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Magnetic field driven metal-insulator phase transition in planar systems
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A theory of the magnetic field driven~semi!metal-insulator phase transition is developed for planar systems
with a low density of carriers and a linear~i.e., relativisticlike! dispersion relation for low-energy quasiparti-
cles. The general structure of the phase diagram of the theory with respect to the coupling constant, the
chemical potential, and the temperature is derived in two cases, with and without an external magnetic field.
The conductivity and resistivity as functions of temperature and magnetic field are studied in detail. An exact
relation for the value of the ‘‘offset’’ magnetic fieldBc , determining the threshold for the realization of the
phase transition at zero temperature, is established. The theory is applied to the description of a recently
observed phase transition induced by a magnetic field in highly oriented pyrolytic graphite.
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I. INTRODUCTION

Although during recent years there has been impor
progress in understanding non-Fermi-liquid dynamics in
mensionsD.1, an understanding of them is still very fa
from being complete. It is rather clear that non-Fermi-liqu
behavior yields examples of sophisticated nonperturba
dynamics which should be described by advanced meth
of quantum field theory.

It was recognized rather long ago that relativistic fie
models can serve as effective theories for the descriptio
long-wavelength excitations in condensed-matter syst
~for a review, see Ref. 1!. In particular, they can be applied t
a wide class of~quasi! planar systems. In this case, the co
responding relativistic theories are 211 dimensional, i.e.,
they are formulated in~211!-dimensional Minkowski space
with two spacelike coordinates and one timelike coordina
It is important that among these condensed-matter syst
are such as high-Tc superconductors and carbon-based ma
rials ~for a list of papers using relativistic field approach
these systems see Refs. 2–9!.

In this paper, we will develop a consistent approach
studying these systems by making use of so-called redu
~311!-dimensional gauge theories.10,11 These theories will
share the following common feature. Their gauge fields~e.g.,
the electromagnetic field! responsible for interparticle inter
action would be able to propagate in a three-dimensio
bulk, while fermion fields~e.g., describing electron- an
hole-type quasiparticles! would be localized on two-
dimensional planes. A typical example of a condensed-ma
system of this type is graphite. It has been known for a lo
time that fermionic quasiparticles in graphite are nearly t
0163-1829/2002/66~4!/045108~22!/$20.00 66 0451
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dimensional.12 In addition, graphite is a semimetal whos
low-energy quasiparticles have a nearly linear dispersion
~just like massless relativistic particles!.12,13,6 The Coulomb
interaction between quasiparticles is provided by gau
fields which, unlike the quasiparticles themselves, are th
dimensional in nature.

Recently, the dynamics of reduced QED was studied
Refs. 10 and 11. In those papers, purely relativistic theo
were considered: in particular the velocities of both mass
fermions and photons were equal to the speed of lightc. In
realistic condensed-matter systems, the Fermi velocity
gapless fermionsvF is of course much less thanc. This in
turn implies that the static Coulomb forces provide the dom
nant interactions of fermions. This feature makes quite a
ference in the analysis.

In this paper we will describe such ‘‘realistic’’ reduce
gauge theories with and without an external magnetic fi
perpendicular to the basal plane. We are particularly in
ested in the possibility of a spontaneous generation of a
in the one-quasiparticle spectrum. This might be viewed a
~semi!metal-insulator phase transition. The influence of t
magnetic field, as would become clear in a moment, is v
powerful in driving~or ‘‘catalyzing’’! this type of transitions.

The phenomenon of the magnetic catalysis of dynam
symmetry breaking was established as a universal phen
enon in a wide class of~211!- and~311!-dimensional rela-
tivistic models in Refs. 14 and 15~for earlier consideration
of dynamical symmetry breaking in a magnetic field, s
Refs. 16 and 17!.

The general result states that a constant magnetic
leads to the generation of a fermion dynamical mass~a gap
in a one-particle energy spectrum! even at the weakest attrac
©2002 The American Physical Society08-1
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tive interaction between fermions. The essence of this ef
is the dimensional reductionD→D22 in the dynamics of
fermion pairing in a magnetic field. At weak coupling, th
dynamics is dominated by the lowest Landau level~LLL !
which is essentially (D22)-dimensional.14,15 The applica-
tions of this effect have been considered both in conden
matter physics5,8 and cosmology~for reviews, see Ref. 18!.

The main motivation of the present study was the exp
mental data reported in Refs. 19–21 and their interpreta
~based on the phenomenon of the magnetic catalysis! sug-
gested in Ref. 8. It was observed in those experiments
samples of highly oriented pyrolytic graphite in an extern
magnetic field show a qualitative change of their resistiv
as a function of temperature, that was interpreted as a m
insulator phase transition. The effect is clearly seen only
a magnetic field perpendicular to the basal plane, sugges
that the orbital motion of quasiparticles is responsible for
change of the conductivity dependence.

The suggestion of Ref. 8 was that this phenomenon ca
a manifestation of the magnetic catalysis, when a dynam
gap, connected with a quasiparticle-hole pairing, is gener
in a magnetic field. In this paper, we will develop a detail
theory of the magnetic-field-driven metal-insulator pha
transition in planar systems, based on reduced QED.
general structure of the phase diagram of such systems
be described in two cases, with and without an external m
netic field. The behavior of the electric conductivity~resis-
tivity ! in these systems will be described in detail. This w
allow us to conclude that, in the presence of a magnetic fi
the generation of a dynamical gap in planar systems
indeed manifest itself as a metal-insulator phase transitio
the behavior of the resistivityr(T,B) as a function of the
magnetic field and temperature.

It will be also shown that there exist clearly distinguis
able signatures of different types of the phase transit
While the resistivityr(T) is a smooth function at the critica
point T5Tc in the case of a non-mean-field second-ord
phase transition, there are a discontinuity and a kink inr(T)
at T5Tc in the cases of the first-order and mean-field ph
transitions, respectively. The conclusion of the present an
sis concerning the possibility of the realization of the s
nario of the magnetic catalysis in highly oriented pyroly
graphite is quite positive.

One of the central results of this paper is an explana
of the existence of an ‘‘offset’’ fieldBc observed in the
experiments.19–21As we will discuss in detail in Sec. VI, the
value Bc determines the threshold for the generation o
dynamical gap atzero temperature: it happens only ifB
.Bc . It is remarkable that, as will be shown in Sec. IV, t
existence ofBc is a robust consequence of the mechanism
the magnetic catalysis. Moreover, theexact relation for Bc
will be pointed out. It is

ueBcu5
2pcn

Nf
, ~1!

whereNf is the number of fermion species~‘‘flavors’’ ! andn
is a charge density of carriers (Nf52 in graphite!. While the
existence of this exact relation is noticeable in itself, its e
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perimental verification would be a critical check of the v
lidity of the magnetic catalysis scenario in highly orient
pyrolytic graphite.

The paper is organized as follows. In Sec. II general f
tures of the model~reduced QED! are described. In Sec. II
we analyze the gap equation and establish the phase dia
in reduced QED without magnetic field. In Sec. IV the g
equation in reduced QED with an external magnetic field
studied. The resistivity and conductivity in this system a
studied in detail in Sec. V. Section VI is devoted to an int
pretation of the experimental data in highly oriented py
lytic graphite. In Sec. VII, we summarize the results of th
work. There are also three appendixes. The symmetry o~2
11!-dimensional fermions is considered in Appendix A.
derivation of the polarization function and the gap equat
in reduced QED is done in Appendix B. In Appendix C, th
effective potential for reduced QED with a nonzero chemi
potential is derived.

II. MODEL

In this section, we describe the general features of
model. As mentioned in Sec. I, the main assumption of
reduced dynamics of the planar systems is that the fermio
quasiparticles are confined to a plane, while the gauge fi
are free to propagate in the three-dimensional bulk.

A similar setting was recently studied in a class of re
tivistic models in Refs. 10 and 11. Here, however, we co
sider a strongly nonrelativistic model~with the Fermi veloc-
ity vF being much less than the speed of light! which could
be applied to realistic planar condensed matter systems
as highly oriented pyrolytic graphite; see Fig. 1.

The spatial coordinates on the plane~e.g., a single layer of
graphite! are denoted byrW5(x,y). The orthogonal direction
is labeled by thez coordinate. Thus, the most general bu
spatial vector is given byRW 5(x,y,z).

The Lagrangian density of the electromagnetic field~in
the bulk! is given by

Lem5
1

8p S «0EW 22
1

m0
BW 2D2A0r1

1

c
AW • jW, ~2!

where«0 is the dielectric constant,m0 is the magnetic per-
meability,A0 andAW are the scalar and vector potentials. T
electric and magnetic fields are

FIG. 1. The schematic lattice structure of a single layer
graphite.
8-2
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EW 52¹W A02
1

c
] tAW , ~3!

BW 5¹W 3AW . ~4!

The interacting terms, with the quasiparticle charge densir

and currentjW, were also included in the Lagrangian dens
in Eq. ~2!. Now the Lagrangian density of quasiparticl
themselves~defined only on the plane! reads

L05vFC̄~ t,rW !S ig0~] t1 im!

vF
2 ig1]x2 ig2]yDC~ t,rW !,

~5!

where C(t,rW) is a four-component spinor,C̄5C†g0, and
the 434 Diracg-matrices furnish a reducible representati
of the Clifford ~Dirac! algebra in 211 dimensions~see Ap-
pendix A!.22,23 In order to describe the situation with a fini
‘‘residual’’ density of carriers, here the chemical potentialm,
connected with the electric charge, was introduced.

We will consider the case when the fermion fields ca
an additional, ‘‘flavor,’’ indexi 51,2, . . . ,Nf ~in the example
of graphite,Nf52; see Refs. 7 and 8!. Then the symmetry of
Lagrangian~5! is U(2Nf) ~see Appendix A!. In the case of
minimal coupling of the electromagnetic field, the quasip
ticle charge density and current take the following expli
forms:

r~ t,RW !5eC̄~ t,rW !g0C~ t,rW !d~z!, ~6!

j x~ t,RW !5evFC̄~ t,rW !g1C~ t,rW !d~z!, ~7!

j y~ t,RW !5evFC̄~ t,rW !g2C~ t,rW !d~z!, ~8!

j z~ t,RW !50. ~9!

Proceeding as in Ref. 10, the initial action can be reduce
the brane layer. Then, neglecting relativistic corrections
order (vF /c)2, we are left with the following brane action o
interacting quasiparticles:

Sqp.E dtd2rWL0~ t,rW !2
1

2E dtE dt8E d2rWE d2rW8C̄~ t,rW !

