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We consider the problem of a heavy patrticle in a double well potef@IP) interacting with an electron
bath. Under general assumptions, we map the problem to a three-color logarithmic gas model, where the size
of the core of the charged particles is proportional to the tunneling g, of the heavy particle between the
two wells. For times larger tham,,, this model is equivalent to the anisotropic two-channel Kof@i6K)
model in a transverse field. This allows us to establish a relationship between the microscopic parameters of
DWP and the 2CK problem. We show that the strong coupling fixed point of the 2CK model can never be
reached for the DWP problem, in agreement with the results of Kagan and ProktevPhys. JETBY, 836
(1989] and Aleineret al. [Phys. Rev. Lett86, 2629(2001)].
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[. INTRODUCTION electron spin represent the channel index, and, in absence of
magnetic field, the channel degeneracy was guaranteed by
The possibility to observe the two channel Kondo effectconstruction. A disadvantage of this realization for the 2CK
in real physical systems has attracted a lot of interest sinceffect is that other relevant terms appear which are no longer
the pioneering work by Nozies and Blandir},but at present  forbidden by symmetry, the most important being the spon-
no experimental realization has been conclusively demontaneous tunneling of the impurity between the two minima.
strated. The difficulty lies in the fact that the non-Fermi lig- This corresponds to magnetic field in the conventional
uid (NFL) fixed point of the two channel Kondo modés  Kondo problem and then the resulting Kondo model has the
unstable to various symmetry breakifgsvhich turn out to  form,
be important for various experimental situations. In particu- o
lar, channel anisotropy is a relevant perturbation and the ex- Hkondo= Hx+Hi+hS+A,S% (1)
act channel symmetry is required for the NFL physics to bq-|ere
observed. In a conventional magnetic realization of the
Kondo effect this would require the exact degeneracy be-
tween atomic orbitals that cannot be obtained in any real HE=f dqeqtﬁ;i(q)z,ba,i(q) (2
system. In the search for the two-channel Korfd@K) ef-
fect, systems which are less directly related to the convenrepresents the propagation of free band electrarsl,2 is
tional Kondo physics were considered. It was suggested thdhe pseudo-spin index amer 1,2, . . . k is the channel index.
non magnetic impurity tunneling between two sites and indn the specific cas&=2. The sum over repeated indices is
teracting with an electron bath could be modeled as a twamplied. The second term ifil) describes the interaction
channel Kondo system in which the spin plays the role of thebetween the localized impurit{, and the electrons
channel inde% 8 (see also Refs. 9,10 for a revigwrollow- L
ing this suggestion, the NFL behavior of the 2CK fixed point . T a
was used in Ref. 11 to interpret the low temperature transport H'_; a:;y’z Nata,i(Noapdpi(1) S =, &)
data for narrow metallic constrictions. Indeed, in the limit
kra<<1, wherekg is the Fermi wave vector anda2is the whereazﬁ are the Pauli matrices in the pseudo-spin space,
distance between the two minima of the double well potenthe fermionic operatorsy, (r) are the counterparts of
tial (DWP), only electrons with two spherical harmonids ( #,.(K) in the coordinate representation, andis the density
=0 andl=1, m=0) strongly interact with the heavy par- of electronic states at the Fermi energy per one channel,
ticle. Usually the mapping of the DWP into a two level sys- which is introduced here to make the coupling constants di-
tem (TLS), which behaves like a localized spin, is achievedmensionless. There are two terms in the Hamiltorilgrthat
by restricting the Hilbert space of the atom to the two lowestoreak the rotational symmetry in the pseudo-spin space. The
energy states associated with the two miniri¥ess we will  term proportional ta\, is related to the original asymmetry
discuss in the following this approach is not well justified of the DWP, and may be greatly enhanced by the disordered
because it fails to capture the connection between the coypotential acting on electrorté However, it is still possible to
pling constants of the effective theorythen the orbital de- imagine, that the original DWP is symmetric, and all the
grees of freedom play the role of a pseudo-spin while the reabther impurities are remote from the DWP, so the valua pf
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is negotiable and may be even set to zero in some particular Using a semiclassical approximation to describe the dy-

cases. Nevertheless, the effective magnetic flglds related  namics of the impurity and the conditidga<1 we map the

to the tunneling of the impurity in the DWP, and so is the problem to a one-dimensional logarithmically interacting gas

constanf\, . The relation between them requires microscopicmodel(LGM). Since a similar mapping can be also obtained

consideration and one is not allowed to neglebut keepx,  for the Kondo modef??3this allows us to establish a general

finite. relationship between the microscopic parameters of the DWP
The model(1) is known to scale to the strong coupling and the coupling constants of the Kondo model. Our results

fixed point!'3 where it has a NFL behavidrThis regime is  are in agreement with the predictions of Refs. 7,8,18 and

achieved if both temperaturé&, and show that the mapping of the DWP to the 2CK model can be
done only for energies beloﬁ/rtj”%, wherery,, is the tunnel-

A= \/A27+ h? (4)  ing time of the heavy particle between the two wells. It is the

existence of this small energy scale, together with the rela-
do not exceed the Kondo temperatufg,. Since the inter- tionship betweerh and\,, that makes the Kondo tempera-
action in highly anisotropic), can be chosen to be equal to ture too small for the strong coupling fixed point to be
zero and\,<\,, the Kondo temperature is given ljgee, achieved in such systems& turns out to be always smaller

for instance, Ref. 14 than A, which makes the strong coupling limit nonacces-
sible.
| Mx 12, The paper is organized as follow: In the next section we
Tk=D(NA,) 2, (5 describe the model and we map it to a logarithmic gas model
in Sec. Ill. In Sec. IV we obtain the relation between our

whereD is a high energy cutoff. In order to check whether microscopic model and the 2CK model and, in the last sec-

the 2CK effect can be observed in a DWP system one theHon, we summarize the results and draw some general con-

has to comparel, with A. This problem has recently at- clusions. The problem of the effect of the electron-hole

tracted a lot of attentiofi-®1°-2°Some alarming results al- asymmetry on our results is discussed in the Appendix.

ready appeared in Ref. 8 and were confirmed in Ref. 18. The

crucial point consists in determining the various coupling Il. THE MODEL

constants in(1) and also high-energy cutofd in Eq. (5) . . - .

