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Quasiguided modes and optical properties of photonic crystal slabs
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We formulate a scattering-matrix-based numerical method to calculate the optical transmission properties
and quasiguided eigenmodes in a two-dimensionally periodic photonic crystal slab~PCS! of finite thickness.
The square symmetry~point groupC4v) is taken for the illustration of the method, but it is quite general and
works for any point group symmetry for one-dimensional~1D! and 2D PCS’s. We show that the appearance of
well-pronounced dips in the transmission spectra of a PCS is due to the interaction with resonant waveguide
eigenmodes in the slab. The energy position and width of the dips in transmission provide information on the
frequency and inverse radiative lifetime of the quasiguided eigenmodes. We calculate the energies, linewidths,
and electromagnetic fields of such quasiguided eigenmodes, and analyze their symmetry and optical activity.
The electromagnetic field in such modes is resonantly enhanced, which opens possibilities for use in creating
resonant enhancement of different nonlinear effects.
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I. INTRODUCTION

A considerable effort has been devoted in recent year
the investigation of finite-thickness slabs of photon
crystals.1–12 Such photonic crystal slabs~PCS’s!, especially
if they support waveguide modes, demonstrate various in
esting properties aimed at active photonic devices for fut
optical communication networks. For example, the transm
sion spectra of waveguiding PCS’s have well-pronoun
narrow dips which exhibit a complicated behavior with t
change of angle of light incidence and of the geometri
parameters of the system.

Such features in the transmission spectra of gratings
called Wood’s anomalies; see, e.g., Ref. 13. Generally, th
are two types of Wood’s anomalies: diffractive anomali
caused by openings of the new diffraction orders~diffraction
thresholds!, and waveguiding anomalies, caused by a re
nant interaction of the incoming light with surface or wav
guide modes. Historically, diffractive-type anomalies we
first found in metallic shallow gratings by Wood,14 and theo-
retically explained by Rayleigh.15 They are also called Ray
leigh anomalies. Although both types of anomalies appea
the spectrum of PCS’s, waveguiding anomalies demonst
a richer behavior. Basically speaking, waveguiding anom
lies are examples of a Fano resonance,16 where a discrete
mode becomes a resonance due to the interaction with
tinua. In this paper we mainly focus on such anomalies
waveguiding PCS’s.

Recently we developed a scattering matrix numeri
method,17–19 based on a generalization of the method p
posed by Whittaker and Culshaw,7 to model the properties o
multilayered one-dimensional and two-dimensional p
terned PCS’s with frequency dispersive constituent mater
Our motivation was to explain the experimenta
measured20,18 transmission spectra in PCS’s containing
inorganic-organic semiconductor imbedded into a 1D or
periodically patterned quartz substrate. The narrow dips
transmission are due to the excitation of quasiguided~or
0163-1829/2002/66~4!/045102~17!/$20.00 66 0451
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leaky! modes, which appear to play a crucial role in t
optical properties of waveguiding PCS.

The goal of the present paper is to develop a method
calculate the energies, linewidths~inverse lifetimes!, and
electromagnetic field distributions of photonic eigenmodes
periodically patterned photonic crystals of finite thickne
and to analyze the symmetry of such modes and their op
activity. Basically, photonic crystal slabs are periodically co
rugated waveguides or grating-waveguide structures. Du
the last years, the basic understanding of quasiquided m
nature in such structures has been developed~see, e.g., Refs
13 and 21!. A limited analysis of the leaky modes in PCS
was obtained via the finite-difference time-domain meth
see Ref. 22, and references therein. However, until rece
there have been no direct methods developed to calculate
energy and linewidth dispersion as well as the electrom
netic field distribution of quasiguided modes in arbitra
PCS’s. Vector-field9 and perturbative10,11 models were been
proposed recently, but are valid only for thin PCS’s.

On the other hand, a powerful scattering mat
formalism23 allows a full description of such modes in arb
trary PCS’s. The scattering matrix formalism is utilized i
stead of a more familiar transfer-matrix formalism. Th
former provides an advantage in such a periodic structur
that evanescent waves are inevitably involved for hig
reciprocal-lattice vectors. To the best of our knowledge,
first example of the use of this powerful formalism to calc
late transmissivity, reflectivity and light emission of arbitra
thick PCS on a substrate was carried out by Whittaker
Culshaw7 and by Wendler and Kraft,8 ~also see Ref. 24! but
there was no direct calculation of the eigenmodes provid
Recently the scattering matrix method was used to calcu
the eigenmodes in a free-suspended PCS’s,12 but only below
the vacuum cone where such modes retain a purely gu
character. But the properties of quasi-guided modes in a
trary PCS on a substrate have, to the best of our knowle
not yet been calculated.

Following Ref. 25, we use another scheme based on
electric-field-resolved Maxwell equations in the constitue
©2002 The American Physical Society02-1
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layers ~instead of the magnetic-field-resolved equatio
shown in Ref. 7! which appears to be quite optimized,
least for the dielectric structures. Although the prelimina
results of our method in comparison with experiments for
and 2D periodic photonic crystal slabs with a polariton p
were already reported,17–19 we have not yet published th
details of our calculation scheme. The inclusion of a po
iton pole manifests itself strongly in the optical properties
the PCS. The number of experimentally discernible featu
~Wood’s anomalies! in the optical spectra increases, and th
dispersion becomes more complicated due to the polar
effect. However, a basic understanding of the physics of
PCS optical response such as the origin of the dips in
transmissivity spectra and their connection with the P
photon eigenmodes, can be acquired more easily by a
plified example omitting the dispersion. Thus, in order
simplify the discussion, in this paper we restrict ourselves
a PCS with constant local dielectric susceptibilities of
constituent materials.

The structure of the paper is as follows. In Sec. II w
describe the model structure~a square-symmetry dielectri
PCS on a substrate! and the geometry of the light incidenc
and its interaction with Bragg harmonics, and introdu
quasiguided modes in PCS’s, using an empty lattice appr
mation. In Sec. III the formulation of the scattering matr
method is given~Sec. III A!, and illustrated on the exampl
of the model structure~Sec. III B!. In Sec. IV the scattering
matrix method is introduced to calculate the properties
quasiguided modes in PCS’s~Sec. IV A! and illustrated us-
ing a model structure~Sec. IV B!. All technical details of the
formulation are furnished in the Appendixes A–G, which a
self-contained, give a full formulation of the scattering m
trix method, and can be read independently of the main t

II. ESSENTIALS OF LIGHT INTERACTION
WITH A PHOTONIC CRYSTAL SLAB

A. Model structure and geometry of light incidence

A typical structure of interest~the model structure herea
ter! and the geometry ofS- andP-polarized light incidence is
illustrated in Fig. 1. We use the orthogonal axes (x̂,ŷ,ẑ) as
shown in this figure. The positive direction of theẑ axis is set
from the vacuum into the substrate. The polar and azimu
angles of incidenceq and w specify the incoming light in-
cidence. The azimuthal anglew is measured between thex
axis and the plane of light incidence;w50 in Fig. 1.

Hereafter, for numerical calculations we assume the s
strate material to be quartz~substrate dielectric constant«s
52.132), and the higher dielectric constantactivematerial to
be a semiconductor with«`;3.97~which corresponds to the
background dielectric constant of the self-organiz
inorganic-organic semiconductor in Refs. 20 and 18!.

The symmetry of the 2D periodicity of the model stru
ture is taken to be square~point groupC4v), but the method
itself is quite general and can be readily applied for any po
group symmetry. The in-plane periods are taken asdx5dy
5d;680 nm, and the vertical thickness of the pattern
layer is Lz;120 nm. The ratio of the in-plane size of th
04510
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semiconductor squares to the thickness of quartz wall
takenh;4. These values are close to those characteristic
the experiments20,26,18with inorganic-organic semiconducto
superlattices imbedded into a patterned quartz substrate
neglecting the polariton dispersion of the active material.

The 2D periodic slab couples an incoming light of fr
quencyv and wave vectork5(kx ,ky ,kz),

kx5
v

c
sinq cosw, ky5

v

c
sinq sinw, ~1!

kz5
v

c
cosq, ~2!

with all Bragg harmonics of the same frequencyv and wave
vectors

kG,a
6 5~kx,G ,ky,G ,6kz,G,a!, ~3!

where27

kx,G5kx1Gx , ky,G5ky1Gy , ~4!

kz,G,a5Av2«a

c2
2~kx1Gx!

