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Power laws in a two-leg ladder of interacting spinless fermions
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We use the density-matrix renormalization group to study the single-particle and two-particle correlation
functions of spinless fermions in the ground state of a quarter filled ladder. This ladder consists of two chains
having an in-chain extended Coulomb interaction reaching to third neighbor and coupled by interchain hop-
ping. Within our short numerical coherence lengths, typically reaching 10 to 20 sites, we find a strong renor-
malization of the interchain hopping and the existence of a dimensional crossover at smaller interactions. We
also find power exponents for single-particle hopping and interchain polarization consistent with the single
chain. The total occupation correlation function has a larger power exponent and shows signs of a crossover
from incoherent fermion hopping to coherent particle-hole pair motion between chains. We believe the ladder

is gapless.
DOI: 10.1103/PhysRevB.66.045101 PACS nuniger71.10.Pm, 71.2%a, 05.10.Cc
[. INTRODUCTION interact within each chain through a finite extent Coulomb

potential and can hop between chains through the hopping
The theory of quasi-one-dimensional conductotshas termt, . The Hamiltonian is
shown that there are dimension-specific aspects not observed
in conventional three-dimensional solids. Aside from the in-
teraction dependent power-law behavior of single-particle H=—2> (¢], 146 g+ H.C)+ 2 V() Njr ;g
and pair response functions and the well documented spin- B hBr
charge separation, there is the renormalization of the trans- .
verse hopping whose impact on the description of real mate- —t, 2 (¢] ¢t H.e) (1)
rials is much debatet?!* As discussed in length in Ref. 3, .

strong Coulomb interactions can dramatically reduce the ef\'/vhere ¢; 5 annihilates a fermion at sitg(j=1,... N) on

fective value of the transverse hopping and retard the dimer}fhainﬁ(ﬁz 1,2), n; is the occupancy at the same site, and
H H - H H - 1 1 ]’ 1
sionality crossover from a one-dimensiofD) to a two- or V(r)=2V/(r+1) is the intrachain interaction between first,

three-dimensional conductor. The simplest theoretical testingecond and third neighboring sites<1,2,3) withV as the

gro_und fqr this idea s a two-leg Iadqler consisting of Inter'interaction strength. We have set the intrachain hopping ele-
acting spinless fermions on two chains coupled by a trans-

i is in princi i ment equal to 1.
verse hoppingt, . It is in principle possible to study the ent equal to

tati lizati £ This has b d . We have chosen an interaction to third-nearest neighbor
putative renormalization ot, . 1his has been done using poc4,se the work of Capponi showed that the single-fermion
various  approaches, among which are exac

. o O bx onenta, characterizing the long-range single-chain inter-
diagonalizatiod? momentum-space renormalizatibhand P g g-rang g

o o ite transfer function
Bosonization*~1"In all these papers, renormalization of the site franster unctio
interchain hopping is confirmed. What we propose is a nu- o C(1+a)
merical calculation of this two-chain problem at quarter fill- CL(j.r)=(cj. cp=r , 2)

ing using the efficient density-matrix renormalization .
group®=2L (DMRG) in order to directly measure power-law €a" become very largex< 1.5 for V=<6). This power expo-

exponents and the effective value of the interchain hopping?€Nt iS responsible for the perhaps better known singularity
Although the DMRG has recently been trfdcbn spinless N the momentum distribution at the Fermi level of Luttinger

fermions, the analysis focused on a half filled ladder and th#duids. In the limit of smalla, one hag n(k) —n(kg)]~[k
nearest-neighbor current correlations. —ke|“sgnke—Kk). Large values ofr will be easily observed

We shall first present the model Hamiltonian we shall be2nd are expected to lead to much more important effects on
using throughout and, second, the proposed DMRG procdhe effective value of, . Large values ot are also synony-
dure. Third, we shall validate our approach on the singldNoUus with strong variations in the stiffneis The two are
chain situation. We thereafter present the results for twdelated through the relation
chains and discuss the results in the light of the various the-

oretical treatments. A brief summary follows. 1
' et sUmmary Toflow a=5 (K+1K=2) &)

Il. HAMILTONIAN . . .
for spinless fermions on a chain. Consequently, the power-

We shall use the model Hamiltonian proposed by Capponiaw exponents of the various response functions, which are
et al? for two quarter filled chains of spinless fermions that related toK, will also be strongly affected.
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[l. DENSITY-MATRIX RENORMALIZATION GROUP conditions since periodic boundary conditions lead to unac-

. o 2 ceptably large truncation errors.
The exact diagonalization of E¢L) by Cappori® was for Let us finally comment on the number of central sites to

short chains of up to 20 sites. Needless to say that some sourge in the DMRG algorithm. The long-range character of the

\?Jgﬁ;i%ﬂgﬂg%&gﬁ?g:}eﬁ df_'gt';?:i'rzl% ri::':ilgg ikntrtg?hg?;i(_:oulomb interaction complicates the calculations. For two
dynamic limit. We have chosen to use the DMRG Sirlcemner double sitegtwo sites on each chainthe computation

X . o I esourcegexecution time and memory requiremenssale
much longer chains can be studied. This, in principle at Ieas{,Oughly as &(Ng)* whereN is the number of states in each

should take the system much closer to the thermodynamic . . . :
- ; AR . . of the side blocks. This comes from counting all matrix ele-
limit and greatly improve any finite-size scaling analysis.

