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Power laws in a two-leg ladder of interacting spinless fermions

L. G. Caron* and C. Bourbonnais†
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We use the density-matrix renormalization group to study the single-particle and two-particle correlation
functions of spinless fermions in the ground state of a quarter filled ladder. This ladder consists of two chains
having an in-chain extended Coulomb interaction reaching to third neighbor and coupled by interchain hop-
ping. Within our short numerical coherence lengths, typically reaching 10 to 20 sites, we find a strong renor-
malization of the interchain hopping and the existence of a dimensional crossover at smaller interactions. We
also find power exponents for single-particle hopping and interchain polarization consistent with the single
chain. The total occupation correlation function has a larger power exponent and shows signs of a crossover
from incoherent fermion hopping to coherent particle-hole pair motion between chains. We believe the ladder
is gapless.
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I. INTRODUCTION

The theory of quasi-one-dimensional conductors1–9 has
shown that there are dimension-specific aspects not obse
in conventional three-dimensional solids. Aside from the
teraction dependent power-law behavior of single-part
and pair response functions and the well documented s
charge separation, there is the renormalization of the tra
verse hopping whose impact on the description of real m
rials is much debated.10,11 As discussed in length in Ref. 3
strong Coulomb interactions can dramatically reduce the
fective value of the transverse hopping and retard the dim
sionality crossover from a one-dimensional~1D! to a two- or
three-dimensional conductor. The simplest theoretical tes
ground for this idea is a two-leg ladder consisting of int
acting spinless fermions on two chains coupled by a tra
verse hoppingt' . It is in principle possible to study the
putative renormalization oft' . This has been done usin
various approaches, among which are ex
diagonalization,12 momentum-space renormalization,13 and
Bosonization.14–17In all these papers, renormalization of th
interchain hopping is confirmed. What we propose is a
merical calculation of this two-chain problem at quarter fi
ing using the efficient density-matrix renormalizatio
group18–21 ~DMRG! in order to directly measure power-la
exponents and the effective value of the interchain hopp
Although the DMRG has recently been tried22 on spinless
fermions, the analysis focused on a half filled ladder and
nearest-neighbor current correlations.

We shall first present the model Hamiltonian we shall
using throughout and, second, the proposed DMRG pro
dure. Third, we shall validate our approach on the sin
chain situation. We thereafter present the results for
chains and discuss the results in the light of the various
oretical treatments. A brief summary follows.

II. HAMILTONIAN

We shall use the model Hamiltonian proposed by Capp
et al.12 for two quarter filled chains of spinless fermions th
0163-1829/2002/66~4!/045101~10!/$20.00 66 0451
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interact within each chain through a finite extent Coulom
potential and can hop between chains through the hopp
term t' . The Hamiltonian is

H52(
j ,b

~cj 11,b
† cj ,b1H.c.!1 (

j ,b,r
V~r ! nj 1r ,b nj ,b

2t'(
j

~cj ,1
† cj ,21H.c.! ~1!

where cj ,b annihilates a fermion at sitej ( j 51, . . . ,N) on
chainb(b51,2), nj ,b is the occupancy at the same site, a
V(r )52V/(r 11) is the intrachain interaction between firs
second, and third neighboring sites (r 51,2,3) withV as the
interaction strength. We have set the intrachain hopping
ment equal to 1.

We have chosen an interaction to third-nearest neigh
because the work of Capponi showed that the single-ferm
exponenta, characterizing the long-range single-chain int
site transfer function

C1~ j ,r !5^cj 1r
† cj&}r 2(11a), ~2!

can become very large (a&1.5 for V<6). This power expo-
nent is responsible for the perhaps better known singula
in the momentum distribution at the Fermi level of Lutting
liquids. In the limit of smalla, one has@n(k)2n(kF)#;uk
2kFuasgn(kF2k). Large values ofa will be easily observed
and are expected to lead to much more important effects
the effective value oft' . Large values ofa are also synony-
mous with strong variations in the stiffnessK. The two are
related through the relation

a5
1

2
~K11/K22! ~3!

