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A theory of the magnetic field drivefsemjmetal-insulator phase transition is developed for planar systems
with a low density of carriers and a linefre., relativisticlike dispersion relation for low-energy quasiparti-
cles. The general structure of the phase diagram of the theory with respect to the coupling constant, the
chemical potential, and the temperature is derived in two cases, with and without an external magnetic field.
The conductivity and resistivity as functions of temperature and magnetic field are studied in detail. An exact
relation for the value of the “offset” magnetic fielB., determining the threshold for the realization of the
phase transition at zero temperature, is established. The theory is applied to the description of a recently
observed phase transition induced by a magnetic field in highly oriented pyrolytic graphite.
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[. INTRODUCTION dimensional? In addition, graphite is a semimetal whose
low-energy quasiparticles have a nearly linear dispersion law
Although during recent years there has been importangjust like massless relativistic partic)'$*>® The Coulomb
progress in understanding non-Fermi-liquid dynamics in diinteraction between quasiparticles is provided by gauge
mensionsD>1, an understanding of them is still very far fields which, unlike the quasiparticles themselves, are three
from being complete. It is rather clear that non-Fermi-liquiddimensional in nature.
behavior yields examples of sophisticated nonperturbative Recently, the dynamics of reduced QED was studied in
dynamics which should be described by advanced method3efs. 10 and 11. In those papers, purely relativistic theories
of quantum field theory. were considered: in particular the velocities of both massless
It was recognized rather long ago that relativistic fieldfermions and photons were equal to the speed of laghh
models can serve as effective theories for the description akalistic condensed-matter systems, the Fermi velocity of
long-wavelength excitations in condensed-matter systemgapless fermions is of course much less than This in
(for a review, see Ref.)1In particular, they can be applied to turn implies that the static Coulomb forces provide the domi-
a wide class ofquas) planar systems. In this case, the cor- nant interactions of fermions. This feature makes quite a dif-
responding relativistic theories aret+2 dimensional, i.e., ference in the analysis.
they are formulated if2+ 1)-dimensional Minkowski space In this paper we will describe such “realistic” reduced
with two spacelike coordinates and one timelike coordinategauge theories with and without an external magnetic field
It is important that among these condensed-matter systenperpendicular to the basal plane. We are particularly inter-
are such as higfiz, superconductors and carbon-based mateested in the possibility of a spontaneous generation of a gap
rials (for a list of papers using relativistic field approach to in the one-quasiparticle spectrum. This might be viewed as a
these systems see Refs. 2—-9 (semj)metal-insulator phase transition. The influence of the
In this paper, we will develop a consistent approach tomagnetic field, as would become clear in a moment, is very
studying these systems by making use of so-called reducgbwerful in driving(or “catalyzing”) this type of transitions.
(3+1)-dimensional gauge theorié3!* These theories will The phenomenon of the magnetic catalysis of dynamical
share the following common feature. Their gauge fi¢kdg., symmetry breaking was established as a universal phenom-
the electromagnetic fieldesponsible for interparticle inter- enon in a wide class dR+1)- and (3+1)-dimensional rela-
action would be able to propagate in a three-dimensiondiivistic models in Refs. 14 and 18or earlier consideration
bulk, while fermion fields(e.g., describing electron- and of dynamical symmetry breaking in a magnetic field, see
hole-type quasiparticles would be localized on two- Refs. 16 and 17
dimensional planes. A typical example of a condensed-matter The general result states that a constant magnetic field
system of this type is graphite. It has been known for a londeads to the generation of a fermion dynamical m@sgap
time that fermionic quasiparticles in graphite are nearly twoin a one-particle energy spectrugven at the weakest attrac-

0163-1829/2002/6@)/04510822)/$20.00 66 045108-1 ©2002 The American Physical Society



GORBAR, GUSYNIN, MIRANSKY, AND SHOVKOVY PHYSICAL REVIEW B66, 045108 (2002

tive interaction between fermions. The essence of this effect
is the dimensional reductiob—D —2 in the dynamics of
fermion pairing in a magnetic field. At weak coupling, this
dynamics is dominated by the lowest Landau legdll )
which is essentially D —2)-dimensional*® The applica-
tions of this effect have been considered both in condensed
matter physics® and cosmologyfor reviews, see Ref. 18

The main motivation of the present study was the experi-
mental data reported in Refs. 19—-21 and their interpretation
(based on the phenomenon of the magnetic catalgsig-
gested in Ref. 8. It was observed in those experiments that
samples of highly oriented pyrolytic graphite in an external
magnetic field show a qualitative change of their resistivity
as a function of temperature, that was interpreted as a metal-_. L .
insulator phase transition. The effect is clearly seen only fo _erlmental verification would be a critical check of the va-

a magnetic field perpendicular to the basal plane, Sugges’tiegijity of the magnetic catalysis scenario in highly oriented

that the orbital motion of quasiparticles is responsible for th rolytic graphite. .
change of the conductivity dependence. The paper is organized as follows. In Sec. Il general fea-

The suggestion of Ref. 8 was that this phenomenon can pires of the mode{reduced QEPare described. In Sec. Ill

a manifestation of the magnetic catalysis, when a dynamicei’l"e analyze the gap equation and establish the phase diagram

gap, connected with a quasiparticle-hole pairing, is generate'a] reduced QED without magnetic field. In Sec. IV the gap

in a magnetic field. In this paper, we will develop a detailedequation in redut_:eq .QED with an e>$t9f”"?" magnetic field is
theory of the magnetic-field-driven metal-insulator phasestud|ed. The resistivity and conductivity in this system are
transition in planar systems, based on reduced QED Thgtudied in detail in Sec. V. Section VI is devoted to an inter-

general structure of the phase diagram of such systems Wiﬂr_etation O.f the experimental data in _highly oriented pyro-
ytic graphite. In Sec. VI, we summarize the results of this

be described in two cases, with and without an external maglN < Th lso th di Th 6 of

netic field. The behavior of the electric conductivitesis- +cir d ere arelafso : ree.appen_(ljxes.d . eAsymmde_: '(%OA
tivity) in these systems will be described in detail. This will qder)i;/a'tri'g;”;‘){r‘]ae p%rlg‘r'icz’gﬁo'ﬁ ﬁjonncsti'oﬁr:n d'r:hepgaeg e'gua'tion
allow us to conclude that, in the presence of a magnetic fiel W reduced QED is done in Appendix B. In Appendix C, the

the generation of a dynamical gap in planar systems ca ) ; : .
indeed manifest itself as a metal-insulator phase transition iﬁffectl\_/e potent_lal for reduced QED with a nonzero chemical
potential is derived.

the behavior of the resistivity(T,B) as a function of the
magnetic field and temperature.
It will be also shown that there exist clearly distinguish- Il. MODEL

able signatures of different types of the phase transition. In this section, we describe the general features of the

While the resistivityp(T) is a smooth function at the critical model. As mentioned in Sec. I, the main assumption of the

point T=T, in the case of a non-mean-field second-order X . o
phase transition, there are a discontinuity and a Kirys(if) reduced dynamics of the planar systems is that the fermionic

atT=T, in the cases of the first-order and mean-field phas quasiparticles are confined to a plane, while the gauge fields

" ; . re free to propagate in the three-dimensional bulk.
transitions, respectively. The conclusion of the present analy- A similar setting was recently studied in a class of rela-
sis concerning the possibility of the realization of the sce-

. X T . -~ tivistic models in Refs. 10 and 11. Here, however, we con-
nario of the magnetic catalysis in highly oriented pyrolytic sider a strongly nonrelativistic modékith the Fermi veloc-
graphite is quite positive.

. . . ity vg being much less than the speed of ligivhich could
One of the central results of this paper is an explanatio . -
of the existence of an “offset” fieldB, observed in the 'be applied to realistic planar condensed matter systems such

. _ SO . S as highly oriented pyrolytic graphite; see Fig. 1.
experiments?~?As we will discuss in detail in Sec. VI, the : : ,
value B, determines the threshold for the generation of a The spatial coordinates on the plaeeg., a single layer of

; o hite are denoted bi=(x,y). The orthogonal direction
dynamical gap atzero temperature: it happens only B 9'aP .
>B,. It is remarkable that, as will be shown in Sec. IV, the IS labeled by thez coordinate. Thus, the most general bulk

existence 0B, is a robust consequence of the mechanism ofpatial vector is given birR=(x,y,z).

FIG. 1. The schematic lattice structure of a single layer of
graphite.

the magnetic catalysis. Moreover, tegactrelation for B, The Lagrangian density of the electromagnetic fiGhd
will be pointed out. It is the bulk is given by
2mcn 1 -, 1., 1. .
|eB°|:N—f’ (1) Eem=§(soE —%B —A0p+EA.J, 2

whereN is the number of fermion speci¢dlavors”) andn ~ Wheree, is the dielectric constanj, is the magnetic per-
is a charge density of carrierbl{=2 in graphit¢. While the  meability, A; andA are the scalar and vector potentials. The
existence of this exact relation is noticeable in itself, its ex-electric and magnetic fields are
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I . e[ do(dkexp—iot+ik-r
o) 2m) 2m |K|+11(w,|K|)
B=VXA. (4 where the polarization functiodl(w,|k|) is proportional

(with a factor of 2m/g() to the time component of the pho-
ton polarization tensor.

