.62 5.5 21.69 21.6
QP 5.66 5.6 7.42 7.5 24.07 23.0
exp. 5.48 7.3 24.261,2161

SiC KS 1.34 1.22 6.56 6.57 15.44 15.07
QP 2.57 2.37 7.90 7.81 16.85 16.13
exp. 2.42 7.4

Si KS 0.44 0.52 2.43 2.57 12.08 11.93
QP 1.06 1.29 3.21 3.35 12.89 12.04
exp. 1.17 3.4 12.560.6

Ge KS 0.12 0.07 0.03 12.91
QP 0.57 0.75 0.45 0.71 13.71 12.86
exp. 0.774 0.89 12.6, 12.960.2
0-4
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55.864,7.132, and 13.755 for C, SiC, and Si. For the criti
case of Ge with its practically vanishing gap and hence
most infinite calculatede` we use a valuee`516 reflecting
approximately the room-temperature experimental va
The overall agreement for the energy gaps is excellent.
deviations approach the predicted accuracy of about 0.1
Only in the Ge case do our calculations underestimate
gaps. However, this is more a consequence of the over
mation of the repulsion between Ge 3d and Ge 4p states. The
simplified GW treatment tends to overestimate the QP s
of states far away from the fundamental gap, e.g., ofG1v .
Perhaps, this tendency results in a tiny overestimation of
valence-band widths. Altogether, we can again conclude
the method developed in Sec. II allows reliable quasipart
calculations for systems with several hundreds of atom
the unit cell.

B. Quasiparticle bands of a composite:
Ge and Si nanocrystals in a SiC matrix

Recently composite systems with very interesting op
electronic properties have been prepared. Self-assem
germanium nanocrystallites have been grown on a SiC~0001!
surface during a molecular-beam deposition.37 Ion implanta-
tion with subsequent annealing yields Ge or mixed G
nanocrystallites in a hexagonal SiC matrix.38 The band struc-
tures and the accompanying optical properties of such
tems are completely unknown. A first step of the understa
ing of these systems could be the calculation of
quasiparticle band structure. In order to perform such a
culation we study sc 216-atom supercells filled with cu
SiC. The Si and C atoms at atomic sites in the center of e
supercell are replaced by 17 Ge or Si atoms. The ato
structure is assumed to remain unchanged, i.e., the a
keep the tetrahedral coordination and all bonds in the in
face between nanocrystallite and host are saturated. The
ters possess nearly spherical symmetry. The point grou
the supercell system is stillTd . The resulting Ge~Si! nanoc-
rystallites are highly strained due to the large lattice mis
We study only systems with Ge-C~Si-C! interface bonds.

An effective dielectric constante`58.0 (7.5) is com-
puted for the Ge/SiC~Si/SiC! composite system. To illustrat
the quasiparticle effect the Kohn-Sham and quasiparticle
genvalues of the highest occupied supercell bands and
lowest empty bands are listed in Table III for the Ge nan

TABLE III. Kohn-Sham and quasiparticle energies atG of the
lowest empty (n>433) and highest occupied (<432) bands of the
composite material with supercells of 17 Ge, 95 Si, and 104
atoms. All values are in eV.

n «n(0) «n
QP(0)

438–440 11.020 11.732
436–437 10.989 11.699
433–434 9.786 10.421
432–430 8.860 8.431
429–427 8.243 7.711
425–426 8.215 7.697
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rystallite in 3C-SiC. Resulting band structures are presen
in Figs. 1 and 2 for two different approximations. In Fig
1~a! and 2~a! the Kohn-Sham eigenvalues are plotte
whereas in Figs. 1~b! and 2~b! the GW quasiparticle correc
tions ~3! are added. The alignment between the DFT-LD
band structures~and in a similar procedure of the GW ban
structures! of the pure SiC bulk and the composite syste
has been made using characteristic SiC-related contribut
to the densities of states. Those of the composite system
plotted in Fig. 3 in the energy range of the highest occup
and lowest unoccupied states. Independent of the treatm
of the many-body effects, the Ge nanocrystallites induce
cupied electronic states in the fundamental gap of cubic
near the valence-band maximum. The bound states in the
can be interpreted as hole levels, the wave functions
which are localized in the central Ge cluster. The quasipa
cle effects leave the energy region around the valence-b
maximum~VBM ! of SiC and the occupied Ge-induced stat

C

FIG. 1. Projected bulk SiC band structure~shaded area! and
Ge-induced gap states~solid lines! of a 17-atom Ge cluster embed
ded in a cubic SiC matrix. Supercells of 216 atoms and theGX line
in the corresponding BZ are considered.~a! DFT-LDA bands;~b!
GW quasiparticle bands. The valence-band maximum of SiC
used as zero energy.

