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Nonexistence of a strong coupling two-channel Kondo fixed point for microscopic models
of tunneling centers
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We consider the problem of a heavy particle in a double well potential~DWP! interacting with an electron
bath. Under general assumptions, we map the problem to a three-color logarithmic gas model, where the size
of the core of the charged particles is proportional to the tunneling time,t tun, of the heavy particle between the
two wells. For times larger thant tun this model is equivalent to the anisotropic two-channel Kondo~2CK!
model in a transverse field. This allows us to establish a relationship between the microscopic parameters of
DWP and the 2CK problem. We show that the strong coupling fixed point of the 2CK model can never be
reached for the DWP problem, in agreement with the results of Kagan and Prokof’ev@Sov. Phys. JETP69, 836
~1989!# and Aleineret al. @Phys. Rev. Lett.86, 2629~2001!#.
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I. INTRODUCTION

The possibility to observe the two channel Kondo effe
in real physical systems has attracted a lot of interest s
the pioneering work by Nozie`res and Blandin,1 but at present
no experimental realization has been conclusively dem
strated. The difficulty lies in the fact that the non-Fermi li
uid ~NFL! fixed point of the two channel Kondo model2 is
unstable to various symmetry breakings1,3 which turn out to
be important for various experimental situations. In partic
lar, channel anisotropy is a relevant perturbation and the
act channel symmetry is required for the NFL physics to
observed. In a conventional magnetic realization of
Kondo effect this would require the exact degeneracy
tween atomic orbitals that cannot be obtained in any r
system. In the search for the two-channel Kondo~2CK! ef-
fect, systems which are less directly related to the conv
tional Kondo physics were considered. It was suggested
non magnetic impurity tunneling between two sites and
teracting with an electron bath could be modeled as a
channel Kondo system in which the spin plays the role of
channel index4–8 ~see also Refs. 9,10 for a review!. Follow-
ing this suggestion, the NFL behavior of the 2CK fixed po
was used in Ref. 11 to interpret the low temperature trans
data for narrow metallic constrictions. Indeed, in the lim
kFa!1, wherekF is the Fermi wave vector and 2a is the
distance between the two minima of the double well pot
tial ~DWP!, only electrons with two spherical harmonicsl
50 and l 51, m50) strongly interact with the heavy pa
ticle. Usually the mapping of the DWP into a two level sy
tem ~TLS!, which behaves like a localized spin, is achiev
by restricting the Hilbert space of the atom to the two low
energy states associated with the two minima.~As we will
discuss in the following this approach is not well justifie
because it fails to capture the connection between the
pling constants of the effective theory.! Then the orbital de-
grees of freedom play the role of a pseudo-spin while the
0163-1829/2002/66~4!/045107~15!/$20.00 66 0451
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electron spin represent the channel index, and, in absenc
magnetic field, the channel degeneracy was guarantee
construction. A disadvantage of this realization for the 2C
effect is that other relevant terms appear which are no lon
forbidden by symmetry, the most important being the sp
taneous tunneling of the impurity between the two minim
This corresponds to magnetic field in the conventio
Kondo problem and then the resulting Kondo model has
form,

HKondo5Hk
01HI1hSx1DzS

z. ~1!

Here

Hk
05E dqeqca,i

† ~q!ca,i~q! ~2!

represents the propagation of free band electrons,a51,2 is
the pseudo-spin index andi 51,2, . . . ,k is the channel index.
In the specific casek52. The sum over repeated indices
implied. The second term in~1! describes the interaction
between the localized impurity,S, and the electrons

HI5
1

n (
a5x,y,z

laca,i
† ~r !sab

a cb,i~r !Saur 50 , ~3!

wheresab
a are the Pauli matrices in the pseudo-spin spa

the fermionic operatorsca,i(r ) are the counterparts o
ca,i(k) in the coordinate representation, andn is the density
of electronic states at the Fermi energy per one chan
which is introduced here to make the coupling constants
mensionless. There are two terms in the Hamiltonian~1! that
break the rotational symmetry in the pseudo-spin space.
term proportional toDz is related to the original asymmetr
of the DWP, and may be greatly enhanced by the disorde
potential acting on electrons.12 However, it is still possible to
imagine, that the original DWP is symmetric, and all t
other impurities are remote from the DWP, so the value ofDz
©2002 The American Physical Society07-1
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is negotiable and may be even set to zero in some partic
cases. Nevertheless, the effective magnetic field,h, is related
to the tunneling of the impurity in the DWP, and so is t
constantlx . The relation between them requires microsco
consideration and one is not allowed to neglecth but keeplx
finite.

The model~1! is known to scale to the strong couplin
fixed point,1,13 where it has a NFL behavior.2 This regime is
achieved if both temperature,T, and

D5ADz
21h2 ~4!

do not exceed the Kondo temperature,TK . Since the inter-
action in highly anisotropic,ly can be chosen to be equal
zero andlx!lz , the Kondo temperature is given by~see,
for instance, Ref. 14!,

TK5D~lxlz!
1/2S lx

2lz
D 1/2lz

, ~5!

whereD is a high energy cutoff. In order to check wheth
the 2CK effect can be observed in a DWP system one t
has to compareTk with D. This problem has recently at
tracted a lot of attention.6–8,15–20Some alarming results al
ready appeared in Ref. 8 and were confirmed in Ref. 18.
crucial point consists in determining the various coupli
constants in~1! and also high-energy cutoffD in Eq. ~5!
starting from a general microscopic description of the pr
lem.

As first pointed out by Kagan and Prokof’ev,7,8 the TLS is
not a good starting point since the high energy degree
freedom of the impurity cannot be taken into account a
they turn out to be essential to establish the correct map
to the Kondo problem.7,8,18 In particular it was shown by
model calculation of Ref. 18 thatD is of the order of the
energy distance to the third excited level of the atomic s
tem which is several orders of magnitude smaller than
Fermi energy. Together with the restrictions to the coupl
constant it leads toh.TK and thus to the impossibility to
reach the strong coupling limit. However, a question aris
whether those conclusions are model-dependent or there
general principle for wide class of microscopic models p
venting the existence of the strong coupling regime.

In this paper we use a general nonperturbative appro
to the problem that takes into account all the states of
DWP and that, we believe, provides a conclusive answe
the question whether it is possible to observe the 2CK ef
in the problem of a tunneling impurity. We start from a m
croscopic description of the moving heavy particle intera
ing with electrons in a metal. The potential in which th
impurity moves is chosen to have the most general form w
two minima ~the situation of a potential that presents thr
minima21 is not considered here!. The interaction of the
heavy atom with the electrons is chosen to be an insta
neous density–density interaction, which, we believe, c
tains all the essential physics; effects of retardation due to
electron screening or the interband excitations are smal
ther as inverse band gap or plasma frequency and will no
taken into account.
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Using a semiclassical approximation to describe the
namics of the impurity and the conditionkFa!1 we map the
problem to a one-dimensional logarithmically interacting g
model~LGM!. Since a similar mapping can be also obtain
for the Kondo model,22,23this allows us to establish a gener
relationship between the microscopic parameters of the D
and the coupling constants of the Kondo model. Our res
are in agreement with the predictions of Refs. 7,8,18 a
show that the mapping of the DWP to the 2CK model can
done only for energies below\t tun

21 , wheret tun is the tunnel-
ing time of the heavy particle between the two wells. It is t
existence of this small energy scale, together with the re
tionship betweenh andlx , that makes the Kondo tempera
ture too small for the strong coupling fixed point to b
achieved in such systems:TK turns out to be always smalle
than D, which makes the strong coupling limit nonacce
sible.