. . ... ments that contribute to the superblock Hamiltonian matrix.
Another shortcoming of short chain lengths has to do WlthThis is dominated by the situations in which two fermions

“ M M M ” H H H H ,15
a “dimensionality” crossover in the interchain hopplﬁéﬁ interact from within different blocks. There are four states

For temperatures or frequencies larger than approxmate%r each double site while the interaction to third neighbors,

!ti|' the chains _do n_ot “see” the interchain h(_)pping, \.NhiCh Is being nondiagonal in the block states, generates a matrix

Idngr?theéi?tiﬁr t?}lguslveésai\tr;d ;23;&? iﬁg%ﬂgﬁflggdﬂephetr element between any initial and final block state within each
' PP L e ug .yoccupancy subset for each of the two interacting fermions.

coupled and they form bands having transverse dlsperS|oq.here results a factor of ordeNg)? for each one. If one

Let us illustrate this in the situation of quarter filling fbf instead chooses to have three inner double sites, the blocks

=0 and an even number of fermions. An exact solution to
no longer couple and the resources scale 352fNg)°.

LWO: Conlif(lﬁi ir)]alr:,?hgr:\/allgﬂiNThZ:éateﬁa\%e I:E(ealed b¥here are again four states for each double site. The coupling

Em (qu) =2 cosk)*[t,|. For t\=0 all levels u tomgy of the inner sites to each block leads to a factég)? for the

=im 2N/4 are filled_WiLtI"l N/2 feerio,ns There is r?o nter- block fermion and there is an extra factorMf for the states

chaiFn hopping. Aslt,| i th'. . il of the other block. The factor of 12 comes from counting the
_pp 9. As|li| Increases, f‘ remamns S0 Until gigterent interactions up to third neighbor between sites and

E+(kmp)_ E*(kmpﬂ)’ that is until[t, |~ (mrve/2)/(N+1). blocks. We have found that the resources are similaiNfgr

Here v is the Fermi velocity equal ta/2 in our units. At ~100 in qualitative agreement with this crude analysis. We

this point there is a sudden change in interchain hoppingave used two inner sites for the values\gf=42,64,96 and
since the two top levels below the Fermi level &e states.  three forNg=128.

The total interchain hopping enerdy; is now —2|t,|. The
next jump occurs at |t |~3(mve/2)/(N+1) when
E+(Km.-1) =E-(Km.+2), after which E, =—-4|t]. At a
given [t,|, the jumps occur aN~[(mvg/2t,)(2p—1)—1] It is of utmost importance to test our DMRG procedure on
for p=1,2...,when E, =—2p|t,|. Taking [t,|=0.1 for  simpler single-chain problems. There are two delicate as-
example, (rog/2t, )=10m/\2~22. This is a large value. It pects that need to be validated, both linked to the open-ended
is therefore difficult to attempt finite-size scaling or the boundary conditions. The first one has to do with the value of
DMRG under such conditions. One can only hope of reachN that can be chosen for a specific band filling. The second
ing the thermodynamic limit foN> (7vg/2t,). This behav- one concerns the numerical treatment that must be done on
ior is surely attenuated in the presence of the Coulomb inteithe data in order to generate information for infinite-length
action which scrambles the spectrum. But short chainghains.

remain unpredictable because of the discrete energy spec-

trum. Thus the longer chain lengths obtainable with the A. Chain length and band filling

DMRG would circumvent this potential numerical distortion. o -
In the event that, renormalizes to much smaller values than e sensitivity to open ended boundary conditions can be

the bare one, this crossover phenomenon might even pro\j[J‘.ustrat'ed for a chain of spinlgss fermi'ons with an interaction
cumbersome to the DMRG. In order to avoid a potential®xténding only to nearest-neighbor sife&r)=Vé; ] near
problem we chose to use the finite system algorithm pro_half filling. Tr_le ground state and the excitation energy are
posed by Whité® 2 targeting the ground state of the super- completely different for theN=2N; andN=2N—1 situa-
block. At a givenV, we started with the procedure with larg- tions, whereN¢ is the number of fermions. Figure 1 shows
est value oft, | we wished to consider, 0.5 in all cases, angthe s'uperb!ock excitation energy in both situations for a cal-
then gradually decreased its value using the previous solifulation with Ng=42 block states andN=151,152. Al-
tion as a seed. For each set of parameters, the iteratio#80UghNg seems small, the truncation error was nevertheless
stopped when the discontinuity in the ground-state energgmaller than 3107 for an open ended chain. A significant
and the superblock excitation enerBy (superblock gapat ~ 9ap develops for the cadé=151 andN¢=76 but not for the
midcourse, when all block information has just been re-other. As for the ground states, they show a site occupancy
freshed, were judged acceptable. This was typically for thre@;=n+ Acos(rj— ) that is alternating between a large and
iterations.E, is the energy difference between the first ex-a small value. This basic pattern is to be expected for a
cited state and the ground state of the superblock. It was ndiroken symmetry state with a repulsive interaction. But
obtained self-consistently since we only targeted the grounwhile the modulation phase,; is a constant foN=151, it
state and not the first excited state. We used open boundawgaries forN=152. We findé~ 7rj/N in a calculation where

IV. SINGLE CHAINS
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\'} FIG. 2. Superblock excitation energy for a quarter filled chain of

spinless fermions with third-neighbor interaction strength6 as a
FIG. 1. Superblock excitation energy for a half filled chain of function of the reciprocal of the chain length fig=42.
spinless fermions with nearest-neighbor interaction stre¥gtsing
Ng=42. The number of siteN is 151 (circles and 152(triangles.