3g0C~ t,rW !U0~ t2t8,urW2rW8u!C̄~ t8,rW8!g0C~ t8,rW8!.

~10!

The bare potentialU0(t,urWu) takes the following simple
form:

U0~ t,urWu!5
e2d~ t !

«0
E d2kW

~2p!2
exp~ ikW•rW !

2p

ukW u
5

e2d~ t !

«0urWu
.

~11!

Note, however, that in many cases of interest~e.g., in the
case of a finite temperature and/or a finite density and/o
nonzero magnetic field!, the polarization effects may consid
erably modify this bare Coulomb potential. Thus the inter
tion should rather be given by
04510
-
t

to
f

a

-

U~ t,urWu!5
e2

«0
E dv

2pE d2kW

2p

exp~2 ivt1 ikW•rW !

ukW u1P~v,ukW u!
, ~12!

where the polarization functionP(v,ukW u) is proportional
~with a factor of 2p/«0) to the time component of the pho
ton polarization tensor.

Adding a mass~gap! term D0c̄c into action~10! would
reduce theU(2Nf) symmetry down to theU(Nf)3U(Nf)
~see Appendix A!. Therefore, the dynamical generation of
fermion gap ~connected with a quasiparticle-hole pairin!
will lead to the spontaneous breakdown of theU(2Nf) down
to the U(Nf)3U(Nf).

24 Our goal is the description of the
flavor phase transition connected with generating the g
We will consider the dynamics both with and without a
external magnetic field.

III. GAP EQUATION. ZERO MAGNETIC FIELD

In this section we will describe the dynamics of the ge
eration of a gap connected with a quasiparticle-hole pair
provided by interaction~12! in the case of a zero externa
magnetic field. We will begin by calculating the polarizatio
function P(v,ukW u). Actually, we will calculate~and use in
the gap equation! P(0,ukW u), i.e., the polarization function in
an instantaneous approximation. The reliability of this a
proximation will be discussed in Sec. III E.

A. Polarization function

The one-loop polarization function at a finite temperatu
and a finite chemical potential is given by the integral rep
sentation~see Appendix B!

P~0,kW !5
2Te2Nf

«0vF
2 E

0

1

dxF lnS 2cosh
Rx1m

T D
2

DT
2~m!

2TRx
tanh

Rx1m

2T
1~m→2m!G , ~13!

where Rx5AvF
2kW2x(12x)1DT

2(m), DT(m) is the fermion
gap, andT is the temperature. Note that the gap is a dyna
cal quantity, determined from a gap equation~see Sec. III B
below! and therefore it can depend on both temperature
chemical potential. Note that throughout this paper we w
in a vacuum in which the fermion gap is positive.

At m50 ~zero density! and T50, the polarization func-
tion becomes

P~0,kW !5
e2Nf

«0vF
2 S D01

vF
2kW224D0

2

2vFukW u
arctan

vFukW u
2D0

D . ~14!

At nonzero density andT50, the function in Eq.~13! re-
duces to

P~0,kW !5
2e2Nf

«0vF
2

umu, for ukW u<k* , ~15!
8-3
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P~0,kW !5
2e2Nf

«0vF
2

umuF12
AkW22k

*
2

2ukW u
1

vF
2kW224D0

2~m!

4mvFukW u

3arctan
vFAkW22k

*
2

2m G for ukW u.k* , ~16!

wherek* [2Am22D0
2(m)/vF is proportional to the squar

root of quasiparticle density atT50, see Eq.~85! below. As
is easy to check, this polarization function has a very stro
dependence on momentum. Indeed, whileP(0,kW ) remains
constant for small momenta,ukW u<k* , its value drops con-
siderably forukW u*k* . In the case of a small density of ca
riers, i.e.,n;k

*
2 !(D0 /vF)2, this momentum dependence

particularly strong. As is clear from Eq.~15!, for small mo-
menta, the polarization functionP~0,kW ! is equal to the Debye
massMD and could be quite large. At the same time, t
function P(0,kW ) at intermediate values of the moment
ukW u;Ak* D0(m)/vF, is smaller than MD by about
a factor of D0(m)/Am22D0

2(m) i.e., P(0,kW )

;MDAm22D0
2(m)/D0(m). Finally, for ukW u@D0(m)/vF , the

polarization tensor approaches the following asymptote:

P~0,kW !.
pe2Nf

4«0vF
ukW u. ~17!

This observation is quite important for the proper analysis
the pairing dynamics between electron and hole types of q
siparticles leading to a possible dynamical generation o
gap. As we shall see below, it is in fact the region of m
menta ukW u@D0(m)/vF that dominates in such a dynamic
This in particular implies that the one-loop approximati
with free gapless fermions~when both the gap and the wav
function renormalization are neglected! is a reliable approxi-
mation for the polarization function in the gap equation,
least for largeNf . It could work reasonably well even fo
smaller values ofNf of order 1, say, 2 as in graphite.25

B. Dynamical gap atTÄ0 and µÄ0

Now let us study a possibility of spontaneous generat
of a dynamical gap in the one-particle spectrum of quasip
ticles. We begin by considering the gap equation for the ze
density and zero-temperature case. As follows from Eq.~B9!
in Appendix B and Eq.~17!, its explicit form reads

Dp5lE qdqDqK~p,q!

Aq21~Dq /vF!2
, ~18!

where the approximate expression for the kernelK(p,q) is
given by

K~p,q!5
u~p2q!

p
1

u~q2p!

q
~19!

and
04510
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2~«0vF1pe2Nf /4!
. ~20!

It is well known23,26,10that the approximation with the one
loop polarization function in the kernel of the gap equati
~the so-called improved rainbow approximation! is reliable
for large values of the number of fermion flavorsNf . Here,
however, we will also consider values ofNf of order 1, say 2
as in graphite. It is reasonable to assume that this appr
mation works qualitatively~although apparently not alway
quantitatively! even for these values ofNf , providing a gen-
eral insight into the nonperturbative dynamics of sponta
ous generation of a gap. The analysis done in~211!-
dimensional QED supports this assumption.27

In the most important region of momentaukW u@D0 /vF
where the pairing dynamics dominates~see below!, the only
role of the term (Dq /vF)2 in the denominator of the inte
grand on the right-hand side of Eq.~18! is to provide a cutoff
in the infrared region. Therefore, one can drop this ter
instead introducing the explicit infrared cutoffD0 /vF in the
integral. This is the essence of the so called bifurcation
proximation. As a result, we arrive at the following equatio

Dp5lS E
D0 /vF

p dq

p
Dq1E

p

Ldq

q
DqD . ~21!

Here we also introduced a finite ultraviolet cutoffL. In a
condensed-matter system, it could be taken to be of o
p/a, wherea is a characteristic lattice size~for example,a
52.46 Å for graphite!. An alternative, equally good, esti
mate ofL is related to the size of the energy band,L5t/vF,
wheret52.4 eV in the example of graphite.

The last integral equation is equivalent to the different
equation,

p2Dp912pDp81lDp50, ~22!

with the boundary conditions

p2Dp8up5D0 /vF
50, ~23!

~pDp81Dp!up5L50. ~24!

The solution compatible with infrared boundary conditio
~23! reads

Dp5
D0

3/2

sin~d!ApvF

sinSA4l21

2
ln

pvF

D0
1d D , ~25!

whered5arctanA4l21. Note thatD0 satisfies the relation
D05Dp5D0 /vF

. The ultraviolet boundary condition@Eq.
~24!# imposes another restriction:

A4l21

2
ln

vFL

D0
12d5p. ~26!

As is clear from this equation, a meaningful solution for t
dynamical gap, satisfying the constraintD0!LvF , exists
only for l.1/4. In the near-critical region, i.e., whe
A4l21 is small, the gap reads
8-4
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D0.LvFexpS 2
2p

A4l21
14D . ~27!

The conditionl.1/4 gives the critical line in the plan
(g,Nf), where the dimensionless coupling constant isg
[e2/«0vF ,

gcr5
4

82pNf
, ~28!

which means that, in the absence of an external magn
field, a dynamical gap is generated only ifg.gcr . In the
example of graphite, the number of ‘‘flavors’’ is equal to
Thus the estimate of its critical coupling givesgcr'2.33. We
emphasize that this is just an estimate obtained in the lea
order in 1/Nf in an instantaneous approximation. ForNf
52 as in graphite, both 1/Nf corrections and improving the
instantaneous approximation can certainly vary this va
~see a discussion in the end of Sec. III E!.

If highly oriented pyrolytic graphite is a semimetal in th
absence of an external magnetic field, it is clear that its
fective couplingge f f ~defined, for example, at the energ
scale below which the Dirac-type effective action provid
an appropriate description of the quasiparticle dynamics! is
smaller thangcr . Indeed, if the interaction were strong
than this, the ground-state rearrangement~from a semimetal
to an insulator state!, caused by the particle-hope pairin
could not be prevented.

Let us now discuss the self-consistency of our assump
that the region of momentaukW u@D0 /vF is mostly responsible
for the generation of a ‘‘small’’ gapD0!LvF in the near-
critical limit. The point is that in this regime the logarithm
ln(LvF /D0);2p/A4l21 is large. On the other hand, the b
havior of the integrand on the right-hand side of Eq.~18! is
smooth asq→0. The smooth behavior of the integrand in t
infrared region implies that the region 0<q&D0 /vF is too
small to generate the large logarithm ln(LvF /D0). This loga-
rithm @and therefore the essential singularity in express
~27!# is generated in the large regionD0 /vF!q!L. A varia-
tion of the kernel in the infrared region can at most chan
the overall coefficient in the expression for the gap.

At this point, we would like to mention that the dimen
sionless coupling constant in the problem at hand isg
[e2/«0vF . In the gap equation,g has to be considered a
the bare coupling constant, and its value can be large
shown in Ref. 7, in the absence of a dynamical gap,
corresponding renormalization-group~running! coupling
runs logarithmically to a trivial fixed point in the infrared. I
the presence of a gap, such a running should stop at
energy scale of orderD0. This means that the nonperturb
tive dynamics shifts the zero infrared fixed point to a fin
value.

C. Dynamical gap atTÅ0 or µÅ0

Up to now, we have considered the case with the z
density and zero temperature. It is clear that the critical va
of the coupling constant should be larger thangcr'2.33 if a
04510
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nonzero density~and/or finite temperature! are taken into ac-
count. Indeed, with increasing the charge density of carr
or the value of the temperature, the screening effects bec
stronger and the quasiparticle interactions become weake
addition, the pairing between quasiparticles in the two ad
cent bands separated by the dynamical gap gradually
comes less efficient. The latter could be clearly seen by c
paring the energy gain from creating a gap in the spectr
and the energy loss of pushing up the energy of all the st
in the band above the gap. Both effects work against
formation of a gap. Thus, after reaching some critical val
the finite-density or -temperature effects will be so stro
that dynamical generation of a gap will be impossible.