The paper is organized as follow: In the next section
describe the model and we map it to a logarithmic gas mo
in Sec. III. In Sec. IV we obtain the relation between o
microscopic model and the 2CK model and, in the last s
tion, we summarize the results and draw some general c
clusions. The problem of the effect of the electron-ho
asymmetry on our results is discussed in the Appendix.

II. THE MODEL

The partition function describing an heavy particle mo
ing in a DWP and interacting with an electron bath can
written in the following way:

Z5E D@q~t!#D@c̄~x,t!#D@c~x,t!#e2SE[q,c̄,c] , ~6!

whereSE is the Euclidean action

SE5E dtL ~7!

with

L5Lat1Lel1dL. ~8!

Through this section we will consider onlyT50, an exten-
sion to finite temperature is trivial and will be discussed
the end of Sec. III.

In Eq. ~8! Lat describes the dynamics of the heavy partic
and is given by

Lat5
M

2 S dq

dt D 2

1V~q!, ~9!

whereq(t) represent the position of the atom andV(q) is
the confining potential, which we assume to have t
minima like in Fig. 1, and assume that the level anisotropy
absent,Dz50, or more precisely,

V~q!5V~2q!. ~10!

Note that here and in the following the potential enters
Lagrangian with a minus sign with respect to the usual d
nition of the Lagrangian since we work in Euclidean spac
7-2
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NONEXISTENCE OF A STRONG COUPLING TWO- . . . PHYSICAL REVIEW B 66, 045107 ~2002!
The bare electronic Lagrangian has the form,

Lel5E d3xc̄~x,t!]tc~x,t!1H0 ~11!

with

H05E d3kekc̄~k!c~k!, ~12!

wherec(x) is the electron field,

c~x!5E d3k

~2p!3
eik•xc~k!. ~13!

For the moment we do not include spin, as it is only a sp
tator. It will be reintroduced at the end where it will play th
role of the channel index. We chose a general dens
density interaction between the electrons and the atom o
form,

dL5dH5lE d3xc̄~x,t!c~x,t!d~x2q~t!!, ~14!

which, as explained in the introduction, we believe conta
all the essential physics.

Given the symmetry of the problem it is convenient
expand the electron field in partial waves

c~r !5(
l ,m

c l ,m5(
l ,m

E
0

` dk

2p
Rk,l~r !Yl ,mS r

r Dck,l ,m ,

~15!

whereYl ,m are spherical harmonics andRk,l52k j l(kr), with
j l(x)5Ap/2xJl 11/2(x) being Bessel functions. From th
condition;

kFa!1, ~16!

wherea is the distance between two minima of the potent
it follows that only the first two harmonics,l 50, andl 51,
m50, strongly interact with the heavy particle. Then we c
approximate the electron field as

FIG. 1. Schematic representation of a DWP with two minim
The dotted lines represent the lower energy levels andDz is the
level anisotropy.
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c~r !.Y0,0S r

r D E0

` dp

2p
c1~p!Rp,0~r !

1Y1,0S r

r D E0

` dp

2p
c2~p!Rp,1~r !, ~17!

where we have introducedc1(k)5ck,0,0 and c2(k)
5ck,1,0. The low energy properties are determined by el
tron states close to the Fermi surface,p!kF , so that we can
introduce fields smooth on the scale 1/kF ,

c6~x!5E
p!kF

dp

2p
eipxc6~p!. ~18!

These fields determine the asymptotic behavior of the th
dimensional field atrkF@1, thus specifying the scatterin
matrix for the states close to the Fermi energy shell. In
~17! we suppressed all the higher angular harmonics not s
tered by the heavy particle. Then, using the asymptotic
havior of the Bessel functions forrkF@1 and Eq.~18!, we
can rewrite Eq.~17! as

c~r !.
1

r
Y0,0S r

r D @c1~r !eikFr2c1~2r !e2 ikFr #

1
1

r
Y1,0S r

r D @c2~r !eikFr1c2~2r !e2 ikFr #

5
1

iA4pr
@c1~r !eikFr2c1~2r !e2 ikFr #

1
A3z

A4pr 2
@c2~r !eikFr1c2~2r !e2 ikFr #, ~19!

where we have chosen the direction of the motion of
heavy particle restricted along thez axis. This leaves us with
an effective one-dimensional problem with two species
electrons. These are left movers on the entire axis as in
~19! or, equivalently, one can introduce left and right move
on the half line. We have chosen the former approach
technical convenience. With the same accuracy we can
earize the spectrum in the vicinity of the Fermi surface,ek
5vF(k2kF) andvFuk2kFu!D, whereD is the energy scale
smaller than the Fermi energy.

Before we proceed, let us note that there have been s
suggestions19 that the electron–hole asymmetry of the orig
nal electronic band can lead to an enhancement of the Ko
temperature. These effects will not be taken into accoun
this section, and the corresponding discussion is relegate
the Appendix. As we will explicitly show there, they can b
introduced perturbatively and donot change qualitatively our
results.

For the linearized spectrum, the bare part of the fermio
Hamiltonian takes the standard form,

H05 ivFE dx@c̄1]xc11c̄2]xc2#. ~20!

Substitution of Eq.~17! into Eq. ~14! yields

.

7-3
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dH5
l

4pE dp1

2p

dp2

2p
@c̄1~p1!RkF1p1,0@q~t!#

1A3c̄2~p1!RkF1p1,1@q~t!##

3@c1~p2!RkF1p2,0@q~t!#

1A3c2~p2!RkF1p2,1@q~t!##. ~21!

Now we neglectp1,2 in comparison with the Fermi mo
mentum and use the condition~16! to expand Eq.~21! in
kFq(t) up to the second order. The smallness of this para
eter is guaranteed by Eq.~16! together with the fact that the
dynamics of the heavy particle is dominated byq(t).6a.
We obtain

dH5dH01dHq ,

dH05
lkF

2

p F S 12
kF

2a2

3 D c̄1c11
kF

2a2

3
c̄2c2G , ~22a!

dHq5
lkF

2

p FkFq~t!

A3
~ c̄1c21c̄2c1!

1
kF

2@a22q2~t!#

3
~ c̄1c12c̄2c2!G , ~22b!

from which it is clear that mixing of higher harmonics wou
have been of orderO((kFa)3). Here and in the following we
use the short hand notation,

c[
c~10!1c~20!

2
,

whenever there is no spatial integration. The Hamilton
~22a! describes the electron scattering on a static poten
created by the heavy particle smeared between pote
minima. This term does not have any dynamics and may
eliminated by a unitary transformation. On the other ha
the term~22b! describes the excitations of the electron s
tem by the moving heavy particle, and should be trea
carefully.