22~ky1Gy!2, ~5!

a5v for vacuum («v51) anda5s for the substrate, and

G5
2p

d
~gx ,gy,0!,gx,y50,61,62, . . . ~6!

is the 2D reciprocal square lattice.
In this paper we assume the substrate to be optically tra

parent (Im«s50). Thus, depending on the incoming ligh
frequencyv ~real number! the Bragg harmonics@Eq. ~3!# are
either propagating or exponential. Hereinafter we refer to
harmonics, exponentially growing~decreasing! away from
the PCS’s as increscent~evanescent! harmonics. If kz,G,a

2

.0, a5v and s, the corresponding harmonics are pur

FIG. 1. Schematic structure of a square-patterned guiding la
on a substrate. Light gray: substrate~e.g., quartz!; dark gray: opti-
cally active material with a higher dielectric constant. The coor
nate originz50 is at the surface of the structure.
2-2
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QUASIGUIDED MODES AND OPTICAL PROPERTIES OF . . . PHYSICAL REVIEW B 66, 045102 ~2002!
propagating in both the vacuum and substrate. Ifkz,G,v
2 ,0

andkz,G,s
2 .0, the harmonics are propagating in vacuum a

exponential in the substrate. Ifkz,G,a
2 ,0, a5v and s, the

corresponding harmonics are exponential in both the vacu
and substrate. Here we suppose that (z,t) dependence of the
field in each harmonic is proportional to exp(6ikz,G,az
2 ivt); also see Eq.~A11! in Appendix A.

The map of different harmonics@Eq. ~4!# for normal inci-
dence,kx5ky50, calculated withd5680 nm, is shown in
Fig. 2, together with vacuum and substrate light cones c
sections atv51200 and 2400 meV. As can be seen in Fig.
the incoming light at normal incidence with a frequen
around 1200 meV can be only transmitted or reflected. T
(gx ,gy)5(61,0),(0,61) diffraction orders into the sub
strate soon open; see Table I. At 2400 meV the (61,0),
(0,61) diffractional reflexes are open into the vacuum a
substrate, and the (61,61) reflexes are open into the su
strate. Also, the opening of (62,0),(0,62) reflexes into sub-
strate is approached.

As in case of gratings, the opening of new diffraction
channels can cause peculiarities in the transmission and
flection spectra, so-called diffractive Wood’s anomalies.13,8

FIG. 2. The map of Bragg harmonics (kx,G ,ky,G), @Eq. ~4!# of
the kx5ky50 incoming light ~pluses!. Solid and dashed circle
show the vacuum and substrate light cone cross sections fov
51200 and 2400 meV~thin and thick lines, respectively!. For each
v, the harmonics inside the solid circle are radiative modes bot
vacuum and substrate, and those between solid and dashed c
are exponential partial waves in vacuum and radiative mode
substrate. The harmonics outside both cones are the expone
modes.
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However, in the case of a PCS with an averaged dielec
constant «̄ exceeding that of vacuum and substrate«̄
.(«s,1), or covered by a guiding layer, even more pr
nounced features in transmission and reflection appear du
quasiguided eigenmodes in the PCS. The origin of th
quasiguided modes can be easily understood within an em
lattice approximation.

B. Empty lattice approximation and guided
vs quasiguided eigenmodes

In the empty lattice approximation the periodic photon
crystal slab is replaced by an effective homogeneous la
with a dielectric constant equal to the averaged dielec
susceptibility of the PCS,«̄; then the resulting dispersio
curves are folded into the first Brillouin zone~BZ! of the
original periodic structure. For a square 2D lattice we ha

«̄5
h2«`1~112h!«s

~h11!2
, ~7!

which is near«̄;3.3 for the model structure.
Without periodic corrugation, the guided modes in a p

nar waveguide are bound modes, in the sense that they
confined in the slab and decay exponentially into the vacu
and substrate outside the slab. Correspondingly, in the
of transparent materials their eigenfrequenciesV(kx ,ky) are
real functions of the in-plane photon wave vector (kx ,ky). It
is well known28 that in a planar guiding layer on a substra
there are j 51,2, . . . transverse electric~TE! and higher-
frequency transverse magnetic~TM! waveguide modes
Electric field in TE modes and magnetic field in TM mod
are parallel to the slab plane, and the modes exist at freq
cies above the corresponding frequency cutoffs,

in
les

in
tial

TABLE I. Characteristic energies for the model structure~nor-
mal light incidence!.

Diffraction thresholds Energy~meV!

(61,0),(0,61), substrate 1248.8
(61,61), substrate 1766.1
(61,0),(0,61), vacuum 1823.3
(62,0),(0,62), substrate 2497.7
(61,61), vacuum 2578.5
(62,61),(61,62), substrate 2792.5

Bragg resonances of the guided modesa

1st TE 1248.1
2nd TE 1729.9
3rd TE 2359.5
3rd TM 2469.8
4th TE 2604.1
4th TM 2732.1

aCalculated in empty lattice approximation.
2-3
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S. G. TIKHODEEVet al. PHYSICAL REVIEW B 66, 045102 ~2002!
V j
( cutoff )5

c

Lz
A«̄2«s

S arctaneA«s21

«̄2«s

1 j p D , ~8!

where «̄ and «s are the dielectric constants of the guid
layer and the substrate, respectively, ande51 for TE modes
and «̄ for TM modes. The energy dispersion of TE and T
modes is found from transcendent equations, which we g
here for self-consistency:

tan~ b̄Lz!5
b̄~bs1b!

b̄22bsb
~9!

for TE modes and

tan~ b̄Lz!5
«̄b̄~bs1«sb!

«sb̄
22 «̄2bsb

~10!

for TM modes, whereb̄5A«̄k0
22k2, bs5Ak22«sk0

2, b
5Ak22k0

2, k05V/c, andk5Akx
21ky

2.
The lowestj 51 TE and TM waveguide modes and the

frequency cutoffs in an effective planar waveguide, cal
lated from Eqs.~9! and ~10! and Eq.~8!, respectively, with
Lz5120 nm and«̄ from Eq. ~7!, are shown in Fig. 3~right-
hand side!.

The guided modes in the effective planar waveguide
completely confined in a slab, and formally have an infin
lifetime. The introduction of corrugation can couple th
guided modes with photon continua in vacuum and substr
As a result, the guided modes acquire a finite lifetime ins
the light cones in the first Brillouin zone and becom
quasiguided~or leaky! modes.5 Due to the 1D or 2D period-
icity of the corrugated waveguide, the frequency dispers

FIG. 3. The lowest TE and TM guided modes in an effect
homogeneous waveguide with an averaged dielectric cons
~right!; same modes folded into the first BZ ofd5680 nm square
lattice ~left!. The dispersion of folded branches is shown alongG-X
andG-M directions. Four lowest TE~1–4! and two lowest TM~3
and 4! Bragg resonances in theG point are shown. Inset: the mag
nified region around the third Bragg resonance.
04510
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diagram of the quasiguided modes consists of allowed ba
separated by photonic stop bands in the center and borde
the first BZ.

The origin of the allowed bands can be understood in
empty lattice approximation by means of folding the guid
modes of the effective planar waveguide~Fig. 3, right hand
side! into the first BZ of the PCS. The resulting empty lattic
bands for the model system are shown in Fig. 3, left-ha
side.

It is seen in Fig. 3 that four families of bands are form
in this energy region near the center of the first BZ~the first
to the fourth resonances in theG point hereafter, marked in
Fig. 3 by the corresponding numbers!; also see the energie
of the bands in theG point in Table I. First of all, let us note
all these bands lie well above the vacuum and substrate
cones in the first BZ due to relatively high TE and TM cuto
energies in the model structure. Thus in the model struc
there is no purely guided eigenmode of the type analyz
e.g., in Ref. 5. Also note that, due to a large difference
tween TE and TM cutoffs, only TE-type modes participate
the two lower resonances.

The lowest band in theG point is the standing wave origi
nating from the Bragg resonance of the lowest TE branch
the effective waveguide atg5(61,0),(0,61) points in the
reciprocal lattice. In the empty lattice approximation it is
degenerate quartet. Along theG-X direction this band splits
off into two fast modes@originating from (1,0) and (21,0)#
and a doubly degenerate slow mode@from (0,61)#. Along
the diagonal directionG-M both bands are degenerate do
blets.