When the chemical potential is smaller than the gap,
dynamics of the zero-temperature model remains unchan
Thus for all values ofm,D0[D0(m)um50, the exact solu-
tion for the dynamical gap is the same. In our approximati
it is given by Eq.~27!. In order to consider the possibility o
a nontrivial solution satisfying the conditionm.D0(m), we
consider an approximate gap equation following from E
~17! and Eqs.~B8! and ~B9! taken in the limitT→0,

Dp5lS E
e

pdq

p
Dq1E

p

Ldq

q
DqD , ~29!

where the infrared cutoffe is given by a larger value o
D0(m)/vF or Am22D0

2(m)/vF . By making use of the same
method as before, we straightforwardly derive two branc
of the solution,

D0~m!.D0 , ~30!

for m,A2D0 ~here we took into account thatD0(m)5D0 for
m,D0), and

D0~m!.Am22D0
2, ~31!

valid for D0<umu<A2D0. While the first branch of the so
lution in Eq. ~30! describes a gap that is essentially u
changed withm, the value of the gap along the secon
branch of the solution in Eq.~31! increases with the chemica
potential. For values of the chemical potential in the ran
D0<m<A2D0, both branches of the solution coexist. Th
first branch corresponds to a locally stable solution~i.e., to a
local minimum of the effective potential!, and the other one
to an unstable solution~i.e., to a local maximum of the ef
fective potential!. In addition, there is always a trivial solu
tion which corresponds to an extremum of the effective p
tential at the origin. When both nontrivial solutions~30! and
~31! coexist, the extremum at the origin should be a mi
mum. This follows from a simple consideration of the topo
ogy of the effective potential.
8-5
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Of course, the analysis of the gap equation alone wo
not be sufficient to prove most of the above statements
support them, we derived the effective potentialV(s) as a
function of the composite fields52^c̄c& in Appendix C.
This potential is graphically shown in Fig. 2 for a few di
ferent values of the chemical potential. As is clear from
figure, we have a typical realization of the first order pha
transition.

Our analysis of the effective potential also allows to d
termine the critical value of the chemical potential:

mc.
D0

~22A2!1/3
.

LvF

~22A2!1/3
expS 2

2p

A4l21
14D .

~32!

When the chemical potential increases fromm5mc20 to
m5mc10, the value of the gap drops fromD.D0 to D
50.

Similarly, atm50, we could derive the value of the crit
cal temperature. It also appears to be of the same orde
D0:

Tc.
D0

2
.

LvF

2
expS 2

2p

A4l21
14D . ~33!

Unlike the case with the chemical potential, the phase tr
sition in the temperature is of the second order. This follo
both from the existence of a single-branch solution to the
equation and from a direct study of the effective potentia

D. Reduced QED3¿1 vs conventional QED2¿1

Before concluding this section, it is instructive to compa
the reduced dynamics with ‘‘conventional’’ QED211. The
gap equations in these two models are similar, but the in
action potentials are slightly different. Instead of express
~12!, one has23,26

FIG. 2. The effective potential of the composite fields for a few
different values of the chemical potential:m50 ~solid line!, m
5D0 ~dash-dotted line!, m5mc'1.19D0 ~dashed line!, m51.3D0

~dash-dot-dotted line!, andm5A2D0 ~dotted line!. In the calcula-
tion, we usedD051. The values of the potential are given in un
of NfD0

3/vF
2 , and the values of the composite fields in units of

Nf(D0 /vF)3/2AL.
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U3d~ t,rW !5
e3

2

«0
E dv

2pE d2kW

~2p!2

exp~2 ivt1 ikW•rW !

kW21P~v,ukW u!
,

~34!

wheree3 is the~dimensionful! coupling constant in QED211

and, in the relevant region of momentaD!vFukW u
!e3

2/«0vF , the polarization function here is essentially th
same as in Eq.~13!, except that the dimensionless couplin
constante2/«0vF is replaced by the dimensionfule3

2/«0vF .
Comparing expressions~34! and ~12!, one can see that th
only difference between them is in the appearance of
term kW2, insteadukW u, in the denominator of the former. Thi
point makes quite a difference. On the one hand, it provi
a dynamical ultraviolet cutoff;e3

2 in the gap equation and
on the other hand, since this term is suppressed in the re

vFukW u!e3
2/«0vF , it is irrelevant for generating the gap. Th

implies reducing screening of Coulomb like interactions
QED211 as compared to the reduced dynamics. Let us c
sider this point in more detail. It is easy to find that th
dynamical gap in QED211 is

D3d.
e3

2

«0vF
expS 2

2p

A4l321
14D , ~35!

wherel352/pNf . Since this solution exists whenl3.1/4,
it implies that the critical value ofNf is equal to 8/p'2.55.
The same critical value forNf was obtained in Ref. 9.

Now, notice that the parameterl3 coincides withl in Eq.
~20! only in the limit e2→`. Thus the reduced dynamic
becomes equivalent to QED211 dynamics only in the maxi-
mally strong coupling limit, withe2→`. Therefore, we con-
clude that there are important similarities and important d
ferences between the dynamics in QED211 and reduced
QED311. Both dynamics are intimately connected with lon
range Coulomb-like interactions. On the other hand, si
QED211 is superrenormalizable~and therefore asymptoti
cally free! theory, its nonperturbative interactions are d
namically cut off at the scale;e3

2 in ultraviolet. Also, its
dynamics is more efficient in generating a dynamical g
Indeed, it corresponds to the dynamics in the redu
QED311 when the coupling constante of the latter goes to
infinity. This feature was already established in relativis
reduced QED311,10 with vF5c.

E. Beyond the instantaneous approximation

Let us now turn to a discussion of the reliability of th
instantaneous approximation for the gap equation. In this
proximation, the frequency dependence in the photon pro
gator is neglected. While it is certainly justified for its fre
~kinetic! part, it is not immediately clear how good it is fo
the polarization function.

Keeping the frequency dependence, the gap equatio
zero T and m takes the following form in Euclidean spac
@compare with Eq.~B7! in Appendix B 2#,
8-6
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D~V,p!5
e2

«0
E dvd2k

~2p!2

D~v,k!

v21vF
2 ukW u21D~v,k!2

1

upW 2kW u1~vF
2 upW 2kW u2!/@~V2v!21vF

2 upW 2k$ u2#P̃~V2v,pW 2kW !
, ~36!
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where functionP̃ approximately is

P̃~v,kW !5
pe2Nf

4«0vF
2
Av21vF

2 ukW u2. ~37!

In the instantaneous approximation, we usedv2→0 in the
polarization function. Thus the strength of the interacti
was somewhat underestimated in such an approxima
This in turn implies thatgcr and 1/Nf

cr are smaller than thei
values obtained in the instantaneous approximation,
gcr,4/(82pNf) andNf

cr.8/p'2.55 in theleading order
in 1/Nf .

One should remember however that 1/Nf corrections
could be relevant for the values ofNf of order 1. Using the
argument in Ref. 25, one may expect variations up to 50%
the value ofNf

cr . Therefore the valueNf
cr52.55, obtained

here in leading order in 1/Nf , should be considered just as
useful estimate.

IV. GAP EQUATION. NONZERO MAGNETIC FIELD

The main goal of this paper is a description of t
magnetic-field-driven metal-insulator phase transition in p
nar systems. Having developed a general formalism in
preceding sections, here we will take into account the ef
of an external constant magnetic field on the dynamics o
spontaneous generation of a gap.28 The general observatio
of Refs. 14 and 15 stated that, in the presence of an exte
magnetic field, there is the generation of a dynamical g
connected with electron-hole pairing even for an arbitr
weak attraction between electrons and holes. Therefore
this case the gap will appear even if the bare coupling c
stantg, introduced in Sec. III, is subcritical~in the case of a
supercriticalg, the magnetic field would enhance the alrea
existent gap!. This phenomenon is known as ‘‘magnetic c
talysis.’’ The origin of this effect is connected with the d
namics of the LLL: its dynamics is effectively 011 ~111!
dimensional in 211 ~311! dimensions, and this makes th
electron-hole pairing inevitable.

Actually, this formulation is correct only in the case
zero temperature and zero charge density. In the presen
temperatureT and/or charge densityn, there is a critical
value of the magnetic field,Bc(T,n), defining a threshold for
this effect: B has to be larger thanBc(T,n).14 While the
dependence ofBc(T,n) on T is model dependent, the valu
of Bc(0,n) is universal for all values ofg<gc : it is given by
ueuBc52pcn/Nf and corresponds to the filling of the lowe
Landau level.14 The physics of this result is quite clear: whe
the LLL is filled up, the LLL electrons are blocked and e
cluded from the pairing dynamics. In other words, in th
case we loose the catalyst and, therefore, the effect itself
we will see in Sec. VI, this point can be crucial for explai
04510
n.

.,
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e
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ing the presence of an offset fieldBc observed in the recen
experiments in highly oriented pyrolytic graphite.19–21

A. Dynamical gap at TÄ0 and µÄ0

In a constant external magnetic fieldB, only the free part
of the quasiparticle action is modified. In particular, the sp
tial derivatives in Eq.~5! are replaced by the correspondin
covariant derivatives

]x→]x1 i
e

c
Ax

ext~rW !, ~38!

]y→]y1 i
e

c
Ay

ext~rW !, ~39!

whereAx
ext(rW)52By/2 andAy

ext(rW)5Bx/2. In this case, the
propagator of quasiparticles takes the following gene
form:15,29

G~ t2t8,rW,rW8!5expF2 i
e

c
rW•AW ext~rW8!GG̃~ t2t8,rW2rW8!.

~40!

Note that while we used the symbolS for the fermion propa-
gator in the case without magnetic field, we use the sym
G for the fermion propagator in a magnetic field. Let
begin by considering the propagator of free quasiparticle
a magnetic field,G0(t2t8,rW,rW8). For our purposes, it will be
useful to introduce the bare gapDb for these free quasipar
ticles. The translation invariant part of such a propaga
G̃0(t2t8,rW2rW8), reads14

G̃0~ t,rW !5E dt

2p

d2kW

~2p!2
exp~2 ivt1 ikW•rW !G̃0~v,kW !,

~41!

G̃0~v,kW !52i expS 2
cukW u2

ueBu D
3 (

n50

`
~21!n@~vg01Db! f 1~kW !1 f 2~kW !#

v22Db
222nvF

2 ueBu/c
.