Adding a masggap term Ag¢¢ into action(10) would
reduce theU(2N¢) symmetry down to théJ(N;) X U(N;)
(see Appendix A Therefore, the dynamical generation of a

The interacting terms, with the quasiparticle charge dempsity
and currenqﬁ, were also included in the Lagrangian density
in Eqg. (2). Now the Lagrangian density of quasiparticles
themselvegdefined only on the planeeads

— Yo+ _ . fermion gap(connected with a quasiparticle-hole paining
Lo=ve¥(L,r) ” —iytag—iy?a, | W(t,r), will lead to the spontaneous breakdown of the2N;) down
F (5 tothe U(N;) X U(N¢).2* Our goal is the description of the

o flavor phase transition connected with generating the gap.
where ¥ (t,r) is a four-component spinolf=¥'y° and We will consider the dynamics both with and without an
the 4x 4 Dirac y-matrices furnish a reducible representationexternal magnetic field.
of the Clifford (Dirac) algebra in 2-1 dimensiongsee Ap-

pendix A).22’23 In order to describe the situation with a finite 1. GAP EQUATION. ZERO MAGNETIC FIELD
“residual” density of carriers, here the chemical potenfial _ _ _ _ _
connected with the electric charge, was introduced. In this section we will describe the dynamics of the gen-

We will consider the case when the fermion fields carryeration of a gap connected with a quasiparticle-hole pairing
an additional, “flavor,” indexi=1,2, . .. N (in the example ~ Provided by interactior(12) in the case of a zero external
of graphite,N;=2; see Refs. 7 and)8Then the symmetry of magnetic field. We will begin by calculating the polarization
Lagrangian(5) is U(2N;) (see Appendix A In the case of function H(w,|l2|). Actually, we will calculate(and use in
minimal coupling of the electromagnetic field, the quasiparthe gap equationI(0,k|), i.e., the polarization function in
ticle charge density and current take the following explicitan instantaneous approximation. The reliability of this ap-

forms: proximation will be discussed in Sec. Il E.
S = -
p(LR)=e¥(L,r)y ¥ (L.r)d(2), ©) A. Polarization function
i (6LR)=evr T (t,1) Y W (t,1)8(2), (7) The one-loop polarization function at a finite temperature
and a finite chemical potential is given by the integral repre-
jy(t,li)=evF\I_f(t,F) U (1.7)8(2), ®) sentation(see Appendix B
Coa . 2TéEN; (1 R+
j(t,R)=0. €) II(0k)= 5 ff dx In(2003hx—'u)
EoUE 0 T

Proceeding as in Ref. 10, the initial action can be reduced to
the brane layer. Then, neglecting relativistic corrections of A2(w)

2 . . - T +
order (vg/c)<, we are left with the following brane action of
interacting quasiparticles:

R+ 1

anh

A 1 ) o where R, = Vu2k2x(1—x) + A2(u), A1(u) is the fermion
qu:f dtdzrﬁo(t,r)—zf dtf dt’f dzrf d?r'w(t,r) gap, andT is the temperature. Note that the gap is a dynami-
cal quantity, determined from a gap equatisee Sec. Il B
0 > P TN+ PO (b b below) and therefore it can depend on both temperature and
XYW (EDUo(t=t r=r PR, )y (). chemical potential. Note that throughout this paper we work
(10 in a vacuum in which the fermion gap is positive.
At u=0 (zero density and T=0, the polarization func-

The bare potentialUq(t,|r|) takes the following simple tion becomes

form:

(14)

2 o0 2 e’N v2k v
N e“d(t d<k oL 2w et > f F 0.
Uo(t,|r])= ( )f—ex ik- ©) II(0k)= Ao+ ——arctan

0 (2m)?

rN-—=——5. 2
¢ K ol 20 280

At nonzero density and =0, the function in Eq(13) re-
Note, however, that in many cases of interésg., in the duces to
case of a finite temperature and/or a finite density and/or a
nonzero magnetic fiejdthe polarization effects may consid- 202

N e“N N
erably modify this bare Coulomb potential. Thus the interac- I1(0k)= zf ||, for |k|<k,, (15
tion should rather be given by EoUF

045108-3



GORBAR, GUSYNIN, MIRANSKY, AND SHOVKOVY PHYSICAL REVIEW B66, 045108 (2002

L(0R)= e2r\:f ull 1 \/thki . v§E2—4A§(,u) - e? : | 0
EQUF 2|K| 4uvelK| 2(goupt me°N¢/4)
veVk?— k2 It is well knowr?®?**%that the approximation with the one-
% arctan *1 for |IZ|>k* , (16) loop polanzaﬂo_n function in the kernel o_f the_ gap equation
2 (the so-called improved rainbow approximatiae reliable

for large values of the number of fermion flavays. Here,
where k*EZ\/,uZ—AOz(,u)/vF is proportional to the square however, we will also consider values Nf of order 1, say 2
root of quasiparticle density =0, see Eq(85) below. As  as in graphite. It is reasonable to assume that this approxi-
is easy to check, this polarization function has a very strongnation works qualitativelyalthough apparently not always
dependence on momentum. Indeed, wHil¢0K) remains quantitatively even for these values o, providing a gen-
constant for small moment$JZ|<k its value drops con- eral insight into the nonperturbative dyngmlcs of spontane-

. . ’ * i ous generation of a gap. The analysis done(21-1)-

;lderably for| k2|2k* . In the case of a small density of car- dimensional QED supports this assump#dn.
riers, i.e.,n~k: <(Aq/vg)?, this momentum dependence is

: . In the most important region of momentl|>A,/ve
particularly strong. As is clear from E@15), for small mo- where the pairing dynamics dominateee below, the only

menta, the polarization functidii(0.k) is equal to the Debye gje of the term 04/vg)? in the denominator of the inte-
massMp and»could be quite large. At the same time, thegrand on the right-hand side of E@.8) is to provide a cutoff
function 11(0k) at intermediate values of the momenta,in the infrared region. Therefore, one can drop this term,
||~ vk, Ag(w)/vg, is smaller than Mp by about instead introducing the explicit infrared cutaff,/vr in the

a factor of Ao(M)/m ie., II(OK) integral. This is the essence of the so called bifurcation ap-

~M, \/mmo(ﬂ)- Finally, for |K|>Aq(u)/vg , the proximation. As a result, we arrive at the following equation:

polarization tensor approaches the following asymptote: p dq Adq
Ap=)\<J Dag | —Aq) 1)
- 7Te2Nf S Bolve P P
I(0k)= degur Kl 17 Here we also introduced a finite ultraviolet cutoff. In a

condensed-matter system, it could be taken to be of order
This observation is quite important for the proper analysis ofr/a, wherea is a characteristic lattice sizéor example a
the pairing dynamics between electron and hole types of qua= 2.46 A for graphitg. An alternative, equally good, esti-
siparticles leading to a possible dynamical generation of anate ofA is related to the size of the energy bandst/vg,
gap. As we shall see below, it is in fact the region of mo-wheret=2.4 eV in the example of graphite.
menta|K|>Ao(x)/ve that dominates in such a dynamics. 1he last integral equation is equivalent to the differential
This in particular implies that the one-loop approximation €duation,
¥Vlth free gapless _ferr_nlon(twhen both _the gap and the wave D2A” 4 2pA’+ AA =0, 22)
unction renormalization are neglecjdd a reliable approxi- P P P
mation for the polarization function in the gap equation, atwith the boundary conditions
least for largeN; . It could work reasonably well even for
smaller values oN; of order 1, say, 2 as in graphite. P?Aplp=ay . =0, (23

B. Dynamical gap atT=0 and p=0 (pAy’)+Ap)|p=A=0- (24)

Now let us study a possibility of spontaneous generationThe solution compatible with infrared boundary condition
of a dynamical gap in the one-particle spectrum of quasipar(23) reads
ticles. We begin by considering the gap equation for the zero-

density and zero-temperature case. As follows from(B§) A= AG? sin VAN—1 erUF is 25
in Appendix B and Eq(17), its explicit form reads p sin( 5)\/m 2 Ay '
qdgA K(p,q) where §=arctan/4\ — 1. Note thatA satisfies the relation
A=\ | o ——=, (18 Ag=Ap-y, 5, The ultraviolet boundary conditiodEq.
VA" + (Aq/vE) (24)] imposes another restriction:
where the approximate expression for the kerdéb,q) is an—1 A
given by INF2 4 25= 1. (26)
2 Ay
_O(p—q) 6(q—p) As is clear from this equation, a meaningful solution for the
K(p.q)= b T g 19 gynamical gap, satisfying the constraitg<Auvg, exists
only for A>1/4. In the near-critical region, i.e., when
and V4N —1 is small, the gap reads
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20 nonzero densityand/or finite temperatuyere taken into ac-
AO:AvFexp( — + (27) count. Indeed, with increasing the charge density of carriers
vAN—1 or the value of the temperature, the screening effects become
The condition\>1/4 gives the critical line in the plane Stro!'l_ger and th? guaS|part|cIe mter:_:lcuo_ns be_come Weakef- In
. . ) . addition, the pairing between quasiparticles in the two adja-
(9,N¢), where the dimensionless coupling constantgis .
D) cent bands separated by the dynamical gap gradually be-
=e /SOUF, ..
comes less efficient. The latter could be clearly seen by com-
paring the energy gain from creating a gap in the spectrum
0=, (28 and the energy loss of pushing up the energy of all the states
8— 7N in the band above the gap. Both effects work against the
formation of a gap. Thus, after reaching some critical value,
the finite-density or -temperature effects will be so strong
that dynamical generation of a gap will be impossible.

4

which means that, in the absence of an external magnet
field, a dynamical gap is generated onlygfg.,. In the
example of graphite, the number of “flavors” is equal to 2.