starting from a general micr%scopicgé/escription of?he prob- T_he partition fun_ct|on de_scrlb_lng an heavy particle mov-

lem. ing in a DWP and |_nteract|ng with an electron bath can be
As first pointed out by Kagan and Prokof’éfthe TLS is written in the following way:

not a good starting point since the high energy degrees of o _

freedom of the impurity cannot be taken into account and Z:J D[q(7)ID[ ¢(x,7)ID[ ¢h(x,7)]e” SEla¥¥1  (p)

they turn out to be essential to establish the correct mapping

to the Kondo probleni®*8 In particular it was shown by whereS; is the Euclidean action

model calculation of Ref. 18 thdD is of the order of the

energy distance to the third excited level of the atomic sys- SEZJ drl )

tem which is several orders of magnitude smaller than the

Fermi energy. Together with the restrictions to the couplinquth

constant it leads tdv>Ty and thus to the impossibility to

reach the strong coupl_ing limit. However, a question arise_s, L= Lot Lo+ OL. (®)

whether those conclusions are model-dependent or there is a

general principle for wide class of microscopic models pre-Through this section we will consider only=0, an exten-

venting the existence of the strong coupling regime. sion to finite temperature is trivial and will be discussed at
In this paper we use a general nonperturbative approactiie end of Sec. Ill.

to the problem that takes into account all the states of the In Eq.(8) £, describes the dynamics of the heavy particle

DWP and that, we believe, provides a conclusive answer tand is given by

the question whether it is possible to observe the 2CK effect

in the problem of a tunneling impurity. We start from a mi- _ M (@

croscopic description of the moving heavy particle interact- a2 \dr

ing with electrons in a metal. The potential in which the " .

impurity moves is chosen to have the most general form wit hereq(T). represent.the po§|t|on of the atom awda) is

two minima (the situation of a potential that presents three h_e . conflmn_g potentlal, which we assume 10 have two

minim&* is not considered hereThe interaction of the minima like in Fig. 1, and assume that the level anisotropy is

heavy atom with the electrons is chosen to be an instantﬁbsenmzzo' or more precisely,

neous density—density interaction, which, we believe, con- V(q)=V(—q). (10)

tains all the essential physics; effects of retardation due to the

electron screening or the interband excitations are small eNote that here and in the following the potential enters the

ther as inverse band gap or plasma frequency and will not beagrangian with a minus sign with respect to the usual defi-

taken into account. nition of the Lagrangian since we work in Euclidean space.

2
+V(a), (€)
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r
lﬂ(r):Yo,o( ‘)

r\ (~dp
+Y10 v jo E'ﬁf(p)Rp,l(r), (17
where we have introduced/.,(K)=tyo0 and _(Kk)
=10 The low energy properties are determined by elec-
tron states close to the Fermi surfapegkg, so that we can
introduce fields smooth on the scaléd/

p .
FIG. 1. Schematic representation of a DWP with two minima. P(X)= fp@':ﬁelpx'ﬂi(p)' (18)
The dotted lines represent the lower energy levels Apds the
level anisotropy. These fields determine the asymptotic behavior of the three
dimensional field arkg>1, thus specifying the scattering
The bare electronic Lagrangian has the form, matrix for the states close to the Fermi energy shell. In Eq.

(17) we suppressed all the higher angular harmonics not scat-
3 — tered by the heavy particle. Then, using the asymptotic be-
Eel:f d*xgp(x, 7)9-4p(X, )+ Ho (1) havior of the Bessel functions fak.>1 and Eq.(18), we
can rewrite Eq(17) as

with
. r ikgr —ikgr
_ ’p(r)ZFYO,O T [ (r)e"F =g (—r)e " F]
Hozf ke gr(k) k), (12
1 r . i
where y(x) is the electron field, +FY1,0(F)[¢(f)e'kFr+ Y_(—r)e ke
kL 1 iker —iker
lﬂ(X):JWG' (k). (13 :m[%(f)e Fl—g (—r)e ]
v
For the moment we do not include spin, as it is only a spec- \J3z er Ciker
tator. It will be reintroduced at the end where it will play the + W[’/I—(r)e ity (—re ], (19

role of the channel index. We chose a general density—

density interaction between the electrons and the atom of thghere we have chosen the direction of the motion of the

form, heavy particle restricted along tkexis. This leaves us with

an effective one-dimensional problem with two species of

electrons. These are left movers on the entire axis as in Eq.
(19) or, equivalently, one can introduce left and right movers

on the half line. We have chosen the former approach for
WhiCh, as eXplained in the intrOdUCtion, we believe Contain3echnica| convenience. With the same accuracy we can lin-

SL=56H= xf Bxg(x, ) P(x, 7) S(X—q(7)), (14)

all the essential physics. o _ earize the spectrum in the vicinity of the Fermi surfaeg,
Given the symmetry of the problem it is convenient t0 =, _(k—kg) andvg|k—kg|<D, whereD is the energy scale

dk Before r\:]vsqe proceed, let us note that there have been some
_ _ * r suggestions that the electron—hole asymmetry of the origi-
= % Yim= % Jo ERK"(r)Y"m( F) Prtm nal electronic band can lead to an enhancement of the Kondo
(15) temperature. These effects will not be taken into account in
this section, and the corresponding discussion is relegated to
whereY, , are spherical harmonics afy, = 2kj;(kr), with  the Appendix. As we will explicitly show there, they can be
J(X)=+m/2xJ, +1;5(X) being Bessel functions. From the introduced perturbatively and dwt change qualitatively our

condition; results.
For the linearized spectrum, the bare part of the fermionic
krpa<l, (16 Hamiltonian takes the standard form,
wherea is the distance between two minima of the potential, _ _
it follows that only the first two harmonic$=0, andl =1, Hoziva AX[ s Oxtp o+ p_oxip_]. (20)
m=0, strongly interact with the heavy particle. Then we can
approximate the electron field as Substitution of Eq(17) into Eq. (14) yields
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dp, d R
N 277_ 2W[¢+(p1) kF+p10[q(T)]

oH

+ m_(p1>RkF+pl,1[q<r>]]
X[+ (P2)Ryc+p,olad(7)]

+3Y_(p2)Ri_+p,LA(D]]. (21)

Now we neglectp, , in comparison with the Fermi mo-
mentum and use the conditiddi6) to expand Eq(21) in

keq(7) up to the second order. The smallness of this param-

eter is guaranteed by E(L6) together with the fact that the
dynamics of the heavy particle is dominated dpyr) = = a.
We obtain