The number of fermions il = 76. Hamiltonian can be transformed, using the Wigner-Jordan

transformation, into our problem with,=V andJ,=J,=2
the interaction is introduced right away in the first iterationexcept for end term$V(n, +ny), involving the first and last
of the finite-size algorithnisudden turn onbut 6~37j/N  sijtes, that occur for open boundary conditions. TX%Z
when a first set of iterations is done wikh=0 and thetV'is  chain is known to develop a gap fdg>J,, that is, forV
introduced in the second set of iterations, using the first one. 5 Eqr N=2N;, the ground state is degenerate

as seedgradual turn oh The ground-state energy is lowest 1101 - -010) and|010 - - 101), has no soliton because of the

in the latter situation. The alternating occupancy in the - ; - :
: end site repulsion and has a gap. It is the pressure applied to
ground state can be understood by looking at the lafge P gap b PP

the fermions by the end terms that insures the correct exci-
ation energy and a uniform modulation amplitude in this
situation. In the case of a chain with=2N;—1, it is the
shorter length that adds extra pressure to the fermions and

alternating sites$- - - 1010 - - ). It is the boundary conditions
that will determine the modulation phase. Ao 151, one
would expect{101 - -101) to be the stablest situation, with > ™ L
6,=0, and this would explain a uniform modulation and thes'm'lar_ly leads toa properly g'apped situation. .
excitation gap. But foN =152, the chain will spontaneously N view of this dichotomy with respect to occupation near
create a kink solitor(phase shift of= from end to eny half filling, it is _Ieg|t|mate_ to ask if thl_s sen_5|t_|V|ty _per3|s_ts
1101 - -010)=|101 - - 001) which can then redistribute it- near quarter filling. To this end, we did a limited incursion
self and lead to a gapless excitation situation. This is foundVith gradual turn onat V=6,N;=38,N=149,150,152, and
for the sudden turn on. However, it is also possible for thdor first neighbor (=1), second neighborr{1,2), and
chain to generate additional kink-antikink excitations. Thethird neighbor (=1,2,3) interactions. The ground-state en-
results for the gradual turn on confirm this and show that thi€rdy Per fermion for a given mtergc_non“ range dszcreases
situation is more stable. Just how many kink-antikink pairsSlightly with N. The effective constraining “pressure” when
would be generated is impossible to figure out. Curiously, théd=4N;—m(m=1,2,3) can explain this. The superblock ex-
DMRG seems unable to yield an unambiguous ground statgitation energye, remains small going from 0.046 to 0.11 as
whenN=2N; for open boundary conditions. We believe this the range increases and is insensitivéltdudging from Fig.
occurs because of the combination of sméy and funda- 1, this is not a S|gn|f|cant gap and is dug to_the finite length
mental  degeneracy of the two configurationsOf thg chains. F!gure 2 shows the .eXC|tat|on energy as a
|101_ . _010>;|010. .-101). With sudden turn on, the blocks fUI’_\CtIOﬂ Of the l_nverse of the chain length for a third-
are built gradually from information which starts to be trun- N€ighbor interaction strength'=6 and Ng=42. The ex-
cated at relatively small chain length$~2 In(Ng)/In(2)+2  rapolated gap foN—c is indeed negligibly small. There is,
~14 in our case, and with reduced effectiveness because 8PWever, a variation of the modulation of the site occupancy
the degeneracya form of frustration which dilutes the in- of the form n;=n+Acos(mj/2— 6;). Indeed, forN=152,
formation. For gradual turn on, however, the chain is fullwe find ¢;=(37j)/(2N). This situation is the generalization
length at startugfinite chain algorithm and one block is of the one seen above for half filling and gradual turn on
very long but contains information gathered at smaller intercondition, the quantum of phase shift beim(® instead ofr.
actions. This inherited information is probably quite differ- What this #; means is that the Fermi momentum is down-
ent, due to initiation at smaller interaction and ensuing trunward shifted from its exact quarter filled valkg = (7/4)
cations, from the situation where the blocks grow with full X(1—3/N) due to fermions being pushed to the ends. The
interaction using the infinite chain algorithm. guestion spontaneously arises as to any possible detrimental

The single-chain Hamiltonian we have just been studyingeffect of such modulation on the correlation functions. We
is akin to theXXZ problem for a spin-1/2 chaiff. This spin  shall answer this in the following subsection.
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A _ C2(j,0) ={(Nj = (N N (N =(N)))), )

1 [ue0e for noninteracting spinless fermions. This latter function
09l ] measures the correlation between occupdpoyportional to
o8| ] charge fluctuations on sitg¢ and (j+r). It also has the ad-
o7k A& 2 ] vantage of getting at the true fluctuation correlations in a

5 os| e = ] broken symmetry state. Exact solutions are available for free

L. e = spinless fermions:

05(" = A r=19 ]
04r " e ] ke nsin(ker)
03w ] Cl(r)zf cogkr)y= —————:, (5)
02f 1 ke Ke 1
01y 1 corresponding tax=0 in Eq. (2),
o ‘ . ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 C2(r)=—C1(r)? (6)

J

Here kg is the Fermi momentum. We performed a DMRG
calculation for a chain havin§l=152,Vv=0, andNg=42.

3he truncation error was less than£0 The fit to Eq.(5) is
excellent, with a root-mean-square error less than 1% on the
modulation amplitude, for<60. We find «=—0.007 for

C1 instead of the exact value of zero. Our suggested proce-
B. Data processing dure thus has an absolute error of order 0.007 attached to the

exponentx. We also verify Eq(6) up tor~40. This is quite
We have just found that a modulation in the site occu- D 'y Eq(6) up q

" . . satisfactory and justifies our use of double averaging and
pancy results from the open boundary conditions which p'rbptimal positioning.

fermions at the end site and lead to a broken symmetry state. In order to do similarly for an interacting fermion gas, one

This modulation obviously makes it nontrivial to get 0CCU- heeqs to have an analytic function with which to fit the data
pancies(then) or correlation functions resembling those for for C1(r). From the known form of the single-particle

periodic boundary conditions or an infinite chain. Taking theGreen’s function of a Luttinger liquid? this function would
occupancy as an example, for the quarter filled situation, itegd as

can be seen that the modulated pagcos(@rj/2— 6;) can be

made less annoying by averaging over the natural four site

cycle. Indeed, if we define, for instanag,= $=7_on; ;=n Cl(r)=

—Ap[ cos@@j/2— ;) + sin(mj/2— 6;) |(37/4N), one immedi-

ately sees that the modulation is reduced by a factor of ordeFhis form was obtained from Bosonization andis a char-