Thus the estimate of its critical coupling givgs ~2.33. We Whgn the chemical potential is smaller thap the gap, the
emphasize that this is just an estimate obtained in the leadin namics of the zero-temperature model remains unchanged.
order in 1N, in an instantaneous approximation. Fgg  [1uS for all values ofu<<Ag=Aq(p)| -0, the exact solu-
=2 as in graphite, both W; corrections and improving the ton for the dynamical gap is the same. In our approximation,
instantaneous approximation can certainly vary this valudt IS 9iven by Eq.(27). In order to consider the possibility of
(see a discussion in the end of Sec. Il E a nor_1tr|V|aI solution _satlsfymg the cor_1d|t|qm> A_O(,u), we
If highly oriented pyrolytic graphite is a semimetal in the CONSider an approximate gap equation following from Eq.
absence of an external magnetic field, it is clear that its ef(1?) and Eqs(B8) and (B9) taken in the limitT—0,
fective couplinggess (defined, for example, at the energy
scale below which the Dirac-type effective action provides
an appropriate description of the quasiparticle dynajmes A=\ f”d_qA i JA%A (29)
smaller thang,,. Indeed, if the interaction were stronger P eP 4 Jo g9
than this, the ground-state rearrangem@mm a semimetal
to an insulator staje caused by the particle-hope pairing,
could not be prevented. where the infrared cutoft is given by a larger value of
Let us now discuss the self-consistency of our assumptio y(u)/vg or \//.LZ_AOZ(/.L)/UF . By making use of the same
that the region of momen1£|>A0/vF is mostly responsible method as before, we straightforwardly derive two branches
for the generation of a “small” gap\<Avg in the near- Of the solution,
critical limit. The point is that in this regime the logarithm
IN(Avg/Ag)~27/\4N—1 is large. On the other hand, the be-
havior of the integrand on the right-hand side of Etp) is Ao(p)=Ao, (30)
smooth ag]— 0. The smooth behavior of the integrand in the
infrared region implies that the regionsiy<A,/vg is too .
small to generate the large logarithm Aw/Ag). This loga-  OF <24, (here we took into account thafy( ) = A, for
rithm [and therefore the essential singularity in expression“<A0)' and
(27)] is generated in the large regidn /ve<q<A. Avaria-
tion of the kernel in the infrared region can at most change
the overall coefficient in the expression for the gap. Ag(p)=p?=Ag, (32)
At this point, we would like to mention that the dimen-
sionless coupling constant in the problem at handgis ) ) .
—e/s4vr. In the gap equationg has to be considered as Valid for Ag=<|u|=y2A,. While the first branch of the so-
the bare coupling constant, and its value can be large. Abition in Eq. (30) describes a gap that is essentially un-
shown in Ref. 7, in the absence of a dynamical gap, théhanged withy, the value of the gap along the second
Corresponding renorma“zation_grougunnin@ Coup“ng bl’anCh of the solution in Eq31) |ncr-eases W|th the chemical
runs logarithmically to a trivial fixed point in the infrared. In Potential. For values of the chemical potential in the range
the presence of a gap, such a running should stop at th&o=<u<1\2Ao, both branches of the solution coexist. The
energy scale of ordeh,. This means that the nonperturba- first branch corresponds to a locally stable solutios, to a
tive dynamics shifts the zero infrared fixed point to a finitelocal minimum of the effective potentialand the other one
value. to an unstable solutiofi.e., to a local maximum of the ef-
fective potentigl In addition, there is always a trivial solu-
. tion which corresponds to an extremum of the effective po-
C. Dynamical gap atT#0 or p#0 tential at the origin. When both nontrivial solutiof&0) and
Up to now, we have considered the case with the zer@31) coexist, the extremum at the origin should be a mini-
density and zero temperature. It is clear that the critical valuenum. This follows from a simple consideration of the topol-
of the coupling constant should be larger tlap~2.33 ifa  ogy of the effective potential.
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v , . & rde dk exp—iwt+ik-r)
Y/ Usa(t.n)=— 5- - :
0.5 1 1.5 2//72.5 o= g0 em) (2m)* k*+1(w,[k|)

. /// (39

-0.04 s
-y

eosl T \\—"/_ PR wheree; is the(dimensionful coupling constant in QER ;

| T and, in the relevant region of momenta<uvg|K|
-0.12 Ceeees <e§/sovp, the polarization function here is essentially the

same as in Eq(13), except that the dimensionless coupling

-0.160 7 ) constante?/squr is replaced by the dimensionfef/e v .

_ _ o Comparing expression@4) and (12), one can see that the
FIG. 2. The effective potential of the composite fieldor a few only difference between them is in the appearance of the

different values of the chemical potentigk=0 (solid line), u -y S . .
— A, (dash-dotted ling p— u~1.19\, (dashed ling p=1.34, &M k?, instead|k|, in the denominator of the former. This

(dash-dot-dotted line and u= 24, (dotted ling. In the calcula- point ma!<es quite a d|fference.20_n the one hand,_lt provides
tion, we usedio=1. The values of the potential are given in units & dynamical ultraviolet cutoff-e; in the gap equation and,
of N;A¥u2, and the values of the composite fiekdin units of ~ ON 'Ehe other hand, since this term is suppressed in the region
N(Ag/vg)¥2JA. ve|k|<e¥eque, itis irrelevant for generating the gap. This
implies reducing screening of Coulomb like interactions in
Of course, the analysis of the gap equation alone woul®ED: 1 as compared to the reduced dynamics. Let us con-
not be sufficient to prove most of the above statements. T8ider this point in more detail. It is easy to find that the
support them, we derived the effective potentiflr) as a  dynamical gap in QEB,, is

function of the composite fiela-= — (y4) in Appendix C.

This potential is graphically shown in Fig. 2 for a few dif- o2 o
ferent values of the chemical potential. As is clear from the Agg= —Sexp< —— 44, (35)
figure, we have a typical realization of the first order phase €oUF VAN;—1

transition.
Our analysis of the effective potential also allows to de-

) o ) : where\;=2/7N;. Since this solution exists whexy>1/4,
termine the critical value of the chemical potential:

it implies that the critical value oN; is equal to 8fr~2.55.
The same critical value fal; was obtained in Ref. 9.
Now, notice that the parameteg coincides witha in Eq.
(20) only in the limit e—o. Thus the reduced dynamics
becomes equivalent to QED; dynamics only in the maxi-
mally strong coupling limit, withe?— <. Therefore, we con-
clude that there are important similarities and important dif-
When the chemical potential increases froueF uc—0 t0  ferences between the dynamics in QER and reduced
u=pct+0, the value of the gap drops from=A, to A QED,, ,. Both dynamics are intimately connected with long-
=0. range Coulomb-like interactions. On the other hand, since
Similarly, at/.LZO, we could derive the value of the criti- QED2+1 is Superrenorma|izab|éand therefore asymptoti_
cal temperature. It also appears to be of the same order @gjly free theory, its nonperturbative interactions are dy-
Ag: namically cut off at the scale-€3 in ultraviolet. Also, its
dynamics is more efficient in generating a dynamical gap.
Ar A 2 Indeed, it corresponds to the dynamics in the reduced
Te= 0= e — 44
2 2 Van-1 )

A A 2
0 oF ;{— T4

“T 2R 22 Vot

(32

(33 QED;, ; when the coupling constatof the latter goes to
infinity. This feature was already established in relativistic
reduced QEB, ;,'° with ve=c.

Unlike the case with the chemical potential, the phase tran-

sition in the temperature is of the second order. This follows

both from the existence of a single-branch solution to the gap
equation and from a direct study of the effective potential. Let us now turn to a discussion of the reliability of the
instantaneous approximation for the gap equation. In this ap-

. proximation, the frequency dependence in the photon propa-
D. Reduced QER; vs conventional QED:+, gator is neglected. While it is certainly justified for its free

Before concluding this section, it is instructive to compare(kinetic) part, it is not immediately clear how good it is for
the reduced dynamics with “conventional” QED,. The the polarization function.

gap equations in these two models are similar, but the inter- Keeping the frequency dependence, the gap equation at

action potentials are slightly different. Instead of expressiorzero T and u takes the following form in Euclidean space

(12), one ha&*%® [compare with Eq(B7) in Appendix B 2,

E. Beyond the instantaneous approximation
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AQp)= eZJ' dwd?k A(w,k) 1 36
PP e0) (2m)? W uBKP+ A k)2 [p—KI+ WEIP—KP)[(Q— )+ v2]p—KP I~ w,p—K)
|
where functionll approximately is ing the presence of an offset fieRl observed in the recent

experiments in highly oriented pyrolytic graphite

~ N Wesz =

I(w,k)= demp? \/w2+v,2:|k|2. (37) A. Dynamical gap atT=0 and p=0

oUF

In a constant external magnetic fidi] only the free part
In the instantaneous approximation, we us&d—0 in the  of the quasiparticle action is modified. In particular, the spa-
polarization function. Thus the strength of the interactiontial derivatives in Eq(5) are replaced by the corresponding
was somewhat underestimated in such an approximatiomovariant derivatives
This in turn implies thag., and 1N{" are smaller than their

values obtained in the instantaneous approximation, i.e., € ot >
Jer<4/(8— 7N;) andNE™>8/w~2.55 in theleading order Ox= T A, (38)
in 1/Ng.
One should remember however thatN1/corrections € -
could be relevant for the values bf; of order 1. Using the dy— Ayt AJD), (39

argument in Ref. 25, one may expect variations up to 50% in _ R
the value ofN{". Therefore the valud\{'=2.55, obtained whereA;X(r)=—By/2 andAJ*(r)=Bx/2. In this case, the
here in leading order in ¥, should be considered just as a propagator of quasiparticles takes the following general

useful estimate. form:1>2°
. e. . - |~ - -
IV. GAP EQUATION. NONZERO MAGNETIC FIELD G(t—t’,r,r’)=ex;{—i o -AeXt(r’)}G(t—t’,r—r’).
The main goal of this paper is a description of the (40

magnetic-field-driven metal-insulator phase transition in pla—Note that while we used the symt®For the fermion propa-

nar systems. Having developed a general formalism in the . : o
: . . . ator in the case without magnetic field, we use the symbol
preceding sections, here we will take into account the effec . . e
for the fermion propagator in a magnetic field. Let us

of an external constant magnetic field on the dynamics of %e in by considerina the propagator of free quasivarticles in
spontaneous generation of a gdfhe general observation gin by 9 propag q P

of Refs. 14 and 15 stated that, in the presence of an externgimagnetic fieldGSo(t—t,r,r"). For our purposes, it will be
magnetic field, there is the generation of a dynamical gap'Seful to introduce the bare ga, for these free quasipar-
connected with electron-hole pairing even for an arbitraryficles. The translation invariant part of such a propagator,
weak attraction between electrons and holes. Therefore, iGo(t—t',r—r’), reads’

this case the gap will appear even if the bare coupling con-

stantg, introduced in Sec. lll, is subcriticdin the case of a -~ - dt  d%k , e e .
supercriticalg, the magnetic field would enhance the already Go(t,r)= f o 2 )Zexp(—|wt+|k- rGo(w,k),

existent gajp This phenomenon is known as “magnetic ca- & (41)
talysis.” The origin of this effect is connected with the dy-

namics of the LLL: its dynamics is effectively+al (1+1) p( c|IZ|2)

dimensional in 2-1 (3+1) dimensions, and this makes the éo(w,IZ)=2i ex
electron-hole pairing inevitable.

Actually, this formulation is correct only in the case of o . 0 . .
zero temperature and zero charge density. In the presence of % 2 (=D (wy"+Ap)fa(k)+fa(k)]
temperatureT and/or charge density, there is a critical n=0 wz—Aﬁ—va§|eB|/c
value of the magnetic fieldd.(T,n), defining a threshold for
this effect: B has to be larger thaB(T,n).}* While the (42)
dependence dB.(T,n) on T is model dependent, the value |n this last equation, we used the shorthand notations
of B.(0,n) is universal for all values aj=<g.: itis given by
|e|B.=2mcn/N; and corresponds to the filling of the lowest R k2 2
Landau level* The physics of this result is quite clear: when f1(k) =7?Ln< —B) - P, Ln1< —B) , (43
the LLL is filled up, the LLL electrons are blocked and ex- |eB| |eB|
cluded from the pairing dynamics. In other words, in this s
case we loose the catalyst and, therefore, the effect itself. As fo(K) =20k yLE (ﬂ) (44)
we will see in Sec. VI, this point can be crucial for explain- 2 FEYEn-1) Tep[ )

~ [eB]
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with the following spin projection operators: The second, strong-coupling, regime is that with a near-
critical, although subcritical, value @f In that case, all Lan-
dau levels are relevant for the pairing dynamics and the value
of the dynamical gap\, is of order of the Landau gap

\ ZUF|GB|/C.