SH=8Ho+ 8Hg,

)\kz k2 2 2
o= || -5

R

Zf w} (223

a4

kFQ(T) —
+y-t +
;3 (Y +Y_y)

kila®—q*(n)] —
+—

3 (22b

(Pt —d-9p) |,

from which it is clear that mixing of higher harmonics would
have been of ordeP((kra)®). Here and in the following we
use the short hand notation,

_H+0)+Y(—0)
Sfab Ll

whenever there is no spatial integration. The Hamiltonian
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oma, 37 )ww U]

a%—q?
+27Axﬂ

[Z‘F ¢+—J,¢,]

a?—qg*(r) —

+277Ap2—[¢+‘//++¢ -],

(24)

where the dimensionless constants, , are

A= S|n(5++5 ),

2k
wf

2
kea

1 .
AX:Z(E) Sin(6,.+6_)
kea 2

1 .
Ap:%(ﬁ) Sin(6,.+6_)

It follows from the condition(16) that

cosS, +cogs_
C0Sd, COSH

cos S, —coss_

c0osd,coss_ (25

Ay, A <A,<1, (26)

independently of the value of the coupling constansimi-
lar conclusions about the values of the coupling constants
were reached in Ref. 8.

Introducing the pseudo-spin notation,

¢=(Z*), o= 9, 27

and choosing the Pauli matrices in pseudo-spin space in the
following representation:
0 i 0
-1/’

(0 1) ( 1
271 o) T4 o)' sz(o
(28

(229 describes the electron scattering on a static potentiahe expression$20) and (24) can be rewritten in the more
created by the heavy particle smeared between potentigbmpact form,

minima. This term does not have any dynamics and may be
eliminated by a unitary transformation. On the other hand,
the term(22b) describes the excitations of the electron sys-
tem by the moving heavy particle, and should be treated

L(SH—.I dxyd, + 2 A Z(T).p—w

carefully. —Tx —
To get rid of the Hamiltoniari22a), we perform the trans- t2a A X ot mA X(7) gap, - (29)
formation
where we introduced the short hand notation,
Yo (X)— o (X)€ S0y (x)— g, (x)e ! SO q(7) a2—q2(7)
Z(r)=¥ X(r)zT. (30)
AkZ k2a? 2a?
tan5+=—F(1— F , tané_= F . (23 One can see from the Hamiltonid®9) thatvg can be re-
TUF 3 37vE moved by the proper rescaling of the time coordinates. In

what follows, we will setvg=1.

in Egs.(20) and(22). After this transformation the terid,
+ 8Hg acquires the forn{20), and Eq.(22b) becomes

To calculate the partition function it is convenient to in-
troduce the 1) (charge and SU2) (pseudo-spipcurrents
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action(see, for instance, Ref. 25~or simplicity we chose a

— —7
I=dp I=yY5¢ (31  different approach that uses Abelian bosonization. Despite
the fact that the S(2) is a non-Abelian group, the use of
that satisfy the commutation relations Abelian bosonization in this case is made possible by the fact
5 that the SU(2) WZNW model has central charge equal to
[3(x),3(0)]=i ( ) one. Introducing two bosonic fields for the charge and
pseudo-spin degrees of freedom in the standard way,
, (329
_ Ok gy . 1
[Jj(X),Jk(O)]—lT‘l‘lE 5(X)J|(X), JZ\/—;ax(ﬁc; (343)
[J(x),Ik(y)]=0. (32b) 1
Jzz\/Taxd’s ;
The pseudo-spin current commutation relati¢®8b) define &
the SU2) Kac—Moody algebra at level 1 (SU(Q) In terms D
of the currentg31) the Hamiltonian(29) takes the Sugawara Ji=d+idy=5—e" 187
form, 2m
2 J =J,—iJ D o7 34b)
T =J,—iJ,= iVB7ds:
Hozf dx[ J2+ 3 JZ], (33a Ny= 27 ° (34b)
we can write the electronic Lagrangian density in the bosonic
OH=2mAZ(7)I,+ 27 A X(7) I+ A X(7)J. form,
(33b
_ 0
Pseudo-spin and charge degrees of freedom are separated =LptoH, (35)
and in the bare partl,, one recognizes the free charge bo- h
son model and the SU(2Wess—Zumino—Novikov—Witten WNer€
(WZNW) model. For a future use, we generalize [E3@h) 1
by introducing one more coupling,, 5825 . [i&r¢p&x¢p+(&x¢p)2]; (36)
p=cC,

SH A X(7)d

=AZ(7) I+ AX(7T) I+ A Y (1) + and SH can be easily obtained substituting E¢34) into

2m 2 , (330. In the bosonization formula&4b), D is an arbitrary
cutoff required to make the correlation functions in the
Tiun dq bosonic theory finite. It can be fixed by requiring that the
Y(=-i52 47 (330 correlation function of vertex operators in this theory is

given by

wherei is introduced in front of the first time derivative
because we work with the imaginary time. The parameter . ] 1
Tun has the dimensionality of time and is introduced to make (exp(i VAT ps(x))expli VAT (0))) “ox: D
A dimensionless. It is defined rigorously in the next section,
however, its exact meaning is not important here. In théager hosonizing we can integrate out the electronic degrees
original model at high energied,=0, however, in our . taadom in(6) and rewrite it as
analysis, this coupling will be generated in the higher order
perturbation theory, as shown in the next section.

As first step in the process of mapping our problem to the Z= J’ Dla(n)]e ' aZ [q(7)] 2, a(n)], (38
LGM we need to integrate out the fermionic degrees of free-
dom. In the framework of the formalism that we have choserwhere L, is defined in Egq. (9 and the product
here, this requires to construct the action corresponding t&,[q(7)]2,,Jd(7)] is nothing but the electronic determi-
the Hamiltonian(33). A general procedure to do it is pro- nant for the given path of heavy partictd 7). It has the
vided by non-Abelian bosonization and leads to the WZNWfollowing form:

(393

Zp=<exp<—wf dTApX(T)J)>=eX;{ fd 1d7'2X(Tl)):_(2;-2)
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112 i i
szy:% (H) (Zw)sz [,1;[1 dr{ dr Ry (7] )R_(1]) <J1;[1 J+(Tj+)J_(Tj_)eXL{—4wf dTAzZ(T)JZ>>
12 m e + - S ! -
:§ (H) (2m)? f{lﬂl dryd7 Ry(7] )R- (7)) ex;{Azf da-Z(T)Jz1 (T_ Tj+ - Tj_)