~42!

In this last equation, we used the shorthand notations

f 1~kW !5P2LnS 2ckW2

ueBu D 2P1Ln21S 2ckW2

ueBu D , ~43!

f 2~kW !52vFkWgW Ln21
1 S 2ckW2

ueBu D , ~44!
8-7
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with the following spin projection operators:

P65
16 ig1g2

2
. ~45!

Also, Ln
a(z) are the generalized Laguerre polynomials.

definition,Ln(z)[Ln
0(z) andL21

a (z)[0.
Let us now turn to the interactions in the presence of

magnetic field. In this case the polarization effects could a
be taken into account,30 and the modified interaction is

U~ t,rW !5d~ t !
e2

«0
E d2kW

2p

exp~ ikW•rW !

ukW u~11aukW u!

5
e2pd~ t !

2«0a
FH0S urWu

a
D 2N0S urWu

a
D G , ~46!

where

a52pn0

e2Nf

«0vF
A c

ueBu
, ~47!

and the constantn0 is given by

n0[
1

4pAp
E

0

` dz

Az
S coth~z!

z
2

1

sinh2~z!
D 52

3z~20.5!

A2p

'0.14. ~48!

Regarding the notation,z(z) is the Riemann zeta function
H0(z) is the Struve function, andN0(z) is the Bessel func-
tion of the second kind. It is notable that the instantane
approximation for the polarization function is justified in th
case: the frequency dependence is suppressed by facto
order v/AvFueBu @which are small in the case of the LL
dominance~see below!#. This can be shown directly from th
expression for the polarization function in Ref. 30.

Now the gap equation for the quasiparticle propaga
reads

G̃~ t,rW !5G̃0~ t,rW !2 i E dt8d2rW8E dt9d2rW9exp@2 irW•AW ~rW8!

2 irW8•AW ~rW9!#G̃0~ t2t8,rW2rW8!g0G̃~ t82t9,rW82rW9!

3g0G̃~ t9,rW9!U~rW82rW9!d~ t82t9!. ~49!

The structure of this equation is essentially the same as in
relativistic model of Refs. 15 and 29. Here, however,
neglect the retardation effects in the interaction potential

As pointed out in Ref. 14, in the case of a subcritic
coupling constantg<gc , one should distinguish two differ
ent dynamical regimes. The first regime corresponds to
situation with a weak couplingg, when it is outside the scal
ing region near the critical valuegc . In this case the LLL
dominates and the value of the dynamical gapD0 is much
less than the gapA2vF

2 ueBu/c between the Landau levels
The latter guarantees that the higher Landau levels deco
from the pairing dynamics and that the LLL indeed dom
nates.
04510
e
o

s

of

r

he

l

e

ple

The second, strong-coupling, regime is that with a ne
critical, although subcritical, value ofg. In that case, all Lan-
dau levels are relevant for the pairing dynamics and the va
of the dynamical gapD0 is of order of the Landau gap
A2vF

2 ueBu/c.
Let us begin by considering the first regime. Then t

low-energy dynamics is dominated by the LLL, and the qu
siparticle propagator could be approximated as

G̃~ t,rW !5
i ueBu
4pc

expS 2
urWu2ueBu

4c
D g~ t !~12 ig1g2!, ~50!

whereg(t) is unknown matrix-valued function which shoul
be determined by solving the Schwinger-Dyson~gap! equa-
tion. By substituting ansatz~50! into Eq. ~49!, we derive the
following equation for the Fourier transform ofg(t):

g21~v!5g0
21~v!2 ie2E dv8

2p
g0g~v2v8!g0

3E d2kW

~2p!2
expF2

cukW u2

2ueBuGU~kW !. ~51!

The value of the bare gap is now zero in the free propag
g0(v). And the general structure of the functiong(v) is
suggested by the first~LLL ! term in bare propagator~42!,
where now the bare gapDb should be replaced by the dy
namical gap functionDv and the wave function renormaliza
tion Av should be introduced. Thus we have

g~v!5
Avg0v1Dv

Av
2 v22Dv

2
. ~52!

One could see that the integral on the right hand side of
~51! is independent ofv. This implies thatAv51 and the
gapDv is independent ofv. By taking this into account, we
straightforwardly derive the solution

D05
g

A2
AvF

2 ueBu
c E

0

` dk exp~2k2!

11kx0
, ~53!

where

x052A2pn0gNf . ~54!

In two limiting cases,x0!1 andx0@1, we obtain the fol-
lowing asymptotes:

D0.
gAp

2A2
AvF

2 ueBu
c S 12

x0

Ap
1

x0
2

2
1••• D ~55!

~for weak coupling and smallNf) and

D0.
g

A2
AvF

2 ueBu
c

ln x0

x0
[

vF

4pn0Nf
AueBu

c
ln x0 ~56!

~for largeNf). In accordance with the general conclusion
Refs. 14 and 15, in a magnetic field the gap is generated
any nonzero coupling constantg5e2/«0vF .
8-8
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One can see that for a sufficiently smallg5e2/«0vF in
expression~55! and for a sufficiently largeNf in Eq. ~56!, the
LLL approximation is selfconsistent indeed: in both cas
the gapD0 can be made much less than the Landau
~scale! L[A2vF

2 ueBu/c. We emphasize that the second so
tion @Eq. ~56!#, also obtained in Ref. 8, corresponds to t
regime with a largeNf andnot to the strong coupling regime
with a largeg and Nf of order one. Indeed, takingg to be
large enough in expression~56!, one obtains a gapD0 ex-
ceeding the Landau scaleL, i.e., for large g the self-
consistency of the LLL dominance approximation is lost. W
will discuss the strong-coupling regime below.

What is the energy scale the coupling constantg is related
to in this problem? It is the Landau scaleL. The argument
supporting this goes as follows. There are two, dynamic
very different, scale regions in this problem. One is the
gion with the energy scale above the Landau scaleL and
below the ultraviolet cutoffL, defined by the lattice size. In
that region, the dynamics is essentially the same as in
theory without magnetic field. In particular, the running co
pling decreases logarithmically with the energy scale the7

Another is the region below the Landau scale. In that reg
the magnetic field dramatically changes the dynamics, in
ticular, the behavior of the running coupling constant. As
analysis of this section shows, because of the magnetic
the pairing dynamics~in the particle-hole channel! is domi-
nated by the infrared region wherev&D0. Therefore, the
scale region above the Landau scaleL completely decouples
from the pairing dynamics in this case. This manifests its
in expression~53! for the gap: the only relevant scale is th
Landau scaleL there. Since the effect of the running of th
coupling is taken into account by the polarization function
the gap equation, we conclude that the couplingg indeed
relates to the Landau scale in this problem. Note that it
be somewhat smaller than the bare coupling constantg(t)
related to the scalet. Takingt52.4 eV in graphite~the width
of its energy band! and using the equation for the runnin
coupling from Ref. 7, one obtains that it is smaller by t
factors 1.2 and 1.4 thang(t) for the values of the magneti
field B510 and 0.1 T, respectively.

Now let us turn to the second, strong-coupling, dynami
regime. In reduced QED, the gap equation in this regi
includes the contributions of all the Landau levels and
comes very formidable. Still one can estimate the value
the gap: since there are no small parameters in this reg
for moderate values ofNf , the gap should be of the order o
the Landau scaleL. This conclusion is supported by studyin
this regime in a simpler model,~211!-dimensional Nambu-
Jona-Lasinio model.14 In this case, in the critical regime, th
gap is equal toD0.0.32L, where the Landau scale in tha
relativistic model, withvF5c, is L5A2cueBu. As we will
see in Sec. VI, the critical dynamical regime can be relev
for the magnetic-field-driven phase transition in highly o
ented pyrolytic graphite.19–21

B. Dynamical gap atTÅ0 or µÅ0

By making use of the Matsubara formalism, it is easy
generalize the gap equation for the case of a finite temp
04510
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ture and a nonzero chemical potential. Without going into
the details, let us write the final equation

DT~m!5
e2

2A2«0

AueBu
c E

0

`dk exp~2k2!

11kx0

3

sinh
DT~m!

T

cosh
DT~m!

T
1cosh

m

T

. ~57!

In the LLL dominance approximation, the expression f
charge density of carriers in terms of the chemical poten
is

n5
Nf ueBu
2pc

sinh
m

T

cosh
DT~m!

T
1cosh

m

T

. ~58!

We assume that, in the model at hand, the charge densi
carries~i.e., n5nel2nh) is a fixed constant. Then the ex
pression for the chemical potential reads

sinh
m

T
5

nB

12nB
2 S cosh

DT~m!

T
1A11nB

2sinh2
DT~m!

T D ,

~59!

cosh
m

T
5

1

12nB
2 SA11nB

2sinh2
DT~m!

T
1nB

2cosh
DT~m!

T D ,

~60!

where

nB5
2pcn

Nf ueBu
[

Bc

B
~61!

is the filling factor.
By making use of the expression for the chemical pot

tial in terms of the filling factornB , we rewrite the gap
equation in the following convenient form:

DT~nB!5
e2

2A2«0

AueBu

c
E

0

` dk exp~2k2!

11kx0

3

~12nB
2 !sinh

DT~nB!

T

cosh
DT~nB!

T
1A11nB

2sinh2
DT~nB!

T

.

~62!

Let us first consider the case of zero temperature. Then
gap equation takes a very simple form,
8-9
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D0~nB!5
12nB

2
D0[

e2~12nB!

2A2«0

AueBu
c E

0

`dk exp~2k2!

11kx0
,

~63!

whereD0[D0(0) is the value of the gap at the zero fillin
factor. Since we choose the vacuum in which the gap
positive ~see Sec. III A!, this equation implies that fornB
>1, there is no solution with a nonzero gap, i.e. the symm
try is restored. The conditionnB51 determines the critica
density,nc5Nf ueBu/2pc. The densitync corresponds to the
filling of the LLL and, as discussed at the beginning of th
section, this value is universal for all subcritical values of t
coupling constantg. Reversing the roles ofn andB, one can
say that, for a fixed value of the densityn, the critical value
of the magnetic field isueBcu52pcn/Nf : a dynamical gap
occurs only for magnetic fieldsB larger thanBc .

The critical temperature is determined from Eq.~62! with
DT(nB)50:

Tc5
e2~12nB

2 !

4A2«0

AueBu
c E

0

` dk exp~2k2!

11kx0
. ~64!

