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Quasiguided modes and optical properties of photonic crystal slabs
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We formulate a scattering-matrix-based numerical method to calculate the optical transmission properties
and quasiguided eigenmodes in a two-dimensionally periodic photonic crystalPsI of finite thickness.
The square symmetrfpoint groupC,,) is taken for the illustration of the method, but it is quite general and
works for any point group symmetry for one-dimensio(idD) and 2D PCS's. We show that the appearance of
well-pronounced dips in the transmission spectra of a PCS is due to the interaction with resonant waveguide
eigenmodes in the slab. The energy position and width of the dips in transmission provide information on the
frequency and inverse radiative lifetime of the quasiguided eigenmodes. We calculate the energies, linewidths,
and electromagnetic fields of such quasiguided eigenmodes, and analyze their symmetry and optical activity.
The electromagnetic field in such modes is resonantly enhanced, which opens possibilities for use in creating
resonant enhancement of different nonlinear effects.
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I. INTRODUCTION leaky) modes, which appear to play a crucial role in the
optical properties of waveguiding PCS.

A considerable effort has been devoted in recent years to The goal of the present paper is to develop a method to
the investigation of finite-thickness slabs of photoniccalculate the energies, linewidtHgverse lifetimey and
crystalst =2 Such photonic crystal slabi$CS’9, especially  electromagnetic field distributions of photonic eigenmodes in
if they support waveguide modes, demonstrate various inteiperiodically patterned photonic crystals of finite thickness,
esting properties aimed at active photonic devices for futur@nd to analyze the symmetry of such modes and their optical
optical communication networks. For example, the transmisactivity. Basically, photonic crystal slabs are periodically cor-
sion spectra of waveguiding PCS’s have well-pronouncedugated waveguides or grating-waveguide structures. During
narrow dips which exhibit a complicated behavior with thethe last years, the basic understanding of quasiquided modes

change of angle of light incidence and of the geometricanature in such structures has been develdped, e.g., Refs.
parameters of the system. 13 and 2}. A limited analysis of the leaky modes in PCS's

Such features in the transmission spectra of gratings arwas obtained via the finite-difference time-domain method,;

called Wood's anomalies; see, e.g., Ref. 13. Generally. thers€e Ref. 22, and references therein. However, until recently
are two types of Wood's anomalies: diffractive anomalies,there have been no direct methods developed to calculate the

; ; ; . - d linewidth dispersion as well as the electromag-
caused by openings of the new diffraction ord@lgfraction energy and linewid . . )
thresholdé apnd wgveguiding anomalies, caused by a reso[]et'c field d'Str.'blét'on of quasgt\jg?{j modes in arbitrary
nant interaction of the incoming light with surface or wave- Prc(;sss', e\éefézzzﬁl EE? aprzrt/uailti)c? tcl)nl fcr)‘? ?giilsp\(/:vgse been
guide modes. Historically, diffractive-type anomalies Werep gn the othe)r/, hand. a poweyrful scattering. matrix
first found in metallic shallow gratings by Wod#iand theo- ’

i . iof? formalisnt® allows a full description of such modes in arbi-
retically explained by Rayleiglt. They are also called Ray- 41y pCS's. The scattering matrix formalism is utilized in-

leigh anomalies. Although both types of anomalies appear iRieaq of a more familiar transfer-matrix formalism. The
the spectrum of PCS’s, waveguiding anomalies demonstraigmer provides an advantage in such a periodic structure in
a richer behavior. Basically speaking, waveguiding anomathat evanescent waves are inevitably involved for higher
lies are examples of a Fano resonattehere a discrete reciprocal-lattice vectors. To the best of our knowledge, the
mode becomes a resonance due to the interaction with cofiirst example of the use of this powerful formalism to calcu-
tinua. In this paper we mainly focus on such anomalies irate transmissivity, reflectivity and light emission of arbitrary
waveguiding PCS's. thick PCS on a substrate was carried out by Whittaker and
Recently we developed a scattering matrix numericalCulshaw and by Wendler and Kraft(also see Ref. 24but
method!’~!° based on a generalization of the method pro-there was no direct calculation of the eigenmodes provided.
posed by Whittaker and Culshavip model the properties of Recently the scattering matrix method was used to calculate
multilayered one-dimensional and two-dimensional patthe eigenmodes in a free-suspended P&t only below
terned PCS’s with frequency dispersive constituent materialgthe vacuum cone where such modes retain a purely guided
Our motivation was to explain the experimentally character. But the properties of quasi-guided modes in arbi-
measuretf'!® transmission spectra in PCS’s containing antrary PCS on a substrate have, to the best of our knowledge,
inorganic-organic semiconductor imbedded into a 1D or 2Dnot yet been calculated.
periodically patterned quartz substrate. The narrow dips in Following Ref. 25, we use another scheme based on the
transmission are due to the excitation of quasiguided electric-field-resolved Maxwell equations in the constituent
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layers (instead of the magnetic-field-resolved equations — =
shown in Ref. 7 which appears to be quite optimized, at P-pol /O
least for the dielectric structures. Although the preliminary
results of our method in comparison with experiments for 1D
and 2D periodic photonic crystal slabs with a polariton pole
were already reportedd;*° we have not yet published the
details of our calculation scheme. The inclusion of a polar-
iton pole manifests itself strongly in the optical properties of
the PCS. The number of experimentally discernible features
(Wood’s anomalieksin the optical spectra increases, and their
dispersion becomes more complicated due to the polaritor
effect. However, a basic understanding of the physics of the
PCS optical response such as the origin of the dips in the
transmissivity spectra and their connection with the PCS
photon eigenmodes, can be acquired more easily by a siml
plified example omitting the dispersion. Thus, in order to
simplify the discussion, in this paper we restrict ourselves to

a PCS with constant local dielectric susceptibilities of all ~FIG. 1. Schematic structure of a square-patterned guiding layer
constituent materials. on a substrate. Light gray: substrageg., quarty dark gray: opti-

The structure of the paper is as follows. In Sec. II wecally active material with a higher dielectric constant. The coordi-
describe the model structufa square-symmetry dielectric "at€ 0riginz=0 is at the surface of the structure.

PCS on a substratand the geometry of the light incidence , . )
& 9 y 9 semiconductor squares to the thickness of quartz walls is

and its interaction with Bragg harmonics, and introduce

quasiguided modes in PCS's, using an empty lattice approxfc_akenn~4. These values are close to those characteristic for

; 126,18, gt ; ; ;
mation. In Sec. Il the formulation of the scattering matrix the expermem’g W'th inorganic-organic semiconductor
method is given(Sec. Il A), and illustrated on the example superla_tt|ces |mbed(jed |n.to a pgtterned quar_tz substrgte, but
of the model structuréSec. 11l B). In Sec. IV the scattering- neglecting the polariton dispersion of the active material.

matrix method is introduced to calculate the properties of 1he 2D periodic slab couples an incoming light of fre-
quasiguided modes in PCS'Sec. IV A) and illustrated us- duéncye and wave vectok=(ky,ky k),

ing a model structuréSec. IV B. All technical details of the © ®

formulation are furnished in the Appendixes A—G, which are ky=—sin¥ cosp, k,=—sindsine, 1)
self-contained, give a full formulation of the scattering ma- ¢ ¢

trix method, and can be read independently of the main text.

w
kz=Ecosﬁ, (2)
II. ESSENTIALS OF LIGHT INTERACTION

WITH A PHOTONIC CRYSTAL SLAB with all Bragg harmonics of the same frequeneynd wave

vectors
A. Model structure and geometry of light incidence .
i ; ka,a: (kx,G vky,G s kz,G,a)v (3
A typical structure of interedthe model structure hereaf-
ter) and the geometry @& andP-polarized light incidence is wheré’
illustrated in Fig. 1. We use the orthogonal axesy(z) as kyo=ket Gy, kyo—K,+Gy, (4)

shown in this figure. The positive direction of thaxis is set

from the vacuum into the substrate. The polar and azimuthal 2

angles of incidence) and ¢ specify the incoming light in- K, Ga= \/w_:a_(kx+ GX)Z—(ker Gy)z, (5)

cidence. The azimuthal angle is measured between the - c

axis and the plane of Iight incidencg,:o in Fig. 1. a=v for vacuum g,=1) anda=s for the substrate, and
Hereafter, for numerical calculations we assume the sub-

strate material to be quar{aubstrate dielectric constanat 20

=2.132), and the higher dielectric constastivematerial to G=3(0x:9y.0,0xy=0+1,%2, ... (6)

be a semiconductor with,,~ 3.97 (which corresponds to the

background dielectric constant of the self-organizedis the 2D reciprocal square lattice.