><ZZ<H I (7)I_(7] >>

1\27| 2 1
:2 (—I) j{n dT dT R+(T JR_( T ) lex deZ(T)E ( )

m \ M j =1\ 7— 7'J T
il 1

x2,]] 2H (7 =)A= 1) (39b)
(T -7 )%=

|
where the size of the instanton. It is analogous to the lattice con-

stant for 2D melting problem, or to the vortex core size for
superfluid films. Then a rough estimate @iis given by this
quantity. To define the cutoff with the higher accuracy we
. _ _ find the coupling constants corresponding to the chosen
functions Z(7), X(7), and Y(7) are defined in Eqs(30),  value of D by microscopic calculation of the energy of the
(330), and logarithmic gas model. The relation between the szaknd

the coupling constants will be shown to have the form of

Ay Ay
R:(T)E7X(T)i7Y(T),

ZZ:<eXp(‘2”f A7) > h(D)=h[1+ A2(In Drt O(1))];
(40)
Z Z = — + .
:exp( del A (rz))_ (39 Ay(D) == AA (INDryt O(1))
On the other hand, Eq40), can be interpreted as the result

of the first iteration of the renormalization group equations
In Egs. (39) averaging over the bosonic fields is definedfoy the Kondo problem with J<ALA,,

as
dh(D) , dAy(D)

( ..>:jD[¢(X,7)]efdfﬁg.... dinp "2 dInD
It means that the cutofD could be chosen arbitrary, pro-

In the next section we will use a semiclassical approximavided that the coupling constants are adjusted accordingly, as
tion to map (38) into the partition function of a one- itis well-known for any logarithmical problem. Accordingly,
dimensional gas of logarithmically interacting particles. Thiswe will choose the cutofD to have the Hamiltonian of the
will enable us to establish a nonperturbative relationship bemost simple form,
tween our original problem and the Kondo model.

=—AA,. 41

Ay(D)=0. (42)

I1l. MAPPING TO A LOGARITHMIC GAS MODEL This equation exclude any ambiguity in the definition7of

. : L and will allow us to determine the cutoff even with numeri-
The main goal of this section Is to map the mo‘?'e'. of thec coefficient for a wide class of the potentisléq).
previous section to the logarithmic gas model. A similar ap-

proach for the TLS was done in Refs. 24,17. As usual, for
such kind of mapping, the first step is to identify the loga-
rithmically interacting objects. We will show in Sec. Ill A The partition function(38) can be calculated using a
that, for the present problem, they are instanton-antiinstantosemiclassical approximation, which amounts to considering
configurations of the tunneling probleffiln order to find the  only small fluctuations around the stationary points of the
upper cutoff for the logarithmic gas problefhwhich plays  action, which correspond to the Euler—Lagrarigé) equa-

the role of the prefactor in the Kondo temperature, we caltions for the problem. A rough condition for the applicability
culate in Sec. 1l B the interaction between the instantons. A®f the semiclassical approximation $,s2> 1, whereS;q is

we will see, it turns out that there is an intrinsic short dis-the classical action corresponding to the trajectory connect-
tance cutoff, that makes the theory regular, and is given byng two extrema of the potentidl(q).

A. Dilute instanton gas approximation
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To first approximation we can calculate the stationary q®
points using the EL equations for the bare problem,

Mdzq =V'[(q] (43)
dr? ab

which corresponds to the equation of motion for a classical
particle in the potential minug[ gq]. This approximation can
be improved by taking into account the modification of the
optimal trajectory due to the electrons, however, it introduces _— _—
only parametrically small changes of the coupling constants Toa T
(because the shape of the classical solution is a rigid inode

and does not change any of our conclusions. Beside the FIG. 2. Schematic form of the instanton soluti¢f) (solid
trivial solution q(7) = *+a, Eq. (43) also admits solutions of line). The dotted line represents instantaneous spin flip in the Kondo
the form, problem.

q(7)=xaf(7—7) (44)  where the positions of the kinks; ,; antikinks¢,; are sub-

ject to constraints,
(kink and antikink, respectivelywith f(*«)==*1. These J

solutions are called instantons because they produce an al- E<E ... (50)
most instantaneous blimp in the Lagrangian. The action is sl
invariant under translations of the instanton centerwhich The action corresponding to a configuration with

reflects the time translation invariance of the original La-jnsianton—anti-instanton pairs with the exponential accuracy
grangian(9). The instanton is characterized by its bare actiong

3nst: J dTﬁat[af(T)]v (45) f dTLat[qn( 7)]: ZnSnsti (51)

and by the tunneling time, i.e., kinks would not interact with each other if the heavy

particle were isolated from the electron system.
Ttun:f dr[1-f%(7)]. (46) In the dilute instanton gas approximation, the low-
temperature partition function of an isolated heavy particle
By construction, the integrand is nonzero only within thecan be rewritten also in a form,
core of the instanton, s@,,, has the meaning of the size of
the core. ” 2N g h
In what follows, we will write the explicit results for the Zo=2, h>[] J’ d¢j=coshs. (52
model potential, n=0 - j=1.J0
V(q)=g(a?— q?)2 47) Herginafter, integrals pvefj are calculated with the con-
' straint(50). The tunneling splitting between two lowest lev-
even though our considerations by no means are restrictegls of the heavy particle is estimated as
for such potential. For the potentiéd7), one easily finds

1 1
M?w? oT 4 h:KT_VSinst(ySinSt< S (53
Sinstzﬁ; f(T) :tanh7; Ttun:Z1 (48) tun tun

o o o . . The numerical factoik comes from the instanton determi-
wherew®=8ga’/M is the frequency of the harmonic oscil- nant due to the integration around the saddle pirfor
lation in the extrema of the potential. potential(47), one findsk = \24/7~2.76.