N1 A second averagingﬁl:(1/16)2?202%:0nj+i+m, acteristic cutoff parameter. It has, however, to be modified to

would further reduce it by anothéd 1. One can thus, in account for the DMRG procedure. Using relatively small

principle, remove the effect of the modulation for long vValues ofNg introduces a numerical coherence lengtin

chains, thus another reason for choosing long chain length§tersite averages. This is due to increasing numerical infor-
But, unfortunate|y, the open boundary conditions producénation loss between the center sites and the block sites that

yet another deformation. The smoothed quantitiesﬁk&re alre fka_rtrfler av'\{/_aynetarer ;hetenQSr?;ulgn'\%égm trundcated A
not global quantities but rather local ones. They vary alon ock information at each step In the Procedure. As

the chain, the more so the closer a site is to the ends. We ¢ n bgl obkservgtd tl'n Tables | anq Il as well at?] '(;] Fig. 7 the
illustrate this by looking at the profile of the single-fermion Superblock excitation energgay) increases with decreasing

. . ' . . Ng thus leading to an expected decrease in coherence length.
transfer functionC1(j,r) defined in Eq.(2) using double B ; S .
averagingN=152.V=6, andNg=42. The plots are for 1 Numerical coherence is in this sense analogous to thermal

<j=<(N-r)/2 since the results are symmetrical about thisCOhgirr(?r:1 ::/e ar\:\éeth eﬂ}gﬁ ow?rzoag?ri' the  substitdtidn r
last value. Figure 3 shows this function for 1, 19, 54, nor- —¢ ) 9 ’
malized toC1[(N—r)/2r]. The healing distance increases C1(r)
with r and is at the scale of It is quite obvious that the ends o
can have dramatic effects at the larger values. dtis sug- nsin(kg ) 1 )a/Z ®
gests using optimal positioning at (N—r)/2. i . >l

But are double averaging and optimal positioning suffi- ke £SINR(r/€) |\ 1+ gsinh(r/€)/A]
cient to obtain results close to the thermodynamic limit? Carwe calculated C1(r) for a chain having N=152,V
double averaging introduce distortions? We can check this by-1 2. . .6, andNg=42. The truncation error was again less
extracting the power-law exponent of the intersite transfethan 10 8. The fitted parameters, in the range <100, are
function C1(r)=C1[(N—r)/2,r] and of the two-point cor- in Table I, along with the&/=0 results using the same fitting
relation functionC2(r)=C2[(N—r)/2,r], where procedure. We had to impose an arbitrary 1.0 value at

FIG. 3. Doubly averaged single-fermion transfer function for a
quarter filled chain normalized to its value at the maximum as
function of the site of origirj. The plots stop aj=(N—r)/2. We
have choserN=152,N;=42,V=6, and three different transfer
distancegsee legend

al2

nsin(ker)
Ker

1
1+ (r/A)2

)
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TABLE |. Various parameters calculated for a quarter filled occupation correlation function atkg behaves liker ~2€
chain at different values o, for N=152 andNg=42. K is de-  whereK is the stiffness defined in E43). The 2k filtered

duced froma. data could best be fit by the analytical form
V & k@ K & A K & C2(r)=C cos 2k r + oo)r 2Keexp(—r/d;),  (9)
_ b b

2 8'82; 8';2 %‘%2 1'8663 * 81 1'0C1 . 0'9(;367°c 100 which has a coherence lengtl that is related to the exci-
5 ' ' '2 ' '2 : ’ tation gap in a finite chain. The resulting power-law expo-

0.064 0.78 0.2 0.49 76 1. 0.5 87" nent and coherence length are also shown in Tabli&, lis
3 0076 078 0.49 039 65 12 042 69 \ithin 59 of the calculated values #f obtained by invert-
4 0088 078 0.76 031 59 13 035 39 ing Eq. (3). d. seems closely correlated % and both to
> 0loi 077 1.08 025 53 14 029 53 E, *. The Pearson correlation coefficient betweknand &
6 0ll4 077 150 021 47 15 020 43 forv=1 is 0.995 and 0.984 betweely andE; . The two
aExact value. coherence length& andd,. enter the fitting functions of Eqgs.
bLarger than the chain length. (8) ar_1d(9) in quite different Ways.BThis pr_obably_ stems from
“Imposed. the different role the block statég®) play in matrix element

storage, off diagonal with respect to total block occupation

V=0 since the fitting procedure to E¢(B) would lead tox 9 in single-fermion functiongy/®(917) ;| ®(M3)) but di-

—w. It is seen thatke~(7/4)(1—3/N) as expected. The @agonal for the occupation correlatiofg®(97) n;|%(97)).
power-law exponents: are nearly those found by Capponi One last comment concerns tig=0 occupation correla-

et al,'? which used a totally different method of calculation, tions. We found no evidence for this contribution in our data
although they seem systematically larger by 5-8%. The abPossibly because of the specific quantity we chose to calcu-
solute error estimate oa from the exactV=0 situation is  late in Eq.(4). _ . _

+0.02. The coherence lengths are satisfactorily quite large, We wish to point out an interesting observation we made
giving added credibility to our fitting function. The Pearson 0N the raw(unaveragetoccupatiom; near the ends. We can
correlation coefficief betweené and E,* for V=1 is fit the occupation by the relation

0.986 indicating that the two parameters are strongly corre- _

lated. Finally, the cutoff\ is of order 1, the lattice parameter, Nj=~n+noCog 2kej + ¢)(j) ~Xe, (10

as one would expect for fermions on a lattice. It can thus be _

concluded that the fitting function, E¢B), is quite satisfac- wheren=0.25 and 0.25n,=<0.4. A similar observation has
tory, with an error margin of order 5%, considering the largerecently been reported in Ref. 25. The broken symmetry state
number of adjustable parameters. The thermodynamic limitesulting from the pinning at the chain ends forces the local

is thus recovered albeit slightly handicapped by a numericabccupancy variatioQén;), wher n, to be equal to

edn;=n;—

coherence length. the root-mean-square fluctuatiaf 5noon;).