To get rid of the Hamiltonian~22a!, we perform the trans-
formation

c6~x!→c6~x!ei sgn(x)d6, c̄6~x!→c̄6~x!e2 i sgn(x)d6,

tand15
lkF

2

pvF
S 12

kF
2a2

3 D , tand25
lkF

4a2

3pvF
, ~23!

in Eqs.~20! and ~22!. After this transformation the termH0
1dH0 acquires the form~20!, and Eq.~22b! becomes
04510
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dHq

vF
52pLz

q~t!

4a
@c̄1c21c̄2c1#

12pLx

a22q2~t!

2a2
@c̄1c12c̄2c2#

12pLr

a22q2~t!

2a2
@c̄1c11c̄2c2#, ~24!

where the dimensionless constantsLx,z,r are

Lz5
2kFa

pA3
sin~d11d2!,

Lx5
1

2p S kFa

A3
D 2

sin~d11d2!
cos2d11cos2d2

cosd1cosd2
,

Lr5
1

2p S kFa

A3
D 2

sin~d11d2!
cos2d12cos2d2

cosd1cosd2
. ~25!

It follows from the condition~16! that

Lx , Lr!Lz!1, ~26!

independently of the value of the coupling constantl. Simi-
lar conclusions about the values of the coupling consta
were reached in Ref. 8.

Introducing the pseudo-spin notation,

c5S c1

c2
D , c̄5~ c̄1 ,c̄2!, ~27!

and choosing the Pauli matrices in pseudo-spin space in
following representation:

tz5S 0 1

1 0D , ty5S 0 i

2 i 0D , tx5S 1 0

0 21D ,

~28!

the expressions~20! and ~24! can be rewritten in the more
compact form,

H01dHq

vF
5 i E dxc̄]xc12pLzZ~t!c̄

tz

2
c

12pLxX~t!c̄
tx

2
c1pLrX~t!c̄c, ~29!

where we introduced the short hand notation,

Z~t!5
q~t!

2a
; X~t!5

a22q2~t!

a2
. ~30!

One can see from the Hamiltonian~29! that vF can be re-
moved by the proper rescaling of the time coordinates.
what follows, we will setvF51.

To calculate the partition function it is convenient to i
troduce the U~1! ~charge! and SU~2! ~pseudo-spin! currents
7-4
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J5c̄c, J5c̄
t

2
c ~31!

that satisfy the commutation relations

@J~x!,J~0!#5 i
d8~x!

p
;

~32a!

@Jj~x!,Jk~0!#5 i
d jkd8~x!

4p
1 i e jkld~x!Jl~x!;

@J~x!,Jk~y!#50. ~32b!

The pseudo-spin current commutation relations~32b! define
the SU~2! Kac–Moody algebra at level 1 (SU(2)1). In terms
of the currents~31! the Hamiltonian~29! takes the Sugawar
form,

H05E dxH p

2
J21

2p

3
J2J , ~33a!

dH52pLzZ~t!Jz12pLxX~t!Jx1pLrX~t!J.
~33b!

Pseudo-spin and charge degrees of freedom are sepa
and in the bare part,H0, one recognizes the free charge b
son model and the SU(2)1 Wess–Zumino–Novikov–Witten
~WZNW! model. For a future use, we generalize Eq.~33b!
by introducing one more couplingLy ,

dH

2p
5LzZ~t!Jz1LxX~t!Jx1LyY~t!Jy1

LrX~t!J

2
,

Y~t!52 i
t tun

2a

dq

dt
, ~33c!

where i is introduced in front of the first time derivativ
because we work with the imaginary time. The parame
t tun has the dimensionality of time and is introduced to ma
Ly dimensionless. It is defined rigorously in the next secti
however, its exact meaning is not important here. In
original model at high energiesLy50, however, in our
analysis, this coupling will be generated in the higher or
perturbation theory, as shown in the next section.

As first step in the process of mapping our problem to
LGM we need to integrate out the fermionic degrees of fr
dom. In the framework of the formalism that we have chos
here, this requires to construct the action correspondin
the Hamiltonian~33!. A general procedure to do it is pro
vided by non-Abelian bosonization and leads to the WZN
04510
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action~see, for instance, Ref. 25!. For simplicity we chose a
different approach that uses Abelian bosonization. Des
the fact that the SU~2! is a non-Abelian group, the use o
Abelian bosonization in this case is made possible by the
that the SU(2)1 WZNW model has central charge equal
one. Introducing two bosonic fields for the charge a
pseudo-spin degrees of freedom in the standard way,

J5
1

Ap
]xfc ; ~34a!

Jz5
1

A4p
]xfs ;

J1[Jx1 iJy5
D

2p
e2 iA8pfs;

J2[Jx2 iJy5
D

2p
eiA8pfs; ~34b!

we can write the electronic Lagrangian density in the boso
form,

Lb5L b
01dH, ~35!

where

L b
05

1

2 (
r5c,s

@ i ]tfr]xfr1~]xfr!2#, ~36!

and dH can be easily obtained substituting Eqs.~34! into
~33c!. In the bosonization formulas~34b!, D is an arbitrary
cutoff required to make the correlation functions in t
bosonic theory finite. It can be fixed by requiring that t
correlation function of vertex operators in this theory
given by

^exp~ iA4pfs~x!!exp~ iA4pfs~0!!&5
1

Dx
. ~37!

After bosonizing we can integrate out the electronic degr
of freedom in~6! and rewrite it as

Z5E D@q~t!#e2*dtLatZr@q~t!#Zxzy@q~t!#, ~38!

where Lat is defined in Eq. ~9! and the product
Zr@q(t)#Zxzy@q(t)# is nothing but the electronic determ
nant for the given path of heavy particleq(t). It has the
following form:
Zr5 K expS 2pE dtLrX~t!JD L 5expS Lr
2

2 E dt1dt2

X~t1!X~t2!

~t12t2!2 D ; ~39a!
7-5
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Zxzy5(
m

S 1

m! D
2

~2p!2mE F)
j 51

m

dt j
1dt j

2R1~t j
1!R2~t j

2!G K )
j 51

m

J1~t j
1!J2~t j

2!expS 24pE dtLzZ~t!JzD L
5(

m
S 1

m! D
2

~2p!2mE F)
j 51

m

dt j
1dt j

2R1~t j
1!R2~t j

2!GexpFLzE dtZ~t!(
j 51

m S 1

t2t j
1

2
1

t2t j
2D G

3ZzK )
j 51

m

J1~t j
1!J2~t j

2!L
5(

m
S 1

m! D
2E F)

j 51

m

dt j
1dt j

2R1~t j
1!R2~t j

2!GexpFLzE dtZ~t!(
j 51

m S 1

t2t j
1

2
1

t2t j
2D G

3Zz)
i , j

m
1

~t i
12t j

2!2)i . j

m

~t i
12t j

1!2~t i
22t j

2!2, ~39b!
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R6~t![
Lx

2
X~t!6

Ly

2
Y~t!,

functions Z(t), X(t), and Y(t) are defined in Eqs.~30!,
~33c!, and

Zz5 K expS 22pE dtLzZ~t!JzD L
5expS Lz

2

2 E dt1dt2

Z~t1!Z~t2!