Also, L(2) are the generalized Laguerre polynomials. By * | ot s begin by considering the first regime. Then the

i —1 0 @ —

definition, L,(z)=L(2) andLZ,(2)=0. low-energy dynamics is dominated by the LLL, and the qua-
Let us now turn to the interactions in the presence of theparticle propagator could be approximated as

magnetic field. In this case the polarization effects could also

1xiyty?

L= (45)

be taken into accourif,and the modified interaction is ileB Ir|2leB)

~ O\ 1.2

. . G(t,r)= s T T ac g((1—-iyy9), (50)

. e’ [d’k expik-r)
U(t.r)= 5(t)8_0J 2 k|(1+alk|) whereg(t) is unknown matrix-valued function which should

be determined by solving the Schwinger-Dysgap equa-

e?mwd(t) |F| |F| tion. By substituting ansatb0) into Eq.(49), we derive the
= Zega |0l a —No| =] |1 (46)  following equation for the Fourier transform gft):

where _ _ . do’ ,
9 Y(w)=go 1(0))—'92J’§709(w—w )¥°

) eNy [ ¢ “
a=2mvo ——\/1agr d?k k]| .
sovr V[eB] xJ—exp[——' | U(K). (51)
o (27)2 2|eB]|
and the constant, is given by
The value of the bare gap is now zero in the free propagator
_ 1 (=dzfcothz) 1 _3¢4(=05 go(w). And the general structure of the functig{w) is
ro= Ammlo z\ Z sink(z)] 2 suggested by the firgLLL) term in bare propagatoi@2),
where now the bare gafp, should be replaced by the dy-
~0.14. (48)  namical gap functior , and the wave function renormaliza-

Regarding the notatiory;(z) is the Riemann zeta function, tion A,, shouild be introduced. Thus we have

Ho(2) is the Struve function, anbly(z) is the Bessel func- A Ot A
tion of the second kind. It is notable that the instantaneous g(w)= Do¥ @7 20 (52)
approximation for the polarization function is justified in this A2 w2—A?

case: the frequency dependence is suppressed by factors
order w/\Jug|eB| [which are small in the case of the LLL
dominancesee below]. This can be shown directly from the
expression for the polarization function in Ref. 30.

Now the gap equation for the quasiparticle propagato

reads O /v§|eB|foc dkexp( —k?) 53
0_\/5 Cc 0 1+kX0 '

é(t,F)zéo(t,F)—ifdt’dzf’fdt”dZF”exr[—iF-A(F’)

(%e could see that the integral on the right hand side of Eq.
(51) is independent ofv. This implies thatA,=1 and the
gapA, is independent ofv. By taking this into account, we
Istraightforwardly derive the solution

where

—ir - A(MIGo(t—t',r=r")y%G(t —t",r' —r")
Xo=2V27ogN . (54)

In two limiting cases,y,<1 and y,>1, we obtain the fol-

The structure of this equation is essentially the same as in tHewing asymptotes:

relativistic model of Refs. 15 and 29. Here, however, we

neglect the retardation effects in the interaction potential. _ 9\/; vileB 1
As pointed out in Ref. 14, in the case of a subcritical O_ﬁ c B \/_;+ o

coupling constang=<g., one should distinguish two differ-

ent dynamical regimes. The first regime corresponds to thé&or weak coupling and smali;) and

situation with a weak coupling, when it is outside the scal-

ing region near the critical valug.. In this case the LLL g v§|e8| In xo VE |eB|I

dominates and the value of the dynamical gapis much AO:E V¢ Yo 4mugN; V¢ MXo (56)

less than the gap/2vZ|eB|/c between the Landau levels.

The latter guarantees that the higher Landau levels decoupléor largeN;). In accordance with the general conclusion of

from the pairing dynamics and that the LLL indeed domi- Refs. 14 and 15, in a magnetic field the gap is generated for

nates. any nonzero coupling constagt=e?/ v .

X YOG, rMU(r —r") st —t"). (49)

2
Xo = Xo

(59

045108-8
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One can see that for a sufficiently smgk=e?/sque in ture and a nonzero chemical potential. Without going into all
expressior{55) and for a sufficiently larg&l; in Eq.(56), the  the details, let us write the final equation
LLL approximation is selfconsistent indeed: in both cases,

the gapA, can be made much less than the Landau gap g2 leB| [=dkexp—k?)

(scalg L=/2vZ|eB|/c. We emphasize that the second solu- Ar(p)= f 17K

tion [Eg. (56)], also obtained in Ref. 8, corresponds to the 2\/5‘90 0 Xo

regime with a largéN; andnotto the strong coupling regime C A(w)

with a largeg and N; of order one. Indeed, taking to be SlnhT

large enough in expressigh6), one obtains a gap, ex- X ) (57)
ceeding the Landau scalg, i.e., for large g the self- | At :“

consistency of the LLL dominance approximation is lost. We cos eo ShF

will discuss the strong-coupling regime below.

What is the energy scale the coupling consgistrelated In the LLL dominance approximation, the expression for
to in this problem? It is the Landau scdle The argument charge density of carriers in terms of the chemical potential
supporting this goes as follows. There are two, dynamicallyis
very different, scale regions in this problem. One is the re-

gion with the energy scale above the Landau stalend M

below the ultraviolet cutoff\, defined by the lattice size. In N|eB smh1—_

that region, the dynamics is essentially the same as in the n= 2 A() o (58)
theory without magnetic field. In particular, the running cou- h—+c h]:

pling decreases logarithmically with the energy scale there.
Another is the region below the Landau scale. In that region,
the magnetic field dramatically changes the dynamics, in par-
ticular, the behavior of the running coupling constant. As the

analysis of this section shows, because of the magnetic fiel
the pairing dynamicgin the particle-hole channels domi-

We assume that, in the model at hand, the charge density of
carries(i.e., n=ng—n},) is a fixed constant. Then the ex-
Bressmn for the chemical potential reads

nated by the infrared region where<A,. Therefore, the M v Ar(p) \/1 ) . r_FAT(:U')
scale region above the Landau scaleompletely decouples SN = 1-,2\ %7 +\ 1+ vgsinit ———1,
from the pairing dynamics in this case. This manifests itself B (59)

in expression53) for the gap: the only relevant scale is the
Landau scalé. there. Since the effect of the running of the 1 A Ar(w)
coupling is taken into account by the polarization function in ®_ \/ 420 LAYt rul [t
the gap equation, we conclude that the couplinghdeed COShF 1+ vgsint? T VBCOS T
relates to the Landau scale in this problem. Note that it can

be somewhat smaller than the bare coupling congyétjt (60
related to the scale Takingt=2.4 eV in graphitgthe width ~ where

of its energy bandand using the equation for the running

coupling from Ref. 7, one obtains that it is smaller by the 2wcn Bg

factors 1.2 and 1.4 thag(t) for the values of the magnetic YBTN;[eB| =B (62)

field B=10 and 0.1 T, respectively.

Now let us turn to the second, strong-coupling, dynamicals the filling factor.
regime. In reduced QED, the gap equation in this regime By making use of the expression for the chemical poten-
includes the contributions of all the Landau levels and bEﬂa| in terms of the f||||ng factorVB’ we rewrite the gap
comes very formidable. Still one can estimate the value okquation in the following convenient form:
the gap: since there are no small parameters in this regime
for moderate values dfl;, the gap should be of the order of

2 _ L2
the Landau scalk. This conclusion is supported by studying Ar(vg) = € B /|eB| fx dkexp(—k7)
0

this regime in a simpler mode{2+1)-dimensional Nambu- 2\/—8 1+Kkyxo
Jona-Lasinio modéf! In this case, in the critical regime, the

gap is equal tA\y=0.32, where the Landau scale in that A+(vg)
relativistic model, withve=c, is L=\/2c|eB|. As we will (1- VB)S'”h—

see in Sec. VI, the critical dynamical regime can be relevant X )
for the magnetic-field-driven phase transition in highly ori- A1(vg) A1(vg)
ented pyrolytic graphité®—2! coshT + \/ 1+ vsint?

B. Dynamical gap atT#0 or u#0 (62

By making use of the Matsubara formalism, it is easy toLet us first consider the case of zero temperature. Then the
generalize the gap equation for the case of a finite temperayap equation takes a very simple form,
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1— v e(1-vg) [[eB] [=dkexp(—k?) transition seen in the behavior of the conductivitgsistiv-
BAOE & \/ f ity) as a function of temperature. More precisely, we find the
2 2\/580 Cc 0 1+ kXO

following.

(63 (1) If the phase transition is of the first order, there is a
whereA,=A,(0) is the value of the gap at the zero filling discontinuity in the conductivity(resistivity) at a critical
factor. Since we choose the vacuum in which the gap igemperaturel.
positive (see Sec. Il A, this equation implies that forg (2) If the phase transition is of the second order and the
=1, there is no solution with a nonzero gap, i.e. the symmescaling properties are correctly described by the mean-field
try is restored. The conditiomg=1 determines the critical approximation, the conductivityresistivity) exhibits a kink
density,n.= N;|eB|/27rc. The densityn, corresponds to the Pehavior at the critical temperature. .
filling of the LLL and, as discussed at the beginning of this  (3) Finally, if the phase transition is a non-mean-field
section, this value is universal for all subcritical values of thesecond-order one, the conductivitiesistivity) is a smooth
coupling constang. Reversing the roles of andB, one can function at the critical temperaturg;, while a singularity
say that, for a fixed value of the densitythe critical value ~ Occurs in its higher derivatives at="T,.