Now, let us focus on the k- charge-density fluctuation  We wish to end this subsection by examining the situation
response functio€2(r) defined earlier. As it turns out, there for Ng=10. Why such a small number of block states? We
are many wave numbers contributing to two-fermion Greenshave already stated that our calculations were made with
functions™? One expectgj=0 and 4 contributions aside Ngz<128. This is at the limit of our computational capabili-
from the sought Re correlations. How can one isolate the ties. If the chains were independent, this would be equivalent
latter? We observed tha2(r) has a fast oscillating part to having some ten block states per chain, which is not large
B¢(r) and a slow modulation amplitud&s(r), such that indeed. At such small values &g, we had to introduce
C2(r)=~A4(r)B¢(r). What we did was to exponentiate the another coherence length for the occupation correlations,
dataC2(r)exp{—In[|AJr)|]}, do a fast Fourier transform, re-
move the unwanted contributions, and unexponentiate back C2(r)=Ccog2Kg I+ ¢.)
the remaining Rr contribution. For spinless fermions, the )

X[ &sinh(r/&)] 2Keexp(—r/d,).  (11)

We used a fitting procedure which weighed more heavily the
data forr < ¢ so as to be able to recover key parameters with

TABLE II. Various parameters calculated for a quarter filled
chain at different values o¥, for N=152 andNz=10.

v E o ¢ K ¢ d values close to those &iz=42. Truncation errors run typi-
X Cc Cc Cc . . . .
cally at the level of a few times IG. This is considerably
0 0.12 —0.003 28 0.94 40 41 larger than forNg=42. Table Il gives some of the param-
1 0.20 0.10 19 0.65 30 22 eters of the fit. We have used the valueshobf Table I. «
2 0.23 0.26 15 0.50 31 19 andK, compare favorably. The superblock excitation energy
3 0.24 0.48 16 0.41 35 22 has appreciably increased and the coherence length has
4 0.26 0.75 17 0.33 34 21  shortened. They are rather featureless, a signature of the
5 0.27 1.10 17 0.26 32 21 small number of block states. Note that-d. is somewhat
6 0.29 1.50 15 0.21 32 21 “elastic” in the sense that its value can drift significantly

without marked effectwithin the 5% error baron the fit.
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06F A ' ' ' ' ' T of t, and the generation of interchain couplings in quasi-1D

0.4 J\W ] solids. Although the basic elements are present, the treatment

o2t . . . . .. o i is perturbative and subject to caution for large interactions.
ok R IR R 3 The Bosonization approaches have the potential to do better

Pk B T SO N AN in this respect since the single-chain interacting spinless fer-
’ ' ' ‘ ‘ ' ' ‘ mion problem has an exact solution.

Let us then examine the predictions of Bosonization.
There are two key treatments which look at our Hamiltonian
from two different perspectives. Nersesyan, Luther, and
Kusmartset® (NLK) Bosonize the chain fermion operators
Cj,5, whereas Yoshioka and Suzumtfréy'S) do so with the
band operators

<nl’1 >i<"l,2>

¢j.o=(Cj 1t ac; 2)/\2. (12)

050 R Hereo=*1 is the band index. One h#s =(1— o) (7/2).
10 20 30 40 50 60 70 The procedure yields two separated sectors, polarization and
j occupation, that, by analogy to a chain of spjns a mag-
netic field«t, , are sometimes labeled spin and charge.
FIG. 4. On-site occupatioffull line, + sign and polarization In Ref. 15, there is spin-charge separation and the Cou-
(dotted line,— sign) in typical broken symmetry states ¥t=2,6  |omb interaction is absorbed within the stiffnessés and
and fort, =0.5,N=150,Ng=96. K. HereK, has the same value as for a single chain.
appears in the polarization sector and acts as the generator of

interchain two-fermion coupling& andG corresponding to
Now that we have acquired sufficient experience and conparticle-hole and particle-particle pair hopping. The
fidence in data management, we can tackle the study of twrenormalization-grougRG) equations foiG readsG’ =2 (1
coupled chains. One final observation is warranted. We_K )G+ (K~ Kg) 72 ,where r=|t, | A/(27uy),us is the
found that convergence of our DMRG algorithm could only
be achieved relatively quickly for an odd number of fermions
N¢=(2N¢o+1). This can be understood in view of our dis- _ ; ;
cussion in Sec. IV A. First of all, fermions are pushed to the In[max(-w/!EO,T-/EO,qu/E(.))] whereE, is the starting energy
ends by the Coulomb repulsion. The fermion occupancies ofic@/€- This is discussed in Refs. 1 and 3. The equatiofor
both chains thus start site synchronized at the ends. Secorig,obtained by the substitutioks—Ks. Note thatG(l=0)
the transverse hopping favors out of phase occupancies 0aG(0)=0. This RG equation is different from
the chains. Figure 4 illustrates this. It shows the on-site ocYakovenko's® whoser? term is larger by a factor 82. This
cupation (n; )+(n;,)) and polarization {(n;)—(n;2))  does not change the qualitative behavior of the equations,
that is typical of the broken-symmetry ground state. Theonly the numbers. Furthermore, it is more in line with the
largerV is, the more pronounced the out of phase charactecoefficients of the RG equations in Ref. 3. The RG also
(pqlarizatio!') is and the larger thel¢ charge component. renormalizest, ,7'=(2—Ag) 7 where A= 2(K.+K), and
This behavior can be achieved more easily in a state in wh|cp<S is governed by (IrKS)'=%(R§E;2—KSGZ). Note that one

one chain has one extra fermion. The chain with¢+ 1) asK¢(l=0)=K,. There are additional contributions of or-

fermions is more compr_esse_d and Ca’?”‘-”t easily su_staln SOE'er 7 to this last equatiof,a fact acknowledged by Ners-
tons. But then, the chain witN;, fermions can easily ac-

commodate a kink-antikink pair which then allows the mneresyanet al,™ but which W'” remain unexplored by us. When
. . ) — G reaches strong couplings(~1) then a gap opens in the
part of this chain to be out of phase with the ends and with o ) .
olarization sector and only the occupation sector contributes

the other chain. Broken symmetry states also have the advap-
0 power laws.