~t12t2!2 D . ~39c!

In Eqs. ~39! averaging over the bosonic fields is defin
as

^•••&5E D@f~x,t!#e*dtL b
0
•••.

In the next section we will use a semiclassical approxim
tion to map ~38! into the partition function of a one
dimensional gas of logarithmically interacting particles. Th
will enable us to establish a nonperturbative relationship
tween our original problem and the Kondo model.

III. MAPPING TO A LOGARITHMIC GAS MODEL

The main goal of this section is to map the model of t
previous section to the logarithmic gas model. A similar a
proach for the TLS was done in Refs. 24,17. As usual,
such kind of mapping, the first step is to identify the log
rithmically interacting objects. We will show in Sec. III A
that, for the present problem, they are instanton-antiinstan
configurations of the tunneling problem.26 In order to find the
upper cutoff for the logarithmic gas problemD which plays
the role of the prefactor in the Kondo temperature, we c
culate in Sec. III B the interaction between the instantons.
we will see, it turns out that there is an intrinsic short d
tance cutoff, that makes the theory regular, and is given
04510
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-

-
r
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n

l-
s
-
y

the size of the instanton. It is analogous to the lattice c
stant for 2D melting problem, or to the vortex core size f
superfluid films. Then a rough estimate forD is given by this
quantity. To define the cutoff with the higher accuracy w
find the coupling constants corresponding to the cho
value ofD by microscopic calculation of the energy of th
logarithmic gas model. The relation between the scaleD and
the coupling constants will be shown to have the form of

h~D!5h@11Lz
2~ ln Dt tun1O~1!!#;

~40!
Ly~D!52LxLz~ ln Dt tun1O~1!!.

On the other hand, Eq.~40!, can be interpreted as the resu
of the first iteration of the renormalization group equatio
for the Kondo problem withLy!Lx ,Lz ,

dh~D!

d ln D 5hLz
2 ;

dLy~D!

d ln D 52LxLz . ~41!

It means that the cutoffD could be chosen arbitrary, pro
vided that the coupling constants are adjusted accordingly
it is well-known for any logarithmical problem. Accordingly
we will choose the cutoffD to have the Hamiltonian of the
most simple form,

Ly~D!50. ~42!

This equation exclude any ambiguity in the definition ofD
and will allow us to determine the cutoff even with nume
cal coefficient for a wide class of the potentialsV(q).

A. Dilute instanton gas approximation

The partition function~38! can be calculated using
semiclassical approximation, which amounts to consider
only small fluctuations around the stationary points of t
action, which correspond to the Euler–Lagrange~EL! equa-
tions for the problem. A rough condition for the applicabili
of the semiclassical approximation isSinst@1, whereSinst is
the classical action corresponding to the trajectory conn
ing two extrema of the potentialV(q).
7-6
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To first approximation we can calculate the stationa
points using the EL equations for the bare problem,

M
d2q

dt2
5V8@q#, ~43!

which corresponds to the equation of motion for a class
particle in the potential minusV@q#. This approximation can
be improved by taking into account the modification of t
optimal trajectory due to the electrons, however, it introdu
only parametrically small changes of the coupling consta
~because the shape of the classical solution is a rigid mo!
and does not change any of our conclusions. Beside
trivial solution q(t)56a, Eq. ~43! also admits solutions o
the form,

q~t!56a f~t2t i ! ~44!

~kink and antikink, respectively! with f (6`)561. These
solutions are called instantons because they produce a
most instantaneous blimp in the Lagrangian. The action
invariant under translations of the instanton centert i , which
reflects the time translation invariance of the original L
grangian~9!. The instanton is characterized by its bare act

Sinst5E dtLat@a f~t!#, ~45!

and by the tunneling time,

t tun5E dt@12 f 2~t!#. ~46!

By construction, the integrand is nonzero only within t
core of the instanton, sot tun has the meaning of the size o
the core.

In what follows, we will write the explicit results for the
model potential,

V~q!5g~a22q2!2, ~47!

even though our considerations by no means are restri
for such potential. For the potential~47!, one easily finds

Sinst5
M2v3

12g
; f ~t!5tanh

vt

2
; t tun5

4

v
, ~48!

wherev258ga2/M is the frequency of the harmonic osci
lation in the extrema of the potential.

The partition function must sum over multi-instanton s
lutions satisfying initial and final conditions. Since the i
stanton core is small, it is a good approximation to consi
multi-instanton solutions~see Fig. 2! as if instanton and anti
instantons were dilute~dilute instanton gas approximation!,
which requiresut i2t j u@t tun @this assumption is completel
justified for Sinst@1 ~Ref. 26!#. Then, in the absence of th
interaction of heavy particle with electrons, a general traj
tory starting and ending at point2a can be written as

qn~t!52aF11(
j 51

2n

~21! j f ~t2j j !G , ~49!
04510
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where the positions of the kinksj2 j 11 antikinksj2 j are sub-
ject to constraints,

j j,j j 11 . ~50!

The action corresponding to a configuration withn
instanton–anti-instanton pairs with the exponential accur
is

E dtLat@qn~t!#52nSinst, ~51!

i.e., kinks would not interact with each other if the hea
particle were isolated from the electron system.

In the dilute instanton gas approximation, the low
temperature partition function of an isolated heavy parti
can be rewritten also in a form,

Z05 (
n50

`

h2n)
j 51

2n E
0

1/T

dj j5cosh
h

T
. ~52!

Hereinafter, integrals overj j are calculated with the con
straint ~50!. The tunneling splitting between two lowest lev
els of the heavy particle is estimated as

h5k
1

t tun
ASinste

2Sinst!
1

t tun
. ~53!

The numerical factork comes from the instanton determ
nant due to the integration around the saddle point.26 For
potential~47!, one findsk5A24/p'2.76.

Closing the subsection, we discuss the limits of the ap
cability of the dilute instanton approximation. If the potenti
V(q) does not have singular points the main condition of
applicability is Sinst@1. We emphasize, that this conditio
has nothing to do with the number of levels localized in ea
well. In particular, numerical solution of the Schro¨dinger
equation with the potential~47!, shows that the third level in
the DWP lies larger than the maximum of the potential
ready atSinst<6.06,~at this pointht tun51022), whereas the
dilute instanton approximation breaks down atSinst.2.8
~when the second level crosses the maximum of the po
tial!.

FIG. 2. Schematic form of the instanton solution~44! ~solid
line!. The dotted line represents instantaneous spin flip in the Ko
problem.
7-7
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B. Interaction between instantons

The purpose of this subsection is to establish the form
interaction between instantons and anti-instantons due to
dynamics of the electron system. To do so we substitute
~49! into Eq. ~38!. The functional integration is reduced t
the integration around small oscillations about the optim
trajectory~49!. The calculation of such instanton determina
is standard26 and may be performed without taking into a
count the electrons, provided that the condition~26! holds.
As the result we find

Z5 (
n50

`

h2n)
j 51

2n E dj jZr@$j% j 51
2n #Zxzy@$j% j 51

2n #, ~54!

whereZr,xzy@$j% j 51
2n # are the integrals~39! calculated over

q(t) given by Eq.~49!. These functions depend on the p
sitions of the kinks and therefore produce interactions
tween them. In what follows, we analyze this interaction
details.