Ao(vg) =

of the magnetic field i$eB,|=27cn/N;: a dynamical gap In addition, our calculations show that in this particular
occurs only for magnetic field8 larger thanB, . model, the flavor phase transition, restoring the flavor sym-

The critical temperature is determined from E8R) with ~ metry U(2Ng), does not look like a semimetal-insulator
A(vg)=0: phase transitioif there is no external magnetic field. On the

other hand, in the presence of a magnetic field, in many cases
e?(1—v3) \/@ = dkexp(—k?) it does look like a semimetal-insulator phase transition.
Te= f (64)
4\/580 c 0 1+ kXO

A. No magnetic field
At a fixed densityn, this equation implies that, as it should
be, the critical temperature is zero for magnetic fields weake{0
than the critical valueB,; determined above. For magnetic
fieldsB stronger thamB.., T. grows withB (see Fig. 9 in Sec.
VI). As we will see in Sec. VI, these results can be important « daA(w,K)
for explaining experimental data in highly oriented pyrolytic S(iw 'R):iJ Zemert
graphite!®-2 " —wlop—p—w
Though here we considered only the dynamical regime , . .
with the LLL dominance, it is reasonable to assume that thd" the reduced planar model described in Sec. II, we derive
qualitative picture will also remain the same in the case of
the scaling dynamical regime, with the near-critical coupling Al oK)= I
constantg. This is in particular supported by the fact of the (k)= 27E
universality of the critical valud, .

Before concluding this section, let us mention that the thgynere E= \/v2k2+ A2; throughout this section, we use the
gap equation could also be rewritten in the form symbol A for the gap, i.e.A=A(x) and A=A(vg) for
A-(vg) the cases with no and with magnetic field, respectively. Note
2T ,sinh n's that we introduced a phenomenological width paramgter
T without which the calculation of conductivities would be
Ar(vg)= , (65) meaningless. A finite width parameter appears as a result of
\/ 1+ v3sink?

In a calculation of transport coefficients, it is very useful
utilize the spectral representation of the quasiparticle
een function. The latter is defined as follo¥s:

(66)

'yOE—IZ';/-I—A N 'yOE+IZ';/—A
(0=E)?+T?  (0+E)?+I?)

(67)

Ar(vg) Ar(vp) interactions, and scattering on impurities, in particular. In
COShT’L general, the widthl" is defined through the fermion self-
energy asl'(w)=—Im3R(w). Thus it is a frequencyas
where relation(64) was taken into account. The last form of \ye|| as temperature and magnetic fiettependent quantity.
the gap equation will be the most convenient for using inLjke the dynamical gap itself, it should be self-consistently

numerical calculations of CondUCtiVity; see Sec. V B. determined from the Schwinger_Dyson equations_ At low
temperatures, usually it could be modeled by a constant phe-
V. CONDUCTIVITY AND RESISTIVITY nomenological parameter. Therefore, instead of considering

an additional Schwinger-Dyson-type equation, we choose a

Conductivity and resistivity are major players in experi- constant parametd? and view this as yet another approxi-

mental detecting the magnetic field driven semimetal- fi
insulator phase transition in graphit&*In this section, we maton. : ;

. . o ’ In terms of the spectral function, the charge density of
will calculate them in reduced QEDR; using the results ob- :

. ; . . ; ) carriers reads
tained in the previous sections. We will consider both cases
of zero and nonzero external magnetic fields. While the 1¢ dk (=
former case is interesting in itself, it will also serve us as an - _f f dew
important reference point for the latter. Tne main conclusion 2) (2m)?
of this section is that there is a clear signature of the phase (68

o+ u R
tanh—=——1 |t[ YPA(w,K)].

—o
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The conductivity tensor is defined as

i IMIIf(Q+ie)
gji=Ilm————,
N 0—0 Q

(69

where HE(Q) is the retarded current-current correlation

function which is also given in terms of the spectral function:

o' +u

r‘cu—l— y7 H
tannh tannh oT

2T
w—w' +Q+ie

e?i (=
dodw’

2

><J(dk

2m)?

tr[ yiA(a),lZ)yjA(w’,IZ)]. (70

The vertex corrections were neglected in this expression.

Formally, they are suppressed by a power of:l/ Of
course, in the case of graphiteith N;=2), the vertex con-
tributions may nevertheless play an important r3l&his

PHYSICAL REVIEW B66, 045108 (2002

N fwdEE[t e
anh
277'0,2: A 2T

Nszsinh';—f

M_E}
n=

+tanh o7

[

J,
M_A)

N2 A l+ex"( T

=In
2| T +A
TUF l+ex;{—'u—)

+Lip(—e ATy |, (— el

dxx

2
U T M
F coshx+ coshF

(74)

question should be studied in more detail, but it is outside thevhere Li(z) is the dilogarithm function. As one can see
scope of the present paper. In absence of a magnetic field, th&m the above formulas, the conductivity grows linearly

conductivity tensor has only the diagonal componemts,

with temperature when the temperature is large:

= o0yx= 0y, . Both components are equal as a result of rota-

tional invariance of the model. The explicit expression of the

conductivity, in this case, reads

eszJ‘Oo IMdow J"’O (X+ w?+T2)2—40w?A?
o= dx
4m?T) e 0t pn)a? [ (x+ w?+T?)2—4x0?]?
costf ——
2T
_ e’N; J‘w do 1+ w?>—A%2+T7?
82T ) - Hw-i—,u 2|w|T
CcOos ?
T I2+A%2—? 71
x| = —arcta 3wl , (7D

esz

I (79)

o=

TI2 for T
gin or T—o,

Note, however, that the expression for the conductivity in
Eq. (73), derived for the— 0 case, fails when temperatures
become very small. The correct result for small temperatures
could be derived from Eq.71). It reads

N[ p?-A2+T?
o=
272 2|,Uv|F
T . F2+A2—,u2 L0 T 26
X E—arcan—2|’u|r ik (76)

wherel is the width parameter, and the density of carriers isT he density in that same limit is

defined by the following relation:

J,

oo

dw

I'N;¢ f
n=
—w@?4+T2

= o dEE

wtut+E
tanhT

wt+tu—E
+tanhT. (72
In the limit I'—0, these two expressions reduce to
_ esz j” do w?— 20 2_ A2
771671l ) . k?oz)-i-,ud || (0°=4%
COS ?
_ e’N; fmdw w?— A2 N 73
T 167 0 )y © e A L
COSH?

and

Ny

n= (w?=A%)sgn( ) O(u?—A?).

= (77)
27TU|2:

The interplay between the density of carriers and the width

is characterized by the following dimensionless parameter:

1

2’7TU|2:n
VN,

= (78)
n T .

In the two opposite limits of a clean or dirty system, this
parameter is either large or small, respectively. Then the cor-
responding zero temperature asymptotes for the conductivity

take the forms
/ 27TU|2:n
27v2n+N;A2

e’N¢7
7 4

(79

for »>1, and
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o . FIG. 4. The resistivity as a function of temperature for the zero-
FIG. 3. The conductivity as a function of temperature for the 5 gnetic-field case. The bold solid line corresponds to the case
zero-mggnetlc-fleld case. The .bold solid line corresponds to th@,vithout a gap. The other lines correspond to nonzero dynamical
case without a gap. The other lines correspond to nonzero dynamisng and different values af, . Resistivity is measured in units of

cal gaps and different values @%. Conductivity is measured in = o-2 poy temperature and widih are measured in K, and density
units of €%, both temperature and width are measured in K, and |, is' measured in ciie.

densityn is measured in ci?.

Il r understand this better, one should look at the temperature
o=——|1+ A( —arctanz—A (80)  dependence of the chemical potential at a given fixed value
2 2012 of the density. In particular, when the density of carriers is

for y<1. The last expression was derived under the assump®"Y small, the chemlcgl potentfll asa Tnctlon of tempera-
tion thatn<A2/v2 . Finally, in the strict limit of zero density '€ sharply falls from its valug.=A atT=0 almost down
(i.e., u=0), we derive to zero in a very small region of temperatures. Afterward, it

starts to grow. When the density becomes vanishingly small,
e®N; T2 the above-mentioned region of temperatures where the
=T o a2 (81)  chemical potential drops shrinks to zero. Thus, by making
7 I'“+A . o
use of continuity argument, it is clear that the value of the
It should be emphasized that the strict case of zero densitghemical potential is zero in the limit— 0 if the density of
corresponds tqu=0 (rather thanu=A as might be sug- carriers is zero. It is notable that our result in E81) is in
gested by taking the limiT—0 first, and them—0). To  agreement with the Wiedemann-Franz law, i.e.,

e’N;

o=
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oT 32 onA? and there is a linear in? term in it asA?—0. There-
— = (82)  fore, its derivative with respect to temperature has a finite
Kilio discontinuity at the critical poinT=T,.

where we use the value of the thermal conductiwitgalcu- The mean_-ﬁeld behay|or may chan_ge if_higher-order,
lated in Ref. 33. 1/N¢, corrections(fluctuations are taken into account. The

' fluctuations could either change the phase transition to a
The numerical results for the temperature dependence Qf . o one with a discontinuity i at the phase-

the conduct|y|ty are shown in Fig. 3 in the case of the Z€MQansition point, or to a non-mean-field second-order phase
gap (bold solid ling, and nonzero gapfther lines corre- transition, with the scaling lawh~ (T.—T)” wherev>1/2.

spond to d|ff?_rent valu”e_s afc). Note that the model at hand \yhjje in the former case a discontinuity will appear in the
reveals an “insulator”(i.e., increasing with temperature conductivity (resistivity), in the latter case the conductivity
type behavior of conductivity even in the case of a f'r"teéresistivity) will be a smooth function of temperature, and a
density of carriers. This type of behavior is a consequence dfingularity will move to its higher derivatives.
using a constant value of the width parameterin our Another notable point is that in the case with no magnetic
model. Then the growth of the conductivity with increasingfield, the flavor phase transition doemt look like a
temperature is directly related to the increasing number ofemimetal-insulator one. Indeed, as one can see in in Figs. 3
thermally excited quasiparticles. In realistic systems, of4, an “insulator’-type behavior does not change at the criti-
course, the widtlwhich is related to the inverse scattering cal point. As we will see in the next subsections, the occur-
time) would normally start to grow with temperature too. In rence of a magnetic field will drastically change this feature
general, one might choose the width as function of energpf the phase transition.
and temperature, Before concluding this section, let us also mention that
the conductivity(as well as the resistivijjpecome more sen-
sitive to the appearance of a dynamical gap when the density
(o, T)=To+ o )’ (83)  of carriers decreases. To support this statement, we plotted
’ the conductivity and resistivity for two different finite values
whereI'y is the zero temperature width due to impurities, of carrier densities which differ by a factor 10; see the lower
and the other term is due to the thermal contribution. In thigarts of Figs. 3 and 4.
paper, for the sake of simplicity, we consider the simplest As we see from Fig. 4, the temperature dependence of the
model with a fixed constant value of the width parameterresistivity develops a minimum when the value of the gap is
The analysis, however, could be easily generalized for angufficiently large. Comparing this temperature dependence
phenomenologically motivated dependencies like that in Eqwith the experimental data, we might even suggest that the
(83). studied graphite samples are better described by the model

In order to calculate the conductivities in the case of nonWith a nonzero dynamical gap even in the absence of a mag-
zero dynamical gaps, we used gap equatés in which the ~ netic field. The effect of an external field is studied in the
critical temperaturd, was treated as a free parameter. The€lloWing subsections.
results for the temperature dependence of the resistivity are
plotted in Fig. 4.