inorganic-organic semiconductor in Refs. 20 angl. 18 In this paper we assume the substrate to be optically trans-
The symmetry of the 2D periodicity of the model struc- parent (Imeg=0). Thus, depending on the incoming light

ture is taken to be squarpoint groupC,,), but the method frequencyw (real numberthe Bragg harmonicgEq. (3)] are

itself is quite general and can be readily applied for any poingither propagating or exponential. Hereinafter we refer to the

group symmetry. The in-plane periods are takerdgsd, harmonics, exponentially growin¢decreasing away from

=d~680 nm, and the vertical thickness of the patternedhe PCS’s as increscerfevanescentharmonics. |fk§,e,a

layer isL,~120 nm. The ratio of the in-plane size of the >0, a=v and s, the corresponding harmonics are purely
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TABLE I. Characteristic energies for the model structgmer-
Light cones: mal light incidence
— — —2.4 ¢V, substrate
—24 eV, vacuum Diffraction thresholds EnerggmeV)
-------- 1.2 eV, substrate
——1.2eV, vacuum (%+1,0),(0£1), substrate 1248.8
[ | (%x1,£1), substrate 1766.1
49 (+1,0),(0+1), vacuum 1823.3
(+£2,0),(0£2), substrate 2497.7
(=1,=1), vacuum 2578.5
) (x2,£1),(x1,£2), substrate 27925
Bragg resonances of the guided modes
1st TE 1248.1
’g 0- 2nd TE 1729.9
:, 3rd TE 2359.5
3rd T™M 2469.8
4th TE 2604.1
-2 4th T™M 2732.1
aCalculated in empty lattice approximation.
-4 4 However, in the case of a PCS with an averaged dielectric
constant e exceeding that of vacuum and substrate

4 2 0 2 4 >(e41), or covered by a guiding layer, even more pro-
k, (n/d) nounced features in transmission and reflection appear due to
quasiguided eigenmodes in the PCS. The origin of these

FIG. 2. The map of Bragg harmonick,(s .kyc), [Eq. (9] of  quasiguided modes can be easily understood within an empty
the k,=k,=0 incoming light (pluseg. Solid and dashed circles |attice approximation.

show the vacuum and substrate light cone cross sections for

=1200 and 2400 me¥thin and thick lines, respectivelyFor each

w, the harmonics inside the solid circle are radiative modes both in B. Empty lattice approximation and guided
vacuum and substrate, and those between solid and dashed circles vs quasiguided eigenmodes

are exponential partial waves in vacuum and radiative modes in . . . . .
substrate. The harmonics outside both cones are the exponential In the empty lattice approximation the periodic photonic
modes. crystal slab is replaced by an effective homogeneous layer

with a dielectric constant equal to the averaged dielectric

propagatlng in both the vacuum and substratek?l§ ,<0  susceptibility of the PCSg: then the resulting dispersion
and sz >0, the harmonics are propagating in vacuum anccurves are folded into the first Brillouin zor@®2Z) of the
exponential in the substrate. Hﬁvaa<0, a=v and s, the original periodic structure. For a square 2D lattice we have
corresponding harmonics are exponential in both the vacuum
and substrate. Here we suppose tlzt)(dependence of the
field in each harmonic is proportional to expk,g .z — 7Pe.t+(1+27)es 2
—iwt); also see Eq(A1l) in Appendix A. N (p+1)2 ' (

The map of different harmonid€q. (4)] for normal inci-
dence k,=k,=0, calculated withd=680 nm, is shown in
Fig. 2, together with vacuum and substrate light cones crosahich is neare ~ 3.3 for the model structure.
sections ato=1200 and 2400 meV. As can be seen in Fig. 2, Without periodic corrugation, the guided modes in a pla-
the incoming light at normal incidence with a frequency nar waveguide are bound modes, in the sense that they are
around 1200 meV can be only transmitted or reflected. Theonfined in the slab and decay exponentially into the vacuum
(9¢.9y)=(£1,0),(0+1) diffraction orders into the sub- and substrate outside the slab. Correspondingly, in the case
strate soon open; see Table I. At 2400 meV thel(0), of transparent materials their eigenfrequené¥, ,k,) are
(0,£1) diffractional reflexes are open into the vacuum andreal functions of the in-plane photon wave vectdg (k). It
substrate, and thet{1,+1) reflexes are open into the sub- is well knowr?8 that in a planar guiding layer on a substrate
strate. Also, the opening of{(2,0),(0+ 2) reflexes into sub- there arej= . transverse electri€TE) and higher-
strate is approached. frequency transverse magnetidM) waveguide modes.

As in case of gratings, the opening of new diffractional Electric field in TE modes and magnetic field in TM modes
channels can cause peculiarities in the transmission and refe parallel to the slab plane, and the modes exist at frequen-
flection spectra, so-called diffractive Wood's anomali&$. cies above the corresponding frequency cutoffs,
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M - I = X diagram of the quasiguided modes consists of allowed bands
3000 == . i separated by photonic stop bands in the center and borders of
] s ——— TE modes the first BZ.
2500 JE———RFIRET] ——m TM modes’ S The origin of the allowed bands can be understood in the
1 ® TEcut:off Ty ’ empty lattice approximation by means of folding the guided
—~ 2000 3 © TM cut-off modes of the effective planar waveguitidg. 3, right hand
> . vacuun;,ngjht cong” . sidg into the first BZ of the PCS. The resulting empty lattice
E 1500 3 : m,("' N bands for the model system are shown in Fig. 3, left-hand
3 T %= side.
E’ 1000 240017 . It is seen in Fig. 3 that four families of bands are formed
w 1 A a0 in this energy region near the center of the first @ze first
500 4 “-:substratg light conerl” \ to the fourth resonances in the point hereafter, marked in
] T, | g | slablightcone s —gr—sg, Fig. 3 by the corresponding numbgralso see the energies
0 of the bands in th& point in Table I. First of all, let us note
-1 0 1 2 3 4 all these bands lie well above the vacuum and substrate light
Kk (r/d) cones in the first BZ due to relatively high TE and TM cutoff

energies in the model structure. Thus in the model structure

FIG. 3. The lowest TE and TM guided modes in an effectlve,[here is no purely guided eigenmode of the type analyzed,
homogeneous waveguide with an averaged dielectric constaet in Ref. 5. Also note that. due to a lare difference be-
(right); same modes folded into the first BZ df=680 nm square 9. T ff | ! 9 g .
lattice (left). The dispersion of folded branches is shown albry ~ (WE€€N TE and TM cutoffs, only TE-type modes participate in

andI'-M directions. Four lowest TE1—4) and two lowest TM(3  the two lower resonances. . -
and 4 Bragg resonances in tHe point are shown. Inset: the mag- ~ 1he lowest band in thE point is the standing wave origi-
nified region around the third Bragg resonance. nating from the Bragg resonance of the lowest TE branch of

the effective waveguide a=(=*+1,0),(0£1) points in the
c e 1 reciprocal lattice. In the empty lattice approximation it is a
Of cutoff):—< arctare \ [ — +j7.,> ) degenerate quartet. Along tlieX direction this band splits
: L,Ve—eq e—&g off into two fast modegoriginating from (1,0) and { 1,0)]
and a doubly degenerate slow mddem (0,-~1)]. Along
wheree and €g are the dielectric constants of the guidedthe diagonal directiod’-M both bands are degenerate dou-
layer and the substrate, respectively, ardl for TE modes blets.

ande for TM modes. The energy dispersion of TE and TM  The second band corresponds to thel(+1) TE reso-
modes is found from transcendent equations, which we givaance; for this resonance the behavior aldhg andI'- M

here for self-consistency: is inverted in comparison with the first resonance case. The
next bands lie well above both TE and TM cutoffs, so the
ﬂ(ﬁs B) next resonances occur both in TE and TM modes. The third
tar(,B 2= ,3 —B.B ©) band, corresponding tg=(*+2,0),(0+2), is a group of TE
s and TM modes shown in the rectandbdso see the magni-
for TE modes and fied inset in Fig. 3 and the fourth band hag=(=*2,
+1),(£1,£2).
B(ﬁSJr eB) The symmetry of bands near the third and first resonances
tan(BL,) = m (100 is the same. We will see below that the third band causes the
S strongest features in the transmissivity spectra of the model
for TM modes, Whereﬁzj/ng m' B structure. Thus in this paper we will focus mostly on this
_ \/ﬂz ko=0/c, andk= W resonance. Its behavior is somewhat typical at a square PCS.