At a fixed densityn, this equation implies that, as it shou
be, the critical temperature is zero for magnetic fields wea
than the critical valueBc determined above. For magnet
fieldsB stronger thanBc , Tc grows withB ~see Fig. 9 in Sec
VI !. As we will see in Sec. VI, these results can be import
for explaining experimental data in highly oriented pyroly
graphite.19–21

Though here we considered only the dynamical regi
with the LLL dominance, it is reasonable to assume that
qualitative picture will also remain the same in the case
the scaling dynamical regime, with the near-critical coupli
constantg. This is in particular supported by the fact of th
universality of the critical valueBc .

Before concluding this section, let us mention that the
gap equation could also be rewritten in the form

DT~nB!5

2Tcsinh
DT~nB!

T

cosh
DT~nB!

T
1A11nB

2sinh2
DT~nB!

T

, ~65!

where relation~64! was taken into account. The last form
the gap equation will be the most convenient for using
numerical calculations of conductivity; see Sec. V B.

V. CONDUCTIVITY AND RESISTIVITY

Conductivity and resistivity are major players in expe
mental detecting the magnetic field driven semime
insulator phase transition in graphite.19–21 In this section, we
will calculate them in reduced QED311 using the results ob
tained in the previous sections. We will consider both ca
of zero and nonzero external magnetic fields. While
former case is interesting in itself, it will also serve us as
important reference point for the latter. Tne main conclus
of this section is that there is a clear signature of the ph
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transition seen in the behavior of the conductivity~resistiv-
ity! as a function of temperature. More precisely, we find
following.

~1! If the phase transition is of the first order, there is
discontinuity in the conductivity~resistivity! at a critical
temperatureTc .

~2! If the phase transition is of the second order and
scaling properties are correctly described by the mean-fi
approximation, the conductivity~resistivity! exhibits a kink
behavior at the critical temperature.

~3! Finally, if the phase transition is a non-mean-fie
second-order one, the conductivity~resistivity! is a smooth
function at the critical temperatureTc , while a singularity
occurs in its higher derivatives atT5Tc .

In addition, our calculations show that in this particul
model, the flavor phase transition, restoring the flavor sy
metry U(2NF), does not look like a semimetal-insulato
phase transitionif there is no external magnetic field. On th
other hand, in the presence of a magnetic field, in many ca
it does look like a semimetal-insulator phase transition.

A. No magnetic field

In a calculation of transport coefficients, it is very usef
to utilize the spectral representation of the quasipart
Green function. The latter is defined as follows:31

S~ ivn ,kW !5 i E
2`

` dvA~v,kW !

ivn2m2v
. ~66!

In the reduced planar model described in Sec. II, we der

A~v,kW !5
G

2pE F g0E2kWgW 1D

~v2E!21G2
1

g0E1kWgW 2D

~v1E!21G2G , ~67!

whereE5AvF
2kW21D2; throughout this section, we use th

symbol D for the gap, i.e.,D[DT(m) and D[DT(nB) for
the cases with no and with magnetic field, respectively. N
that we introduced a phenomenological width parameteG
without which the calculation of conductivities would b
meaningless. A finite width parameter appears as a resu
interactions, and scattering on impurities, in particular.
general, the widthG is defined through the fermion self
energy asG(v)52Im SR(v). Thus it is a frequency~as
well as temperature and magnetic field! dependent quantity
Like the dynamical gap itself, it should be self-consisten
determined from the Schwinger-Dyson equations. At lo
temperatures, usually it could be modeled by a constant p
nomenological parameter. Therefore, instead of conside
an additional Schwinger-Dyson-type equation, we choos
constant parameterG and view this as yet another approx
mation.

In terms of the spectral function, the charge density
carriers reads

n5
1

2E d2k

~2p!2E2`

`

dvS tanh
v1m

2T
21D tr@g0A~v,kW !#.

~68!
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The conductivity tensor is defined as

s i j 5 lim
V→0

Im P i j
R~V1 i e!

V
, ~69!

where P i j
R(V) is the retarded current-current correlatio

function which is also given in terms of the spectral functio

P i j ~V1 i e!5
e2vF

2

2 E
2`

`

dvdv8

tanh
v1m

2T
2tanh

v81m

2T

v2v81V1 i e

3E d2k

~2p!2
tr@g iA~v,kW !g jA~v8,kW !#. ~70!

The vertex corrections were neglected in this express
Formally, they are suppressed by a power of 1/Nf . Of
course, in the case of graphite~with Nf52), the vertex con-
tributions may nevertheless play an important role.32 This
question should be studied in more detail, but it is outside
scope of the present paper. In absence of a magnetic field
conductivity tensor has only the diagonal componentss
5sxx5syy . Both components are equal as a result of ro
tional invariance of the model. The explicit expression of t
conductivity, in this case, reads

s5
e2Nf

4p2T
E

2`

` G2dv

cosh2
v1m

2T

E
D2

`

dx
~x1v21G2!224v2D2

@~x1v21G2!224xv2#2

5
e2Nf

8p2T
E

2`

` dv

cosh2
v1m

2T

F11
v22D21G2

2uvuG

3S p

2
2arctan

G21D22v2

2uvuG D G , ~71!

whereG is the width parameter, and the density of carriers
defined by the following relation:

n5
GNf

2p2vF
2E

2`

` dv

v21G2ED

`

dEEF tanh
v1m1E

2T

1tanh
v1m2E

2T G . ~72!

In the limit G→0, these two expressions reduce to

s5
e2Nf

16pTGE2`

` dv

cosh2
v1m

2T

v22D2

uvu
u~v22D2!

5
e2Nf

16pTGED

`dv

v F v22D2

cosh2
v1m

2T

1~m→2m!G ~73!

and
04510
:

n.

e
the

-
e

s

n5
Nf

2pvF
2E

D

`

dEEF tanh
m1E

2T
1tanh

m2E

2T G

5

NfT
2sinh

m

T

pvF
2 E

D/T

` dxx

coshx1cosh
m

T

5
NfT

2

pvF
2 F D

T
ln

11expS m2D

T D
11expS 2

m1D

T D

1Li2~2e2~m1D!/T!2Li2~2e(m2D)/T!G , ~74!

where Li2(z) is the dilogarithm function. As one can se
from the above formulas, the conductivity grows linear
with temperature when the temperature is large:

s.
e2Nf

4p

T

G
ln 2 for T→`. ~75!

Note, however, that the expression for the conductivity
Eq. ~73!, derived for theG→0 case, fails when temperature
become very small. The correct result for small temperatu
could be derived from Eq.~71!. It reads

s5
e2Nf

2p2 F11
m22D21G2

2umuG

3S p

2
2arctan

G21D22m2

2umuG D1OS T

G D G . ~76!

The density in that same limit is

n5
Nf

2pvF
2 ~m22D2!sgn~m!u~m22D2!. ~77!

The interplay between the density of carriers and the widtG
is characterized by the following dimensionless paramete

h5
1

G
A2pvF

2n

Nf
. ~78!

In the two opposite limits of a clean or dirty system, th
parameter is either large or small, respectively. Then the
responding zero temperature asymptotes for the conduct
take the forms

s5
e2Nfh

4p
A 2pvF

2n

2pvF
2n1NfD

2
~79!

for h@1, and
8-11
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s5
e2Nf

2p2 F11
G

2D S p

2
2arctan

G

2D D G ~80!

for h!1. The last expression was derived under the assu
tion thatn!D2/vF

2 . Finally, in the strict limit of zero density
~i.e., m50), we derive

s5
e2Nf

p2

G2

G21D2
. ~81!

It should be emphasized that the strict case of zero den
corresponds tom50 ~rather thanm5D as might be sug-
gested by taking the limitT→0 first, and thenn→0). To

FIG. 3. The conductivity as a function of temperature for t
zero-magnetic-field case. The bold solid line corresponds to
case without a gap. The other lines correspond to nonzero dyn
cal gaps and different values ofTc . Conductivity is measured in
units of e2, both temperature and widthG are measured in K, and
densityn is measured in cm22.
04510
p-

ity

understand this better, one should look at the tempera
dependence of the chemical potential at a given fixed va
of the density. In particular, when the density of carriers
very small, the chemical potential as a function of tempe
ture sharply falls from its valuem5D at T50 almost down
to zero in a very small region of temperatures. Afterward
starts to grow. When the density becomes vanishingly sm
the above-mentioned region of temperatures where
chemical potential drops shrinks to zero. Thus, by mak
use of continuity argument, it is clear that the value of t
chemical potential is zero in the limitT→0 if the density of
carriers is zero. It is notable that our result in Eq.~81! is in
agreement with the Wiedemann-Franz law, i.e.,

e
i-

FIG. 4. The resistivity as a function of temperature for the ze
magnetic-field case. The bold solid line corresponds to the c
without a gap. The other lines correspond to nonzero dynam
gaps and different values ofTc . Resistivity is measured in units o
e22, both temperature and widthG are measured in K, and densit
n is measured in cm22.
8-12
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sT

k U
T→0

5
3e2

p2
, ~82!

where we use the value of the thermal conductivityk calcu-
lated in Ref. 33.

The numerical results for the temperature dependenc
the conductivity are shown in Fig. 3 in the case of the z
gap ~bold solid line!, and nonzero gaps~other lines corre-
spond to different values ofTc). Note that the model at han
reveals an ‘‘insulator’’~i.e., increasing with temperature!
type behavior of conductivity even in the case of a fin
density of carriers. This type of behavior is a consequenc
using a constant value of the width parameterG in our
model. Then the growth of the conductivity with increasi
temperature is directly related to the increasing numbe
thermally excited quasiparticles. In realistic systems,
course, the width~which is related to the inverse scatterin
time! would normally start to grow with temperature too.
general, one might choose the width as function of ene
and temperature,

G~v,T!5G01
1

t~v,T!
, ~83!

where G0 is the zero temperature width due to impuritie
and the other term is due to the thermal contribution. In t
paper, for the sake of simplicity, we consider the simpl
model with a fixed constant value of the width parame
The analysis, however, could be easily generalized for
phenomenologically motivated dependencies like that in
~83!.

In order to calculate the conductivities in the case of n
zero dynamical gaps, we used gap equation~65! in which the
critical temperatureTc was treated as a free parameter. T
results for the temperature dependence of the resistivity
plotted in Fig. 4.

As one can see in Figs. 3 and 4, there is a kink at
critical point T5Tc in the conductivity~resistivity!. Its oc-
currence is directly related to the mean-field behavior of
gapD in the vicinity of the critical point, i.e.,D;ATc2T.
Indeed, as follows from Eq.~71!, the conductivitys depends
04510
of
o

of

f
f

y

,
s
t
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y
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e
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e

e

on D2 and there is a linear inD2 term in it asD2→0. There-
fore, its derivative with respect to temperature has a fin
discontinuity at the critical pointT5Tc .