As one can see in Figs. 3 and 4, there is a kink at the Let us now turn to the analysis of the conductivity in the
critical point T=T, in the conductivity(resistivity). Its oc-  case with an external magnetic field. The spectral function
currence is directly related to the mean-field behavior of theﬂ\(w,l?) of the translation invariant part of the quasiparticle
gap A in the vicinity of the critical point, i.e.A~\T.—T. propagator in a magnetic fieldsee Egs(41) and (42)] is
Indeed, as follows from Ed71), the conductivitys depends  given by

B. Conductivity tensor. Nonzero magnetic field

<y°Mn+A>fl<IZ>+fz<|2>+ (Y’M—A)f1(K)—fo(K)
(w—Mpy)%+T2 (w+Mp)2+T2

c||2|2) S (-1)n .

. T
A(w,k)=;exp(—|e8| 2

n=0 Mn
whereM = A%+ 2nsz|eB|/c and the functiond (k) andf,(k) were defined earlier in Eq$43) and (44). In an external
magnetic field, the conductivity is a tensor quantity. The diagonal and off-diagonal components of conductivity read

_e’NyleB|I'? F do (0 +M2+T?)(w0?+ M2, +T?)—4w?A? @5
T 2@?T =0 )= 0+ p [(0?—~M2-T2)2+ 40T 2|[(0?—M2, ,—T?)2+40°T?]
costf ——
2T
and
e2Nf
Oxy= 5 VB» (86)
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respectively. Here the parameiémives the energy width of Landau levels, and the filling faatgfrelated to the density of
carriers by the relationvg=2mcn/(N;|eB|)] is defined as follows:

2 + - +2§ (—
(o_pypare e TR | T

The sum over Landau levels in E(B5) could be performed explicitly, and the result is given in terms of the digamma
function, ¥(z), as follows:

> do uto
szf ~—tanh . (87

2T 2T

-

véeB vieB

2
) —203(w? - AT = —

(w2+A%+T12)
2w+

Oxx

_eszl—‘JOc do r
42 o+ vieB\?
47T cosh M F_)

2T

(02— A%—T?)2+ 4022

—o0

+(2wI)?

w(wz—Az-l— Tz)
- T Im ¢

(88)

A%24T2—w2—2iwl
2vZleBl/c

The high-temperature asymptote that follows from the representation itBBqis the same as in the case of zero magnetic
field, given in Eq.(75). The limit T—0 is different from that in Eq(76). It is given by the following expression:

2 2 2
veeB veeB
FC ) _21“'2(1“2_A2+F2)FT

2 2 2

2
Oyx=— 2/,1, +
g2 (vﬁeB ‘

(MZ_AZ_F2)2+4,(L2P2

+(2ul’)?

2_A%2+T2 A2+T2— p2+2iul
m(p ). ( M M 89)

r ' 2vileB|/c

It is interesting to note, however, that for zero value of the In order to understand the effect of a dynamical gap on
gap and zero density of carriefise., A=0 andu=0), this  the behavior of conductivity as a function of temperature, it
last expression becomes identical with the expression for this helpful to start from the case of a vanishing density of
conductivity in absence of a magnetic field given in Bil).  carriers(i.e., vg=0). Whenyg=0, the Hall conductivity is

In the limit of narrow width,I'— 0, the above expressions absent, and the resistivity is determined by thg compo-

reduce to nent alone. The plot of the conductivity as a function of
A temperature is given in Fig. 5.
M
&N, T 1+ cosh]:cosh]: 0.025
Oyx= T A > n=0, B=8, Gamma=5
o
cosh]: + coshf) 0.02
M, u 0.015
© N 1+cosh—cosh]:
T
+42 N ik (90) 0.01
"~ (cosh?n+cosh]:)
0.005 P .
for diagonal component of the conductivity, and ,,// ,_,-/‘/
—_’/ ___.—’ T
1 et A p—A 50 100 150 200 250 300
V=% tanh—+tanh—) . . )
2 2T 2T FIG. 5. The diagonal component of conductivity as a function of
" temperature for zero value of carrier density and a nonzero mag-
|M+Mn IM_Mn netic field,B=8 T. The bold solid line corresponds to the case
+n§l tan 2T ttan 2T ) D without a gap. Other lines correspond to nonzero dynamical gaps
and different values df .. Conductivity is measured in units ef,
for the filling factor. and both temperature and widthare measured in K.
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0.025 n=1.25x10'° B=8, Gamma=5 can substantially reduce the value of_cqnductivity in the
whole range of temperatures beldw. It is important that,
0.02 as in the case withvg=0, the flavor phase transition looks
like a semimetal-insulator one for not too large values of the
0.015 critical temperaturdl; (see Fig. 6. This is the most impor-
tant conclusion of this subsection.
0.01 The same arguments as these at the end of Sec. V A show
that the occurrence of the kink in the conductivityTat T,
0.005 reflects the mean-field behavior of the gap in the vicinity of
' the critical point,A~T.—T. The 1N; fluctuations may
- change the character of the phase transition, leading either to
50 100 150 200 250 300 a discontinuity in the conductivityr(T) at T=T, (a first-
0.025 order phase transitigror to a smooth functiow(T) (a non-
) n=1.25x10' B=8, Gamma=>5 mean-field second-order phase transition
0.02
C. Resistivity tensor
0.013 In this subsection, we study the temperature dependence
of the resistivity. In terms of conductivities, the diagonal
0.01 component of the resistivity reads
0.005
g
- Px= - (92)
50 100 150 200 250 300 Tixt Oy

FIG. 6. The diagonal component of the conductivity as a func- . o
tion of temperature for two different densities and a nonzero mag!n Order to understand the general behavior of the resistivity,

netic field, B=8 T. The bold solid line corresponds to the case P€low we perform a set of numerical calculations.
without a gap. Other lines correspond to nonzero dynamical gaps Before presenting the results, it is instructive to notice that
and different values of .. Conductivity is measured in units ef,  there exist two opposite regimes of dynamics controlled by
both temperature and width are measured in K, and densityis  the value of the charge density. In particular, at small density,
measured in ci?. when the Hall conductivityo,, is negligible compared to
oy, the resistivity in Eq.(92) behaves as #i,. On the

The bold solid line corresponds to the case without a dy—Other hand, at sufficiently large density, when the Hall con-

namical gap, while the other lines correspond to differen ductivity dominates over the diagonal component, the resis-

) : . . iVity py~ 0/ o2,. By recalling that the Hall conductivity
choices of the gap magnitude. In the numerical analysis, wi XY
used the gap equation in E@5), keeping the value F, as Esee Eq(86)] is independent of the temperature, the general

features of the temperature dependencepgf will be the
a free parameter. . same as of I,, and o,, in the mentioned two regimes,

When there are no free carriers, the low temperature der'espectively.
pend.e_nce of the diagonal component of conductivity is very  Now et us present the numerical results. We begin by
sensitive to the presence of a gap. In the absence of a gagynsidering the case of zero density. In this case the Hall
the conductivity becomes infinitely large wh&r-0. Atthe  conductivity is equal to zero and the resistivity, is equal
same time, it is zero in the same limit when there is even agg 1/o,. The temperature dependence of the resistivity is
arbitrarily small gapA. shown in Fig. 7(compare with Fig. &

An important fact is that, unlike the case without mag-  The bold solid line corresponds to a model with the van-
netic field, the conductivity exhibits ésemjmetallic type ishing dynamical gap in the quasiparticle spectrum. The
behavior for zero gap and not too high temperatur€s ( other curves correspond to three different choices of the dy-
=200 K in Fig. 5. As a result, for not too large values of namical gap. The temperature dependence of the dynamical
the critical temperatur&, (T,=200 K in Fig. 5, the flavor  gap is given by gap equatid65), where the value of ; was
phase transition looks as a conventional semimetal-insulatdreated as a phenomenological parameter.

one, when the insulator type behavior bel@y (nonzero As one can see in Fig. 7, for a zero dynamical gdye
gap is replaced by the metallic type in a range of tempera-bold solid ling the resistivity has a metallic type behavior
tures just abovd (zero gap (see Fig. 5. for not too high temperaturesT&0.2v¢/|eB|/c) and an

A typical conductivity for a nonzero value of the filling insulator-type behavior at high temperaturesT (
factor vg (i.e., a nonzero charge dengiig shown in Fig. 6. =0.2v¢|eB|/c). This type of temperature dependence is
In this case, the behaviors of the conductivity for a nonzerariven by the magnetic field alone and is not related to the
gap and zero gap are more similar than in the casegof generation of a dynamical gap. Such a crossover from a
=0 (compare with Fig. b The presence of a gap, however, metallic-type behaviorlow temperaturésto an insulator
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n=0, B=8, Gamma=5 500 n=1.25x10°% B=8, Gamma=>5
600 \ \ N -~
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T
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. . 50 n=1.25x10'% B=8, Gamma=5
FIG. 7. The resistivity as a function of temperature for a zero

value of the carrier density and a nonzero magnetic figld8 T.
The bold solid line corresponds to the case without a gap. Other 40
lines correspond to nonzero dynamical gaps and different values of
T.. Resistivity is measured in units ef 2, and both temperature
and widthI" are measured in K.

w
o

resistivity
N
o

type one (high temperaturgscan be easily distinguished
from the flavor phase transition taking place at not too high 10
T.. Indeed, wherm.<0.2v¢+/|eB|/c, one can see from Fig.

7 that it corresponds to the opposite, conventional, transition,
when the insulator-type behavior beldw (nonzero gapis 50 100 150 200 250 300
replaced by the metallic type in a range of temperatures just
aboveT, (zero gap.