The second band corresponds to the (61,61) TE reso-
nance; for this resonance the behavior alongG-X andG- M
is inverted in comparison with the first resonance case.
next bands lie well above both TE and TM cutoffs, so t
next resonances occur both in TE and TM modes. The th
band, corresponding tog5(62,0),(0,62), is a group of TE
and TM modes shown in the rectangle~also see the magni
fied inset in Fig. 3!, and the fourth band hasg5(62,
61),(61,62).

The symmetry of bands near the third and first resonan
is the same. We will see below that the third band causes
strongest features in the transmissivity spectra of the mo
structure. Thus in this paper we will focus mostly on th
resonance. Its behavior is somewhat typical at a square P
For the subsequent discussion it is very instructive to c
sider the properties of slow and fast modes, e.g., along
G-X direction. The slow modes alongG-X, being produced
by transverse waves with wave vectors (kx ,ky)5(0,62)
and thus propagating alongŷ, have an electric~magnetic!
field polarized predominantly alongx̂ for TE- ~TM!-type
resonance. The fast modes are predominantly polar
along ŷ.

Depending on the parameters chosen, the energy posi
of the bands are changed. But the properties do not cha
qualitatively from the situation analyzed here with this set
parameters. Similarly there are resonances at the bound
of the first BZ, and also band crossings inside the BZ.

nt
2-4
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QUASIGUIDED MODES AND OPTICAL PROPERTIES OF . . . PHYSICAL REVIEW B 66, 045102 ~2002!
The periodic corrugation of the layer makes two impo
tant changes with this folded picture. First of all, the deg
eracy of the crossing modes in resonances is partially
moved, due to the differences in the electromagnetic fi
distributions in modes of different types, depending on
symmetry properties of the periodic lattice. As a result, s
bands appear in the center, at the boundaries of BZ, an
some crossing points. This is typical of any periodic stru
ture, including photonic crystals. Second, most of the eig
modes discussed above become radiative or leaky, due t
opening of the interaction between them and photon conti
in vacuum and substrate, which is a very important diff
ence from the case of bulk photonic crystals. In order
distinguish the leaky modes of waveguide origin from
other types of leaky modes in the PCS~e.g., Fabry-Perot
modes!, we call them ‘‘quasiguided modes.’’ As we will see
such quasiguided modes are typically characterized by r
tively long lifetimes and may have large quality factors. Th
the field in such modes becomes resonantly enhanced in
the PCS. This opens many interesting possibilities to use
resonantly increased field for, e.g., resonant amplification
nonlinear optical effects or controlling the radiative lifetim
of optical transitions in the PCS.

On the other hand, the coupling between photon conti
and quasiguided modes allows one to excite these mo
resonantly~in energy and angle of incidence! via external
light. The resonant excitation of the quasiguided mod
manifests itself in appearance of well-pronounced dips in
transmission spectra. The change of energy position of
with change of incidence angleq reflects the dispersion o
the quasi-guided modes as will be discussed in Sec. IV A
the experiments, the measurement of the transmission s
tra at different angles brings an information on the dispers
of quasiguided modes.20,6 By utilizing the advantage of suc
configuration, e.g., in Refs. 20 and 18, a strong coupl
between an exciton resonance and 1D and 2D corrug
quasiguided modes has been experimentally demonstrat
room temperature in structures, fabricated via imbedd
into a periodically patterned quartz substrate of inorgan
organic semiconductor with a very strong polariton couplin

As already mentioned, the model structure does not s
port purely guided modes below the light cones in the fi
BZ at all. However, as will be shown later, in this particul
system a pair of nonleaky modes are still allowed in theG
point, originating from the first resonance in Fig. 3; see S
IV A. Because these modes appear well inside the li
cones, their nonleaky character is entirely connected w
their symmetry properties. Such a situation was analy
previously in Ref. 9. However, for higher resonances all
modes are leaky, including those optically inactive in norm
direction, because the interaction with higher Bragg harm
ics becomes open for the latter.

III. SCATTERING-MATRIX THEORETICAL
DESCRIPTION OF THE OPTICAL PROPERTIES

OF PCS’S

A. Formulation of the method

In order to formulate the scattering matrix formalism f
the PCS, we have to describe the input and output state
04510
-
-
e-
ld
e
p
at
-
-

the
a

-
o
l

a-
s
ide
is
f

a
es

s
e

ps

n
ec-
n

g
ed
at

g
-
.
p-
t

c.
t

th
d
e
l
-

of

the scattering problem, and to define the scattering ma
which transfers the input state into the output one. In
exact decomposition the number of Bragg harmonics nee
for the full description of the electromagnetic field in th
system is infinite, but in numerical calculations we take
finite number of harmonics. Specifically, for a square 2
lattice we take Ng5(2gmax11)2 harmonics with ugx,yu
<gmax. To describe an electromagnetic field of each h
monic we need four independent scalar amplitudes~for ex-
ample,Ex ,Ey ,Hx , andHy!, so the total field is fully speci-
fied via 4Ng scalar amplitudes of Bragg harmonics,A G

6 ,
where the upper sign stands for the sign in Eq.~3!, see the
introduction of amplitudes in Appendix B.

For propagating harmonics,kG,v
1 waves in vacuum semi

space andkG,s
2 in the substrate should be considered as

incoming plane waves. Indeed, both types of harmon
propagate toward the PCS layer; see Fig. 1. The expone
plane waves do not propagate, so we have to use ano
criterium in order to deal with them. Note that thekG,v

1 and
kG,s

2 exponential harmonics are increscent solutions whez
→2` and z→`, respectively. For a physical scatterin
problem we have to put the amplitudes of such incresc
plane waves zero atz52` and`, respectively. It is impor-
tant that including the amplitudes of increscent waves i
the incoming vector also matches the general motivation
use the scattering matrix approach. Then, as discussed,
in Ref. 23~also see in Appendix D!, the components of theS
matrix do not contain exponentially large components, a
the S-matrix calculation scheme becomes numerically co
vergent.

From this consideration it follows that, for the scatterin
problem, it is convenient to define the incoming and outg
ing states via 4Ng-dimensional vectorsBin and Bout , com-
posed of the amplitudes of the incoming and outgoing pla
waves:

BW in 5S AW v
1

AW s
2D , BW out5S AW s

1

AW v
2D . ~11!

In this representation, the only nonzero element of incom
amplitude columnBW in is the amplitude of the incident wave
(BW in )G50, while the outgoing columnBW out contains ampli-
tudes of harmonics, proportional to exp(2ikz,G,v z2 ivt) at
z,0 ~reflected and evanescent waves! and to exp(ikz,G,sz
2 ivt) at z.Lz ~transmitted and evanescent waves!.

The full description of the optical response of the syst
at frequencyv can be done by calculating the full scatterin
matrix of the systemS, which connects the incoming vecto
of amplitudes with the outgoing one:

BW out5SBW in . ~12!

Thus, the fullS matrix is a (4Ng34Ng)-dimensional matrix
in our case.

In this paper we deal with Ng-, 2Ng-, and
4Ng-dimensional hypervectors and (Ng3Ng)-, (2Ng
32Ng)-, and (4Ng34Ng)-dimensional matrices. In order t
distinguish vectors and matrices of different dimensional
2-5
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S. G. TIKHODEEVet al. PHYSICAL REVIEW B 66, 045102 ~2002!
hereafter we denote such hypervectors and matrices by it
calligraphic, and open face letters, respectively, with arro
to denote the vectors. For example, in Eq.~11! the total am-
plitude BW is a 4Ng-dimensional vector, whereas the part
amplitudesAW 6 are 2Ng-dimensional vectors. In order to ca
culate the optical properties of PCS, we do the following

~1! Split the system into the layers, homogeneous alo
the z axis ~3 layers in case of the model structure shown
Fig. 1!, and solve Maxwell’s equations in each layer v
decomposition into partial plane waves~see the full descrip-
tion of the procedure in Appendix A!.

~2! For each layer, constructmaterialmatrices~Appendix
B! to calculate the in-plane components of the local elec
magnetic fields via the amplitudes of partial waves. Pro
gation and interface transfer matrices to be constructed
well, to connect amplitudes in different parts of the structu

~3! Construct the total scattering matrixS of the whole
structure, connecting the incoming and outgoing vector a
plitudes via the iterative procedure by Ko and Inkson;23

~4! Calculate, via the components ofS matrix, the optical
properties of the system such as transmission, reflection
sorption, and the corresponding spatial distributions of
electromagnetic fields.