The partition function must sum over multi-instanton so-* - cjosing the subsection, we discuss the limits of the appli-
lutions satisfying initial and final conditions. Since the in- apijity of the dilute instanton approximation. If the potential
stanton core is small, it is a good approximation to con&dewq) does not have singular points the main condition of the

multi—instanton soI_ution{;see Fig. 2 as if instanton a.nd anti- applicability is S,>1. We emphasize, that this condition
instantons were dilutédilute instanton gas approximation  paq nothing to do with the number of levels localized in each

which requires 7 — 7| > 7, [this assumption is completely e | particular, numerical solution of the Schiinger
justified for Spe>>1 (Ref. 26]. Then, in the absence of the equation with the potentid#7), shows that the third level in
interaction of heavy particle with electrons, a general trajeCine DWP lies larger than the maximum of the potential al-

tory starting and ending at poinrta can be written as ready atS;,=6.06, (at this pointhr,,,= 10 ?), whereas the
2n dilute instanton approximation breaks down $fg~2.8
——al1+ —)if(r—g) |, 49 (when the second level crosses the maximum of the poten-
On(7) ,21 (—1)f(7—§) 49 o
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B. Interaction between instantons 2n
Z( Tl)z( 7-2) _ 2 i+ i
The purpose of this subsection is to establish the form of drdr, (71— 19)2 _2”5Sl+i#]. (=1)"UL(&—¢));

interaction between instantons and anti-instantons due to the
dynamics of the electron system. To do so we substitute Eq.
(49) into Eq. (38). The functional integration is reduced to U1(T):f dmd 7o 15( 1) 7o( 1) IND| 71— 75— 7;

the integration around small oscillations about the optimal

trajectory(49). The calculation of such instanton determinant df

is standar®® and may be performed without taking into ac- 7o(7)= T 8S,=U,(0), (58)
count the electrons, provided that the conditi@®) holds. T

As the result we find where energy scal® is introduced here to make the argu-
" on ment of the logarithmic interaction dimensionless: it does not
_ 2n 2n 2n enter into the expression for the total action. In the following
2= HZO h ,—1;[1 d&jZ el 2al gzl (59 we will see that the natural choice B=1/7,,,, where the
tunneling time is defined in Eq46), however, we will keep
where Z, ,,[{£}72,] are the integral$39) calculated over D as an independent energy scale for pedagogical reasons.
a(7) given by Eq.(49). These functions depend on the po-  One can see, e.g., from Fig. 2, that functigs( ) decays
sitions of the kinks and therefore produce interactions berapidly att> r,,. Therefore, the interaction between kinks,
tween them. In what follows, we analyze this interaction inu(7), is logarithmic atr> r,, and it saturates at=7y,.
details. This is nothing but the manifestation of the usual orthogo-
Substituting Eq(49) into Eq. (30) and neglecting the ex- nality catastrophé&’ where the high-energy cutoff is deter-
ponentially small overlap of the instanton cores one can remined by the dynamics of the heavy particle.
write Z(7) andX(7) as Substituting(58) into Eq. (390 we find that this part of
the partition function is equivalent to that of the classically

2 interacting gas witn positive andn negative particles,

Z(n=3 -1+ 2 (-DIf(r—§)|,
1= 55 Z,=exp(nA25S,)exp —H),

2n » on (59

X~ 2 m(r=). m=1-1* Hi=—2t > (~ 1)Uy - §).
iz
It is clear that the functiorK(7) has peaks at the core of
instantons and vanishes exponentially otherwise.

Our strategy now is to substitute E5) into Egs.(39)
and perform simplifications using the fact that the instanto
gas is dilute. This can be easily done for the tefB8g and
(390 while Eq.(39b) requires more work. For E¢399 we

To begin the manipulations with the contributigd9b),
we first study the simplesth=1, term to illustrate the prin-
ciple, and then switch to the higher order terms. We rewrite
The prefactor in Eq(39b) as

finc?’ Ri(r)R-(7-)
(T+_T—)2
X(71)X l . _
f dTldTZMZZVWSO"'Z Uo(&i—§)); 2 (1 — &) (7-—&)
7'1_7'2)2 i#] :z >
j=1 (ro—712)
5Sy=U,(0); UO(T):RQJ d71d7'2771(7'1)7?1(7;2). +§ 7 (7= &) n(r-— &)
(r1= 71— 7+i0) ] (rp—7)?
(56)
& (=) (r &)
One can see from Eq&56) and (55) thatUy(7) decays rap- <y et o !
idly: Ug(7)=(rn/7)? at 7> 7y,,. This short range interac- =1 (ro—7_)2

tion between the instantons is not important for the dilute n :
instanton gas and we can neglect it. Thus, for a configuration S 7 (1T = &) (1-—§&)
of n kink—antikink pairs, Eq(399 takes the form, < (§i—§j)2 )

Z =exp(2nA25Sy), (57) , A B A
’ ’ 7 ()= 5 m(DF (= 1)) 5 Tnmal(7), (60)
which is just an independent renormalization of the action
for each kink. Such renormalization is nothing but the po-where in the last line we used once again the fact that the

laronic effect for the tunneling. instanton gas is dilute, and functioms.(7) decay exponen-
Next, we substitute Eq55) into Eq. (390 and, omitting tially outside the core of the instantons. The first term in the
an irrelevant constant term, we obtain last line of Eq.(60) keeps times.. close to each other, and,
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as we will see, will produce the renormalization of the actionAs we will see immediately, the physical meaning of the
for a single kink. The second term will give rise to the inter- “neutral” kink, u;=0 is the tunneling of the heavy particle

action between kinks. without excitations of the electron system, where as
For the exponent in Eq39b) one obtains “charged” kinks uj=*1 describe the electron assisted tun-
neling. Using the notation introduced (65) and the fact that
1 1 asymptotic behavior of the potentitl,(7) is logarithmic,
f dTZ(T)( R T—) we rewrite Eq.(62) asK;=K,,_;, where the more general

quantity K, is given by
2n

=2 (—D)[Uy(&—714)—Us(&—7)],
=1 2n
Kn({&}720= 2 T({phexp—Ho),

{Mj}jzl
Uz(T):fd7'17]2(7'1)|nD|71_7'|, (61)
where we introduced the arbitrary cutdfffor the same pur- 2n _
pose as in Eq(58). Similarly to U,(7), the potentialJ,(7) Ho= —gj Uo(&plpjmi+ (—1) ALl

is logarithmic atr> 7, and it saturates at= 7y,,.
From Eqgs.(60) and(61), we can easily rewrite, within the

dilute igstanton approximation, themm=21 contribution to 2n AN X.Dr L]
i X tun
Zyzyas F(uh=11 1—u,-(—1>lx—y)(T) . (66)
Z(m=1) 2 2 = X
xzy X y
= =2n Ix_+|yT+O(AXAyAZ) +Kq,
z

The summation over all the configurations{gf;} is sub-
ject to the condition of charge neutrality

= Ref drydr, 7/1(7'1)771@)2’
(11— 7, +i0) .
2 72(71) 72( T2) j§=:1 uj=0 (67)
Iy:TtunReJ drdr,——,
(11— 7o +i0)?