Substituting Eq.~49! into Eq. ~30! and neglecting the ex
ponentially small overlap of the instanton cores one can
write Z(t) andX(t) as

Z~t!5 1
2 F211(

j 51

2n

~21! j f ~t2j j !G ,

~55!

X~t!'(
j 51

2n

h1~t2j j !, h1[12 f 2.

It is clear that the functionX(t) has peaks at the core o
instantons and vanishes exponentially otherwise.

Our strategy now is to substitute Eq.~55! into Eqs.~39!
and perform simplifications using the fact that the instan
gas is dilute. This can be easily done for the terms~39a! and
~39c! while Eq. ~39b! requires more work. For Eq.~39a! we
find27

E dt1dt2

X~t1!X~t2!

~t12t2!2
52ndS01(

iÞ j

2n

U0~j i2j j !;

dS0[U0~0!; U0~t!5ReE dt1dt2h1~t1!h1~t2!

~t12t22t1 i0!2
.

~56!

One can see from Eqs.~56! and~55! that U0(t) decays rap-
idly: U0(t).(t tun/t)2 at t.t tun. This short range interac
tion between the instantons is not important for the dil
instanton gas and we can neglect it. Thus, for a configura
of n kink–antikink pairs, Eq.~39a! takes the form,

Zr5exp~2nLr
2dS0!, ~57!

which is just an independent renormalization of the act
for each kink. Such renormalization is nothing but the p
laronic effect for the tunneling.

Next, we substitute Eq.~55! into Eq. ~39c! and, omitting
an irrelevant constant term, we obtain
04510
f
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E dt1dt2

Z~t1!Z~t2!

~t12t2!2
52ndS11(

iÞ j

2n

~21! i 1 jU1~j i2j j !;

U1~t!5E dt1dt2h2~t1!h2~t1! ln Dut12t22tu;

h2~t![
d f

2dt
, dS1[U1~0!, ~58!

where energy scaleD is introduced here to make the arg
ment of the logarithmic interaction dimensionless: it does
enter into the expression for the total action. In the followi
we will see that the natural choice isD51/t tun, where the
tunneling time is defined in Eq.~46!, however, we will keep
D as an independent energy scale for pedagogical reaso

One can see, e.g., from Fig. 2, that functionh2(t) decays
rapidly att.t tun. Therefore, the interaction between kink
U1(t), is logarithmic att@t tun and it saturates att.t tun.
This is nothing but the manifestation of the usual orthog
nality catastrophe,28 where the high-energy cutoff is dete
mined by the dynamics of the heavy particle.

Substituting~58! into Eq. ~39c! we find that this part of
the partition function is equivalent to that of the classica
interacting gas withn positive andn negative particles,

Zz5exp~nLz
2dS1!exp~2H1!,

~59!

H152
Lz

2

2 (
iÞ j

2n

~21! i 1 jU1~j i2j j !.

To begin the manipulations with the contribution~39b!,
we first study the simplest,m51, term to illustrate the prin-
ciple, and then switch to the higher order terms. We rew
the prefactor in Eq.~39b! as

R1~t1!R2~t2!

~t12t2!2

5(
j 51

2n h1
j ~t12j j !h2

j ~t22j j !

~t12t2!2

1(
iÞ j

2n h1
j ~t12j j !h2

i ~t22j j !

~t12t2!2

'(
j 51

2n h1
j ~t12j j !h2

j ~t22j j !

~t12t2!2

1(
iÞ j

2n h1
j ~t12j j !h2

i ~t22j i !

~j i2j j !
2

,

h6
j ~t!5

Lx

2
h1~t!7~21! j

Ly

2
t tunh2~t!, ~60!

where in the last line we used once again the fact that
instanton gas is dilute, and functionsh6(t) decay exponen-
tially outside the core of the instantons. The first term in t
last line of Eq.~60! keeps timest6 close to each other, and
7-8
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as we will see, will produce the renormalization of the acti
for a single kink. The second term will give rise to the inte
action between kinks.

For the exponent in Eq.~39b! one obtains

E dtZ~t!S 1

t2t1
2

1

t2t2D
5(

j 51

2n

~21! j@U2~j j2t1!2U2~j j2t2!#,

U2~t!5E dt1h2~t1!ln Dut12tu, ~61!

where we introduced the arbitrary cutoffD for the same pur-
pose as in Eq.~58!. Similarly to U1(t), the potentialU2(t)
is logarithmic att@t tun and it saturates att.t tun.

From Eqs.~60! and~61!, we can easily rewrite, within the
dilute instanton approximation, them51 contribution to
Zxzy as27

Z xzy
(m51)

Zz
52nF I x

Lx
2

4
1I y

Ly
2

4
1O~LxLyLz!G1K1,

I x5ReE dt1dt2

h1~t1!h1~t2!

~t12t21 i0!2
,

I y5t tun
2 ReE dt1dt2

h2~t1!h2~t2!

~t12t21 i0!2
,

4K15t tun
2 (

iÞ j

2n
@L̃x2~21! iL̃y#@L̃x1~21! jL̃y#

~j i j !
2

3expH Lz(
k51

2n8

~21!k@U2~j ik!2U2~j jk!#J ,

~62!

where we used the short hand notation

j i j [j i2j j ~63!

for the distance between the instantons, and(8 means that
terms involvingj i i are excluded. DerivingK1 from Eq.~62!,
we used the properties*dth1(t)5t tun, and*dth2(t)51.
The dimensionless coupling constantsL̃x,y entering into Eq.
~62! are defined as

L̃x5Lx2LyLzE dth2~t!U2~t!1O~Lz
2Lx!,

L̃y5Ly2LxLzE dt

t tun
h1~t!U2~t!1O~Lz

2Ly!. ~64!

The factorK1 can be also rewritten in terms of the par
tion function of the classical logarithmic gas. In order to
so, we relate to anyj th instanton the additional charge

m j521,0,1. ~65!
04510
As we will see immediately, the physical meaning of t
‘‘neutral’’ kink, m j50 is the tunneling of the heavy particl
without excitations of the electron system, where
‘‘charged’’ kinks m j561 describe the electron assisted tu
neling. Using the notation introduced in~65! and the fact that
asymptotic behavior of the potentialU2(t) is logarithmic,
we rewrite Eq.~62! as K15Km51, where the more genera
quantityKm is given by

Km~$j j% j 51
2n !5 (

$m j % j 51
2n

G~$m j%!exp~2H2!,

H252(
iÞ j

2n

U2~j i j !@m jm i1~21! im jLz#,

G~$m j%!5)
j 51

2n S 12m j~21! j
L̃y

L̃x
D S L̃xDt tun

2
D um j u

. ~66!

The summation over all the configurations of$m j% is sub-
ject to the condition of charge neutrality

(
j 51

2n

m j50 ~67!

and to themth order perturbation theory constraint

(
j 51

2n

um j u52m. ~68!