Let us now proceed to the case of a nonzero charge den-
sity. As mentioned at the beginning of this subsection, there
are two different regimes that appear in the limits of small
and large densities, respectively. Our results in Fig. 8 illus-
trate these regimes.

At small density(see the upper panel in Fig),&he resis-
tivity behaves as 1, almost at all temperaturgsompare
with Fig. 6), except for a finite region where,, becomes
very small due to the generation of a dynamical gap. In this
region, even a small. vfalue of the Hall conductivity could m o0 150 200 250 300 ©
dominate ovew,,. This is seen as the appearance of a local
minimum (between two maximain the temperature depen- FIG. 8. The diagonal component of the resistivity as a function
dence of the resistivity. Of course, in the absence of a dyef temperature for four different densities and a nonzero magnetic
namical gap(see the solid line in the upper panel in Fig, 8 field, B=8 T. The bold solid line corresponds to the case without
the resistivity remains essentially the same as that-a@ @ gap. Other lines correspond to nonzero dynamical gaps and dif-
(compare with Fig. Y. ferent values ofT,. Resistivity is measured in units &2, both

This picture changes dramatically with increasing densitytemperature and width are measured in K, and densityis mea-

As one can see in the two lower panels in Fig. 8, with in-Sured in cm®.
creasing the density the resistivity gradually approaches the
regime wherep,,~ oyy. field, a dynamical gap in the quasiparticle spectrum can in-

For critical temperature$.<0.20¢|eB|/c (i.e., for de- deed lead to a change of the insulator-type dependence of
pendencies represented by thin solid and dashed)jittesse  py(T) to the metallic one. However, the nonzero Hall con-
two regimes correspond to two essentially different metal-ductivity at a finite densityy complicates the picture, and can
insulator phase transitions. In the case of a small defsity  lead to different types of metal-insulator phase transitions for
the upper panel in Fig.)8it is a conventional phase transi- small and large values of the charge density.
tion with insulator-type and metallic-type behaviors at tem- When the metal-insulator phase transition is truly a mean-
peratures below and just abovie., respectively. On the field one, its clear signature is a kink in the resistivity(T)
other hand, for a large densifgee the lower panel in Fig)8 at the critical poinfT=T,. As already pointed out in previ-
the “inverse” metal-insulator phase transitiéwith a metal- ous subsections, the Ny fluctuations can change this fea-
type dependence just beldli and insulator type just above ture, leading either to a discontinuity in the resistivity Tat
T.) is realized. =T, (a first-order phase transitipor to a smooth function

Therefore we conclude that, in the presence of a magnetig,,(T) (a non-mean-field continuous phase transjtion

n=1.25x10'! B=8, Gamma=5

[

[

resistivity

o o ©o o

N & & O B N
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VI. METAL-INSULATOR PHASE TRANSITION IN T(R) T. (B)
HIGHLY ORIENTED PYROLYTIC GRAPHITE 50
The main motivation of this study was the experimental
data reported in Refs. 19—21. It was observed that samples of 40
highly oriented pyrolytic graphite in an external magnetic 10

field show a qualitative change of their resistivity as a func-

tion of temperature, that was interpreted as a metal-insulator 29

phase transition. The effect is clearly seen only for a mag-

netic field perpendicular to the basal plane, suggesting that 10

the orbital motion of quasiparticles is responsible for the

change of the conductivity dependence. 1 2 3 4 5 6 7 9
In this section we will attempt to explain qualitatively the N _ )

main features of the above-mentioned experimental data in FIG: 9. The critical temperature as a function of a magnetic

the light of the magnetic catalysis idea. We should note thalie!d- The solid line gives the dependence on Ei), while the

the first step in this direction was made in Ref. 8. Here we g(giashed line corresponds to a dependence with a simple field offset,
into further details utilizing the rather complete description"€ Te™ VB~ Bc. To plot the figure we used the following param-

of the magnetic catalysis in planar systems and its effect ofterS-N1=2, ¢/vp=375, £9=2.4, andB,=2.6x 10* G.
the temperature dependence of their conductivity and resis:- .
tivity given in the previous sections. tion of_ a gap presumr?\bly occurréiwe derive the corre-
First of all, the analysis made in Sec. V shows that, in the>Ponding charge densityve useN(=2)
presence of a magnetic field, the flavor phase transition in B
planar syste_ms can indeed mgnifest it;elf asa metal—insulator n= |eBx| —1.25¢10°5 A2 (94)
phase transition in the behavior of their resistiyityT) as a
function of temperature. A notable fact is the existence of_ . . . .
clearly distinguishable signatures of different types of thetrhIS S?Oulld be fcompareq \f[\gth thedchargei defnqltqrhgtnltB
phase transition: the presence of a discontinuity and a kink ifilret.a 0 3} aty?rr:) carriers in the Ese s?mp €o grlap : eS.i y
the resistivityp(T) at the critical poinfT=T,, in the cases of rlo\/lggz at the area per carbon atom 'rj&g ayersis
first order and mean-field phase transitions, respectively, ang V3 /4 where the lattice spacing &~<2.46 A, ~we con-
a smooth behavior op(T) at T=T, for a non-mean-field cludgethaF the density in Eq94) corresponds ton~5
continuous phase transition. To the best of our knowledge, s 10 ~ units of charge per atom. While we do not know the
far there have been no experiments reporting observations ﬁﬁﬁﬁ;lggfs'ty of the sample used, the given estimate is not
a singular behavior gé(T) at the critical point. At this stage, ' i
however, it would be premature to conclude that the ob- Note that the relatiofi(B)~ VB —B.= Vl_VB\/_E’ used
served phase transition is a continuous non-mean-field on&? Ref. 21, qualitatively differs from our Ed64). It is quite
This point deserves further experimental study. remarkable, however, that the dependefigB) in Eq. (64)
Avery interesting experimental observation made in RefsiS nearly the same numerically as the simple square root
19-21(and, to the best of our knowledge, has not been exélation suggested by the experimental data; see Fig. 9.
plained is the existence of a finite “offset” magnetic field  Since the relatiofie Bo|=2mcn/Ny is exact in the dynam-
B.. The valueB, determines the thresholB=B, for a  ICS of the mggnetlc catalysis, |ts_ prerlmental ve'r|f|cat|on
qualitative change of the resistivity aero temperature. would b_e a crltlca_l c_hec_k of the_valldlty of the_scenarlt_) of the
More precisely, based on the experimental data, it wa&h@gnetic catalysis in highly oriented pyrolytic graphite.
revealed! that the approximate relation for the critical tem- _ Another notable experimental observation is that the scale
perature as a function d readsT.(B)~ yB—B,. This re- of the critical temperature is set by the egezfgy distance be-
: —21
lation implies that at zero temperature the phase transitioffVe€n the Landau levelshe Landau scaje®~*! Therefore,

happens only when the magnetic field exceeds the threshoi&the, underlying'physics of the transit?on is related to a dy-
valueB=B,. namical generation of a gap, the typical values of the gap

It is remarkable that, as was emphasized in Sec. IV, théhould also be of the same order as the Landau scale. As we

existence of such a threshdB}, is a robust consequence of discussgd at Iength _in Sec_;. 'V.’ for the mechgnism of t.he
the mechanism of the magnetic catalysis. As pointed oufhagnetic catalysis this fact implies that the pairing dynamics

there, the valueB, is directly related to a nonzero charge cqrresponds to the strong-coupling regime. 'This in tur_n_ im-
densityn of carriers plies that all(or many Landau levels determine the pairing

dynamics in this case. In connection with this, we would like
to point out that, as the numerical analysis done in Sec. V
leB,| = 2men (93) shows, the contribution of higher Landau levels into the con-
N¢ ductivity and resistivity become indeed important for values
of the critical temperaturd . of the order of the Landau
and this relation is exact. For example, by takiBg=2.6  scale.
x 10* G, which was obtained in one of the experiments as an There still remain some unresolved issues in the interpre-
(uppe) estimate of a critical value above which the genera+tation of the experimental data in highly oriented pyrolytic

B(T)
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graphite in a magnetic fiet?-2'The most important of them ACKNOWLEDGMENTS
is the observation of weak ferromagnetism in that system
(for some speculations concerning its origin see Ref\e
hope to consider this issue elsewhere.
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electric conductivity(resistivity) in these systems was de-
scribed in detail. This allowed us to conclude that, in the
presence of a magnetic field, the flavor phase transition in
planar systems can indeed manifest itself as a metal-insulator
phase transition in the behavior of the resistiyifyT,B) as a In this appendix we will consider the symmetry of four-
function of the magnetic field and temperature. It was alsaccomponent fermions on a plane which carry the flavor index

shown that there exist clearly distinguishable signatures of=1,2, ... N;. The three &4 v matrices in Eq(5) can be
different types of the phase transition. While the resistivitytaken to be

p(T) is a smooth function at the critical poifit=T, in the

APPENDIX A: SYMMETRY OF (2+1)-DIMENSIONAL
FERMIONS

case of a non-mean-field continuous phase transition, there o |73 0
are a discontinuity and a kink ipn(T) at T=T. in the cases Yo — 03]’ (A1)
of the first order and mean-field phase transitions, respec-
tively. oy 0

Based on the experimental ddfa?!it was recently ar- y1=( 0 —i ) (A2)
gued that highly oriented pyrolytic graphite shows up a 101
metal-insulator phase transition, driven by an external mag- i 0
netic field® This might be a nonrelativistic realization of the yzz( 2 ) ) (A3)
phenomenon of the magnetic catalysis originally established 0 —ioy

in Refs. 14 and 15 in relativistic systems. In this paper Wegeca| that in 2+1 dimensions, two sets of matrices
studied this possibility rather in detail, elaborating the theory((I iy ,io,) and (—os,—ioy,—io,) make inequivalent
of the magnetic catalysis in nonrelativistic planar systems 3" - 1' "2 AT

Yepresentations of the CliffortDirac) algebra
and analyzing the temperature behavior of the resistivity P (Dirac) alg '

(conductivity) i.n these systems. Th.e. .conclu_sion of 'ghej Yy 4yt = 2gH (A4)
present analysis concerning the possibility of this scenario in .
highly oriented pyrolytic graphite is quite positive. whereu,»=0,1,2 andg*”=diag(1-1,-1).