For the sake of consistency, we give the full formulati
of transition from theT-matrix to theS-matrix formalism in
Appendix D. In Appendix C we specify the input amplitud
for the problem of light transmission, reflection, and defle
tion. We also give the analytical form of all generic matric
for spatially homogeneous slab in Appendix F.

Knowledge of the scattering matrixS of the whole system
and of the input amplitude vectorBW in allows us to calculate
the reflection, transmission, and absorption coefficients.
simplest way to do this is to calculate thez-components of
the Poynting vectors for incoming, reflected, transmitted a
all deflected waves, as shown in Appendix E,

R52
P(r)

P(in)
, T5

P(t )

P~ in!
, D5

P(d,s )2P(d,v)

P(in)
, ~13!

where the expressions for the different Poynting vector co
ponents; see Eq.~E1!. Note that the Poynting vector compo
nents of the waves reflected and deflected into vacuum e
Eqs.~13! with negative sign~because they counter-propaga
against the incoming wave!.

B. A numerical example: transmissivity of the model structure

Let us turn now to the analysis of the transmissivity of t
model structure, calculated via the scattering matrix met
introduced in Sec. III. The calculated transmission spectr
of the model structure for normal incidence and polarizat
along ŷ is shown in Fig. 4.

Let us note here that our numerical algorithm conver
very fast~at least for dielectric materials and for a calculati
of the transmissivity!. Actually, there are three curves show
in Fig. 4, for gmax53, 5, and 6, but the difference is small
than the lines thickness; see the inset in Fig. 4. The num
of harmonics taken are 49, 121, and 169, respectively. T
our electric field based scheme becomes more rapidly c
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verging than the magnetic field based described in Ref. 7
harmonics give a suitable approximation for transmissiv
with an accuracy in calculating the dips energies within
meV. Note that within our method we do not need any ad
tional orthogonalization procedure,7 and employ the«GG8
matrix directly~also see the discussion in Appendix A!. Dur-
ing the preparation of this paper, as well as during work
on the previous publications17,18 we have not found any ex
ample of nonconvergency of this method, at least for diel
tric structures, including the cases with accounting for
polariton pole in the dielectric susceptibility.

As seen in Fig. 4, the calculated transmissivity sho
three groups of features around 1200, 1700, and 2350–2
meV. This is in close correspondence with the discussion
the diffraction orders thresholds~vertical dashed lines in Fig
4! and quasiguided bands given in Sec. II~also compare with
Table I!. The lowest-energy cusplike feature is seen exac
at the energy of (61,0),(0,61) diffraction threshold into
substrate, and the shape of this feature is typical for a
fractive Wood anomaly. There is no additional feature se
here which may be attributed to the excitation of the fi
TE-type quasiguided band, at least at normal incidence.~As
the further analysis shows, this is due to the proximity of t
Bragg resonance to the TE cutoff energy. Still, we do n
dwell into complicated details of the quasiguided mode c
offs in this paper.!

The next feature in Fig. 4, which appears around 17
meV, consists of a hardly seen cusp at the threshold
(61,61) diffraction into substrate, a small but visible cus
at the threshold of (0,61),(0,61) diffraction into vacuum,
and a feature at lower energy, which can be attributed to
interaction with the second TE Bragg quasiguided band. T
most prominent features, consisting of two strong d
around 2400 meV, as we show below, are due to the inte
tion of the incoming light with the third Bragg quasiguide
band. An inverted cusp corresponding to the (62,0),(0,
62) diffraction threshold into the substrate is seen abo
them. A smaller rightmost dip is due to the interaction w

FIG. 4. The calculated transmissivity of the model structure
normal incidence. Vertical dashed lines mark the energies of diffr
tion thresholds; see Table I. In order to illustrate the fast conv
gency of the method developed, three spectra are actually show
this figure, calculated withgmax53, 5, and 6, but the difference
between them is less than the line thickness; see the magnified
of the main dip in the inset.
2-6
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the fourth Bragg quasiguided band, and a very small c
corresponding to the (61,61) diffraction threshold in
vacuum can be hardly seen above it. In what follows,
focus mainly on the behavior around 2400 meV, where
main features appear to be connected with the TE and
quasiguided modes of the third Bragg band.

Under the oblique incidence the transmission spectra
come even more complicated: new dips appear, and som
the dips shift to red, whereas the other shift to blue. T
complicated behavior of the dips around 2400 meV is sho
in for angles of incidenceq5023° andw50 in Fig. 5 for
S and P polarizations. Several important trends in the d
behavior can be seen in this Fig. 5:

~1! At q50, which corresponds toG point, we see two
dips in the transmissivity: the main dip at lower energy an
smaller and narrower one at higher energy; due to the sq
symmetry, the transmission spectra inS andP polarizations
coincide.

~2! In S polarization, with the increase ofq we see that
the main dip rapidly shifts to higher energies, while t
smaller dip appears to stay unshifted at small angles. At

FIG. 5. The calculated transmissivity of the model structure n
the third Bragg resonance inS and P polarizations for different
angles of incidence. The parts of the transmission curves betw
V2g/2 andV1g/2 are boldfaced, in order to emphasize the re
tion between the position and width of the dips and the eigenm
frequency and linewidth. HereV andg are the real and imaginar
parts of the corresponding quasi-guided mode eigenfrequencV
2 ig; see Sec. IV B.
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same time, a couple of new dips arise at the lower-ene
side of the main dip: another well-pronounced dip whi
rapidly shifts to lower energies, and a small dip which a
pears not to shift with the angle of incidence.~This dip is
marked by vertical solid arrows in Fig. 5.!

~3! In P polarization, with the increase ofq the main dip
does not shift; the smaller dip shifts rapidly to lower ene
gies; two new dips arise at the higher energy side of
smaller dip: a new well-pronounced dip, which shifts rapid
to higher energies, and a small dip which appears not to s
with the angle of incidence.~This dip is marked by vertica
dashed arrows in Fig. 5.!

This behavior can be quantitatively understood in t
model of excitation of different quasi-guided modes
the PCS.

IV. QUASIGUIDED MODES

It appears that the most prominent features in transm
sion of light through a PCS are connected with the proper
of quasiguided~or leaky! modes which can propagate alon
the PCS. Unlike the guided modes in a homogeneous wa
guide, they have finite radiative linewidth due to the co
pling with vacuum and substrate photonic continua. In S
II we showed the physical origin of such eigenmodes us
the empty lattice approximation. Now we can calculate th
properties such as dispersion of eigenenergy, optical acti
and electromagnetic field distribution.

A. Quasiguided modes and the scattering matrix

In this subsection we apply the scattering matrix form
ism to calculate the frequency and linewidth dispersion
quasiwaveguide modes as well as the distribution of the e
tromagnetic field in such modes. The eigenmodes of the
tem are the nontrivial solutions of Eq.~12! under the condi-
tion of zero input amplitudesBW in50. Thus the amplitudes o
eigenmodes can be found from the solution of the homo
neous linear problem

S21BW out50. ~14!

This means that

detS21~v,kx ,ky!50 ~15!

is the main equation for calculating the eigenfrequences.
In a uniform slab, which is a planar waveguide, t

guided eigenmodes have real eigenfrequencesV, and their
electromagnetic field is confined inside the slab, expon
tially decaying outside. Contrastingly, in the case of perio
corrugation the eigenmodes couple with photonic continu
in vacuum and substrate. Thus the eigenmodes bec
leaky, or quasiguided. Only the lower-energy eigenmodes
ing below the substrate light cone in the first Brillouin zo
retain a purely guided character.5 The electromagnetic field
of quasiguided modes acquires a radiative component w
diverges exponentially atz→6`, and their eigenfrequencie
become complex. Although such solutions seem to be
physical, it is not the case actually; see, e.g., Ref. 29. Th
exponentially growing~with z→6`) solutions are physica
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en
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because, in the time domain, the exponential growth is c
celled by a time-dependent multiplier exp(2uIm Vut). In
other words, the time-space dependence of the electrom
netic field in such leaky modes is}exp@uIm Vu(z2ct)/c#
and describes the propagating front of the decaying st
Thus, in order to calculate the properties of the quasi-gui
modes, we should define theS matrix in the complex fre-
quency plane.

From the causality properties, theS matrix is the analyti-
cal function in the upper frequency half-plane, and it m
have poles in the lower half-plane atV2 ig, g>0, includ-
ing a real axis in case of transparent~nonabsorptive! materi-
als. Such poles correspond to physical eigenmodes with
electromagnetic field}exp(2iVt2gt) decaying witht→`,
andg is their inverse lifetime. Among all possible solution
only those withg!V are of the physical interest.