For the subsequent discussion it is very instructive to con-

The lowesj=1 TE and TM waveguide modes and the"_ ider the properties of slow and fast modes, e.g., along the

frequency cutoffs in an effective planar waveguide, calcu

I'-X direction. The slow modes alorg-X, being produced
lated from Eqs(9_) and (10) and Eq.(8), res_pec'gvely_ with by transverse waves with wave vectors, k,) = (0,=2)
L,=120 nm anc from Eq.(7), are shown in Fig. 3right-

hand side and thus propagating along have an electridmagnetig

The guided modes in the effective planar waveguide ardield polarized predominantly along for TE- (TM)-type
completely confined in a slab, and formally have an infiniterésonance. The fast modes are predominantly polarized
lifetime. The introduction of corrugation can couple the alongy.
guided modes with photon continua in vacuum and substrate. Depending on the parameters chosen, the energy positions
As a result, the guided modes acquire a finite lifetime insideof the bands are changed. But the properties do not change
the light cones in the first Brillouin zone and become qualitatively from the situation analyzed here with this set of
quasiguidedor leaky modes> Due to the 1D or 2D period- parameters. Similarly there are resonances at the boundaries
icity of the corrugated waveguide, the frequency dispersiorof the first BZ, and also band crossings inside the BZ.
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The periodic corrugation of the layer makes two impor-the scattering problem, and to define the scattering matrix
tant changes with this folded picture. First of all, the degenwhich transfers the input state into the output one. In the
eracy of the crossing modes in resonances is partially reexact decomposition the number of Bragg harmonics needed
moved, due to the differences in the electromagnetic fieldor the full description of the electromagnetic field in the
distributions in modes of different types, depending on thesystem is infinite, but in numerical calculations we take a

symmetry properties of the periodic lattice. As a result, stojnite number of harmonics. Specifically, for a square 2D
bands appear in the center, at the boundaries of BZ, and iitice we take Ng=(20maxt 1) harmonics with |g, |

some crossing points. This is typical of any periodic struc-<g
= Ymax

includi h : | q fthe oi . To describe an electromagnetic field of each har-
ture, including photonic crystals. Second, most of the eigeny,qnic \ve need four independent scalar amplitudes ex-

modes discussed above become radiative or leaky, due to tl&%ple E,.E,,H,, andH.), so the total field is fully speci-
1=X1=y X y/

opening of the interaction between them and photon continu . . o
in vacuum and substrate, which is a very important di1‘fer-ﬁlGd via 4Nq scalar amplitudes of Bragg harmonicd,g ,

ence from the case of bulk photonic crystals. In order toyvhere th_e upper sign stan_ds for the_3|gn in 3), see the
distinguish the leaky modes of waveguide origin from a”mtroducnon of qmphtudes " A+ppend|x B'. .
other types of leaky modes in the PG&g., Fabry-Perot ~ FOf Propagating harmonickg,, waves in vacuum semi-
modes, we call them “quasiguided modes.” As we will see, SPace andg  in the substrate should be considered as an
such quasiguided modes are typically characterized by relddcoming plane waves. Indeed, both types of harmonics
tively long lifetimes and may have large quality factors. ThusPropagate toward the PCS layer; see Fig. 1. The exponential
the field in such modes becomes resonantly enhanced insidéane waves do not propagate, so we have to use another
the PCS. This opens many interesting possibilities to use thigfiterium in order to deal with them. Note that thg , and
resonantly increased field for, e.g., resonant amplification okg s €xponential harmonics are increscent solutions when
nonlinear optical effects or controlling the radiative lifetimes — — and z—o, respectively. For a physical scattering
of optical transitions in the PCS. problem we have to put the amplitudes of such increscent
On the other hand, the coupling between photon continuglane waves zero a= — % and«, respectively. It is impor-
and quasiguided modes allows one to excite these moddant that including the amplitudes of increscent waves into
resonantly(in energy and angle of incidenceia external the incoming vector also matches the general motivation to
light. The resonant excitation of the quasiguided modesise the scattering matrix approach. Then, as discussed, e.g.
manifests itself in appearance of well-pronounced dips in thén Ref. 23(also see in Appendix Dthe components of th®
transmission spectra. The change of energy position of dipgatrix do not contain exponentially large components, and
with change of incidence anglé reflects the dispersion of the Smatrix calculation scheme becomes numerically con-
the quasi-guided modes as will be discussed in Sec. IV A. lrivergent.
the experiments, the measurement of the transmission spec- From this consideration it follows that, for the scattering
tra at different angles brings an information on the dispersioproblem, it is convenient to define the incoming and outgo-
of quasiguided mode€:® By utilizing the advantage of such ing states via Mg -dimensional vector®;, and By, com-
configuration, e.g., in Refs. 20 and 18, a strong couplingoosed of the amplitudes of the incoming and outgoing plane
between an exciton resonance and 1D and 2D corrugatedaves:
guasiguided modes has been experimentally demonstrated at
room temperature in structures, fabricated via imbedding ) (,Ztv*) ) (]15*)
into a periodically patterned quartz substrate of inorganic- Bin=| -._|, Bou=| -_]- (11
organic semiconductor with a very strong polariton coupling. As A
As already mentioned, the model structure does not sup

. . ; >“Hn this representation, the only nonzero element of incoming
port purely guided modes below the light cones in the first ) S . o
BZ at all. However, as will be shown later, in this particular @MPlitude columri;, is the amplitude of the incident wave,

>

system a pair of nonleaky modes are still allowed in fhe (Bin)c=0, While the outgoing columm,,, contains ampli-
point, originating from the first resonance in Fig. 3; see Sectudes of harmonics, proportional to expk,g z—iwt) at

IV A. Because these modes appear well inside the lighg<O (reflected and evanescent wayvesd to expik,c, sz
cones, their nonleaky character is entirely connected with-iot) atz>L, (transmitted and evanescent waves

their symmetry properties. Such a situation was analyzed The full description of the optical response of the system
previously in Ref. 9. However, for higher resonances all theat frequencyw can be done by calculating the full scattering
modes are leaky, including those optically inactive in normalmatrix of the systen®, which connects the incoming vector
direction, because the interaction with higher Bragg harmonof amplitudes with the outgoing one:

ics becomes open for the latter.

v

Bout=SBin - (12

lll. SCATTERING-MATRIX THEORETICAL

DESCRIPTION OF THE OPTICAL PROPERTIES Thus, the fullS matrix is a (4Ng < 4N,)-dimensional matrix
OF PCS’S in our case.

In this paper we deal with Ng-, 2Ng-, and
4Ng-dimensional hypervectors and N{XNg)-, (2Ng

In order to formulate the scattering matrix formalism for X 2Ng)-, and (4Ngx 4Ng)-dimensional matrices. In order to
the PCS, we have to describe the input and output states distinguish vectors and matrices of different dimensionality,

A. Formulation of the method
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hereafter we denote such hypervectors and matrices by italic, 0.9
calligraphic, and open face letters, respectively, with arrows o \ L NT
to denote the vectors. For example, in Etfl) the total am- 5., 081
pIitudeB is a 4Ng-dimensional vector, whereas the partial s 0_7_' o
amplitudesA™ are Ny-dimensional vectors. In order to cal- 3 1 047 :g
culate the optical properties of PCS, we do the following g 0'6'_ 0.46 R
(1) Split the system into the layers, homogeneous along S 054 %%
the z axis (3 layers in case of the model structure shown in = { 04 Bl
Fig. 1), and solve Maxwell's equations in each layer via 0.4 043 [2370 2380

decomposition into partial plane wavesee the full descrip- 1000 1500 2000 2500
tion of the procedure in Appendix)A

(2) For each layer, construntaterial matrices(Appendix
B) to calculate the in-plane components of the local electro- FiG. 4. The calculated transmissivity of the model structure at
magnetic fields via the amplitudes of partial waves. Propanormal incidence. Vertical dashed lines mark the energies of diffrac-
gation and interface transfer matrices to be constructed ason thresholds; see Table I. In order to illustrate the fast conver-
well, to connect amplitudes in different parts of the structuregency of the method developed, three spectra are actually shown in

(3) Construct the total scattering matrixof the whole  this figure, calculated witlg,,,,=3, 5, and 6, but the difference
structure, connecting the incoming and outgoing vector ambetween them is less than the line thickness; see the magnified part
plitudes via the iterative procedure by Ko and Ink$dn; of the main dip in the inset.