The mean-field behavior may change if higher-ord
1/Nf , corrections~fluctuations! are taken into account. Th
fluctuations could either change the phase transition t
first-order one, with a discontinuity inD at the phase-
transition point, or to a non-mean-field second-order ph
transition, with the scaling lawD;(Tc2T)n wheren.1/2.
While in the former case a discontinuity will appear in th
conductivity ~resistivity!, in the latter case the conductivit
~resistivity! will be a smooth function of temperature, and
singularity will move to its higher derivatives.

Another notable point is that in the case with no magne
field, the flavor phase transition doesnot look like a
semimetal-insulator one. Indeed, as one can see in in Fig
4, an ‘‘insulator’’-type behavior does not change at the cr
cal point. As we will see in the next subsections, the occ
rence of a magnetic field will drastically change this featu
of the phase transition.

Before concluding this section, let us also mention th
the conductivity~as well as the resistivity! become more sen
sitive to the appearance of a dynamical gap when the den
of carriers decreases. To support this statement, we plo
the conductivity and resistivity for two different finite value
of carrier densities which differ by a factor 10; see the low
parts of Figs. 3 and 4.

As we see from Fig. 4, the temperature dependence of
resistivity develops a minimum when the value of the gap
sufficiently large. Comparing this temperature depende
with the experimental data, we might even suggest that
studied graphite samples are better described by the m
with a nonzero dynamical gap even in the absence of a m
netic field. The effect of an external field is studied in t
following subsections.

B. Conductivity tensor. Nonzero magnetic field

Let us now turn to the analysis of the conductivity in th
case with an external magnetic field. The spectral funct
A(v,kW ) of the translation invariant part of the quasipartic
propagator in a magnetic field@see Eqs.~41! and ~42!# is
given by
A~v,kW !5
G

p
expS 2

cukW u2

ueBu D (n50

`
~21!n

Mn
F ~g0Mn1D! f 1~kW !1 f 2~kW !

~v2Mn!21G2
1

~g0Mn2D! f 1~kW !2 f 2~kW !

~v1Mn!21G2 G , ~84!

whereMn5AD212nvF
2 ueBu/c and the functionsf 1(kW ) and f 2(kW ) were defined earlier in Eqs.~43! and ~44!. In an external

magnetic field, the conductivity is a tensor quantity. The diagonal and off-diagonal components of conductivity read

sxx5
e2Nf ueBuG2

2p2T
(
n50

` E
2`

` dv

cosh2
v1m

2T

~v21Mn
21G2!~v21Mn11

2 1G2!24v2D2

@~v22Mn
22G2!214v2G2#@~v22Mn11

2 2G2!214v2G2#
~85!

and

sxy5
e2Nf

2p
nB , ~86!
8-13
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respectively. Here the parameterG gives the energy width of Landau levels, and the filling factornB @related to the density o
carriers by the relation:nB52pcn/(Nf ueBu)# is defined as follows:

nB5E
2`

` dv

2p
tanh

m1v

2T F G

~v2D!21G2
1~v→2v!12(

n51

` S G

~v2Mn!21G2
1~v→2v!D G . ~87!

The sum over Landau levels in Eq.~85! could be performed explicitly, and the result is given in terms of the digam
function,c(z), as follows:

sxx5
e2NfG

4p2T
E

2`

` dv

cosh2
v1m

2T

G

S vF
2eB

c D 2

1~2vG!2

F 2v21

~v21D21G2!S vF
2eB

c D 2

22v2~v22D21G2!
vF

2eB

c

~v22D22G2!214v2G2

2
v~v22D21G2!

G
Im cS D21G22v222ivG

2vF
2 ueBu/c D G . ~88!

The high-temperature asymptote that follows from the representation in Eq.~88! is the same as in the case of zero magne
field, given in Eq.~75!. The limit T→0 is different from that in Eq.~76!. It is given by the following expression:

sxx5
e2NfG

p2

G

S vF
2eB

c D 2

1~2mG!2

F 2m21

~m21D21G2!S vF
2eB

c D 2

22m2~m22D21G2!
vF

2eB

c

~m22D22G2!214m2G2

1
m~m22D21G2!

G
Im cS D21G22m212imG

2vF
2 ueBu/c D G . ~89!
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It is interesting to note, however, that for zero value of t
gap and zero density of carriers~i.e., D50 andm50), this
last expression becomes identical with the expression for
conductivity in absence of a magnetic field given in Eq.~81!.

In the limit of narrow width,G→0, the above expression
reduce to

sxx5
e2NfG

2pT F 11cosh
D

T
cosh

m

T

S cosh
D

T
1cosh

m

T D 2

14(
n51

` nS 11cosh
Mn

T
cosh

m

T D
S cosh

Mn

T
1cosh

m

T D 2 G ~90!

for diagonal component of the conductivity, and

nB5
1

2 S tanh
m1D

2T
1tanh

m2D

2T D
1 (

n51

` S tanh
m1Mn

2T
1tanh

m2Mn

2T D ~91!

for the filling factor.
04510
e

In order to understand the effect of a dynamical gap
the behavior of conductivity as a function of temperature
is helpful to start from the case of a vanishing density
carriers~i.e., nB50). WhennB50, the Hall conductivity is
absent, and the resistivity is determined by thesxx compo-
nent alone. The plot of the conductivity as a function
temperature is given in Fig. 5.

FIG. 5. The diagonal component of conductivity as a function
temperature for zero value of carrier density and a nonzero m
netic field, B58 T. The bold solid line corresponds to the ca
without a gap. Other lines correspond to nonzero dynamical g
and different values ofTc . Conductivity is measured in units ofe2,
and both temperature and widthG are measured in K.
8-14
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The bold solid line corresponds to the case without a
namical gap, while the other lines correspond to differ
choices of the gap magnitude. In the numerical analysis,
used the gap equation in Eq.~65!, keeping the value ofTc as
a free parameter.

When there are no free carriers, the low temperature
pendence of the diagonal component of conductivity is v
sensitive to the presence of a gap. In the absence of a
the conductivity becomes infinitely large whenT→0. At the
same time, it is zero in the same limit when there is even
arbitrarily small gapD.

An important fact is that, unlike the case without ma
netic field, the conductivity exhibits a~semi!metallic type
behavior for zero gap and not too high temperaturesT
&200 K in Fig. 5!. As a result, for not too large values o
the critical temperatureTc (Tc&200 K in Fig. 5!, the flavor
phase transition looks as a conventional semimetal-insul
one, when the insulator type behavior belowTc ~nonzero
gap! is replaced by the metallic type in a range of tempe
tures just aboveTc ~zero gap! ~see Fig. 5!.

A typical conductivity for a nonzero value of the fillin
factor nB ~i.e., a nonzero charge density! is shown in Fig. 6.
In this case, the behaviors of the conductivity for a nonz
gap and zero gap are more similar than in the case ofnB
50 ~compare with Fig. 5!. The presence of a gap, howeve

FIG. 6. The diagonal component of the conductivity as a fu
tion of temperature for two different densities and a nonzero m
netic field, B58 T. The bold solid line corresponds to the ca
without a gap. Other lines correspond to nonzero dynamical g
and different values ofTc . Conductivity is measured in units ofe2,
both temperature and widthG are measured in K, and densityn is
measured in cm22.
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can substantially reduce the value of conductivity in t
whole range of temperatures belowTc . It is important that,
as in the case withnB50, the flavor phase transition look
like a semimetal-insulator one for not too large values of
critical temperatureTc ~see Fig. 6!. This is the most impor-
tant conclusion of this subsection.

The same arguments as these at the end of Sec. V A s
that the occurrence of the kink in the conductivity atT5Tc
reflects the mean-field behavior of the gap in the vicinity
the critical point,D;ATc2T. The 1/Nf fluctuations may
change the character of the phase transition, leading eith
a discontinuity in the conductivitys(T) at T5Tc ~a first-
order phase transition! or to a smooth functions(T) ~a non-
mean-field second-order phase transition!.

C. Resistivity tensor

In this subsection, we study the temperature depende
of the resistivity. In terms of conductivities, the diagon
component of the resistivity reads

rxx5
sxx

sxx
2 1sxy

2
. ~92!

In order to understand the general behavior of the resistiv
below we perform a set of numerical calculations.

Before presenting the results, it is instructive to notice t
there exist two opposite regimes of dynamics controlled
the value of the charge density. In particular, at small dens
when the Hall conductivitysxy is negligible compared to
sxx , the resistivity in Eq.~92! behaves as 1/sxx . On the
other hand, at sufficiently large density, when the Hall co
ductivity dominates over the diagonal component, the re
tivity rxx'sxx /sxy

2 . By recalling that the Hall conductivity
@see Eq.~86!# is independent of the temperature, the gene
features of the temperature dependence ofrxx will be the
same as of 1/sxx and sxx in the mentioned two regimes
respectively.

Now let us present the numerical results. We begin
considering the case of zero density. In this case the H
conductivity is equal to zero and the resistivityrxx is equal
to 1/sxx . The temperature dependence of the resistivity
shown in Fig. 7~compare with Fig. 5!.

The bold solid line corresponds to a model with the va
ishing dynamical gap in the quasiparticle spectrum. T
other curves correspond to three different choices of the
namical gap. The temperature dependence of the dynam
gap is given by gap equation~65!, where the value ofTc was
treated as a phenomenological parameter.

As one can see in Fig. 7, for a zero dynamical gap~the
bold solid line! the resistivity has a metallic type behavio
for not too high temperatures (T&0.2vFAueBu/c) and an
insulator-type behavior at high temperaturesT
*0.2vFAueBu/c). This type of temperature dependence
driven by the magnetic field alone and is not related to
generation of a dynamical gap. Such a crossover from
metallic-type behavior~low temperatures! to an insulator

-
-

ps
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type one ~high temperatures! can be easily distinguishe
from the flavor phase transition taking place at not too h
Tc . Indeed, whenTc&0.2vFAueBu/c, one can see from Fig
7 that it corresponds to the opposite, conventional, transit
when the insulator-type behavior belowTc ~nonzero gap! is
replaced by the metallic type in a range of temperatures
aboveTc ~zero gap!.

Let us now proceed to the case of a nonzero charge
sity. As mentioned at the beginning of this subsection, th
are two different regimes that appear in the limits of sm
and large densities, respectively. Our results in Fig. 8 ill
trate these regimes.