tage of focusing the computational resources to a single non- In Ref. 14, there is also spin-charge separation for small

degenerate state instead of splitting them between degenerate But the authors point out that this is no lonaer true for
states thus decreasing the numerical coherence length. \Xlé PC . ge
arge transverse hopping, when the Fermi velocities for the

have thus chosen to do our calculations fb#=150. Our . . : .
: X 5 - two bands are appreciably different. This should be kept in
truncation error varies from %10 ° for Ng=42 to 5 . . i
mind as our values df, =0.1 should qualify. The occupation

X 1078 for the larger valuedNg=128. We have kept tha . : .
values of the single chain. We shall first look at single-sector behaves essentially as in Ref. 15, wjtsK.. The

fermion behavior and then at some two-fermion correlatiorPOIa”Z?t'on segtor, however, transforms the Coulomb inter-
functions. action into two interband couplings,, andg,,_ such that

the polarization stiffnesg,=1 atl=0. This dichotomy be-
tween polarization and occupation sectors is satisfactory for
small V. The RG equation$when corrected for typographi-
The perturbative renormalization-group formulation in cal errorg yield solutions qualitatively similar to Ref. 15 for
Ref. 3 presented a unified description of the renormalization, (). But it rapidly becomes annoying at large interactions

<ni,1>t<"i,2>

V. COUPLED CHAINS

polarization excitation velocity ;= 1/K, and the prime in-
dicates  the  derivative  with respect to |

A. Single-fermion transfer function
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1 T 1 T The DMRG calculations we now present were taken at
09 (a) 09f (b) 1 Ng=96. The following band transfer functions were calcu-
08 o8l ] lated:

V=2
07 07 Cl(r,o)=C1[(N—1)/2r,o], (15)
06 \ 06

V= whereC1(j,r,o)=(c/,, ,C; ,). Each of these tw€1(r, o)

K 05E
zj % iyl was fitted with Eq(8). The fit could only be made by allow-

o 000000
N — ing thekg(r,o) which characterize the bandsto vary as a
0.3 03\\ function of r, a situation not seen in single chains. This is

t(on,
it

t

0.2 Vs 0.2 Va6 how the renormalization of the transverse hopping manifests
o1f\ 0.1 - itself most directly. We could then calculate the renormalized
transverse hopping from

00 20 40 60 8‘0 100 0O éO 40 60 8‘0 100
x(€) r t, () ~[ke(r,o=1)—Ke(r,o=—1)/ve. (16

FIG. 5. Transverse hopping as a function of the length scalélhe results for this last quantity are reproduced in Fi@).5
normalized to the bare value for various situationdNat150,Ng ~ The four upper curves fov¥=2 clearly show the “ladder”
=96. The curves fow=2 are for 0.5=t, =0.1 from top to bottom.  characteristic of the crossover situation. This crossover, from
(@) NLK bosonization results. Thé=6 curves are for all values of Eq. (13), is approximately at,~v/t, (r,) which has been
t. . (b) DMRG results. The/=6 curves are for 05t, =0.2, from  reached before the coherence length is reached, f810.2.
top to bottom, respectively. The stars are set at the values of thg¢he renormalized transverse hopping is also rather flat for
coherence lengt. r>r,. This is not the case for thte =0.1 curve which has a

) o , . “drooping” (negative slopecharacteristic. This intermediate
since the polarization sector quickly, too quickly, goes to,aiye ofV has this nice property of showing both the cross-
strong coupling whe®y . Or gz, ~1 and develops a gap. qyer and its absence due to numerical coherence. Moreover,
It then appears that the NLK approach should do better bene predicted renormalization law of E€L4) gives a value
fore the single-fermion dimensionality crossover and YS af-,__q 26 for the top four curves, a value in excellent agree-
ter the crossover, when bands have formed. ment with the single chain one. This is somewhat accidental

Let us now focus on the predictions of these models foryg the same analysis performed on the 1 data for 0.2
the transverse hopping as a function of length sodly < <05 yields a value of-~0.14, somewhat larger that its
=exp(). We first start with NLK ail =0. The RG equations ,5jye in a single chain. The problem, if there is one, may lie
will switch to YS once the dimensionality crossover is \yith Eq. (16) which does not account for the change in
reached, when(lx)~(277)_‘1, via the mapping proposed in - porm; velocity that occurs when the valueskgf=0,7 are
NLK. We have chosen this value as it produces crr%ss_overs Appreciably differentlarge t,) or due to renormalization.
scales comparable W:}g the ones of Bourborhasid  ope must bear in mind that the DMRG is on a lattice and the
Yoshioka and Suzumurd.With this choice, the renormal-  tormion energy is far from the linear dispersion of the RG.
ized transverse hopping, Nonuniversal band-edge effedfre-RGQ might be consider-
able and this might explain the discrepancy at the sizable

t(h=@mus/A)r(lyexp(=)~2mver(l)/x(D), values oft, we have used. We find no clear evidence for a

leads to a dimensionality crossover at crossover aV=3 asé<r, and thet, (r) curves do not flat-
ten out atry .
t (l=2mug/A)r(l)exp— ) ~veexp — ) =ve/x(1y), TheV=6 curves are bunched together and show confine-