TheSmatrix for each given wave vector (kx ,ky) @Eq. ~1!#
can be directly constructed on the complex plane via
analytical continuation from the real axis of energies, wh
it is defined unambiguously~see Appendix D!. Thus the only
thing which is left is to find the roots of Eq.~15!,
V(kx ,ky)2 ig(kx ,ky), which are close to the real energ
axis.

Here it is important to note that theS matrix, defined on
the real axis~Appendix D! allows several different analytica
continuations from different segments of realv separated by
diffraction thresholds. Let us discuss this point in more d
tails.

As we discussed in Sec. III A, thekG,v
1 andkG,s

2 harmonics
are the solutions, either propagating toward the PCS or
ponentially increscent outside the PCS for anyG on the real
v axis. Thus they comprise the list of the incoming wave

On the complexv plane, and for ‘‘propagating’’ harmon
ics, i.e., for Rekz,G,a

2 .0, the conventional definition27 of the
complex square root in Eq.~5! contains a cut below
Rekz,G,a

2 ,0, and provides an analytical behavior ofkz,G,a

whenkz,G,a
2 crosses the realpositiveaxis. However to ensure

the analytical continuation ofkz,G,a ~and, consequently, o
the S matrix! when the harmonics become ‘‘exponentia
kz,G,a

2 ,0, we have to redefine a cut in the square-root fu
tion: we move it from the quadrant below the negative r
axis onkz,G,a

2 complex plain, as in the conventional defin
tion, to, e.g., the quadrant below the positive real axis.

The question of whetherkz,G,a
2 crosses the positive o

negative real axis is equivalent to whether theG diffraction
channel is open at the given energy or not. Thus we
conclude that the set of definitions of the square roots
pends on the harmonics energy and is fixed for a given s
ment, bounded by neighboring diffraction thresholds.

If the analytical continuation of theS matrix ~built from
some segment of realv in accordance with the above-state
rules! contains some poles below this segment, and all
poles lie far from the ends of the segment~i.e., diffraction
thresholds!, then the single particular sheet of theSmatrix is
sufficient for a complete understanding of the PCS opt
properties in this energy region. In the model structure, s
a situation takes place, e.g., for the third Bragg resonanc
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However, near the cutoffs of the quasiguided eigenmo
the corresponding poles approach the diffraction thresho
and more than one sheet of theS matrix become physically
meaningful. As far as we know, an example of such a co
plicated behavior was analyzed for the first time in Ref. 3
In the model structure such a situation takes place, e.g.,
the first Bragg resonance. However, in this paper we do
analyze this situation and focus mainly on a simpler situat
around the third Bragg resonance, when only one phys
sheet of theS matrix is sufficient to describe the physics.

B. A numerical example: quasiguided modes
in the model structure

In Fig. 6 we show the dispersion curves of the TE-T
octet calculated via Eq.~15! for the model structure near th
G point along G-X and G-M directions. Our numerica
analysis shows that for this particular system the third re

FIG. 6. The calculated dispersion of the TE-TM quasiguid
modes octet alongG-X andG-M directions for the third resonanc
near theG point. The labelsE,A1,2 andB1,2 ~the irreducible repre-
sentations of the point groupC4v) andA andB ~irreducible repre-
sentations of the point groupC1h) show the symmetry of theelec-
tric field of the corresponding eigenmode. The dashed lines sh
the quasiguided modes in empty lattice approximation; also see
insert in Fig 3. The size of squares is equal to the imaginary par
the corresponding eigenenergy, while the diameter of the o
circles is ten times the corresponding imaginary part.
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nance inG consists of two quartets: a lower TE-like quarte
composed of two singlets~for the electric field,A2 and B2

irreducible representations of point groupC4v) and one dou-
blet (E), and a higher TM-like quartet, composed of o
doublet ~E! and a pair of singlets (A1 and B1) at higher
energy. Let us recall here that theA1 irreducible representa
tion of C4v is invariant over all rotations and mirror reflec
tions of C4v ; A2 is invariant over all rotations and odd ove
all mirror reflections;B1 is odd over 90° rotations andsd
~diagonal! reflections;B2 is odd under 90° rotations andsx,y
reflections; and components of a doubletE are connected
with each other via a 90° rotation andsd reflections; see the
classification of the irreducible representations for differ
points of the first Brillouin zone of the square 2D lattice i
e.g., Ref. 31. The calculated real and imaginary parts of
responding eigenenergies in theG point are given in Table II.

The spatial distributions of the electric and magne
fields in TE singlets on the vacuum-side surface of the mo
structure are shown in Figs. 7 and 8. Note that here we g
the top vertical view, so only the (x,y) components of the
fields are seen. The same data are shown in Fig. 9 for
x-polarized component of TE doublet. The electric and m
netic fields are shown in Figs. 7–9 at moments of timetE
andtH , respectively, when the intensity of the correspond
field is at a maximum. It appears that these moments
separated by one-fourth of the period of the correspond
eigenmode,tE2tH'T/4, T52p/V. Thus all the modes are
mostly standing electromagnetic waves.

The type of each irreducible representation is obvio
from this figure. Let us note that the one-dimensional ir
ducible representations of the eigenmode vector fieldE and
the pseudovector fieldH have different characters of mirro
reflections inC4v .

The size of the circles in Fig. 6 indicates the imagina
part of the corresponding eigenenergy~in case of open
circles it is magnified ten times magnified!; also see the las
column in Table II. TheC4v symmetry properties imply tha
all the singlet states are optically inactive in theG point ~in
normal direction!, and only the properly polarized compo
nents of the doublets are optically active. This explains w
only two dips are seen atq50 in Fig. 5: only one doublet
component is active per each quartet.

The widths of optically active states are larger than tha
inactive states. At normal incidence, the TE doublet lin
width is one order of magnitude larger than widths of ina
tive TE singlets and all TM states (;15 and 1–2 meV, re-

TABLE II. The energies of the third Bragg eigenmodes in theG
point.

Type V ~meV! g ~meV!

Lower TE singlet 2310.7 1.0
Higher TE singlet 2311.8 1.0
TE doublet 2372.0 14.5
TM doublet 2455.4 2.4
Lower TM singlet 2471.1 1.9
Higher TM singlet 2478.9 2.2
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spectively; see Table II!. This corresponds to the mos
pronounced dip in the transmission. The quality factors
the states are as large as (122)3103 for TM and TE singlet
states, and;160 for the TE doublet, which corresponds
the resonant increase of the field in the modes in 30–40
;13 times, respectively.

Note that the linewidths of optically inactive states a
nonzero at normal incidence. At this point we should emp
size a very important difference concerning the properties
the inactive modes, belonging to the third resonance~shown
in Fig. 6! and to the first resonance, reported previously
Ref. 9. In the case of the first resonance, only the interac
with the main harmonic is allowed; see the light cones cro

FIG. 7. Electric~a! and magnetic~b! fields on the top~vacuum
side! of the PCS in the lower TE singlet—A2 and A1 representa-
tions, respectively. One unit cell of a 2D square lattice is show
The active material is inside the thick square.
2-9
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sections marked by the thin lines in Fig. 2. When this int
action is forbidden by the symmetry—for the singlet an
symmetric modes—such modes have zero linewidth
become nonleaky.9

Conversely, in the case of the third resonance the li
width of inactive modes is nonzero: although such modes
optically inactive in normal direction, they can radia
(61,0),(0,61) Bragg harmonics into the vacuum and su
strate, and (61,61) harmonics into the substrate; see t
light cone cross sections marked by thick lines in Fig. 2.
kx,yÞ0, if the interaction of the formerly inactive mode wit
the main harmonics becomes open by symmetry, its li
width grows up quickly with the wave number; see the low
TE singlet curve in Fig. 6.

FIG. 8. Electric ~a! and magnetic~b! fields in the upper TE
singlet—B2 andB1 representations, respectively.
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Along the G-X direction, the lower TE singlet state co
responds to aB-type irreducible representation of the poi
group C1h ~odd over mirror reflection!, and the higher TE
singlet state corresponds to anA-type representation~even!.
As far as the incoming light is aB-type representation in the
case ofSpolarization, the lower singlet state becomes act
at qÞ0 in Spolarization. As to the doublet TE state, it spli
into aB-type fast mode which is active in theSpolarization,
and anA-type mode, active in theP polarization. As to the
symmetry properties of the TM quartet, now the magne
field distributions are assigned asE,A2, andB2 irreducible
representations, whereas the electric field areE,A1, andB1.
Thus the fast singlet and fast doublet components are noA
type, which mean that they are optically active inP polar-

FIG. 9. Electric~a! and magnetic~b! fields in the ‘‘slow’’ TE
doublet.
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QUASIGUIDED MODES AND OPTICAL PROPERTIES OF . . . PHYSICAL REVIEW B 66, 045102 ~2002!
ization. Whereas the slow component of the TM doublet
comesB type in theG-X direction, and is optically active in
the S polarization.