At small density~see the upper panel in Fig. 8!, the resis-
tivity behaves as 1/sxx almost at all temperatures~compare
with Fig. 6!, except for a finite region wheresxx becomes
very small due to the generation of a dynamical gap. In t
region, even a small value of the Hall conductivity cou
dominate oversxx . This is seen as the appearance of a lo
minimum ~between two maxima! in the temperature depen
dence of the resistivity. Of course, in the absence of a
namical gap~see the solid line in the upper panel in Fig. 8!,
the resistivity remains essentially the same as that atn50
~compare with Fig. 7!.

This picture changes dramatically with increasing dens
As one can see in the two lower panels in Fig. 8, with
creasing the density the resistivity gradually approaches
regime whererxx;sxx .

For critical temperaturesTc&0.2vFAueBu/c ~i.e., for de-
pendencies represented by thin solid and dashed lines!, these
two regimes correspond to two essentially different me
insulator phase transitions. In the case of a small density~see
the upper panel in Fig. 8!, it is a conventional phase trans
tion with insulator-type and metallic-type behaviors at te
peratures below and just aboveTc , respectively. On the
other hand, for a large density~see the lower panel in Fig. 8!,
the ‘‘inverse’’ metal-insulator phase transition~with a metal-
type dependence just belowTc and insulator type just abov
Tc) is realized.

Therefore we conclude that, in the presence of a magn

FIG. 7. The resistivity as a function of temperature for a ze
value of the carrier density and a nonzero magnetic field,B58 T.
The bold solid line corresponds to the case without a gap. O
lines correspond to nonzero dynamical gaps and different value
Tc . Resistivity is measured in units ofe22, and both temperature
and widthG are measured in K.
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field, a dynamical gap in the quasiparticle spectrum can
deed lead to a change of the insulator-type dependenc
rxx(T) to the metallic one. However, the nonzero Hall co
ductivity at a finite densityn complicates the picture, and ca
lead to different types of metal-insulator phase transitions
small and large values of the charge density.

When the metal-insulator phase transition is truly a me
field one, its clear signature is a kink in the resistivityrxx(T)
at the critical pointT5Tc . As already pointed out in previ
ous subsections, the 1/Nf fluctuations can change this fea
ture, leading either to a discontinuity in the resistivity atT
5Tc ~a first-order phase transition! or to a smooth function
rxx(T) ~a non-mean-field continuous phase transition!.

FIG. 8. The diagonal component of the resistivity as a funct
of temperature for four different densities and a nonzero magn
field, B58 T. The bold solid line corresponds to the case witho
a gap. Other lines correspond to nonzero dynamical gaps and
ferent values ofTc . Resistivity is measured in units ofe22, both
temperature and widthG are measured in K, and densityn is mea-
sured in cm22.
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VI. METAL-INSULATOR PHASE TRANSITION IN
HIGHLY ORIENTED PYROLYTIC GRAPHITE

The main motivation of this study was the experimen
data reported in Refs. 19–21. It was observed that sample
highly oriented pyrolytic graphite in an external magne
field show a qualitative change of their resistivity as a fun
tion of temperature, that was interpreted as a metal-insul
phase transition. The effect is clearly seen only for a m
netic field perpendicular to the basal plane, suggesting
the orbital motion of quasiparticles is responsible for t
change of the conductivity dependence.

In this section we will attempt to explain qualitatively th
main features of the above-mentioned experimental dat
the light of the magnetic catalysis idea. We should note t
the first step in this direction was made in Ref. 8. Here we
into further details utilizing the rather complete descripti
of the magnetic catalysis in planar systems and its effec
the temperature dependence of their conductivity and re
tivity given in the previous sections.

First of all, the analysis made in Sec. V shows that, in
presence of a magnetic field, the flavor phase transition
planar systems can indeed manifest itself as a metal-insu
phase transition in the behavior of their resistivityr(T) as a
function of temperature. A notable fact is the existence
clearly distinguishable signatures of different types of
phase transition: the presence of a discontinuity and a kin
the resistivityr(T) at the critical pointT5Tc in the cases of
first order and mean-field phase transitions, respectively,
a smooth behavior ofr(T) at T5Tc for a non-mean-field
continuous phase transition. To the best of our knowledge
far there have been no experiments reporting observation
a singular behavior ofr(T) at the critical point. At this stage
however, it would be premature to conclude that the
served phase transition is a continuous non-mean-field
This point deserves further experimental study.

A very interesting experimental observation made in Re
19–21~and, to the best of our knowledge, has not been
plained! is the existence of a finite ‘‘offset’’ magnetic fiel
Bc . The valueBc determines the thresholdB5Bc for a
qualitative change of the resistivity atzero temperature.
More precisely, based on the experimental data, it w
revealed21 that the approximate relation for the critical tem
perature as a function ofB readsTc(B);AB2Bc. This re-
lation implies that at zero temperature the phase transi
happens only when the magnetic field exceeds the thres
valueB5Bc .

It is remarkable that, as was emphasized in Sec. IV,
existence of such a thresholdBc is a robust consequence o
the mechanism of the magnetic catalysis. As pointed
there, the valueBc is directly related to a nonzero charg
densityn of carriers,

ueBcu5
2pcn

Nf
, ~93!

and this relation is exact. For example, by takingBc52.6
3104 G, which was obtained in one of the experiments as
~upper! estimate of a critical value above which the gene
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tion of a gap presumably occurred,19 we derive the corre-
sponding charge density~we useNf52)

n5
ueBcu
pc

51.2531025 Å22. ~94!

This should be compared with the charge density~per unit
area of a layer! of carriers in the used sample of graphite. B
noting that the area per carbon atom in a layer isS
5A3a2/4 where the lattice spacing isa'2.46 Å,12 we con-
clude that the density in Eq.~94! corresponds ton'5
31026 units of charge per atom. While we do not know th
exact density of the sample used, the given estimate is
unlikely.34

Note that the relationTc(B);AB2Bc[A12nBAB, used
in Ref. 21, qualitatively differs from our Eq.~64!. It is quite
remarkable, however, that the dependenceTc(B) in Eq. ~64!
is nearly the same numerically as the simple square
relation suggested by the experimental data; see Fig. 9.

Since the relationueBcu52pcn/Nf is exact in the dynam-
ics of the magnetic catalysis, its experimental verificati
would be a critical check of the validity of the scenario of t
magnetic catalysis in highly oriented pyrolytic graphite.

Another notable experimental observation is that the sc
of the critical temperature is set by the energy distance
tween the Landau levels~the Landau scale!.19–21 Therefore,
if the underlying physics of the transition is related to a d
namical generation of a gap, the typical values of the g
should also be of the same order as the Landau scale. A
discussed at length in Sec. IV, for the mechanism of
magnetic catalysis this fact implies that the pairing dynam
corresponds to the strong-coupling regime. This in turn i
plies that all~or many! Landau levels determine the pairin
dynamics in this case. In connection with this, we would li
to point out that, as the numerical analysis done in Sec
shows, the contribution of higher Landau levels into the co
ductivity and resistivity become indeed important for valu
of the critical temperatureTc of the order of the Landau
scale.

There still remain some unresolved issues in the interp
tation of the experimental data in highly oriented pyroly

FIG. 9. The critical temperature as a function of a magne
field. The solid line gives the dependence on Eq.~64!, while the
dashed line corresponds to a dependence with a simple field o
i.e., Tc;AB2Bc. To plot the figure we used the following param
eters:Nf52, c/vF5375, «052.4, andBc52.63104 G.
8-17
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graphite in a magnetic field.19–21The most important of them
is the observation of weak ferromagnetism in that syst
~for some speculations concerning its origin see Ref. 8!. We
hope to consider this issue elsewhere.

VII. CONCLUSION

In this paper we developed a theory of the magnetic-fie
driven metal-insulator phase transition in planar syste
based on reduced QED. The general structure of the p
diagram of such systems was established in two cases,
and without an external magnetic field. The behavior of
electric conductivity~resistivity! in these systems was de
scribed in detail. This allowed us to conclude that, in t
presence of a magnetic field, the flavor phase transition
planar systems can indeed manifest itself as a metal-insu
phase transition in the behavior of the resistivityr(T,B) as a
function of the magnetic field and temperature. It was a
shown that there exist clearly distinguishable signatures
different types of the phase transition. While the resistiv
r(T) is a smooth function at the critical pointT5Tc in the
case of a non-mean-field continuous phase transition, t
are a discontinuity and a kink inr(T) at T5Tc in the cases
of the first order and mean-field phase transitions, resp
tively.

Based on the experimental data,19–21 it was recently ar-
gued that highly oriented pyrolytic graphite shows up
metal-insulator phase transition, driven by an external m
netic field.8 This might be a nonrelativistic realization of th
phenomenon of the magnetic catalysis originally establis
in Refs. 14 and 15 in relativistic systems. In this paper
studied this possibility rather in detail, elaborating the the
of the magnetic catalysis in nonrelativistic planar syste
and analyzing the temperature behavior of the resisti
~conductivity! in these systems. The conclusion of t
present analysis concerning the possibility of this scenari
highly oriented pyrolytic graphite is quite positive.

One of the central results of this paper is establishing
exactrelation @Eq. ~93!# for the critical ~threshold! value of
the magnetic field at zero temperature in these systems
experimental verification of this result would be a crucial t
for the present theory.

Another conclusion of our investigation is that a nonze
magnetic field alone~even without producing a dynamica
gap! can drastically change the general behavior of the re
tivity as a function of temperature. In particular, in our sim
plest model with a constant value of the width parameter,
semiconductor-type dependence of the resistivity@i.e., r(T)
decreasing with increasing temperature#, seen in the absenc
of a magnetic field, can be replaced by a metallic type
havior @i.e., r(T) increasing with temperature# in the region
of not too high temperatures, when a nonzero field is tur
on. In fact, at zero charge density of carriers, this chang
behavior always happens in the range of temperatures 0,T
&0.2vFAueBu/c. This is also seen at finite but small dens
ties when the diagonal component of conductivity domina
over the Hall conductivity. We expect that the results of t
paper will be useful for a wide class of condensed ma
planar systems.
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APPENDIX A: SYMMETRY OF „2¿1…-DIMENSIONAL
FERMIONS

In this appendix we will consider the symmetry of fou
component fermions on a plane which carry the flavor ind
i 51,2, . . . ,Nf . The three 434 g matrices in Eq.~5! can be
taken to be

g05S s3 0

0 2s3
D , ~A1!

g15S is1 0

0 2 is1
D , ~A2!

g25S is2 0

0 2 is2
D . ~A3!