One of the central results of this paper is establishing the There are two matrices,
exactrelation[Eq. (93)] for the critical (threshold value of
the magnetic field at zero temperature in these systems. An 3_; 01 5_; 0 1

ag dat np yste yi=i . YP=i : (A5)

experimental verification of this result would be a crucial test 1 0 -1 0
for the present theory. : 0 1 2

Another conclusion of our investigation is that a nonzero’;hat_antmomm?e withy ,thy » andy .ITEerezfore for G?Ch
magnetic field alonéeven without producing a dynamical our-component spinor, there 15 a glo (2) symmetry
gap can drastically change the general behavior of the resis\{vIth the generators
tivity as a function of temperature. In particular, in our sim- 1 1
plest model with a constant value of the width parameter, the L= ¥ =[¥°L (AB)
semiconductor-type dependence of the resistilisy, p(T) : 2
decreasing with increasing temperafiseen in the absence Since there ar&l; fermion flavors, the full symmetry of the

of a magnetic field, can be replaced by a metallic type beaction (10) is U(2N;) with the generators

havior[i.e., p(T) increasing with temperatufén the region

of not too high temperatures, when a nonzero field is turned NN N o Nt

on. In fact, at zero charge density of carriers, this change of S Y Y S 5lvyL (A7)
behavior always happens in the range of temperature$ 0 _ 5 5
<0.20¢\/[eB/c. This is also seen at finite but small densi- Wherer®/2, with «=0,1,... Nf—1, areNf generators of
ties when the diagonal component of conductivity dominated! (Nf). -

over the Hall conductivity. We expect that the results of this  Adding a masggap term Aq¢¢ into action(10) would
paper will be useful for a wide class of condensed mattereduce theJ (2N;) symmetry down tdJ(N) X U(N;) sym-

planar systems. metry, with the generators
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A A% =dk?| v px(1 X)  Y+u
Mot (A8) ) f f ; tanh
5 [7 7’1, 11(0,p)= 280 tanh——
with @=0,1,... N?—1. This implies that the dynamical
generation of the fermion gap leads to the spontaneous ka2+A (w)
breakdown of theJ (2N;) down to theU (N;) X U(Ny). +—YJr (u——m) |, (B4)
2Tcoslt

2T
APPENDIX B: DERIVATION OF THE POLARIZATION

FUNCTION AND GAP EQUATION whereY = \uZk?+vzp?x(1—x)+A%(u). By changing the

2
In this appendix, we give the details of the calculations ofintegration variablek®—Y, and integrating by parts, we fi-

the time component of the gauge field polarization functionnally arrive at the convenient representation

as well as the derivation of the gap equation at finite chemi-

cal potential and finite temperature. We will consider only . 2TeNg
the case of a zero magnetic field. The polarization function I1(0,p)= f dx|In{ 2 COSh—)
and the gap equation if2+1)-dimensional QED with an eouf Jo
external magnetic field were given in Ref. 30, where the Ai(ﬂ) R+
method of Ref. 15 was used. — t
7R, anh >T +(,LL—> ,u,)} (B5)
1. Polarization function whereR, = \/U|2:p2x(1_x)+A-2|-(/.L).

The general expression of the time component of the

vacuum polarization function is given ¥y 2. Gap equation

oo K The general Schwinger-Dysdgap equation for the qua-
(Q,,.p)= _eZTan_Zw o siparticle propagator reads
N R . d?k
XU Y08 Qo 0B+ K)y0S(0n K, (0 P)=So Mo p)~ T 2 f(z
(81) ™
X S(wn k) y°U(p—k). (B6)

where S(wn,lZ) is the fermionic quasiparticle propagator
whose explicit form reads By neglecting the wave function renormalizatiohwe de-
rive the following gap equation:
[
S(wn k)= = - (B2 T J A(k)d?k
" (Twp—m)vo+ (K- v)+Ar(w) A(p)= f ( )2 5
2meq n "o J (wn+ip)2+vEK3+AT(w)

In Eqg. (B1), the Matsubara frequencies are denotedehy 1

=(2n+1)#T and Q,,=2m=T. Also note that the expres- e S (B7)

sion on the right hand side is multiplied by an additional |[p—K|+TII(0,p—Kk)

factor 2w/ e, in accordance with our definition of the polar-

ization function. After taking the trace over the Dirac indiceswhere At(u)=A(p)|,—o. Here the interaction is taken in

and using the Feynman parametrization, we obtain the so-called instantaneous exchange approximation. This
means that the retardation effects of the gauge field are ne-
glected which is justified in a nonrelativistic model.

11(0, p)_ —eZTNf E dx By neglecting the dependence of the gap on the Matsub-

n=—o (2m)2 ara frequency, we could perform the sum oweexplicitly.

Then the result reads

X
(@ +ip)?+vEp x<1—x>+v§k2+A$<m _Ey
2 2 S|nh_
202 A2 me? [ d*k A(K) T
2[vgk+AT(w)] A(p)= — 2
N 2. 2.2 21,2, A2 2 (2m)? Ex hE_k+ M
[(wh+ip)*+tvep™X(1—x)+veks+AT(u)] cos - coshF
(B3) 1
, : X—== —, (B8)
By calculating the sum ovar, we obtain |p—k|+I1(0,p—Kk)
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whereE, = \/szk2+ AT2(,u). By using the standard approxi- A e v A
. : P J=—%\/Sin5In—+25|. (C4)
mation for the kernel of the integral equatiof(|p—Kk|) sin28) VA~ |2 €

—f(p) B(p—k)+f(k) O(k—p), we obtain the gap equation
As it should be, the equation for the dynamical gap is

. Ika obtained in the limit of vanishing sourc&=0. At zero
e2 (A Sinfr=r 6(p—k) chemical potential, in particular, the equation for the gap
AP= 5~ f dkA (k) ——— 2| orTiog takes the form
0T Te cosh_'I:_—+coshF P 0p) A
14 Vg
=In——=7—-26.
6(k—p) 5 nAo 7—28 (CH
=8 (89) - | |
k+TII(0k) For the derivation of the effective potential, we also need to

know the expression for the field. By definition, it is equal

where the infrared cutofk is given by a larger value of to the trace of the fermion propagator. Thus we obtain

A(u)lvg o Ju?—AZ(w)/ve, and where we also utilized

the bifurcation method in which a nonlinear gap equation is . N

replaced by a linear approximatigcompare with the discus- o=—(yh)=— ! p2A’(p)

sion in Sec. lll B. This is achieved by substituting the trivial TAVE p=A

value of the gap irE, and introducing an infrared cutoff in —

the integral on the right hand side of E&8). :Msm fmé (C6)
TAVESIN28) |2 €

APPENDIX C: DERIVATION OF EFFECTIVE POTENTIAL

AT 10 Now, by making use of EqC5), we trade the cutoff param-

eter A for Ag. After this, we derive the following approxi-
In this appendix, we will construct the effective potential mate relations for the case of smallwe are interested in:

of the composite fieldr=— () by using the method of

Ref. 35. For the purposes of this paper, it is sufficient to J(A)=— é\/Elnﬁ C7)

consider only the case of a nonzero chemical potential. The 4 VA evg’

generalization to some other casés example, with an ex-

ternal magnetic fieldis also possible; see, for example, Ref. N¢AVeA Ao

36. (r(A):—<4—In—>.
In order to derive the effective potential as a function of TUF €UF

the composite fieldr, one should introduce a term with a As will become clear in a moment, these two expressions

constant external sourdecoupled to the corresponding com- contain all the information needed for reconstructing the po-

posite operator in the action, and construct the generatingntial. Indeed, the definition of the effective potential in Eq.
functional W(J). The effective potential, then, is defined (C1) can be rewritten as

through the Legendre transform®as

(C8

) [ da(a)
V(o)=—w(J)+Ja=f dod(o), (CD) V(")_f dA—gp @)+ Tw), €9

where o= dw(J3)/d3, w(J)=W(J)/V,,,, andV,,, is the ~ Where the most general integration constint) was added
space-time volume of a planar model. In the last expressior?" the right-hand side. This representation leads to the final
the source) should be regarded as a function of the field ~ results

The effect of the external sourcdecould be easily taken
into account in gap equatid29): one should simply replace B NfAZpu?—A?
A,—A,—J on the left-hand side of the equation. Then the V(d)=
solution to the equation, satisfying the infrared boundary

1 2_A2 2_A2
—In? v +Ir‘.\/'M

27TU|2:

condition, takes the form 2u%+ A2
|t (C10
A e |v p 3A
Apz.—é —si Eln—+ S, (C2
siho-Y'p € for A<|ul|/\/2, and
where v=\4N—1, e=maxAlve,Ju?—A%vg}, and &
=arctan. The overall normalization of the above solution is NiAS[1 A A 1
fixed by choosingA,_.=A. The ultraviolet boundary con- V(A)= 5| 7IN?—+In—— 2|+ f,(u) (CLD
dition P 2mv2l4 Ao T Ag 3
_ , for A=|u|/\2. In these equations we used the freedom of
J=(A,+pPA)|o=n . C3 i ] . ; .
(ApFP p)|p‘A ©3 choosing the integration constants in expressi@®)) and
on the other hand, produces the relation (C11) as follows:
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V2N |3 MNOu)  Nip?
f(w)=——5—+fyn), (C12 =— —sgr(u) (C15
I 2
TUE TUE
N for |u|>pu.. Here we used the expression for the charge
‘ S
f — AN wl+2A)0( wl— A density in Eq.(77).
2#) 6mv (Il = 20)"(| ) 0|/~ 2o) Now the effective potential as a function of the composite

field o is defined parametrically through EqE€10), (C11),
and(C8). This dependence is graphically shown in Fig. 2 for
a few different values of the chemical potential. As is clear
from the figure, the presence of a nonzero chemical potential
considerably changes the behavior of the effective potential.
. L N . In particular, a new local minimum develops at the origin
This choice insures that the potential is continuous at th%md its depth gradually increases wijth The competition of
matching pointA =|x|/\/2, and that it is normalized so that the two minima, located at=0 andey=o(Ay), results in a

its partial derivative with respect to the chemical potential atf s orger phase transition. Such a transition happens when
the global minimum is equalup to a sign to the charge e gepths of effective potential at its two minima become
density: equal. By making use of this criterion, we derive the analyti-
cal expression for the critical value of the chemical potential:

N
X O pe— | )~ —5[(V2—1)(| ul 3~ 1d)
67TU|:

+(pe=A0) (et 280)10(| |~ ne).  (C13

N(Ag, )  Ni(AF—u?)
= S 0 —A C14
” Y, gn(w) 6(|lul—Ay) (C14

~1.195,. (C16

B 0
for |u|<m, and e (2—2)¥?
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