Equations~62! and~68! allow for very natural generalization
to the higher order terms. For a configuration containingn
kinks andn antikinks we wish to keep only terms of th
order of (nLx

2)m and neglect the terms which scale lik
(nLx

4)m, etc. It amounts to the neglecting in a produ
) j 51

m X(t j
1)X(t j

2) configurations that contain more than tw
kinks coinciding. We employ this approximation to exten
Eq. ~62! for generalm. To get rid of the combinatorial facto
1/(m!) 2, we impose additional constraints on the integrati
t j

1,t j 11
1 , and t j

2,t j 11
2 . The result then acquires th

form29

Z xzy
(m)

Zz
5

Lx
2m

4m (
k50

m
1

k!
~2nI !kKm2k~$j j% j 51

2n !, ~69!

where the combinatorial factor takes care of the ordering
the paired kinks and the factorKm is given by Eq.~66! with
the constraints~67! and ~68!.

The total contribution for 2n instantons is obtained by
summation of all the orders of perturbation theory,
7-9
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Zxzy

Zz
5

1

Zz
(

m50

`

Z xzy
(m)

5 (
m50

`

(
k50

m
~Lx

2nI !k~Lx
2/4!m2kKm2k

k!

5enLx
2I (

m50

`

~Lx
2/4!mKm . ~70!

We now substitute Eqs.~70!, ~59!, and~57! into Eq. ~54!.
As result one finds

Z5 (
n50

`

h̃2n(
$m j %

G~$m j%!E dj je
2H, ~71!

where the integration is performed with the constraint~50!,
G($m j%) are defined in Eq.~66!, and the summation ove
charge configurations$m j% is performed with the neutrality
condition~68!. Level splitting due to the spontaneous tunn
ing renormalized by the interaction with electrons~compare
it with ~53!! is

h̃5h expS sLr
2U0~0!

2
1

sLz
2U1~0!

2
1

sLx
2I x

2 D
'hS 11

sLr
2U0~0!

2
1

sLz
2U1~0!

2
1

sLx
2I x

2 D ~72!

with entries defined in Eqs.~25!, ~56!, ~58!, and~62!, ands
51, and we putLy50.

The energy of the classical logarithmic gasH5H11H2
is found as

H52(
iÞ j

2n

U2~j i j !Fm jm i1~21! im jLz1
~21! i 1 jLz

2

2 G ,
~73!

where we neglected the difference between the potentialsU2
andU1 from Eqs.~61! and~58! for j i j much larger than the
size of the core of the instantons.

So far we have considered only spinless electrons.
real spin is trivially included. We notice that there the ele
tron spin commutes with the Hamiltonian, and therefore
fermionic determinant for spin 1/2 electrons is factoriz
onto product of two fermionic determinants for each spin
results in the replacement

Zr,xzy→@Zr,xzy#
2

in Eqs.~38! and~54!. Such replacement is taken into accou
by introducing an additional ‘‘spin’’ for the kink,s j5↑,↓.
By simple repeating of all of the consideration of this su
section, one finds instead of Eq.~71!,

Z5 (
n50

`

h̃2n (
$m j %,$s j %

G~$m j%!E dj je
2H, ~74!

with the Hamiltonian
04510
-

e
-
e

t

t

-

H52(
iÞ j

2n

U2~j i j !

3H ds is j
@m jm i1~21! im jLz#1

~21! i 1 jLz
2

2 J ,

~75!

andG($m j%) are defined in Eq.~66!. The expression for the
action ~72! should be used withs52. This constitutes the
result of the mapping of our original problem to a on
dimensional classical gas of charged particles interacting
the potentialU2(r ) given by Eq.~61!.30 The fugacity and the
interaction potentials have been calculated starting from
completely microscopic theory.

Energies of the logarithmic gas explicitly depend on t
high energy cutoffD, see Eq.~61!, and so do the coupling
constants~64! and~72!. It is easy to see that the dependen
of the coupling constants of cut-off indeed has the form
Eq. ~40! @more formal argument thatLy is indeed analogous
to the corresponding coupling constant for the Kondo pr
lem will be given in the next section after Eq.~84!#. Indeed,
with the help of Eq.~61!, we rewrite Eqs.~64! and ~72! as

L̃y52LxLz@ ln Dt tun1ay#, ~76a!

h̃5h$11Lz
2@ ln Dt tun1ah#1Lr

2U0~0!1Lx
2I x%,

~76b!

ay5E dt1dt2

t tun
h1~t1!h2~t2!lnUt12t

t tun
U, ~76c!

ah5E dt2dt2h2~t1!h2~t2!lnUt12t

t tun
U. ~76d!

Because*dth1(t)5t tun, and*dth2(t)51, the parameters
ah,y , I x , andU0 can take only numerical values of the ord
of unity not depending of the cutoffD. We now defineD in
accordance with the rule~42!. We obtain

D5
1

t tun
e2ay, ~77!

which together with Eqs.~76c!, ~44!, ~46!, ~55!, ~58! solves
the problem of the relation of the high-energy cutoff with t
form of the instanton solution of the heavy-particle dynam
in the double well potential. Parameterh, in its turn acquires
the form,

h̃5h@11Lz
2~ah2ay!1Lr

2U0~0!1Lx
2I x#. ~78!

For illustration purposes we calculate the numerical value
the constant for the potential~47!. Using explicit form of the
instanton solution~48!, one immediately finds

U0~0!5I x52
12

p2
z~3!'21.461,

ay5ah5
1

4
lnS 2eC11

p D'0.281, ~79!
7-10
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NONEXISTENCE OF A STRONG COUPLING TWO- . . . PHYSICAL REVIEW B 66, 045107 ~2002!
wherez(3) is the Riemann Zeta function, andC'0.577 is
the Euler constant.

Closing the section, we write down the result for the log
rithmic gas model with the cutoff result. ForLy50, Eq.~66!
for factorsG($m j%) are simplified and one obtains from Eq
~74! and ~75!,

Z5 (
n50

`

h̃2n (
$m j %,$s j %

)
j 51

2n S Lxe
2ay

2 D um j u E dj je
2H, ~80!

with the Hamiltonian,

H52(
iÞ j

2n

ln~Dj i j !

3H ds is j
@m jm i1~21! im jLz#1

~21! i 1 jLz
2

2 J .

~81!

The results above will enable us in the next section
make connection between the microscopic parameters o
model of tunneling centers and the 2CK model.

IV. RELATION TO THE TWO CHANNEL KONDO MODEL
AND IMPOSSIBILITY OF THE STRONG

COUPLING LIMIT

A similar procedure can be done for the 2CK model w
real spin.22,23In our notation Eq.~1! acquires the form of Eq
~33! with ~33c! of the form,

dH54plzSzJz14plxSxJx14plySyJy12hSx , ~82!

where we included constantly for the sake of generality.
We extended the results of Refs. 22 and 23 to include

presence of a transverse magnetic field by the repeatin
the steps of the previous section. The only difference is
the spin flips are instantaneous~see Fig. 2!, so that the high-
energy cutoff is determined by the electronic scaleD. We
obtained the partition function for the 2CK model~82! in the
form ~74! as

Z5 (
n50

`

h2n (
$m j %,$s j %

E dj je
2HKondo, ~83!

with

G~$m j%!5)
j 51

2n S 12m j~21! j
ly

lx
D S lxD

2h D um j u

~84!

and

HKondo52(
iÞ j

2n

$ds is j
@m jm i1~21! im j2lz#

1~21! i 1 j2lz
2% lnuDj i j /\u. ~85!