(4) Calculate, via the components 8fmatrix, the optical

properties of the system such as transmission, reflection, alg,4ing than the magnetic field based described in Ref. 7: 49
sorption, and the corresponding spatial distributions of thEharmonics give a suitable approximation for transmissivity

elelggr:):?ég:ael:g: ;Ifelc(isrisistenc we aive the full formulationWith an accuracy in calculating the dips energies within 1
Y. g meV. Note that within our method we do not need any addi-

of transition from theT-matrix to theS-matrix formalism in tional orthogonalization procedu?eand employ thee
Appendix D. In Appendix C we specify the input amplitudes L i e GG
bp bp pecify P D matrix directly(also see the discussion in Appendix Dur-

for the problem of light transmission, reflection, and deflec-, . . . )
ing the preparation of this paper, as well as during working

tion. We also give the analytical form of all generic matrices : SRLET)
for spatially homogeneous slab in Appendix F. on the previous publicatioh§'®we have not found any ex-

Knowledge of the scattering matrikof the whole system @mple of nonconvergency of this method, at least for dielec-
tric structures, including the cases with accounting for the
Qolariton pole in the dielectric susceptibility.

As seen in Fig. 4, the calculated transmissivity shows
jhree groups of features around 1200, 1700, and 2350—-2700
meV. This is in close correspondence with the discussion of
the diffraction orders thresholdsertical dashed lines in Fig.

4) and quasiguided bands given in Seddllso compare with
(13) Table ). The lowest-energy cusplike feature is seen exactly

at the energy of £1,0),(0+1) diffraction threshold into

substrate, and the shape of this feature is typical for a dif-
where the expressions for the different Poynting vector comfractive Wood anomaly. There is no additional feature seen
ponents; see EGEL). Note that the Poynting vector compo- here which may be attributed to the excitation of the first
nents of the waves reflected and deflected into vacuum ent@ie-type quasiguided band, at least at normal incidet&e.
Egs.(13) with negative sigribecause they counter-propagate the further analysis shows, this is due to the proximity of this
against the incoming waye Bragg resonance to the TE cutoff energy. Still, we do not
dwell into complicated details of the quasiguided mode cut-
offs in this pape).

Let us turn now to the analysis of the transmissivity of the  The next feature in Fig. 4, which appears around 1700
model structure, calculated via the scattering matrix methO(ﬂneV’ consists of a hard|y seen cusp at the threshold of
introduced in Sec. Ill. The calculated transmission spectrun+1 +1) diffraction into substrate, a small but visible cusp
of the model structure for normal incidence and polarizationgt the threshold of (& 1),(0,+1) diffraction into vacuum,
alongy is shown in Fig. 4. and a feature at lower energy, which can be attributed to the

Let us note here that our numerical algorithm convergesnteraction with the second TE Bragg quasiguided band. The
very fast(at least for dielectric materials and for a calculationmost prominent features, consisting of two strong dips
of the transmissivity. Actually, there are three curves shown around 2400 meV, as we show below, are due to the interac-
in Fig. 4, forgma= 3, 5, and 6, but the difference is smaller tion of the incoming light with the third Bragg quasiguided
than the lines thickness; see the inset in Fig. 4. The numbdyand. An inverted cusp corresponding to the2,0),(0,
of harmonics taken are 49, 121, and 169, respectively. Thug 2) diffraction threshold into the substrate is seen above
our electric field based scheme becomes more rapidly corthem. A smaller rightmost dip is due to the interaction with

Energy (meV)

and of the input amplitude vectdﬁm allows us to calculate
the reflection, transmission, and absorption coefficients. Th
simplest way to do this is to calculate tkeomponents of
the Poynting vectors for incoming, reflected, transmitted an
all deflected waves, as shown in Appendix E,

p" p(t) p(ds)_ p(dv)

e Tpm P p(in)

B. A numerical example: transmissivity of the model structure
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same time, a couple of new dips arise at the lower-energy
side of the main dip: another well-pronounced dip which
rapidly shifts to lower energies, and a small dip which ap-
pears not to shift with the angle of incidend@his dip is
marked by vertical solid arrows in Fig.)5.

(3) In P polarization, with the increase df the main dip
does not shift; the smaller dip shifts rapidly to lower ener-
gies; two new dips arise at the higher energy side of the
smaller dip: a new well-pronounced dip, which shifts rapidly
to higher energies, and a small dip which appears not to shift
with the angle of incidenceThis dip is marked by vertical
dashed arrows in Fig. b.

This behavior can be quantitatively understood in the
model of excitation of different quasi-guided modes in
the PCS.

Transmissivity

IV. QUASIGUIDED MODES

It appears that the most prominent features in transmis-
sion of light through a PCS are connected with the properties
of quasiguidedor leaky modes which can propagate along
the PCS. Unlike the guided modes in a homogeneous wave-
guide, they have finite radiative linewidth due to the cou-
pling with vacuum and substrate photonic continua. In Sec.
Il we showed the physical origin of such eigenmodes using
the empty lattice approximation. Now we can calculate their

I T properties such as dispersion of eigenenergy, optical activity,
2500 2600 and electromagnetic field distribution.

24|00
Energy (meV)

T
2300

A. Quasiguided modes and the scattering matrix

FIG. 5. The calculated transmissivity of the model structure near In this subsection we apply the scattering matrix formal-

the third Bragg resonance I8 and P p°|ar'za.t'°r.'S for different ism to calculate the frequency and linewidth dispersion of
angles of incidence. The parts of the transmission curves between

Q—y/2 andQ + /2 are boldfaced, in order to emphasize the rela_quasiwave_gu_ide modes as well as the Qistribution of the elec-
tion between the position and width of the dips and the eigenmod%mmagnert]IC field I.n.S:JChlm.OdeS' ]:I-Ee ezlgen(rjnOdﬁS of thd? Sys-
frequency and linewidth. Her® andy are the real and imaginary em are the nontrivial solutions of E(12) under the condi-

parts of the corresponding quasi-guided mode eigenfrequéncy tion of zero input amplitude8;,= 0. Thus the amplitudes of
—iv; see Sec. IV B. eigenmodes can be found from the solution of the homoge-

o neous linear problem
the fourth Bragg quasiguided band, and a very small cusp

corresponding to the #1,+1) diffraction threshold in S 1 ou=0. (14)
vacuum can be hardly seen above it. In what follows, we_
focus mainly on the behavior around 2400 meV, where the NS means that
main features appear to be connected with the TE and TM -1 _
quasiguided modes of the third Bragg band. det " (w,keky) =0 (19
Under the oblique incidence the transmission spectra bes the main equation for calculating the eigenfrequences.
come even more complicated: new dips appear, and some of In a uniform slab, which is a planar waveguide, the
the dips shift to red, whereas the other shift to blue. Theguided eigenmodes have real eigenfrequeri¢esind their
complicated behavior of the dips around 2400 meV is showrelectromagnetic field is confined inside the slab, exponen-
in for angles of incidence&®=0—3° ande=0 in Fig. 5 for  tially decaying outside. Contrastingly, in the case of periodic
S and P polarizations. Several important trends in the dipscorrugation the eigenmodes couple with photonic continuum
behavior can be seen in this Fig. 5: in vacuum and substrate. Thus the eigenmodes become
(1) At 9=0, which corresponds tb' point, we see two leaky, or quasiguided. Only the lower-energy eigenmodes ly-
dips in the transmissivity: the main dip at lower energy and dang below the substrate light cone in the first Brillouin zone
smaller and narrower one at higher energy; due to the squaretain a purely guided charactelhe electromagnetic field
symmetry, the transmission spectraSrand P polarizations  of quasiguided modes acquires a radiative component which
coincide. diverges exponentially a— * <, and their eigenfrequencies
(2) In S polarization, with the increase aof we see that become complex. Although such solutions seem to be not
the main dip rapidly shifts to higher energies, while thephysical, it is not the case actually; see, e.g., Ref. 29. These
smaller dip appears to stay unshifted at small angles. At thexponentially growingwith z— =) solutions are physical
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because, in the time domain, the exponential growth is can-
celled by a time-dependent multiplier exg{m QJt). In
other words, the time-space dependence of the electromac
netic field in such leaky modes sexd|Im Q|(z—ct)/c]
and describes the propagating front of the decaying state
Thus, in order to calculate the properties of the quasi-guidec
modes, we should define tH&matrix in the complex fre-
qguency plane.