) and to themth order perturbation theory constraint
hoo~ - o
2 [Ax_(_l)lAy][Ax+(_1)JAy]
4K 1= Tuns 2 2
1#] (&j) n
o 2, lwjl=2m. (68)
Xexp{ Azkgl (=DM U2(&) —Ua( &)1

Equationg62) and(68) allow for very natural generalization
62 {0 the higher order terms. For a configuration contairming

where we used the short hand notation kinks andn antikinks we wish to keep only terms of the
order of (nAf)m and neglect the terms which scale like
&i=&—§ 63 (nAH™ etc. It amounts to the neglecting in a product

for the distance between the instantons, aridmeans that I1j~1X(7,)X(7}") configurations that contain more than two
terms involvingé; are excluded. Deriving, from Eq.(62),  kinks coinciding. We employ this approximation to extend
we used the propertiefdr7,(7)=ry,, and [dry,()=1. EQ.(62) for generaim. To get rid of the combinatorial factor

. . . ~ . . 1)2 i iti i i i
The dimensionless coupling constantg, entering into Eq. 1/+(m.)+, we Impose aoldltlonal constraints on the |r_1tegrat|0n
(62) are defined as ij <27-+1, and 7; <7,,. The result then acquires the
orm

szAx_AyAzJ dT’?Z(T)UZ(T)+O(A§Ax)1
z(m  A2m T

XZ l N
Zzy= 4m kzo DKo (g1, (69

- dr
Ay=Ay— AXAZI P m(TUa(1)+O(AZA). (64)

The factork, can be also rewritten in terms of the parti- where the combinatorial factor takes care of the ordering of
tion function of the classical logarithmic gas. In order to dotn€ Paired kinks and the facté, is given by Eq.(66) with

so, we relate to anjth instanton the additional charge the constraint¢67) and (68). _ _
The total contribution for & instantons is obtained by

#j=—1,0,1. (65) summation of all the orders of perturbation theory,
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Zay_1 > zm
ZZ Zz “= xzy
v 3 DA K
m=0 K=0 k!

- e”Af'mE:0 (A2I4)™K . (70)

We now substitute Eq$70), (59), and(57) into Eq. (54).
As result one finds

2= 3 TS (e [ dge @
n=0 {mjh

where the integration is performed with the constra&a),

I'({u;}) are defined in Eq(66), and the summation over

charge configurationgu;} is performed with the neutrality

condition(68). Level splitting due to the spontaneous tunnel-

ing renormalized by the interaction with electrawempare

it with (53)) is

. SA2Uo(0)  sAZU4(0) sAZl,

—ne 2 2 2
SA2Ug(0)  sAZU4(0) sAZl,

~h| 1+—" 5 5 (72)

with entries defined in Eq$25), (56), (58), and(62), ands
=1, and we putA,=0.

The energy of the classical logarithmic gbls="H,+H,
is found as

2n

(—1)'"IA
H=—§j Uo(&)) —

5 ,
(73

[/v‘jﬂi"’(_l)iﬂj/\z'l'

where we neglected the difference between the potendials
andU, from Egs.(61) and(58) for &; much larger than the
size of the core of the instantons.

PHYSICAL REVIEW B 66, 045107 (2002

2n

H:_Z Uo(&ij)
i#]

(_1)i+jA§
2 ,
(75

andI'({u;}) are defined in Eq(66). The expression for the
action (72) should be used witls=2. This constitutes the
result of the mapping of our original problem to a one-
dimensional classical gas of charged particles interacting via
the potentiald ,(r) given by Eq.(61).%° The fugacity and the
interaction potentials have been calculated starting from a
completely microscopic theory.

Energies of the logarithmic gas explicitly depend on the
high energy cutoffD, see Eq.(61), and so do the coupling
constantg64) and(72). It is easy to see that the dependence
of the coupling constants of cut-off indeed has the form of
Eq. (40) [more formal argument that, is indeed analogous
to the corresponding coupling constant for the Kondo prob-
lem will be given in the next section after E@4)]. Indeed,
with the help of Eq(61), we rewrite Eqs(64) and(72) as

X 5U|(rl[/*l’]lu’l+(_1)llu’JAZ]+

Ay=—=AALINDryet ay], (763
h=h{1+AZ[IN Drynt an]+A2Ug(0) + AL}, (
76b)
drdr, T~ T
ay= 71(71) 72(72)IN : (760
tun tun
Tl_ T
C“h:j drod7,m2( 1) 72(72)IN P (760
un

Becausd d771(7) = 7y, andfd77,(7) =1, the parameters
any, Iy, andU, can take only numerical values of the order
of unity not depending of the cutofd. We now defineD in
accordance with the rulgl2). We obtain

1
—e @y
Ttun

D

' (77)

So far we have considered only spinless electrons. The i
real spin is trivially included. We notice that there the elec-Which together with Eqsi760), (44), (46), (55), (58) solves
tron spin commutes with the Hamiltonian, and therefore théhe problem of the relation of the high-energy cutoff with the
fermionic determinant for spin 1/2 electrons is factorizedform of the instanton solution of the heavy-particle dynamics

onto product of two fermionic determinants for each spin. It
results in the replacement

Zp,xzy‘)[zp,xzy]z

in Egs.(38) and(54). Such replacement is taken into account
by introducing an additional “spin” for the kinkg!=1,].

By simple repeating of all of the consideration of this sub-
section, one finds instead of E{.1),

z=2 h" 3 (74)
n=0 {njh o

T [ age.

with the Hamiltonian

in the double well potential. Parametegrin its turn acquires

the form,

h=h[1+AZ(an—a,) +A2U(0)+AZL].  (78)

For illustration purposes we calculate the numerical value of

the constant for the potentiéd7). Using explicit form of the

instanton solutior(48), one immediately finds

12
Ug(0)=1=— = {(3)~—1.461,
a

|

1 2eC+1

ay= ahzzln

>~0.281, (79
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where {(3) is the Riemann Zeta function, ai@~0.577 is
the Euler constant.

Closing the section, we write down the result for the loga-

rithmic gas model with the cutoff result. Fdr,=0, Eq.(66)
for factorsI'({«;}) are simplified and one obtains from Egs.
(74) and(75),

oo

z=> h¥
n=0

Ay
2

2n [

11 ( ) J'dae-“,<8®
{mjtdoj} 1=1

with the Hamiltonian,

2n

H=—2, In(D&;)
1#]

(—m”ma
X -

2

5(ri(rj[ﬂjMi+(_ 1) wiA, ]+

(81)

PHYSICAL REVIEW B 66, 045107 (2002

ject to the neutrality conditiof67). The cutoffD is the same

cutoff as in Eq.(37), or more precisely

lim/InD7+27° ReJOdleodT2<JX(T1)JX(TZ)> =0.