Along theG-M direction the modes become singlets to
But, as seen in Fig. 6, the corrugation-caused splitting in
model structure is not too strong.

Let us add here that, strictly speaking, anticrossings m
take place in the case of crossing bands with the same s
metry. In case of quasiguided modes, however, it is imp
tant to remember that the complex energies of modes hav
approach each other in order that the effects of anticros
may take place, not just the real parts of modes energy.
example, there is no anticrossing of slow TE and fast T
doublet components alongG-X in Fig. 6, although they both
have the same symmetryA. It is because the linewidth of th
TE band is approximately one order of magnitude larger t
that of the TM band (;15 and;1.5 meV, respectively!.

In order to accent the connection between eigenmo
and the position and width of the dips in transmission, in F
5 we emphasized the parts of the transmission spectra
tweenV(q)2g(q)/2 andV(q)1g(q)/2. First, in Fig. 5
we see that the position and width of all dips, including sm
ones marked by arrows, correspond directly toV(q) and
g(q), and it is typical for a situation when theS matrix has
poles near the real axis ofv.13 Second, there is a sligh
asymmetry of dips, which can be attributed to the Fano-t
origin of such resonances. Thus slightly asymmetric dips
the transmission may be attributed to the interaction w
quasiguided modes, and the measured width of the dips g
information on their radiative lifetime. This opens a dire
way to detect such modes experimentally. It is importan
distinguish such dips from more asymmetric cusplike R
leigh anomalies. The latter, however, can be easily identi
as diffraction thresholds.

Let us add here that we have considered in this paper
system which is infinite along (x,y) plane, and the light
beam cross section is infinite too. This means, e.g., that t
are no losses due to the eigenmode propagation along
PCS. However, it is possible to model the finite in-plane s
of the PCS and/or beam cross section, assuming the inc
ing beam to be, e.g., a Gaussian-like convolution of pla
waves with different angles of incidence.

To conclude, we have applied a scattering-matrix-ba
numerical method to calculate the optical transmission pr
erties of a finite-thickness two-dimensionally periodic pho
nic crystal ~photonic crystal slab, PCS!. The appearance o
well-pronounced dips in the transmissivity of PCS is e
plained by the excitation of quasi-guided eigenmodes in
slab. We have calculated the energies, linewidths, and e
tromagnetic fields distributions of the eigenmodes, and a
lyzed the relationship between their symmetry properties
the optical activity.
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APPENDIX A: PLANE-WAVE SOLUTION OF MAXWELL
EQUATIONS IN A PERIODICALLY MODULATED

SLAB

In this appendix we solve the Maxwell equations in bu
1D or 2D periodic photonic crystal~or an infinitely thick
PCS!, via decomposition into plane waves. This method w
described in numerous papers and textbooks; see, e.g
Ref. 31 and references therein. The most delicate poin
such methods is the Fourier transform of the piecewise
electric function which is poor along the boundaries betwe
dielectrics. Several methods have been proposed to imp
the convergence of the planewaves decomposition; see,
Refs. 32 and 33 It appears, however, that for the dielec
structures studied in this paper, the convergency of the di
Fourier decomposition is satisfactory~see below!. In the case
of metal-based PCS’s the convergency appears to be s
and use of such methods may be very effective.

As shown in Fig. 1, we denote the periodicity plane
(x,y), and the direction of the translational invariance asẑ.
In the particular case of 1D periodicity, we assume the g
ing planes to be perpendicular tox̂. The dielectric suscepti-
bilities in all constituent materials of the layer are assumed
be local, so that

D~r !5E «~r !d~r2r 8!E~r 8!dr 8, ~A1!

where«(r ) is a periodic function ofx and y and does not
depend onz. Due to the in-plane periodicity, Eq.~A1! is
Fourier transformed into

DG5(
G8

«GG8EG8 , ~A2!

whereDG5(Dx,G ,Dy,G ,Dz,G), etc.,G5(Gx ,Gy,0) andG8
are reciprocal vectors:

«GG85
1

SE «~r !exp@ i ~G82G!r #dxdy ~A3!

~here the integration is performed over the unit cell areaS).
An example of such a matrix for the rectangular modulat
of «(r ) used in this paper for numerical calculations is giv
in Appendix G for completeness. See other examples
e.g., cylindrical rods in Ref. 31.

In the exact solution, the summation in Eq.~A2! has to be
taken over the full reciprocal lattice of vectorsG8. However,
in the numerical calculations the summation should be ta
over a finite subset of reciprocal-lattice vectors contain
Ng elements. For example, in case of 1D periodicity, suc
finite subset can be taken as

G5S 2pg

dx
,0D , g50,61,62, . . . ,6gmax, ~A4!
2-11
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dx being the period alongx̂. Then the finite subset contain
Ng52gmax11 inverse vectors. In the case of 2D square
riodicity we have takenNg5(2gx,max11)(2gy,max11). Nu-
merically, we have estimatedNg from the condition that the
calculated transmissivity saturates with change ofNg→Ng
11 with an accuracy of the order of 1023. For the dielectric
structures of the model structure type as in Fig. 1 as wel
for a PCS with a polariton pole,17,18 this usually occurred a
gmax'627, i.e., Ng513–15 in 1D calculations and 169
225 in 2D calculations; however, we have found that ev
gmax53 or 4 was already sufficient to understand the m
peculiarities of the system behavior in the majority of cas
see an example in Fig. 4.

In what follows we deal with Ng-, 2Ng-, and
4Ng-dimensional vectors. The corresponding square matr
will be labeled, as explained in the main text, using us
italic, calligraphic, and open face letters, respectively.

Our goal here is to solve the Maxwell’s equation for giv
input frequencyv, angles of incidencew andq ~azimuthal
and polar!, and the polarization state. Using the Maxwel
equation

2
1

c

]H

]t
5“3E, ~A5!

and substituting (c/ iv)(“3E) for H in another Maxwell’s
equation,

1

c

]D

]t
5“3H, ~A6!

we start from the electric-field-resolved Maxwell equation

2DE1grad div E5
v2

c2
D, ~A7!

or, in components,

2S ]2

]y2
1

]2

]z2D Ex1
]2Ey

]x]y
1

]2Ez

]x]z
5

v2

c2
Dx , ~A8!

]2Ex

]y]x
2S ]2

]z2
1

]2

]x2D Ey1
]2Ez

]y]z
5

v2

c2
Dy , ~A9!

]2Ex

]z]x
1

]2Ey

]z]y
2S ]2

]x2
1

]2

]y2D Ez5
v2

c2
Dz . ~A10!

The solution can be Fourier decomposed into a sum of p
waves of the type

E~x,y,z,t !5EG exp~ ikx,Gx1 iky,Gy!3exp~ iKz2 ivt !
~A11!

~the same for the inductionD and the magnetic fieldH).
Herekx,G andky,G are defined in Eqs.~4!, and the eigenval-
ues of the wave-numberz projectionK5K(v,kx ,ky ,G) to
be determined hereafter from the eigenvalue problem.
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n
n
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For the plane wave expansion@Eq. ~A11!#, the Maxwell
equations~A8!–~A10! become a system of linear equation
Equation~A10! takes the form

(
G8

ZGG8Ez,G85K@~kx1Gx!Ex,G1~ky1Gy!Ey,G#,

~A12!

where theNg3Ng matrix Z is

ZGG85@~kx1Gx!
21~ky1Gy!2#dGG82

v2

c2
«GG8 .

~A13!

Multiplying Eq. ~A12! by the inverse matrixZ21, for eachK
we obtain

Ez,G5(
G8

ZGG8
21 K@~kx1Gx8!Ex,G81~ky1Gy8!Ey,G8#.

~A14!