Again the integration is performed with the constraint~50!
and the summation over charge configurations$m j% is sub-
04510
-

o
he

e
all
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ject to the neutrality condition~67!. The cutoffD is the same
cutoff as in Eq.~37!, or more precisely

lim
t→`

F ln Dt12p2 ReE
0

t

dt1E
0

t

dt2^Jx~t1!Jx~t2!& G50.

Let us now compare the logarithmic gas models for tu
neling centers~74!, ~80! and for the Kondo problem~83!.
First of all, direct comparison of Eq.~84! with Eq. ~66!
shows that constantLy is exactly equivalent to the couplin
constants of Kondo model indeed and Eq.~41! follows.
Next, we putly50 in Eq. ~84! and compare the result with
Eq. ~80!. We immediately find that two models becom
equivalent upon the following identification of the param
eters:

D↔D5
e2ay

t tun
,

h↔h̃'h,

lx↔LxS h

eayDD 5Lx~ht tun!,

lz↔
Lz

2
, ~86!

where the tunneling time is defined in Eq.~46!, and numeri-
cal constantay is defined in Eq.~76c! for the arbitrary DWP
and calculated for model~47! in Eq. ~79!.

We note that the equivalence between the tunneling
purity model and the 2CK model for times larger thent tun,
is nonperturbative in the sense that it is established at
order in perturbation theory. We reiterate, that the mapp
has to be performed with account of all of the excited sta
of the movable atom.

From the relationships~86! it is easy to show that the
Kondo temperature is always smaller thanh (Dz50 in our
model! and then the 2CK regime can never be reached.
deed, inserting Eqs.~86! into ~5!, one has

TK

h
5e2ayLxS Lx

Lz
D g

~ht tun!
g, g5

1

Lz
2

1

2
. ~87!

From the condition~16!, and~25! it follows that

Lx!1, g@1,
Lx

Lz
!1. ~88!

From Eq.~53!, we have usual relation for the tunneling spl
ting of two levels,

ht tun!1.

Together with Eq.~87!, this implies that

TK /h!1 ~89!

and thenthe strong coupling regime cannot be reached.
7-11
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V. DISCUSSION

In this paper we considered a general model describin
tunneling impurity moving in a double well potential an
embedded in a metal. The main motivation for this work w
to provide a conclusive answer to the question whether
possible to observe the strong coupling regime of the tw
channel Kondo model in such a system. In order to ans
this question one has to find the correct relationship betw
the microscopic parameters of the tunneling impurity pro
lem and the coupling constants of the effective two-chan
Kondo model. Previous results showed that the two-le
system is not a good starting point because all the exc
states of the impurity play an essential role. In order to ta
into account all the excited states of the double well poten
problem we used a different approach. We mapped the
neling impurity model into a one-dimensional logarithm
gas model using a semiclassical~dilute instanton! approxi-
mation to describe the dynamics of the impurity. Since
same mapping can be done for the two-channel Ko
model, we obtain a general relationship between the coup
constants of the two models. This relationship is obtain
taking into account all the excited levels of the heavy parti
and is valid to any order in perturbation theory. We demo
strated that, in the effective two-channel Kondo model~1!,
the values of the coupling constantlx and the transverse
magnetic fieldh, are intrinsically related, and can be nev
considered independently. This fact, together with the e
tence of an intrinsic high-energy cutoff in the theory, 1/t tun,
conspire in such a way that the Kondo temperature is alw
smaller than the effective magnetic fieldh. Then the strong
coupling fixed point of the two-channel Kondo model c
neverbe reached in this system. These results are valid
any form of the double well potential and are robust aga
specific properties of the electron system.
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APPENDIX:
EFFECT OF THE ELECTRON –HOLE ASYMMETRY

In this Appendix we present the general scheme for
calculation of the parameters of the effective model~74! for
a general electron spectrum without involving the lineariz
approximation~20! from the very beginning. Our motivation
for doing so is to provide framework in which further di
cussion~quite futile to our opinion! of the role of electron-
hole asymmetry should be performed.

Integration over the fermionic fields in Eq.~6! gives the
formal result,
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E D@c̄~x,t!#D@c~x,t!#e2SE[q,c̄,c]

5e2Sel[q(t)] 2E dtLat(q,q̇), ~A1!

where the effect of the electrons on the atom is described

2Sel@q~t!#5Tr lnF2
]

]t
2 ĵ~p!2VS i

]

]p
1V̂~p!2q~t! D G ,

~A2!

where p is the quasimomentum of the electrons,j(p)
5diag@j j (p)# is the spectrum of Bloch electrons, andV(r )
is the potential of the interaction of the atom with the ele
trons, which can be of more general form than the lo
interaction~14!. Finally, V̂(p) is the standard31 nondiagonal
component of the coordinate operator in the basis of
Bloch functions and it describes the interband scattering
to the atomic potential. In Eq.~A2! and thereafter all the
energies are counted from the Fermi level.

It will be convenient for us to express all the quantities
terms of the solution of the scattering problem on immob
atom. In order to do so, we perform the unitary transform
tion in Eq. ~A2! as

Tr ln@¯#5Tr ln@eiq(t)p . . . e2 iq(t)p#

and obtain from Eq.~A2!,

2Sel@q~t!#5Tr ln@2]t1 ipq̇~t!2 ĵ~p!2V̂#,

V̂[VS i
]

]p
1V̂~p! D . ~A3!

Our goal now is to expand Eq.~A3! in powers ofq̇, and
relate the expansion coefficients to the coupling constant
the low energy theory~74!. To facilitate such an expansio
we introduce the Matsubara Green functions andT̂ matrix of
immobile atom,

Ĝ0~ i«n ,p!5
1

i«n2 ĵ~p!
;

Ĝ~ i«n ,p1 ,p2!5F 1

i«n2 ĵ~p!2V̂
G

p1p2

5Ĝ0~ i«n ,p1!@dp1p2

1T̂~ i«n ,p1 ,p2!Ĝ0~ i«n ,p2!#;

T̂~ i«n ,p1 ,p2!5@V̂~12Ĝ0~ i«n!V̂!21#p1p2
, ~A4!

with «n5pT(2n11) being the fermionic Matsubara fre
quency, and their retarded and advanced counterparts

Ĝ0
R(A)~«!5Ĝ0~«6 i0!; T̂R(A)~«!5T̂~«6 i0!. ~A5!

We note the identities,
7-12
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Ĝ0~ i«n ,p!2Ĝ0~ i«n1 ivn ,p!

5 ivnĜ0~ i«n ,p!Ĝ0~ i«n1 ivn ,p!;

T̂~ i«n ,p1 ,p2!2T̂~ i«m ,p1 ,p2!