Let us now compare the logarithmic gas models for tun-
neling centerg74), (80) and for the Kondo problent83).
First of all, direct comparison of Eq84) with Eq. (66)
shows that constant, is exactly equivalent to the coupling
constants of Kondo model indeed and Hgl) follows.
Next, we put\,=0 in Eq.(84) and compare the result with
Eq. (80). We immediately find that two models become
equivalent upon the following identification of the param-
eters:

The results above will enable us in the next section to

make connection between the microscopic parameters of the

model of tunneling centers and the 2CK model.

IV. RELATION TO THE TWO CHANNEL KONDO MODEL
AND IMPOSSIBILITY OF THE STRONG
COUPLING LIMIT

(86)

A similar procedure can be done for the 2CK model with\\here the tunneling time is defined in B46), and numeri-

real spin?>2*In our notation Eq(1) acquires the form of Eq.
(33) with (330 of the form,

SH=47N,S,d,+ 47N SJ+ 47N S I +2hS,, (82)

where we included constait, for the sake of generality.

cal constanty, is defined in Eq(760 for the arbitrary DWP
and calculated for modeé#7) in Eq. (79).

We note that the equivalence between the tunneling im-
purity model and the 2CK model for times larger thgy,,
is nonperturbative in the sense that it is established at any

We extended the results of Refs. 22 and 23 to include th@rder in perturbation theory. We reiterate, that the mapping
presence of a transverse magnetic field by the repeating dmas to be performed with account of all of the excited states
the steps of the previous section. The only difference is tha@f the movable atom.

the spin flips are instantaneo(see Fig. 2, so that the high-
energy cutoff is determined by the electronic scBleWe
obtained the partition function for the 2CK mod8P) in the
form (74) as

3]

Z=> h? > f dg;e™ Hondo, (83)
n=0 {mjt o}
with
2n )
Ny [N D) Hil
)= (=122
C({mh) pml M(l)MMZh) (84)
and
2n
HKondoz_gj {5aiaj[MjMi+(—1)'Mj2)\z]
+(—1)""I20Zn|Dg;; /1. (85)

Again the integration is performed with the constrai50)
and the summation over charge configuratigps} is sub-

From the relationshipg86) it is easy to show that the
Kondo temperature is always smaller thiarfA,=0 in our
mode) and then the 2CK regime can never be reached. In-
deed, inserting Eqg86) into (5), one has

T g [Ny oL 1 g
o8 ML (h7wn) 7, Y=R, 2 (87)
From the condition16), and(25) it follows that
Ay
A1, 1, —<L1. (89
A,

From Eq.(53), we have usual relation for the tunneling split-
ting of two levels,

hTtun< 1
Together with Eq(87), this implies that
Tk/h<1 (89

and thenthe strong coupling regime cannot be reached
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V. DISCUSSION B )
f D[ (x,7)]D[ (x,7)]e” Seld -]

In this paper we considered a general model describing a
tunneling impurity moving in a double well potential and ,
embedded in a metal. The main motivation for this work was =g Seld(n]- f d7La(a,q) (A1)
to provide a conclusive answer to the question whether it is , i
possible to observe the strong coupling regime of the tWOyvhere the effect of the electrons on the atom is described by
channel Kondo model in such a system. In order to answer P J
this question one has to find the correct relationship between- s [q(7)]=TrIn| ——— g(p) —V( | — +Q(p)_q(7))
the microscopic parameters of the tunneling impurity prob- ar p
lem and the coupling constants of the effective two-channel (A2)
Kondo model. Previous results showed that the two-levelyhere p is the quasimomentum of the electrong(p)
system is not a good starting point because all the excited diad &(p)] is the spectrum of Bloch electrons, aNgr)

states of the impurity play an essential role. In order to takgs the potential of the interaction of the atom with the elec-
into account all the excited states of the double well poten“a{rons' which can be of more genera' form than the local

problem we used a different approach. We mapped the tu
neling impurity model into a one-dimensional logarithmic

r]hteraction(14). Finally, Q(p) is the standartt nondiagonal
del usi iclassidailute instant . component of the coordinate operator in the basis of the
gas model using a semiclassidalilute instantoh approxi- Bloch functions and it describes the interband scattering due

mation to de_scribe the dynamics of the impurity. Since theto the atomic potential. In EqA2) and thereafter all the
same mapping can be done for the two-channel Kond%nergies are counted from the Eermi level.

model, we obtain a general relationship between the coupling It will be convenient for us to express all the quantities in

coqsta_nts of the two models.. This relationship is Obta'neqerms of the solution of the scattering problem on immobile
taking into account all the excited levels of the heavy particle

and is valid to any order in perturbation theory. We demon_:g)nn}hlgqor(iezr)tgsdo S0, we perform the unitary transforma
strated that, in the effective two-channel Kondo mods) '
the values of the coupling constani and the transverse Trin[---]=TrIn[e'4P eia(mp)
magnetic fieldh, are intrinsically related, and can be never

considered independently. This fact, together with the exisand obtain from Eq(A2),

tence of an intrinsic high-energy cutoff in the theoryr Jd,

conspire in such a way that the Kondo temperature is always ~ —Se[d(7)]=TrIn[—4d.+ipq(7)—&(p)— V],

smaller than the effective magnetic fidhd Then the strong P

coupling fixed point of the two-channel Kondo model can V=V i—+ﬂ(p)). (A3)
neverbe reached in this system. These results are valid for ap

any form of the double well potential and are robust against i

specific properties of the electron system. Our goal now is to expand E@A3) in powers ofg, and
relate the expansion coefficients to the coupling constants of
the low energy theory74). To facilitate such an expansion
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APPENDIX: =Go(ien,P1)dp,p,

EFFECT OF THE ELECTRON —HOLE ASYMMETRY A .
. . +T(ien,P1,P2)Golien,p2)];
In this Appendix we present the general scheme for the

calculation of the parameters of the effective modal) for T —V(1=8n(ie)V) 1 Ad
a general electron spectrum without involving the linearized (Ten.P1.P2) =[V( olien)V) Tpyp,r (A4)
approximation(20) from the very beginning. Our motivation jith ¢,=#T(2n+1) being the fermionic Matsubara fre-

for doing so is to provide framework in which further dis- quency, and their retarded and advanced counterparts
cussion(quite futile to our opinion of the role of electron-

hole asymmetry should be performed. ég(A)(S):éo(siiO); TRM(g)=T(£+i0). (A5)
Integration over the fermionic fields in E¢) gives the
formal result, We note the identities,
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Golien,p)—Golien+iw,,p)
=iw,Golien,p)Golien+ing,p);

-’I‘—(isn !plva)_i—(ism!pl!pZ)
_j d°ps
(2m)?