Using Eq.~A14!, we can excludeEz,G from Eqs.~A8! and
~A9!. Thus we obtain the following system of 2Ng linear
equations for lateral electric field componentsEx,G and
Ey,G :

K2(
G8

$@dGG82~kx1Gx!ZGG8
21

~kx1Gx8!#Ex,G8

2~kx1Gx!ZGG8
21

~ky1Gy8!Ey,G8%

5(
G8

Fv2

c2
«GG82~ky1Gy!2dGG8GEx,G81~kx

1Gx!~ky1Gy!Ey,G , ~A15!

K2(
G8

$2~ky1Gy!ZGG8
21

~kx1Gx8!Ex,G8

1@dGG82~ky1Gy!ZGG8
21

~ky1Gy8!#Ey,G8%

5~kx1Gx!~ky1Gy!Ex,G

1(
G8

Fv2

c2
«GG82~kx1Gx!

2dGG8GEy,G8 . ~A16!

Equations~A15! and~A16! can be written in a compact form

MEW i5K2NEW i ~A17!

if we introduce 2Ng- dimensional vectorEW i composed of the
lateral components of the electric field,
2-12
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EW i5S Ex,G1

A

Ex,GNg

Ey,G1

A

Ey,GNg

D , ~A18!

and 2Ng32Ng matrices,

M5S M11 M12

M21 M22
D , N5S N11 N12

N21 N22
D , ~A19!

composed ofNg3Ng matrices:

M115
v2

c2
«GG82~ky1Gy!2dGG8 ,

M225
v2

c2
«GG82~kx1Gx!

2dGG8 ,

M125M215~kx1Gx!~ky1Gy!dGG8 , ~A20!

N115dGG82~kx1Gx!ZGG8
21

~kx1Gx8!,

N225dGG82~ky1Gy!ZGG8
21

~ky1Gy8!,

N125N21
T 52~kx1Gx!ZGG8

21
~ky1Gy8!. ~A21!

In physical problems such as transmission, the freque
v is real. It can easily be checked that if all constitue
materials of the slab are transparent,«GG8 is Hermitian. Then
N and M are Hermitian too. As a result,K2 has 2Ng real
eigenvaluesK1

2 ,K2
2 , . . .K2Ng

2 .34 Thus the plane waves in th

decomposition@Eq. ~A11!# are either propagating (K2.0) or
exponential (K2,0). In case of absorptive materials the m
tricesN andM become non-Hermitian, and the eigenvalu
of K2 are shifted into upper complex half-plane ImK2>0
~this corresponds to an exponential decrease of the propa
ing waves!.

For applications it is convenient to write the solution
the eigenproblem@Eq. ~A17!# as

~N!21MEi5EiK 2 ~A22!

via two 2Ng32Ng matrices: a diagonal matrix

K5S K1 0 0 . . . 0

0 K2 0 . . . 0

. . .

0 . . . K2Ng

D ~A23!

having the eigenvalues of the problem@Eq. ~A17!# on the
diagonal, and a matrixEi , whose columns are the corre
sponding eigenvectors
04510
cy
t

-
s

at-

Ei5~EW i
(1) ,EW i

(2) , . . .EW i
(2Ng)

!. ~A24!

When calculatingK j5AK j
2, j 51,2, . . . 2Ng in Eq. ~A23!,

we fix the cut in such a way that ReK j>0.27 It is important
to remember it when discussing the properties of the S
trix.

APPENDIX B: CALCULATION OF FIELDS, INTERFACE,
AND TRANSFER MATRICES

For a combination of different slabs, we first develop
transfer-matrix formalism. The solution of Maxwell equ
tions in each layera is decomposed into sets of eigenvecto
@see Eq.~A24!#, propagating along and opposite to the axisẑ,
i.e., }exp(iKz2ivt) and}exp(2iKz2ivt), respectively. Let
us introduce 4Ng-dimensional amplitudes of partial waves
each planez,

AW ~z!5S AW 1~z!

AW 2~z!
D , ~B1!

where AW j
6(z) are 2Ng-dimensional amplitudes of plan

waves, propagating, respectively, along and counter to
axis z¢, at z. Let usdefine the4Ng-dimensional amplitudeAW
in such a way that the 2Ng-dimensional vector of in-plane
electric-field components@Eq. ~A24!# at z is the matrix prod-
uct of a matrix (Ei ,Ei) @with 4Ng columns and 2Ng rows#
andAW :

EW i~z!5~Ei ,Ei!AW ~z!. ~B2!

This point is the central one for the formulation of th
transfer-matrix formalism; it becomes possible because
2Ng32Ng-dimensional matrixEi does not depend onz, but
depends on the material parameters of the current layer.

Transfer matricesT connect the amplitudes at differen
planesz andz8, and, thus, they are 4Ng34Ng matrices. The
simplest task is to construct the transfer matrixTL over a
distanceL ~along ẑ) inside the same layer. It is a matri
which transfers the vector of amplitudes from planez
to z1L,

AW ~z1L !5TLAW ~z!, ~B3!

and it can be written as a diagonal matrix,

TL5S exp@ iKL# 0

0 exp@2 iKL#
D , ~B4!

where the matrix exponents are diagonal matrices w
exp(6KjL),j50,1 . . . 2Ng on the main diagonal.

To construct theinterface matrixTb,a through an interface
from slaba to slabb, we can use the continuity conditions o
tangential (x,y in our case! components of the electric an
magnetic fields at the interface. There are 4Ng tangential
components ofEW x ,EW y ,HW x ,HW y ~grouped into a pair of
2Ng-dimensional vectorsEW i and HW i), and 4Ng continuity
conditions. It can be shown easily that other Maxwell boun
2-13
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ary conditions~on normal componentsDW z ,HW z) follow from
these conditions. Note that this amount, 4Ng , matches ex-
actly the dimensionality of the amplitude vectorAW .

Let us define amaterialmatrixFj , j 5a,b, which converts
the vector of amplitudes at fixedz to the hypervector of
in-plane components of electric and magnetic fields in t
point,

S EW i~z!

HW i~z!
D 5FAW ~z!, ~B5!

where the hypervectorsEW i are defined in Eq.~A18! ~the same
type of columns are used as forHW i , but they are compose
of x and y components of magnetic fields!. Then, from the
continuity of the tangential components at the interface az
5zb,a , we obtain

AW uz5zb,a105Tb,aAW uz5zb,a20 , ~B6!
ve

ch

m

04510
s

with the interface matrix

Tb,a5Fb
21Fa . ~B7!

In order to find the matrixF for each slab, let us use Eq
~B2! and the analogous equation forHW i . For each partial
plane wave it follows from Eq.~A5! that

Hx,G5
Kc

v (
G8

$~ky1Gy!ZGG8
21

~kx1Gx8!Ex,G81@~ky

1Gy!ZGG8
21

~ky1Gy8!2dGG8#Ey,G8%, ~B8!

Hy,G5
Kc

v (
G8

$@dGG82~kx1Gx!ZGG8
21

~kx1Gx8!#Ex,G82~kx

1Gx!ZGG8
21

~ky1Gy8!Ey,G8%. ~B9!

Introducing a 2Ng32Ng matrix
C5S ~ky1Gy!ZGG8
21

~kx1Gx8! ~ky1Gy!ZGG8
21

~ky1Gy8!2dGG8

dGG82~kx1Gx!ZGG8
21

~kx1Gx8! 2~kx1Gx!ZGG8
21

~ky1Gy8!
D 5S 2N21 2N22

N11 N12
D , ~B10!
the

he
trate
-

we come to the conclusion that

HW i5
c

v
~CEiK,2CEiK!AW . ~B11!

Thus the material matrix is

F5S Ei Ei

c

v
CEiK 2

c

v
CEiKD . ~B12!

APPENDIX C: INPUT AMPLITUDES

In order to close the transfer-matrix formalism, we ha
to define the input amplitudes@Eq. ~11!# and the scattering
condition. Let us reserve the top position in ea
Ng-dimensional vector ofEx,G , etc., type for theG50 main
harmonic. Then, for the geometry of light incidence fro
the vacuum side specified in Fig. 1 and the Eq.~1! case ofS
polarization @vector E parallel to the (x,y) plane#, we
obtain
AW v,S
1 [AW v,S

1 ~z!uz5205S sinw

0

A

2cosw

0

A

D ~C1!

@the only nonzero components are the first and
(Ng11)th#. In the case ofP polarization we obtain

AW v,P
1 [AW v,P

1 ~z!uz5205S cosw cosq

0

A

sinw cosq

0

A

D . ~C2!