Recall that in 211 dimensions, two sets of matrice
(s3 ,is1 ,is2) and (2s3 ,2 is1 ,2 is2) make inequivalent
representations of the Clifford~Dirac! algebra,

gmgn1gngm52gmn, ~A4!

wherem,n50,1,2 andgmn5diag(1,21,21).
There are two matrices,

g35 i S 0 1

1 0D , g55 i S 0 1

21 0D , ~A5!

that anticommute withg0, g1, and g2. Therefore for each
four-component spinor, there is a globalU(2) symmetry
with the generators

I ,
1

i
g3, g5,

1

2
@g3,g5#. ~A6!

Since there areNf fermion flavors, the full symmetry of the
action ~10! is U(2Nf) with the generators

la

2
,

la

2i
g3,

la

2
g5,

la

2

1

2
@g3,g5#, ~A7!

wherela/2, with a50,1, . . . ,Nf
221, areNf

2 generators of
U(Nf).

Adding a mass~gap! term D0c̄c into action~10! would
reduce theU(2Nf) symmetry down toU(Nf)3U(Nf) sym-
metry, with the generators
8-18
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la

2
,

la

2

1

2
@g3,g5#, ~A8!

with a50,1, . . . ,Nf
221. This implies that the dynamica

generation of the fermion gap leads to the spontane
breakdown of theU(2Nf) down to theU(Nf)3U(Nf).

APPENDIX B: DERIVATION OF THE POLARIZATION
FUNCTION AND GAP EQUATION

In this appendix, we give the details of the calculations
the time component of the gauge field polarization functi
as well as the derivation of the gap equation at finite che
cal potential and finite temperature. We will consider on
the case of a zero magnetic field. The polarization funct
and the gap equation in~211!-dimensional QED with an
external magnetic field were given in Ref. 30, where
method of Ref. 15 was used.

1. Polarization function

The general expression of the time component of
vacuum polarization function is given by31

P~Vm ,pW !5
2p

«0
e2TNf (

n52`

1` E d2k

~2p!2

3tr@g0S~Vm1vn ,pW 1kW !g0S~vn ,kW !#,

~B1!

where S(vn ,kW ) is the fermionic quasiparticle propagat
whose explicit form reads

S~vn ,kW !5
i

~ ivn2m!g01~kW•gW !1DT~m!
. ~B2!

In Eq. ~B1!, the Matsubara frequencies are denoted byvn
[(2n11)pT and Vm[2mpT. Also note that the expres
sion on the right hand side is multiplied by an addition
factor 2p/«0, in accordance with our definition of the pola
ization function. After taking the trace over the Dirac indic
and using the Feynman parametrization, we obtain

P~0,pW !5
8p

«0
e2TNf (

n52`

1` E
0

1

dxE d2k

~2p!2

3F 1

~vn1 im!21vF
2p2x~12x!1vF

2k21DT
2~m!

2
2@vF

2k21DT
2~m!#

@~vn1 im!21vF
2p2x~12x!1vF

2k21DT
2~m!#2G .

~B3!

By calculating the sum overn, we obtain
04510
us

f
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i-
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e

e

l

P~0,pW !5
e2Nf

2«0
E

0

1

dxE
0

`dk2

Y2 F vF
2p2x~12x!

Y
tanh

Y1m

2T

1
vF

2k21DT
2~m!

2Tcosh2
Y1m

2T

1~m→2m!G , ~B4!

whereY5AvF
2k21vF

2p2x(12x)1DT
2(m). By changing the

integration variable,k2→Y, and integrating by parts, we fi
nally arrive at the convenient representation

P~0,pW !5
2Te2Nf

«0vF
2 E

0

1

dxF lnS 2 cosh
Rx1m

2T D
2

DT
2~m!

2TRx
tanh

Rx1m

2T
1~m→2m!G , ~B5!

whereRx5AvF
2p2x(12x)1DT

2(m).

2. Gap equation

The general Schwinger-Dyson~gap! equation for the qua-
siparticle propagator reads

S21~vm ,pW !5S0
21~vm ,pW !2T (

n52`

` E d2k

~2p!2
g0

3S~vn ,kW !g0U~pW 2kW !. ~B6!

By neglecting the wave function renormalization,25 we de-
rive the following gap equation:

D~p!5
e2T

2p«0
(

n52`

1` E D~k!d2k

~vn1 im!21vF
2k21DT

2~m!

3
1

upW 2kW u1P~0,pW 2kW !
, ~B7!

where DT(m)[D(p)up50. Here the interaction is taken in
the so-called instantaneous exchange approximation.
means that the retardation effects of the gauge field are
glected which is justified in a nonrelativistic model.

By neglecting the dependence of the gap on the Mats
ara frequency, we could perform the sum overn explicitly.
Then the result reads

D~p!5
pe2

«0
E d2k

~2p!2

D~k!

Ek

sinh
Ek

T

cosh
Ek

T
1cosh

m

T

3
1

upW 2kW u1P~0,pW 2kW !
, ~B8!
8-19
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whereEk5AvF
2k21DT

2(m). By using the standard approx

mation for the kernel of the integral equation,f (upW 2kW u)
→ f (p)u(p2k)1 f (k)u(k2p), we obtain the gap equation

D~p!5
e2

2«0vF
E

e

L

dkD~k!

sinh
vFk

T

cosh
vFk

T
1cosh

m

T

F u~p2k!

p1P~0,pW !

1
u~k2p!

k1P~0,kW !
G , ~B9!

where the infrared cutoffe is given by a larger value o
DT(m)/vF or Am22DT

2(m)/vF , and where we also utilized
the bifurcation method in which a nonlinear gap equation
replaced by a linear approximation~compare with the discus
sion in Sec. III B!. This is achieved by substituting the trivia
value of the gap inEk and introducing an infrared cutoff in
the integral on the right hand side of Eq.~B8!.

APPENDIX C: DERIVATION OF EFFECTIVE POTENTIAL
AT µÅ0

In this appendix, we will construct the effective potent
of the composite fields52^c̄c& by using the method o
Ref. 35. For the purposes of this paper, it is sufficient
consider only the case of a nonzero chemical potential.
generalization to some other cases~for example, with an ex-
ternal magnetic field! is also possible; see, for example, Re
36.

In order to derive the effective potential as a function
the composite fields, one should introduce a term with
constant external sourceJ coupled to the corresponding com
posite operator in the action, and construct the genera
functional W(J). The effective potential, then, is define
through the Legendre transform as35

V~s!52w~J!1Js5Es

dsJ~s!, ~C1!

where s5]v(J)/]J, w(J)[W(J)/V211, and V211 is the
space-time volume of a planar model. In the last express
the sourceJ should be regarded as a function of the fields.

The effect of the external sourceJ could be easily taken
into account in gap equation~29!: one should simply replace
Dp→Dp2J on the left-hand side of the equation. Then t
solution to the equation, satisfying the infrared bound
condition, takes the form

Dp5
D

sind
Ae

p
sinFn2 ln

p

e
1dG , ~C2!

where n5A4l21, e5max$D/vF ,Am22D2/vF%, and d
5arctann. The overall normalization of the above solution
fixed by choosingDp5e5D. The ultraviolet boundary con
dition

J5~Dp1pDp8!up5L , ~C3!

on the other hand, produces the relation
04510
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J5
D

sin~2d!
A e

L
sinFn2 ln

L

e
12dG . ~C4!

As it should be, the equation for the dynamical gapD0 is
obtained in the limit of vanishing sourceJ50. At zero
chemical potential, in particular, the equation for the g
takes the form

n

2
ln

LvF

D0
5p22d. ~C5!

For the derivation of the effective potential, we also need
know the expression for the fields. By definition, it is equal
to the trace of the fermion propagator. Thus we obtain

s52^c̄c&52
Nf

plvF
p2D8~p!U

p5L

5
NfDAeL

plvFsin~2d!
sinFn2 ln

L

e G . ~C6!

Now, by making use of Eq.~C5!, we trade the cutoff param
eter L for D0. After this, we derive the following approxi
mate relations for the case of smalln we are interested in:

J~D!.2
D

4
A e

L
ln

D0

evF
, ~C7!

s~D!.
NfDAeL

pvF
S 42 ln

D0

evF
D . ~C8!

As will become clear in a moment, these two expressio
contain all the information needed for reconstructing the
tential. Indeed, the definition of the effective potential in E
~C1! can be rewritten as

V~s!5ED

dD
ds~D!

dD
J~D!1 f ~m!, ~C9!

where the most general integration constantf (m) was added
on the right-hand side. This representation leads to the fi
results

V~D!5
NfD

2Am22D2

2pvF
2 F1

4
ln2

Am22D2

D0
1 ln

Am22D2

D0

2
2m21D2

3D2 G1 f 1~m! ~C10!

for D<umu/A2, and

V~D!5
NfD

3

2pvF
2 F1

4
ln2

D

D0
1 ln

D

D0
2

1

3G1 f 2~m! ~C11!

for D>umu/A2. In these equations we used the freedom
choosing the integration constants in expressions~C10! and
~C11! as follows:
8-20
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f 1~m!5
A2Nf umu3

6pvF
2

1 f 2~m!, ~C12!

f 2~m!52
Nf

6pvF
2 ~ umu2D0!2~ umu12D0!u~ umu2D0!

3u~mc2umu!2
Nf

6pvF
2 @~A221!~ umu32mc

3!

1~mc2D0!2~mc12D0!#u~ umu2mc!. ~C13!

This choice insures that the potential is continuous at
matching pointD5umu/A2, and that it is normalized so tha
its partial derivative with respect to the chemical potentia
the global minimum is equal~up to a sign! to the charge
density:

]V~D0 ,m!

]m
[

Nf~D0
22m2!

2pvF
2

sgn~m!u~ umu2D0! ~C14!

for umu,mc , and
ca

m

od

B

a

v.

04510
e

t

]V~0,m!

]m
[2

Nfm
2

2pvF
2
sgn~m! ~C15!

for umu.mc . Here we used the expression for the cha
density in Eq.~77!.

Now the effective potential as a function of the compos
field s is defined parametrically through Eqs.~C10!, ~C11!,
and~C8!. This dependence is graphically shown in Fig. 2
a few different values of the chemical potential. As is cle
from the figure, the presence of a nonzero chemical poten
considerably changes the behavior of the effective poten
In particular, a new local minimum develops at the orig
and its depth gradually increases withm. The competition of
the two minima, located ats50 ands0[s(D0), results in a
first-order phase transition. Such a transition happens w
the depths of effective potential at its two minima beco
equal. By making use of this criterion, we derive the analy
cal expression for the critical value of the chemical potent

mc5
D0

~22A2!1/3
.1.195D0 . ~C16!
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