_é(ismva)]-’r(igm!p?pr)!

-’I\—(isn 1pl!p3)[é(i8n 1p3)

(AB)

where w,,=27Tm is the bosonic Matsubara frequency.

PHYSICAL REVIEW B 66, 045107 (2002

uT _
d(wn) = fo drq(7)e'“n". (A11)

With the help of Eq(A6), one rewrites Eq(A10),

Haﬁ——lZE f

(O

d®p  d%k
(2m)® (2m)°

(p“pP—p“kP)
XTHG*(p)T(iep+iw,,p,K)G* (K)T(iey,k,p)};

G*(p)=Gylien+iw,,p)—Golien,p).

Hereafter the momentum integration is performed within thePerforming the standard trick with the replacement of sum-

first Brillouin zone.
Using Eq.(A4) we rewrite Eq.(A3) in the form of linked
cluster expansion,

* g(m)

S
Sa(n)= 3 =i SP=Ti-igpG]™

(A7)

where we omitted the term independentgffr) and all of

the multiplications should be understood in the matrix sense.
Before we proceed we notice that in the absence of the

impurity potential quasimomentuip is an integral of mo-
tion. Therefore, the coupling tp of the force with nonzero

Matsubara frequency has no effect independently of the

spectrumé(p). Using the fact that

.
drq=0, (A8)

we find natural result that
T qpG,]™=0. (A9)

mation overe, to the integration, we obtain

de € d®p d%k
Haﬁ__ an anB_ pnekh
wﬁ T (277)3(277)3(DI0 pPk”)
XIM{TG* (p) T(e+i|wy|,p,.k) G (K) TR(e,k,p)]

—TG ™ (p)T(e+i|wn|,p. k)G~ (K)TA(e,k,p) 1},
(A12)
where

G*(p)=Gy(e+ilwy|,p)—Gi(e,p),

G (p)=Go(e+ilwy,p)~Go(s,p).  (AL3)
At that point it is important to emphasize thij(w,)|

decays exponentially at large frequencies for the saddle point

solution (44), |q(w,)|e e~ l*nl7un. The fluctuations around

the saddle point are also suppressed at large frequencies due

to the kinetic energy in Eq9). The Green functions in Eq.

(A13) are analytic functions of energy except the branch cut

Now we perform the actual calculation of the expansionagt the real axis. It allows one to expand oVer,| in Eq.

(A6). According to Eq.(A7), the first order term vanishes,
S{’=0. Using Eqs(A5) and(A9) one finds for the second
order term,

sP=TX >
oy af=XYy,zZ

©30u( @) dp(— o) T(w,),

3

p A
pep? Tr{Gy(ien,p)

M*f=-T
2 (2m)°

X-’I\—(isn1pvp)é0(i8n1p)é0(i8n+iwnvp)

+w,— —w,}

& dk

B E 5 N3 3
(2m)° (27m)

p ke TH{Go(ien+iwy,,p)

><T(|s +iwy,, pk) olieptiomy, k)Go(Ien k)

XT(ien,k,p)Golien,p)}, (A10)

with

(A13),

dp  d%
(2m)® (2m)®

ds g

Mef=—2

(p*pP—pkP)

L im &R TR(e,p.k
X m% r[m O(S!p)] (S,p, )
X[Im GR(e,k)1TA(e ,k,p)

1 9Gf(s.p).
— Elm TFTT (S,p,k)

—ﬂ o 3. K.p)

J ~R A
+ gReTl[lm Go(e,k)]T (e ,k,p)
X[[ImG§(&,p) 13, TR(e,p,k)

+[Red,GR(e,p)1TR(e,p.k) 11 . (A14)

Substituting Eq(A14) into Eq. (A10) we find
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SP=TX 3 de(@ndi@n)(|onR+wiQ™).
(Al53)
Here
d € dp 3
B — — - anB_ pakhB
R zwf dadstanhﬁf (277)3(277)3(9 p”—p“k”)

XTr 8l —&(p)]TR(s.p.k) oL& — E() ] TA(e k. p),
(A15b)
and the first term in(A15b) is precisely the contribution

PHYSICAL REVIEW B 66, 045107 (2002
—27R fd 9 anhT H(K)TTA(e K
Q,=2mRe SEtan ik ole—&(K)]T (e, k,p)

X

9, TR(e,p,k) o[ e—&(p)]

[Red,Gi(e,p)]..
J’_ N ——
n

TR(e,p,k) (A150)

I

where the ternQQ, depends on the spectrum only a@Qd is

due to the frequency dependence of the kinetic coefficients.
Equation(A15¢) vanishes for the constant density of states
approximation, but it is not so for the arbitrary band struc-

which describes the effect of the gapless excitations-ture. However, we saw already that it generates the contribu-
orthogonality catastrophe. It is present for the constant dertion proportional to the higher power af,. Thus, this term
sity of states. For the spherically symmetric case, one caproducesnonsingular correction to the leading term. The

easily recover frome EqA15b) the exponential factor in Eq.
(390.

characteristic value of this correction may be estimated as
=1/(mys€*), Where € is the energy scale governing the

The second term in the expression for the action characelectron-hole asymmetry. In principle, it might be estimated
terizes the electron—hole asymmetry. It has an explicit exfrom the thermopower measurements or from the first prin-

pression,

0= [
:

de
Qi=Im J 7tanhﬁTr

d®p  d%k
(2m)® (2m)°

(ppP—p*kP)(Q1+Qy),

9G3(2.p) .
B

ARSI
XTT (e,k,p),

ciple band structure calculation of EGA15c).

One can proceed with the similar expansion in the next
orders of perturbation theory to recover the constant The
structure remains the same, the first nonanalytic contribution
in w,, comes from terms which are kept in the constant den-
sity of states approximation, and the next contribution has
higher power ofw,,, and thus gives the correction small as
1/(7un€*). Thus, the electron—hole asymmetfi§ treated
systematically cannot produce anything except parametri-
cally small corrections to the coupling constants in contra-
diction to claims of Ref. 19.
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