5E d3p3

~2p!3
T̂~ i«n ,p1 ,p3!@Ĝ~ i«n ,p3!

2Ĝ~ i«m ,p3!#T̂~ i«m ,p3 ,p2!, ~A6!

where vm52pTm is the bosonic Matsubara frequenc
Hereafter the momentum integration is performed within
first Brillouin zone.

Using Eq.~A4! we rewrite Eq.~A3! in the form of linked
cluster expansion,

Sel@q~t!#5 (
m51

` Sel
(m)

m
; Sel

(m)5Tr@2 i q̇pĜ#m, ~A7!

where we omitted the term independent ofq(t) and all of
the multiplications should be understood in the matrix sen

Before we proceed we notice that in the absence of
impurity potential quasimomentump is an integral of mo-
tion. Therefore, the coupling top of the force with nonzero
Matsubara frequency has no effect independently of
spectrumj(p). Using the fact that

E
0

1/T

dtq̇50, ~A8!

we find natural result that

Tr@ q̇pĜ0#m50. ~A9!

Now we perform the actual calculation of the expans
~A6!. According to Eq.~A7!, the first order term vanishes
Sel

(1)50. Using Eqs.~A5! and ~A9! one finds for the second
order term,

Sel
(2)5T(

vn
(

ab5x,y,z
vn

2qa~vn!qb~2vn!Pab~vn!,

Pab52T(
«n

E d3p

~2p!3
papb Tr$Ĝ0~ i«n ,p!

3T̂~ i«n ,p,p!Ĝ0~ i«n ,p!Ĝ0~ i«n1 ivn ,p!

1vn→2vn%

2T(
«n

E d3p

~2p!3

d3k

~2p!3
pakb Tr$Ĝ0~ i«n1 ivn ,p!

3T̂~ i«n1 ivn ,p,k!Ĝ0~ i«n1 ivn ,k!Ĝ0~ i«n ,k!

3T̂~ i«n ,k,p!Ĝ0~ i«n ,p!%, ~A10!

with
04510
e

e.
e

e

q~vn!5E
0

1/T

dtq~t!eivnt. ~A11!

With the help of Eq.~A6!, one rewrites Eq.~A10!,

Pab52
T

vn
2 (

«n

E d3p

~2p!3

d3k

~2p!3
~papb2pakb!

3Tr$Ĝ* ~p!T̂~ i«n1 ivn ,p,k!Ĝ* ~k!T̂~ i«n ,k,p!%;

Ĝ* ~p![Ĝ0~ i«n1 ivn ,p!2Ĝ0~ i«n ,p!.

Performing the standard trick with the replacement of su
mation over«n to the integration, we obtain

Pab52
1

vn
2E d«

p
tanh

«

2TE d3p

~2p!3

d3k

~2p!3
~papb2pakb!

3Im$Tr@Ĝ1~p!T̂~«1 i uvnu,p,k!Ĝ1~k!T̂R~«,k,p!#

2Tr@Ĝ2~p!T̂~«1 i uvnu,p,k!Ĝ2~k!T̂A~«,k,p!#%,

~A12!

where

Ĝ1~p![Ĝ0~«1 i uvnu,p!2Ĝ0
R~«,p!,

Ĝ2~p![Ĝ0~«1 i uvnu,p!2Ĝ0
A~«,p!. ~A13!

At that point it is important to emphasize thatuq(vn)u
decays exponentially at large frequencies for the saddle p
solution ~44!, uq(vn)u} e2uvnut tun. The fluctuations around
the saddle point are also suppressed at large frequencies
to the kinetic energy in Eq.~9!. The Green functions in Eq
~A13! are analytic functions of energy except the branch
at the real axis. It allows one to expand overuvnu in Eq.
~A13!,

Pab522E d«

p
tanh

«

2TE d3p

~2p!3

d3k

~2p!3
~papb2pakb!

3H 1

uvnu
]

]«
Tr@ Im Ĝ0

R~«,p!#T̂R~«,p,k!

3@ Im Ĝ0
R~«,k!#T̂A~«,k,p!

2
1

2
Im Tr

]Ĝ0
R~«,p!

]«
T̂R~«,p,k!

]Ĝ0
R~«,k!

]«
T̂R~«,k,p!

1
]

]«
Re Tr@ Im Ĝ0

R~«,k!#T̂A~«,k,p!

3@@ Im Ĝ0
R~«,p!#]«T̂R~«,p,k!

1@Re]«Ĝ0
R~«,p!#T̂R~«,p,k!#J . ~A14!

Substituting Eq.~A14! into Eq. ~A10! we find
7-13
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Sel
(2)5T(

vn
(

ab5x,y,z
qa~vn!qb* ~vn!~ uvnuRab1vn

2Qab!.

~A15a!

Here

Rab52pE d«
d

d«
tanh

«

2TE d3p

~2p!3

d3k

~2p!3
~papb2pakb!

3Tr d@«2 ĵ~p!#T̂R~«,p,k!d@«2 ĵ~k!#T̂A~«,k,p!,

~A15b!

and the first term in~A15b! is precisely the contribution
which describes the effect of the gapless excitation
orthogonality catastrophe. It is present for the constant d
sity of states. For the spherically symmetric case, one
easily recover frome Eq.~A15b! the exponential factor in Eq
~39c!.

The second term in the expression for the action cha
terizes the electron–hole asymmetry. It has an explicit
pression,

Qab5E d3p

~2p!3

d3k

~2p!3
~papb2pakb!~Q11Q2!,

Q15Im E d«

p
tanh

«

2T
Tr

]Ĝ0
R~«,p!

]«
T̂R~«,p,k!

3
]Ĝ0

R~«,k!

]«
T̂R~«,k,p!,
.

e

.

N.

n,

04510
–
n-
n

c-
-

Q252p ReE d«
d

d«
tanh

«

2T
TrH d@«2 ĵ~k!#T̂A~«,k,p!

3F ]«T̂R~«,p,k!d@«2 ĵ~p!#

1
@Re]«Ĝ0

R~«,p!#

p
T̂R~«,p,k!G J , ~A15c!

where the termQ1 depends on the spectrum only andQ2 is
due to the frequency dependence of the kinetic coefficie
Equation~A15c! vanishes for the constant density of stat
approximation, but it is not so for the arbitrary band stru
ture. However, we saw already that it generates the contr
tion proportional to the higher power ofvn . Thus, this term
producesnonsingular correction to the leading term. Th
characteristic value of this correction may be estimated
.1/(t tune* ), where e* is the energy scale governing th
electron-hole asymmetry. In principle, it might be estimat
from the thermopower measurements or from the first p
ciple band structure calculation of Eq.~A15c!.

One can proceed with the similar expansion in the n
orders of perturbation theory to recover the constantLx . The
structure remains the same, the first nonanalytic contribu
in vn comes from terms which are kept in the constant d
sity of states approximation, and the next contribution h
higher power ofvn , and thus gives the correction small a
1/(t tune* ). Thus, the electron–hole asymmetry~if treated
systematically! cannot produce anything except parame
cally small corrections to the coupling constants in cont
diction to claims of Ref. 19.
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