From the causality properties, ti$ematrix is the analyti-
cal function in the upper frequency half-plane, and it may
have poles in the lower half-plane 8t—ivy, y=0, includ-
ing a real axis in case of transparénbnabsorptivemateri-
als. Such poles correspond to physical eigenmodes with ai
electromagnetic field<exp(—iQt—t) decaying witht—oo,
andy is their inverse lifetime. Among all possible solutions,
only those withy<() are of the physical interest.

The Smatrix for each given wave vectoky(,k,) [Eq.(1)]
can be directly constructed on the complex plane via the
analytical continuation from the real axis of energies, where
it is defined unambiguousl{see Appendix [ Thus the only
thing which is left is to find the roots of Eq(15),
Q(ky,ky) —iy(ky,ky), which are close to the real energy
axis.

Here it is important to note that th® matrix, defined on
the real axigAppendix D allows several different analytical

meV)

Energy (

continuations from different segments of reakeparated by 2200 ——va——T—""T— e s m e
diffraction thresholds. Let us discuss this point in more de- -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
tails. M — Wavenumber (n/d) — X

As we discussed in Sec. Il A, tHel , andkg ¢ harmonics
are the solutions, either propagating toward the PCS or ex- FIG. 6. The calculated dispersion of the TE-TM quasiguided
ponentially increscent outside the PCS for @ypn the real ~Modes octet along-X andI'-M directions for the third resonance
 axis. Thus they comprise the list of the incoming waves, N€ar thel’ point. The label<, A, , andB, , (the irreducible repre-

“ P tations of the point group,,) andA andB (irreducible repre-
On the complexw plane, and for “propagating” harmon- sentat . v
L . L sentations of the point gro show the symmetry of thelec-
ics, i.e., for RekZ 5 >0, the conventional definitidf of the I point grouPy,) show the sy y

: 5 tric field of the corresponding eigenmode. The dashed lines show
complex square root in Eq(5) contains a cut below the quasiguided modes in empty lattice approximation; also see the
Rek? s ,<0, and provides an analytical behavior lofc o insert in Fig 3. The size of squares is equal to the imaginary part of
Whe”kie,a crosses the regositiveaxis. However to ensure the corresponding eigenenergy, while the diameter of the open
the analytical continuation ok, ¢ , (and, consequently, of circles is ten times the corresponding imaginary part.

the S matrix) when the harmonics become “exponential,”

kZ 6.a<0, we have to redefine a cut in the square-root func- However, near the cutoffs of the quasiguided eigenmodes
tion: we move it from the quadrant below the negative realthe corresponding poles approach the diffraction thresholds,
axis on kiG’a complex plain, as in the conventional defini- and more than one sheet of tBanatrix become physically
tion, to, e.g., the quadrant below the positive real axis. meaningful. As far as we know, an example of such a com-

The question of whethek? s , crosses the positive or plicated behavior was analyzed for the first time in Ref. 30.
negative real axis is equivalent to whether @aliffraction  In the model structure such a situation takes place, e.g., near
channel is open at the given energy or not. Thus we caihe first Bragg resonance. However, in this paper we do not
conclude that the set of definitions of the square roots deanalyze this situation and focus mainly on a simpler situation
pends on the harmonics energy and is fixed for a given segiround the third Bragg resonance, when only one physical
ment, bounded by neighboring diffraction thresholds. sheet of theS matrix is sufficient to describe the physics.

If the analytical continuation of th& matrix (built from
some segment of real in accordance with the above-stated
rules contains some poles below this segment, and all the
poles lie far from the ends of the segmehne., diffraction
thresholdg then the single particular sheet of tBenatrix is In Fig. 6 we show the dispersion curves of the TE-TM
sufficient for a complete understanding of the PCS opticabctet calculated via Eq15) for the model structure near the
properties in this energy region. In the model structure, suclh’ point along I'-X and I'-M directions. Our numerical
a situation takes place, e.g., for the third Bragg resonance.analysis shows that for this particular system the third reso-

B. A numerical example: quasiguided modes
in the model structure
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TABLE Il. The energies of the third Bragg eigenmodes inkhe -340¢;-
pOInt P B N N R N gy e s i A N N N NN
-272[0 222 RN e IRy SN
IEERE VAL SaS N Gl S SRR RN
Type Q (meV) y (meV) e N e
A 1 //r——»\\\\\\\\\»-«/t////{/f——\\\\\ ttt
| 2o R
Lower TE singlet 2310.7 1.0 NS 1SRN R N A SIS S ERORERE R R ] F 0%
Higher TE sinalet 2311.8 1.0 NN R R RNIA12 17 a1 1 11 T304
igher single . . :::§ \t :‘.t:\";/;// /M\\\\\\:\:\-,;;;;' ;}/';:
NN nioisd :
TE doublet 2o729 o SN $*§$3::22’/ = “SSNSS::?E??? 7
2 3 P i Z
TM doublet 2455.4 2.4 NN ENNN u///// \\\ NI YIS
ingl 2 9 S R R e SN
Lower TM singlet 471.1 1. 0 S ”“i N ”H N e
i IS < ':;2 ;:;” "13\\\\\'{:"'};;////;;'”::ii g““
77 f e~ Nw=ry red A" AN
Higher TM singlet 2478.9 2.2 > WS L E PPN N NS4 7T S AR R R 0] BN
NS R
s /////’—\\\\\\\ S ea s ////f»—\\\\\\ NN
EPTAR VAT NN\ Ay O SANN A RN
AR N A R S S S N N S e L A A AL T P 1 SRS
s T NN T T R
nance inl" consists of two quartets: a lower TE-like quartet, ”7? { “:::4:””}}:::?7:”“{“::::;Hn §§§t§
A . - il MWANS w22 e - v ANAVN NN NS~ e 2} frs
composed of two singletdor the electric field,A, and B, SRS IS A RN S S SRS 4 1 5 11 RERRE
CAANVYINNN NS st p I PP ot e NN s r s SRt
AR EE AR ¥l LRSS
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irreducible representations of point groGg,) and one dou- W e L LTI 227
blet (E), and a higher TM-like quartet, composed of one 2 N T ————TTT o
doublet (E) and a pair of singletsA; and B;) at higher NI e T T I NN T T L

i . qoL ity e s P PP s NNNNNNNNNSS g e
energy. Let us recall here that tiAg irreducible representa- —340 -272 272 340
tion of C,, is invariant over all rotations and mirror reflec- (&) X (nm)

tions of Cy,, ; A, is invariant over all rotations and odd over

all mirror reflections;B; is odd over 90° rotations anaty —340r:

(diagona] reflections B, is odd under 90° rotations arng, ,
reflections; and components of a doubketare connected
with each other via a 90° rotation amqg, reflections; see the
classification of the irreducible representations for different ?
points of the first Brillouin zone of the square 2D lattice in,
e.g., Ref. 31. The calculated real and imaginary parts of cor-
responding eigenenergies in thgoint are given in Table Il.

The spatial distributions of the electric and magnetic g
fields in TE singlets on the vacuum-side surface of the model
structure are shown in Figs. 7 and 8. Note that here we give
the top vertical view, so only thex(y) components of the
fields are seen. The same data are shown in Fig. 9 for the
x-polarized component of TE doublet. The electric and mag-
netic fields are shown in Figs. 7-9 at moments of titpe
andt,, , respectively, when the intensity of the corresponding :
field is at a maximum. It appears that these moments are  272[-
separated by one-fourth of the period of the correspondinc R R e R A SR R R
eigenmodetg—ty~T/4, T=2x/Q. Thus all the modes are %0 272
mostly standing electromagnetic waves. ®) x (nm)

The _typ_e of each irreducible representa_ltlon IS obv_lous FIG. 7. Electric(a) and magneti¢b) fields on the topvacuum
from this figure. Let us note that the one-dimensional irre-_. ; .

. . . side of the PCS in the lower TE singletA, and A, representa-
ducible representations of the eigenmode vector fethd tions, respectively. One unit cell of a 2D square lattice is shown.
the pseudovector fielth have different characters of mirror 14 active material is inside the thick square.
reflections inC,, .