FIG. 2. As in Fig. 1 but for a Si nanocrystallite.
0-5
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FURTHMÜLLER, CAPPELLINI, WEISSKER, AND BECHSTEDT PHYSICAL REVIEW B66, 045110 ~2002!
within the fundamental gap practically unchanged. With
the DFT LDA the lowest electron states are built up by wa
functions of the SiC system. The composite system cons
ing of Ge and SiC can therefore be interpreted as a typ
heterostructure with a staggered alignment of
conduction- and valence-band edges.39 This finding is in
agreement with the positions of the valence-band edges
rived within a tight-binding theory40 and using the experi
mental energy gaps given in Table II. With quasiparticle
fects @see Fig. 1~b!# supercell bands appear close to t
conduction-band edge of SiC. This seems to be a co
quence of the fact that in the composite system with
atoms the electronic screening is slightly less effective
comparison to that of the pure SiC system. The wave fu
tions of these supercell states remain strongly delocaliz
Consequently, the type-II heterostructure is conserved ta
the excitation aspect into account.

Interestingly the quasiparticle shifts in Table III do n
strongly vary with their character as states localized in
Ge nanocrystals or bulklike SiC states. This is mainly a c
sequence of the joint screening function of the compo
that is used for all states. The main influence of the qu
particle effects results in a widening of the fundamental
ergy gap of the SiC host. The dispersion of the bands, on
other hand, remains widely unchanged. This is clearly de
onstrated by the density of states in Fig. 3 for the Ge but a
for the Si nanocrystal embedded in a SiC matrix. Much m
than in the band structures the influence in the fundame
gap region seems to be characterizable by a rigid shift of
empty states with respect to the occupied states.

The behavior of the electronic states of the compo
system consisting of a Si nanocrystal embedded in a
matrix is very similar to that of the Ge/SiC case~see Fig. 2!.
There are, however, two differences. The Si-induced oc
pied states are closer to the VBM of SiC, and unoccup

FIG. 3. Electronic density of states without~dashed line! and
with ~solid line! quasiparticle effects for 17-atom nanocrystallites
SiC. ~a! Ge; ~b! Si.
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states appear close to the SiC conduction-band edge alr
within the DFT-LDA approach. The corresponding wa
functions are weakly localized in the Si nanocrystal. The
fore, the composite system of highly strained Si crystalli
embedded in a SiC matrix tends to a type-I heterostruc
system. As in the Ge case~see Fig. 1! this tendency is
strengthened within the GW approach.

IV. SUMMARY

Summarizing, a quasiparticle computational scheme
been developed that is applicable to nonmetallic syste
with large unit cells containing several hundreds of atom
This scheme represents a generalization of an efficient
method for the evaluation of the first-order quasiparticle c
rections to the electronic band structure obtained within D
LDA. The screening function of the system is replaced b
model function. Aside from this model the theory remai
parameter-free. The electronic charge density and the e
tronic dielectric constant, which governs the screening of
Coulomb interaction, are taken from an independent-part
calculation within the DFT-LDA.

In order to determine the structure and the electro
states of systems with huge unit cells (.200 atoms!, in par-
ticular, when first-row elements are involved, non-nor
conserving pseudopotentials are used to describe
electron-ion interaction. The corresponding electron
structure calculations do not give an orthonormalized a
complete set of wave functions in the entire space. Howe
since only the atomic augmentation charges are needed
no real full reconstruction of wave functions is necessary
is straightforward to implement the matrix elements of t
self-energy operator even in the US-PP case. Neverthe
considering the strict similarities between the PAW meth
and the ultrasoft non-norm-conserving pseudopotentials
also possible to use the PAW approach. The PAW met
allows the construction of all-electron wave functions for t
valence electrons. This becomes important if one likes
combine the calculation of optical properties with the calc
lation of quasiparticle energies.

The method developed as well as the numerical
proaches are tested by calculating the quasiparticle band
the stable group-IV crystals diamond, SiC, Si, and Ge.
show that when using nonprimitive cells with 216 atoms t
same quasiparticle shifts are obtained as in the limit of pri
tive two-atom cells. The efficiency of the method has be
demonstrated for composite systems. We studied Ge an
nanocrystallites embedded in cubic SiC.
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