(13 ment. This is in qualitative agreement with Bosonization.
Our results indicate that the coherence length sets the scale
for the evolution of the transfer function. Further evolution,
such as crossovers, are blocked at distances begoitie
splitting, albeit small, of the differe’¥ =6 curves is caused
by just this effect. The coherence lengths are shorter for the
larger values ot, thus leading to larger, that is less renor-
malized, values of (I).
It is important to understand the connection between
t, (r) andt, (). t (r) can be viewed, from Ref. 3, as an
verage over all momentum scalesk,=2/r. Itis thus an
average ot (1) overl=<In(vgk, /Ep). Thus clearlyt, (r=0)
[t, (107, o (t, )@/t a) (14) =t,(I)#t,(I=0). Thatis whyt, (r=0) is larger thart, (r)
yet smaller than the bare valte.
as proposed by Bourbonnais and verified by Capponi. On the Figure Ga) shows the fitted values fowx for both k.
other hand, th& =6 curves for different, all superimpose, =0,7. They are surprisingly nearly independenttofor of
a signature of the confined regime$1). the existence or not of a dimensionality crossover. This is not

in which we have seA =1 andug=uvg. This is the result of
Bourbonnais for the crossover. Figur@bshows the results
for the renormalized transverse hoppindl) at both inter-
mediate ¥=2) and strong Y=6) Coulomb interactions.
This was obtained using th€,=K values in Table | at
=0. On the one hand, thé=2 results are typical of small
and larget, and clearly show the dimensionality crossover.
The “ladder” diagram is typical of this crossover regime.
The renormalized hopping after the crossover satisfies th
relation
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FIG. 6. Fitted values for the DMRG transfer function at differ- L

ent transverse hopping and Coulomb interaction strengthll at £ g, Inverse coherence length extrapolated to an infinite
=150,Ng=96. (@) Power-law exponent results. The downward n,mper of block states ai=150, circles, and reciprocal of the
pointing triangles are fok, =7 while the upward pointing ones are  resholds to strong coupling calculated from the Bosonization
for k, =0. (b) Mean values of the numerical coherence length.  gqyations, squares, as a function of the transverse hopping. The

o ] ] ~ results for V=2, full symbols, andV=6, empty symbols, are
expected from Bosonization which would predict a variationghown.

of K¢(I) and thus ofw. This is perhaps a consequence of the

absence of true spin-charge separation. Yoshioka and Swp |onger correlates well withE, in contrast to results for
zumura also predict a change in exponent at the crossovefingle chains. As a matter of fact, the extrapolated value
Figure Gb) shows the average numerical coherence lengthfcreases quasilinearly with . The same behavior is found
for k, =0,7. The coherence lengths monotonically decreasgqy z| valuesvV=1. Figure 8 shows thBlg— extrapolated
at constant ast, increases. Curiously is smallest a  jnverse coherence lengths fgr=2 andV=6 as well as the
=2,3. We will come back to this in the next subsection.  reciprocal of the threshold values to strong coupling coming
Quite obviously, it would be futile to study the scaling from numerical solutions of the Bosonization equations. We
behavior of these quantities with the chain length sifide  see there is a tight correlation between Bosonization and
much shorter. But it would be possible to study the scalingbMRG behaviors witht, , though the length scales are dif-
with (Ng) ~* which acts like a temperature. In an attempt toferent, in both situations with or without a crossover. This
better understand our results, we thus repeated the calculggggests the coherence lengths are affected by the oncoming

tions at other values dflg. Figure 7 shows the scaling be- strong-coupling regime at which our fitting formula, E8),
havior of the superblock excitation energy and the reciprocajyould no longer be valid.

of the coherence length f&f=2. The gap is seen to extrapo-
late, asNg—, to small values ofe, compatible withN

. R B. Two-particl lati
=150. There is thus no indication of an energy gap. 8ut wo-particle correlations

Following Eg. (4), we define the on-site occupation
‘ ‘ - - (v=+) and polarization ¢=-) correlation functions
0.3 ] C2(r,v)=C2[(N—r)/2[,v], where

02| : C2(j,1, ) =Ny e =Ny e (N = (N, ), (17)

- 02 v ] and

v .

u} 0157 v : . Nej=Nj1*Nj,. (18
011 g ‘§ § 1 What should we expect for the power-law exponents,
0.05 : 1 C2(r,v)oer Ky, (19

: . ‘ . characterizing these correlation functions? It is quite clear
0 0.005 0.01 1N 0.015 0.02 0.025 that ast, —0, the chains become independent and one
B should haveK,=K.+K,=2K.. This is consistent with
FIG. 7. Superblock excitation enerd (full symbolg and in-  NLK. From the band perspective, the approach of YK pre-
verse coherence length * (empty symbolsas a function oNg®  dicts K, =(#n+n,) andK_=(7+1/4) when there is no
for V=2 andN=150. The curves are for 05, =0.1 from bottom  gap. Sincez,>1 for repulsive interactions, one should ex-
to top, forE,, and top to bottom fog 1. pectK ,>K_.
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FIG. 9. Power-law exponents for occupation, circles, and polar- 0 1 20 30 40 5 60 70 8 90 100
ization, boxes, for various values d andt, and N=150. Most r

calculations are for Ng=96 while Ng=128 for (V,t))

FIG. 10. Transverse hopping as a function of the length scale
=(1,01),(1,02),(1,05),(3,05),(6,0.2).

normalized to the bare value fot=3 (full lines) andV=4 (dotted
lines) at N=150 andNg=96. The curves are for Gz5t, =0.2 from

We have calculated these correlation functions and trie b to bottom.

fitting them to forms reminiscent of Eq11). The polariza-

tion correlation function behaves nicely and can be fitted; a5 both. when the separation was not big enough, with a
with form that combines contributions of both banee Eq.