The size of the circles in Fig. 6 indicates the imaginaryspectively; see Table )l This corresponds to the most
part of the corresponding eigenenergim case of open pronounced dip in the transmission. The quality factors of
circles it is magnified ten times magnifieclso see the last the states are as large as{2)x 10° for TM and TE singlet
column in Table Il. TheC,, symmetry properties imply that states, and~ 160 for the TE doublet, which corresponds to
all the singlet states are optically inactive in thepoint (in  the resonant increase of the field in the modes in 30—40 and
normal directiof, and only the properly polarized compo- ~ 13 times, respectively.
nents of the doublets are optically active. This explains why Note that the linewidths of optically inactive states are
only two dips are seen at=0 in Fig. 5: only one doublet nonzero at normal incidence. At this point we should empha-
component is active per each quartet. size a very important difference concerning the properties of

The widths of optically active states are larger than that othe inactive modes, belonging to the third resonaist®wn
inactive states. At normal incidence, the TE doublet line-in Fig. 6) and to the first resonance, reported previously in
width is one order of magnitude larger than widths of inac-Ref. 9. In the case of the first resonance, only the interaction
tive TE singlets and all TM states<(15 and 1-2 meV, re- with the main harmonic is allowed; see the light cones cross-

—o72k-

y (nm
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FIG. 9. Electric(a) and magnetidb) fields in the “slow” TE
Along theT'-X direction, the lower TE singlet state cor-

doublet.
singlet state corresponds to Artype representatiofeven.

type, which mean that they are optically activeRnpolar-

linewidth angroup C,;, (odd over mirror reflection and the higher TE
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representations
#1) Bragg harmonics into the vacuum and sub-into aB-type fast mode which is active in ttf&polarization,

and £1,+1) harmonics into the substrate; see theand anA-type mode, active in th® polarization. As to the
light cone cross sections marked by thick lines in Fig. 2. Atsymmetry properties of the TM quartet, now the magnetic

inactive

(0
if the interaction of the formerly inactive mode with field distributions are assigned &sA,,

10)
#0

Conversely, in the case of the third resonance the lineAs far as the incoming light is B-type representation in the
1

width of inactive modes is nonzero: although such modes arease ofS polarization, the lower singlet state becomes active

FIG. 8. Electric(a) and magnetidb) fields in the upper TE

y

action is forbidden by the symmetry—for the singlet anti-responds to @-type irreducible representation of the point
the main harmonics becomes open by symmetry, its linerepresentations, whereas the electric fieldEBy&,, andB;.

width grows up quickly with the wave number

sections marked by the thin lines in Fig. 2. When this inter-
TE singlet curve in Fig. 6.

symmetric modes—such modes have zero

become nonleaky.

singlet—B, andB,

optically
(
strate

=
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ization. Whereas the slow component of the TM doublet beBasic Research, and the Russian Ministry of Science pro-

comesB type in thel'-X direction, and is optically active in grams “Nanostructures”and “Information Systems.” The

the S polarization. authors are thankful to V.V. Popov for drawing their attention
Along theI'-M direction the modes become singlets too.to Ref. 30.

But, as seen in Fig. 6, the corrugation-caused splitting in the

model structure is not too strong. APPENDIX A: PLANE-WAVE SOLUTION OF MAXWELL
Let us add here that, strictly speaking, anticrossings may EQUATIONS IN A PERIODICALLY MODULATED
take place in the case of crossing bands with the same sym- SLAB

metry. In case of quasiguided modes, however, it is impor- ) . ) )
tant to remember that the complex energies of modes have to_IN this appendix we solve the Maxwell equations in bulk
approach each other in order that the effects of anticrossing® Or 2D periodic photonic crystalor an infinitely thick
may take place, not just the real parts of modes energy. F rCS,'VIa d_ecomposmon into plane waves. Thls.method was
example, there is no anticrossing of slow TE and fast Tmdescribed in numerous papers and textbooks; see, e.g., in
doublet components alorig-X in Fig. 6, although they both Ref. 31 and references therein. The most delicate point in
have the same symmet#y It is because the linewidth of the such methods is the Fourier transform of the piecewise di-
TE band is approximately one order of magnitude larger thaglectric function which is poor along the boundaries between
that of the TM band € 15 and~1.5 meV, respectively dielectrics. Several methods have been proposed to improve
In order to accent the connection between eigenmode§'€ convergence of the planewaves decomposition; see, e.g.,
and the position and width of the dips in transmission, in Fig.RefS: 32 and 33 It appears, however, that for the dielectric
5 we emphasized the parts of the transmission spectra patructures studied in this paper, the convergency of the direct
tween Q(9) — y(9)/2 and Q(9)+ y(9)/2. First, in Fig. 5 Fourier decomposition is satisfactoigee below. In the case
we see that the position and width of all dips, including small®f metal-based PCS's the convergency appears to be slow,

ones marked by arrows, correspond directly(¢9) and and use of such methods may be very effective.
¥(9), and it is typical for a situation when tf@matrix has As shown in Fig. 1, we denote the periodicity plane as
poles near the real axis ab.'®> Second, there is a slight (X,y), and the direction of the translational invariancezas
asymmetry of dips, which can be attributed to the Fano-typdn the particular case of 1D periodicity, we assume the grat-
origin of such resonances. Thus slightly asymmetric dips iring planes to be perpendicular xo The dielectric suscepti-
the transmission may be attributed to the interaction withbilities in all constituent materials of the layer are assumed to
quasiguided modes, and the measured width of the dips givés local, so that
information on their radiative lifetime. This opens a direct
way to detect such modes experimentally. It is important to
distinguish such dips from more asymmetric cusplike Ray-
leigh anomalies. The latter, however, can be easily identified . - .
as diffraction thresholds. wheree(r) is a periodic fl_Jnctlon ofk a_nd_y_and does not
Let us add here that we have considered in this paper th epe_nd onz Due to_the in-plane periodicity, EqAL) is
system which is infinite alongx(y) plane, and the light ourier transformed into
beam cross section is infinite too. This means, e.g., that there
are no losses due to the eigenmode propagation along the DG=E ece Eqr, (A2)
PCS. However, it is possible to model the finite in-plane size G’
of the PCS and/or beam cross section, assuming the incomyhere D= (D, ¢.Dyc,D0), etc.,G=(G,,G,,0) andG’
ing beam to be, e.g., a Gaussian-like convolution of plangye reciprocal vectors:
waves with different angles of incidence.
To conclude, we have applied a scattering-matrix-based 1 o,
numerical method to calculate the optical transmission prop- SGG’:§f e(r)exdi(G'—G)r]dxdy (A3)
erties of a finite-thickness two-dimensionally periodic photo-
nic crystal (photonic crystal slab, PGSThe appearance of (here the integration is performed over the unit cell &pa
well-pronounced dips in the transmissivity of PCS is ex-An example of such a matrix for the rectangular modulation
plained by the excitation of quasi-guided eigenmodes in th@f £(r) used in this paper for numerical calculations is given
slab. We have calculated the energies, linewidths, and eleé? Appendix G for completeness. See other examples for,
tromagnetic fields distributions of the eigenmodes, and ana€.g., cylindrical rods in Ref. 31.
lyzed the relationship between their symmetry properties and In the exact solution, the summation in E42) has to be
the optical activity. taken over the full reciprocal lattice of vectdgs . However,
in the numerical calculations the summation should be taken
over a finite subset of reciprocal-lattice vectors containing

D(r)=fs(r)é(r—r’)E(r’)dr’, (Al)

ACKNOWLEDGMENTS N, elements. For example, in case of 1D periodicity, such a
This work was supported in part by CREST, Japan Scifinite subset can be taken as
ence and Technology Foundation Corporation, a Grant-in- 5
Aid for Scientific Research from the Ministry of Education, _[c™ —0+1—+ +
) ! ! G 0], 9=0x1*2, ... F0max» (Ad)
Science and Culture of Japan, the Russian Foundation for dy

045102-11



S. G. TIKHODEEVet al. PHYSICAL REVIEW B 66, 045102 (2002

d being the period along. Then the finite subset contains ~ For the plane wave expansi¢gq. (A11)], the Maxwell
=20maxt 1 inverse vectors. In the case of 2D square pe£quationgA8)—(A10) become a system of linear equations.