As to the scattering condition, it is understood that t
amplitudes of the counter-propagating waves on the subs
side of the system (z5Lz10) are just zeros in any polariza
tion:
2-14
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AW s
2[AW s

2~z!uz5Lz105S 0

A

0
D . ~C3!

APPENDIX D: FROM TRANSFER- TO SCATTERING-
MATRIX FORMALISM

Now we are ready to close the transfer-matrix formalis
the total transfer matrix through the whole system can
calculated as

AW s5TtotAW v , ~D1!

with

Ttot5Ts ,aN
TLN

(aN)TaN ,aN21
. . . TL1

(a1)Ta1 ,v , ~D2!

where the system is supposed to containN different slabsaj ,
j 51, . . .N (N51 for our model structure in Fig. 1!.

However, as it was first discussed by Ko and Inkson,23 the
inevitable existence of evanescent solutions~with K2,0),
makes this transfer-matrix calculation unstable very quick
This difficulty can be easily understood from the definiti
of the transfer matrixTL @Eq. ~B4!#: for evanescent eigenva
ues, the lower diagonal block of this matrix contains exp
nentially large components.

In order to avoid this disadvantage, a scattering ma
formalism was proposed,23 which avoids this problem by
means of rearranging the components of amplitudes. Wi
the scattering-matrix method, instead of a description of
system via a combination of amplitudes of along- a
counter-propagating waves@Eq. ~B1!#, a scattering matrix
S0,N11 is introduced, which transfers the input amplitudes

BW in5S AW v
1

AW s
2D ~D3!

into output ones,

BW out5S AW s
1

AW v
2D , ~D4!

and is coupled by the total scattering matrix

BW out5Sv,sBW in . ~D5!

The total scattering matrix can be calculated iteratively23

starting from an obvious condition

Sv,v 5I, ~D6!

where I is 4Ng34Ng unit matrix, and using the following
procedure to calculate the scattering matrixSM11 of a system
containingM11 layers if we know the total scattering ma
trix SM of the system withM layers as well as theinverse
transfer matrixT through the additional (M11)th layer,

SM[S S11 S12

S21 S22
D , ~D7!
04510
:
e

.

-

x

in
e

and

T[S T11 T12

T21 T22
D . ~D8!

For example, if we add an interface with interface mat
Tb,a @Eq. ~B7!#, thenT5Ta,b5Tb,a

21 . If we add a slabL of
same material,T5T2L .

Then

SM115S DS11 DE
S211S22T21DS11 S22T21DE1S22T22

D , ~D9!

where

E5~S12T222T12!, D5~T112S12T21!
21. ~D10!

If we add anL-thick layer of typej, from Eq. ~D9! we
obtain

SM115S exp@ iK ( j )L# O
O I D SMS I O

O exp@ iK ( j )L#
D ,

~D11!

whereI andO are 2Ng32Ng unit and zero matrices, respec
tively. From Eq.~D11! it is seen that, indeed, the growin
exponents~for increscent waves!, exp@2iK ( j )L#, do not ap-
pear in the scattering matrix formalism.

APPENDIX E: CALCULATION OF TRANSMISSION,
REFLECTION, DEFLECTION, AND ABSORPTION

Knowledge of the scattering matrixS of the whole system
and of the input amplitude vectorBW in allows us to calculate
the reflection, transmission and absorption coefficients.
simplest way to do this is to calculate thez projections of the
Poynting vector for incoming, reflected, transmitted, and
flected~into vacuum and substrate! waves,

P(in) 5
c

16p
@~Ex,0,v

1 !* Hy,0,v
1 1Ex,0,v

1 ~Hy,0,v
1 !* 2~Ey,0,v

1 !* Hx,0,v
1

2Ey,0,v
1 ~Hx,0,v

1 !* #,

P(r)5
c

16p
@~Ex,0,v

2 !* Hy,0,v
2 1Ex,0,v

2 ~Hy,0,v
2 !* 2~Ey,0,v

2 !* Hx,0,v
2

2Ey,0,v
2 ~Hx,0,v

2 !* #,

P(t) 5
c

16p
@~Ex,0,s

1 !* Hy,0,s
1 1Ex,0,s

1 ~Hy,0,s
1 !* 2~Ey,0,s

1 !* Hx,0,s
1

2Ey,0,s
1 ~Hx,0,s

1 !* #,

P(d,v) 5
c

16p (
GÞ0

@~~Ex,G,v
2 !* Hy,G,v

2 1Ex,G,v
2 ~Hy,G,v

2 !*

2~Ey,G,v
2 !* Hx,G,v

2 2Ey,G,v
2 ~Hx,G,v

2 !* #,
2-15
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P(d,s)5
c

16p (
GÞ0

@~~Ex,G,s
1 !* Hy,G,s

1 1Ex,G,s
1 ~Hy,G,s

1 !*

2~Ey,G,s
1 !* Hx,G,s

1 2Ey,G,s
1 ~Hx,G,s

1 !* #, ~E1!

and the components of electric and magnetic fields are
culated via Eq.~B5!. Then the reflection, transmission, an
deflection coefficients can be calculated as shown in
~13!, note thatP(r) and P(d,v) entering this equation with a
negative sign. The absorption coefficient is

A512R2T2D. ~E2!

A50 in a system without dissipation. In case of dissipati
AÞ0, and the frequency dependence of this coefficient,
the fluctuation-dissipation theorem, is connected to the em
sion.

APPENDIX F: CASE OF SPATIALLY UNIFORM SLABS

In Appendix F we illustrate the general solution given
Appendix A on the simplest case of spatially uniform sla
The dielectric matrix@Eq. ~A3!# is diagonal:

«GG85«dGG8 . ~F1!

Instead of Eq.~A13! we have

ZGG85S kx,G
2 1ky,G

2 2
v2«

c2 D dGG8 , ~F2!

M5S v2«

c2
2ky,G

2 kx,Gky,G

kx,Gky,G
v2«

c2
2kx,G

2 D dGG8 , ~F3!

N5
1

kx,G
2 1ky,G

2 2
v2«

c2

S ky,G
2 2

v2«

c2
2kx,Gky,G

2kx,Gky,G kx,G
2 2

v2«

c2

D dGG8 ,

~F4!

and

N 21M5S v2«

c2
2kx,G

2 2ky,G
2 D DGG8 , ~F5!

where
J

04510
l-

q.

,
ia
s-

.

DGG85S 1 0

0 1D dGG8.

Instead of Eq.~A17! we obtain

S v2«

c2
2kx,G

2 2ky,G
2 D DGG8EW i5K2EW i . ~F6!

Thus, for P and S polarizations@see Eq.~A24!# in one di-
mension, we obtain

Ei5DGG8 ~F7!

and degenerate eigenvalues

K5Av2«

c2
2kx,G

2 2ky,G
2 DGG8[KDGG8 . ~F8!

Instead of Eq.~A14!, and becauseK5kz,G , we obtain

Ez,G52
kx,GEx,G1ky,GEy,G

kz,G
, ~F9!

which is nothing but the condition of the transverse wave
each harmonickGEG50, wherekG5(kx,G ,ky,G ,kz,G) is the
light wave vector inside the homogeneous layer.

APPENDIX G: DIELECTRIC SUSCEPTIBILITY MATRIX
FOR 1D AND 2D RECTANGULAR PERIODICALLY

PATTERNED LAYER

For self-consistency, here we give the well-known form
las for «GG8 for a rectangular-type modulation of the diele
tric constant in the PCS. If the 1D patterned layer consists
Lx- and (dx2Lx)-wide regions with dielectric susceptibili
ties «2 and«1, respectively, the dielectric matrix«GG8 @Eq.
~A3!# is

«gg85«1dgg81~«22«1!

sinFp~g2g8!
Lx

dx
G

p~g2g8!
. ~G1!

In the case of 2D rectangular modulation~as in Fig. 1!, we
have

«GG85«1dGG81~«22«1!

3

sinFp~gx2gx8!
Lx

dx
GsinFp~gy2gy8!

Ly

dy
G

p2~gx2gx8!~gy2gy8!
. ~G2!
.
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(m)5(G@Ex,G
(m)†Hy,G

(n) 2Ey,G
(m)†Hx,G

(n) #. Thus,
for m5n we obtain that the eigenvalues are real,Km

2 5Km
2† , and

for mÞn we obtain the condition of orthogonalityEW i
(n)†3HW i

(m)

50, which replaces the standard orthogonality condition in c
of electrodynamics; see, e.g.,@A. W. Snyder and J. D. Love,
Optical Waveguide Theory~Kluwer, Dordrecht, 1983!#.
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