C2(r,—)=C_cog (Ke(r,1)+ke(r,—~1)Jr+¢_) 12)],

X[&-sinh(r/€)]" exp(—r/d_) (20 C2(r,+)=> C, ,co§2ke(r, o) r+ o, o]

using the filtering procedure explained in the data processing
of single-chain correlations. The exponeits are essen- X[ &, sinh(r/é)] Krexp(—r/d,). (21)
tially those of the occupation correlations of single chains as
witnessed in Fig. 9. Again, this is unexpected. It is asif ( As can bee seen from Fig. &,, is appreciably larger than
+1/m4) or (Kc+Kg) remained nearly constant. This behav- K _ in the low V regime. We foundt, andd, to be some-
ior is like the one observed for the single-particle exponentyhat smaller tharé and still “elastic.” It is quite apparent
a. This points to the breakdown of spin-charge separation fofrom Fig. 9 that there is a discontinuity i§, going from
a highly nonlinear dispersion. As fagf_ andd_, we find v=2 to V=3, with values dropping from 2 to 1. This be-
they are generally larger thah sometimes by a sizable fac- havior is, we believe, intrinsic to the coupled chains and is
tor, and also fairly “elastic” as observed for single chains. not a result of short coherence lengths since these are of the
The occupation correlation function proved a bit moresame size fol/=2,3. It indicates a crossover from a single-
subtle to fit. The occupation correlations generally decreasfermion dominated behavior, when the occupation fluctua-
much faster than the polarization correlations. They rapidiftions are propagated through independent bandlike particle
become quite noisy when they reach the limits set by theand hole motion showing two wave numbers in the occupa-
truncation error. This can easily be monitored on a logarithtion response function, to a pair behavior, when the fluctua-
mic plot of the amplitude ofC2(r,+) as a function ofr.  tions are carried by particle-hole pairs having chainlike char-
There is a sudden break in the general linearlike decreasgcter sharing a common wave number. Such a crossover was
The range of values in which a function having an amplitudededuced by Cappotfiin the same range of values Wf In
of the type proposed in Eq20) can be appropriate is often this crossover region, there is fierce competition between
limited to r =30 when the coherence lengths are small. Wesingle-fermion behavior and coherent pair motion. The com-
have extended our calculationsN@= 128 for a few cases as puter resources are shared between the two competing be-
a check of the sturdiness of our calculations. It is moétly  haviors and this explains the shorter coherence lengths in the
that is affected by a noticeable increase. Curve fitting withcrossover region. In spite of the domination of the pair mo-
many parameters can thus become delicate and leads to largien, the transverse hopping is not necessarily confined as
uncertainties which we estimate at 10% #r. . We found  Fig. 10 shows. There are no clear crossovers at the larger
that we could fitC2(r, +) with a form equivalent to Eq20) using the criteria discussed in the previous subsection, but
with »=+ instead ofv=— for all casesV=3. The fast the hopping is considerable and decreases only slowly with
Fourier transform reveals only one broadk2 wave num-  distance. There may well be coexistence between coherent
ber.K . is always of the same size or a bit larger théan in interchain pairing and some sort of interband single-particle
this chainlike regime as can be seen in Fig. 9. For thoséehavior before the strong-coupling limit is reached, a pos-
situationsV=2, the fast Fourier analysis reveals two wavesibility raised by NLK.
numbers associated withkg(r,1) and Zg(r,—1). We It should finally be mentioned that, as was described in
sometimes fitted the most prominent wave number or someSec. IV B for single chains, we find a broken symmetry state
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in which the total on-site occupancy variatipén , ;) is pro- (i) The single-fermion transfer function power-law expo-
portional to the square root of the occupation correlatiomenta and the polarization correlation function exponknt
amplitude[ &, sinh(/¢,)] K+2exp(—j/2d,) near the ends.  were seen to be essentially those of the single chain. This is
interpreted as a sign of possible violation of spin-charge
VI. SUMMARY separation.
(iii) The occupation correlation function shows superpo-

Let us now sum up the more important findings on thesition of two wave numbers and has an exporténtthat is
quarter filled double-chain problem. Our working hypothesis porien

is that the fitting functions and the data treatment we havé\’v'(_:e as large as the one for polarization M;s_z_ This
used for the analysis of one- and two-particle functions/ndicates the existence of a crossover from independent
which were validated for single chains, can safely be carried@'ticle-hole motion to correlated pair motion betweén
over to two coupled chains. =2 andV=3.

(i) The central result, which motivated this whole study, is  (iv) The superblock excitation energy, when extrapolated
the confirmation of strong renormalization of the interchainto Ng—, is as expected for a finite system of 150 sites. The
hopping in the presence of the Coulomb interactibrThis ~ coupled chains thus remain gapless. There are also indica-
was measured by monitoring the difference in the Fermi motions, in the same limit, of possible strong-coupling regimes
mentum of the two bands beyond the dimensionality crossas inferred from the linearlike, dependence of the extrapo-
over. The extent of the renormalization is much stronger thalated inverse coherence lengths, much in the same way that
expected from the RG or Bosonization at smalllt is con-  Bosonization predicts.
siderable at the largaf. It is most likely going to zeroas can  The rather short numerical coherence lengths we have en-
be concluded by observing the trendtin(r)/t, which de-  countered with the DMRG, although expected from the study
creases witlt, . The proposed crossover law, E34), was  on single-chains, did put some stress on the curve fitting
seen to be only approximately valid when the crossover exprocedures. This resulted in fairly large errors in our
ists. It is probably our definition, Eq16), and band-edge exponents.
effects that are responsible.
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