r|od|C|ty we have takemy= (20, mact 1) (20, mact 1) Nu-  Equation(A10) takes the form

merically, we have estimatd\sl from the condition that the

calculated transmissivity saturates with changeNgf- N,

+1 with an accuracy of the order of 18. For the dielectric E Zoo Bz =K[(Ket+ G Ey gt (ky+Gy)Ey 61,

structures of the model structure type as in Fig. 1 as wellas G’

for a PCS with a polariton pol¥;*8this usually occurred at (A12)

Omax~6—7, i.e.,,Ng=13-15 in 1D calculations and 169—

225 in 2D calculat|ons however, we have found that everwhere theN X Ny matrix Z is

Omax=3 Or 4 was already sufficient to understand the main

peculiarities of the system behavior in the majority of cases; o2

see an example in Fig. 4. = 2 2 L )

In what follows we deal with Ng-, 2Ng-, and Zoe =Lt GO+ (ky+ Gy Jd60 c? cee!
4N4-dimensional vectors. The corresponding square matrices (A13)
will be labeled, as explained in the main text, using usual
italic, calligraphic, and open face letters, respectively. Multiplying Eq. (A12) by the inverse matriZ ~2, for eachK

Our goal here is to solve the Maxwell's equation for givenye obtain
input frequencyw, angles of incidence and ¥ (azimuthal
and polaJ, and the polarization state. Using the Maxwell's

equation - , ,
q Ero=> Zoa KL(Ket G Ey o+ (Ky+G))Ey o ].
G!
1H (A14)
s E—VXE, (A5)

Using Eq.(A14), we can excludé, s from Egs.(A8) and

and substituting ¢/i w)(V X E) for H in another Maxwell's (A9). Thus we obtain the following system of\g linear

equation, equations for lateral electric field componers ¢ and
LD gvh A6 e
EE_ 1 ( )
we start from the electric-field-resolved Maxwell equation K2 {[ o6 — (ke Gy Zga (ke + G1) 1Ex o
G/
w? — (ky+ Gy Zga (Ky+ GL)Ey o
—AE+grad div E=—D, (A7) A
c
2
or, in components, _E —eae ~ (ky+Gy)"dcer |Exer+ (ke
5 5 (92Ey N (92EZ _ w? A8 + Gx)(ky+ Gy) Ey,G ) (A15)
o o)y ke @AY
_1 ’
°E, pr: N &2> N 7E, sz o Kzg {—=(ky+Gy)Zgs (kxt+ Gy)Ex g
ayax g2 o] Y ayoz g2 Y _
yox \oz" ox yoz ¢ +[Be— (ky+ Gy Zad, (Ky+ G IEy o'}
aZEX+a2Ey P . &? _sz ALD =(kx+Gx)(ky+Gy)Ex,e
gzox " azay |\ g2 gy ¢ ¢ © (A10)

_ _ . +2 —eae— (Kt G %866 |Eyor - (AL6)
The solution can be Fourier decomposed into a sum of plane
waves of the type
) ) ) ] EquationgA15) and(A16) can be written in a compact form
E(x,y,z,t)=Egexplik, cX+iky gy) X expiKz—iwt)
(A11)

L
(the same for the inductio® and the magnetic fieldH). ME=KNg (AL7)

Herek, ¢ andk, ¢ are defined in Eqg4), and the eigenval- R
ues of the wave-number projectionK=K(w,ky,ky,G) to if we introduce Ny- dimensional vectof composed of the
be determined hereafter from the eigenvalue problem. lateral components of the electric field,
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3 3 32N
Exe, =47, .. &N (A24)

When calculatingk;=K?,j=1,2,... N, in Eq. (A23),

EX,GNg we fix the cut in such a way that Rg=0.2" It is important
&= E , (A18) to remember it when discussing the properties of the S ma-
y,Gq trix.

E APPENDIX B: CALCULATION OF FIELDS, INTERFACE,
YGn, AND TRANSFER MATRICES

and Ny X 2Ny matrices, For a combination of different slabs, we first develop a
transfer-matrix formalism. The solution of Maxwell equa-
_ ( M1y Mlz) (Nll NlZ) (A19) tions in each layea is decomposed into sets of eigenvectors
Mo My’ Np1 Ny’ [see Eq(A24)], propagating along and opposite to the axis
i.e., xexp(Kz—iwt) and «exp(—iKz—iwt), respectively. Let
us introduce M4-dimensional amplitudes of partial waves in
2 each plang,

@ 2
Mll:?SGG’_(ky_l_ Gy) 5GG’ y

composed ofNy X Ny matrices:

-

Az)= (B1)

Jt*(z))
ﬂ’(z) ’

2

w
Moo=—egg — (Ky+ Gy)?dsg' » - _ _ .
227" 3666 (Kt G 0ce where A" (z) are Ng-dimensional amplitudes of plane

waves, propagating, respectively, along and counter to the

M 1= M= (ky+ G,) (ky+ Gy) bgg' (A20)  axisz, atz Let usdefine the4N-dimensional amplitudel
in such a way that the i2-dimensional vector of in-plane

N11= Sggr — (Ky+ GX)Zgé,(kx+ G,), electric-field componentEq. (A24)] at zis the matrix prod-
uct of a matrix €,&)) [with 4Ny columns and Rlg rows]

Noo= Sger— (ky+Gy) Zgg (k,+Gy), andA:

Npp=ND= = (ke t G Zga (K, +G)).  (A21) §(2)=(&.&)A(2). (B2)

This point is the central one for the formulation of the
Yansfer-matrix formalism; it becomes possible because the
2Ny X 2N4-dimensional matrix) does not depend on but

o depends on the material parameters of the current layer.
NandM arez Hezrm|t|an2t003.4As a resulk* has Ng rgal IEI)'ransfer matricesl' cor?nect the amplitudes at diff?e/rent
e|genvalue.$.( K, o 'K2Ng' Thus the plang waves in the planesz andz’, and, thus, they areM, < 4Ny matrices. The
decompositiofEq. (A11)] are either propagatind<®>0) or  simplest task is to construct the transfer maffix over a
exponential K2<0). In case of absorptive materials the Ma- gistanceL (along 2) inside the same layer. It is a matrix
trices N and M become non-Hermitian, and the eigenvaluesnich transfers the vector of amplitudes from plage
of K? are shifted into upper complex half-plane KA=0  ,. |

(this corresponds to an exponential decrease of the propagat- ’

In physical problems such as transmission, the frequenc
w is real. It can easily be checked that if all constituent
materials of the slab are transparemig: is Hermitian. Then

ing waves. AzeL)=T &
For applications it is convenient to write the solution of Alz+L)=TiA2), B3)
the eigenproblenpEq. (A17)] as and it can be written as a diagonal matrix,
(M IME=¢gK? (A22) exdiKL] 0
. . . . T= : : (B4)
via two 2Ny 2N, matrices: a diagonal matrix 0 exg —iKL]
K 0 0 0 where the matrix exponents are diagonal matrices with
! o exp(*KL),j=0,1... N4 on the main diagonal.
0 K 0 ... 0 To construct theénterface matrixly, , through an interface
K= o (A23) from slaba to slabb, we can use the continuity conditions of

tangential &,y in our cas¢ components of the electric and
magnetic fields at the interface. There ardg4tangential

having the eigenvalues of the probldiq. (A17)] on the ~ components Oféwéy":')_()rH-)y (grouped into a pair of
diagonal, and a matrixj, whose columns are the corre- 2Ng-dimensional vectors and 7;), and 4N continuity
sponding eigenvectors conditions. It can be shown easily that other Maxwell bound-

o ... Kan,
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ary conditions(on normal component®,,H,) follow from  With the interface matrix

these conQ|t|ons: Not_e that this am_ounNg4 nlatches ex- Ty =TF; lFa- (B7)

actly the dimensionality of the amplitude vectbr ’
Let us define anaterialmatrix I'; ,j =a,b, which converts In order to find the matriX" for each slab, let us use Eq.

the vector of amplitudes at fixed to the hypervector of (B2) and the analogous equation f@}H_ For each partial
in-plane components of electric and magnetic fields in thisplane wave it follows from Eq(A5) that

point,

g2\ . Ke 1 ,
- =T, (B5) Hyo=— 2 {(ky+Gy)Zgg (et Go)Ey o+ (K,
'HH(Z) @

where the hypervectoi are defined in E(A18) (the same +Gy)Zgg (Ky+G))— S/ 1Ey e}, (B8)

type of columns are used as f’b?r‘, but they are composed
of x andy components of magnetic fieldsThen, from the K

inuity of the tangential components at the interface at _ne 2 — -1 ! —
continuity o K 9 p Hy,G_ {[566’ (kx+Gx)ZGGr(kx+Gx)]Ex,G’ (kx
=2, 4, We obtain @ g

+G)Zgg (ky+G))Ey 6. (B9)

>

A|Z=Zb,a+0:TbvaA|Z=Zb,afo’ (B6) Introducing a Ny X 2N4 matrix

. (ky+Gy)Zgg (ke t Gy) (ky+Gy)Zgg (ky+G)) — Sgar :(—N21 —sz) ©10
o6 — (Kt G Zgg (ke +Gy) = (Kt Gy)Zgg(ky+Gy) N Npp /'’
[
we come to the conclusion that sing
0
N C N H
Hy=—(CEK, = CEIA. (B11) A=A s(Dl=0=| —cose (CY
0

Thus the material matrix is

[the only nonzero components are the first and the

gl 4l (Ng+1)th]. In the case oP polarization we obtain
= e = Sesx (B12
w w COSs¢ cosv
0
APPENDIX C: INPUT AMPLITUDES Jz\tPE“Zl\-:P(Z)|Z:—O: sing cosd | - (%)
In order to close the transfer-matrix formalism, we have 0

to define the input amplitudd€g. (11)] and the scattering

condition. Let us reserve the top position in each

Ng-dimensional vector ok, g, etc., type for the&G=0 main

harmonic. Then, for the geometry of light incidence from As to the scattering condition, it is understood that the
the vacuum side specified in Fig. 1 and the Bg.case ofS  amplitudes of the counter-propagating waves on the substrate
polarization [vector E parallel to the X,y) plangd, we  side of the systemz=L,+0) are just zeros in any polariza-
obtain tion:
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0 and
As=AS (D)= r0=]| ¢ |- (C3 (7‘11 le) 08)
0 = .
Ty T
APPENDIX D: FROM TRANSEER- TO SCATTERING- For example, if we add an interface with interface matrix
MATRIX FORMALISM Tp.a [EQ. (B7)], thenT="Ty, =Ty 5. If we add a slall. of
same materiall'=T_ .
Now we are ready to close the transfer-matrix formalism:  tpan,
the total transfer matrix through the whole system can be
calculated as . DSy, DE ) o9
A= Tiohy (D1) M Sp1+ 82T DSy SpToDEF SpiTy)
with where
Tior=Ts a T Tag.ayy - T Tagwe (D2) E=(S1 T~ T1),  D=(Tu~SizH) ' (D10)
where the system is supposed to contdidifferent slabsa; , If we add anL-thick layer of typej, from Eg. (D9) we
j=1,...N (N=1 for our model structure in Fig.)1 obtain
However, as it was first discussed by Ko and Ink&bime A
inevitable existence of evanescent solutigméth K?<0), ] exdikWL] © T )
makes this transfer-matrix calculation unstable very quickly. SM+1= o ) exikOL])”
This difficulty can be easily understood from the definition (D11)

of the transfer matriX'| [Eq. (B4)]: for evanescent eigenval-

ues, the lower diagonal block of this matrix contains expo-whereZ andO are 2N, X 2Ny unit and zero matrices, respec-

nentially large components. tively. From Eq.(D11) it is seen that, indeed, the growing
In order to avoid this disadvantage, a scattering matrixexponentgfor increscent wavesexd —ikK ’L], do not ap-

formalism was proposed, which avoids this problem by pear in the scattering matrix formalism.

means of rearranging the components of amplitudes. Within

the scattering-matrix method, instead of a description of the  A\ppeENDIX E: CALCULATION OF TRANSMISSION,

system via a combination of amplitudes of along- and REFLECTION, DEFLECTION, AND ABSORPTION

counter-propagating wavd&q. (B1)], a scattering matrix

Son+1 is introduced, which transfers the input amplitudes Knowledge of the scattering matrixof the whole system

R and of the input amplitude vectq‘ﬁﬁn allows us to calculate

A\T) the reflection, transmission and absorption coefficients. The

Bin= - (D3) simplest way to do this is to calculate therojections of the
s Poynting vector for incoming, reflected, transmitted, and de-
into output ones, flected(into vacuum and substratevaves,
. Ag
Bout:( —»8)1 (D4) P(In): [(E Ov)*HyOv+E+Ov(H Ov)*_(E OV)*HXOV
Ay
+
and is coupled by the total scattering matrix —EyouHy Ov) 1,
Bou=SyBin - (D5)
out e P(r)_ [(ExOv)* yOv+Ex0v(HyOv)* (EVOV) HxOv
The total scattering matrix can be calculated iteratizély,
starting from an obvious condition —EyouHxon* 1,
Syv =1, (D6)
1) + +
wherel is 4NgX4Ng unit matrix, and using the following PO = [ Os)* Hy osT ExodHyod" ~ (E 09" Hxos
procedure to calculate the scattering matijx, ; of a system . .
containingM + 1 layers if we know the total scattering ma- - Ey,o,s(Hx,o,s)*],

trix Sy, of the system withM layers as well as theverse
transfer matriXI' through the additionalNl + 1)th layer,

S =(Sll SlZ) (D7)
M Sy Sl

P(dv):E 2 [((EXGV)* va+Eva(Hva)
—(Ey e Hyxev EyeulHxew) ™,
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c 10
PO S (09" Hiost ErodHiod* seo= 3]s
—(E;G S)*|-|X+G — E;G S(|-|X+G I*1, (E1) Instead of Eq(A17) we obtain
and the components of electric and magnetic fields are cal- w2e R R
culated via Eq{(B5). Then the reflection, transmission, and —2—k§,G—k§,G AGGISHZKZEH. (Fe)
deflection coefficients can be calculated as shown in Eq. c

(13), note thatP” and P(**) entering this equation with a Thus, forP and S polarizations[see Eq.(A24)] in one di-
negative sign. The absorption coefficient is mension, we obtain

A=1-R-T-D. (E2) £=Asor (F7)

A=0 in a system without dissipation. In case of dissipation.and degenerate eigenvalues
A+#0, and the frequency dependence of this coefficient, via

the fluctuation-dissipation theorem, is connected to the emis- w3e
sion. K= ?_k)z(,G_ki,GAGG/EKAGG’ . (FS)
APPENDIX F: CASE OF SPATIALLY UNIFORM SLABS Instead of Eq(A14), and becausK=kzvg, we obtain
In Ap_pendix F We_illustrate the genera_l soluti(_)n given in _ KeoExotkycEyc
Appendix A on the simplest case of spatially uniform slabs. E,c=— K ) (F9)
The dielectric matri{Eqg. (A3)] is diagonal: 26
which is nothing but the condition of the transverse wave for
£6e' =&0Ge" - (FD) each harmoni&cEg=0, wherekg= (K, g ,Ky 6K, c) is the
Instead of Eq(A13) we have light wave vector inside the homogeneous layer.
) 5 w?e APPENDIX G: DIELECTRIC SUSCEPTIBILITY MATRIX
Zoer=| Kot ky,G_? 06! (F2) FOR 1D AND 2D RECTANGULAR PERIODICALLY
PATTERNED LAYER
w’e ) For self-consistency, here we give the well-known formu-
? Ky Kx.cKy.c las foregg: for a rectangular-type modulation of the dielec-
M= S (F3) tric constant in the PCS. If the 1D patterned layer consists of
2 GG’ » L. d @d.—L.)-wid . ith diel . ibili-
o « and d,—L,)-wide regions with dielectric susceptibili
Kx.cKy,c ?_kx,G ties e, and e, respectively, the dielectric matrixgg: [EQ.
(A3)] is
2
e L
. koo~ = ky.cKy,G sin 7(g—g’) d—x}
X
Nzﬁ w2 dce’ » Egg' = €19y T (£27€1) m(g—9’) ey
KSgtksg—— | —keck K2 o— —
GG 2 XEYE TG T2 In the case of 2D rectangular modulati¢as in Fig. 3, we
(F4  have
and eger = €106 T (62— €1)
_1 w28 2 2 . ’ LX : ’ Ly
N7 M= ?_kx,G_ky,G AGG’ ) (F9 sin W(gx_gx)d_x Sl 71'(gy_gy)d_
X . , , . (G2
where m(9x—09x)(9y—9y)
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