for spinless fermions on a chain. Consequently, the pow
law exponents of the various response functions, which
related toK, will also be strongly affected.
©2002 The American Physical Society01-1
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III. DENSITY-MATRIX RENORMALIZATION GROUP

The exact diagonalization of Eq.~1! by Capponi12 was for
short chains of up to 20 sites. Needless to say that some
of extrapolation procedure, finite-size scaling in this ca
was needed to obtain ground-state information in the ther
dynamic limit. We have chosen to use the DMRG sin
much longer chains can be studied. This, in principle at le
should take the system much closer to the thermodyna
limit and greatly improve any finite-size scaling analysis.

Another shortcoming of short chain lengths has to do w
a ‘‘dimensionality’’ crossover in the interchain hopping.3,14,15

For temperatures or frequencies larger than approxima
ut'u, the chains do not ‘‘see’’ the interchain hopping, which
incoherent or diffusive, and they are approximately indep
dent. But in the opposite situation, the chains are tigh
coupled and they form bands having transverse dispers
Let us illustrate this in the situation of quarter filling forV
50 and an even number of fermions. An exact solution
two coupled chains is available. The states are labeled
km5pm/(N11) where 1<m<N and have energy
E6(km)522 cos(km)6ut'u. For t'50, all levels up tom
5mF5N/4 are filled withN/2 fermions. There is no inter
chain hopping. Asut'u increases, this remains so un
E1(kmF

)5E2(kmF11), that is until ut'u'(pvF/2)/(N11).

Here vF is the Fermi velocity equal toA2 in our units. At
this point there is a sudden change in interchain hopp
since the two top levels below the Fermi level areE2 states.
The total interchain hopping energyE' is now 22ut'u. The
next jump occurs at ut'u'3(pvF/2)/(N11) when
E1(kmF21)5E2(kmF12), after which E'524ut'u. At a

given ut'u, the jumps occur atN'@(pvF/2t')(2p21)21#
for p51,2 . . . , when E'522put'u. Taking ut'u50.1 for
example, (pvF/2t')510p/A2;22. This is a large value. I
is therefore difficult to attempt finite-size scaling or th
DMRG under such conditions. One can only hope of rea
ing the thermodynamic limit forN@(pvF/2t'). This behav-
ior is surely attenuated in the presence of the Coulomb in
action which scrambles the spectrum. But short cha
remain unpredictable because of the discrete energy s
trum. Thus the longer chain lengths obtainable with
DMRG would circumvent this potential numerical distortio
In the event thatt' renormalizes to much smaller values th
the bare one, this crossover phenomenon might even p
cumbersome to the DMRG. In order to avoid a poten
problem we chose to use the finite system algorithm p
posed by White,19–21 targeting the ground state of the supe
block. At a givenV, we started with the procedure with larg
est value ofut'u we wished to consider, 0.5 in all cases, a
then gradually decreased its value using the previous s
tion as a seed. For each set of parameters, the itera
stopped when the discontinuity in the ground-state ene
and the superblock excitation energyEx ~superblock gap! at
midcourse, when all block information has just been
freshed, were judged acceptable. This was typically for th
iterations.Ex is the energy difference between the first e
cited state and the ground state of the superblock. It was
obtained self-consistently since we only targeted the gro
state and not the first excited state. We used open boun
04510
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conditions since periodic boundary conditions lead to un
ceptably large truncation errors.

Let us finally comment on the number of central sites
use in the DMRG algorithm. The long-range character of
Coulomb interaction complicates the calculations. For t
inner double sites~two sites on each chain!, the computation
resources~execution time and memory requirements! scale
roughly as 42(NB)4 whereNB is the number of states in eac
of the side blocks. This comes from counting all matrix e
ments that contribute to the superblock Hamiltonian mat
This is dominated by the situations in which two fermio
interact from within different blocks. There are four stat
for each double site while the interaction to third neighbo
being nondiagonal in the block states, generates a ma
element between any initial and final block state within ea
occupancy subset for each of the two interacting fermio
There results a factor of order (NB)2 for each one. If one
instead chooses to have three inner double sites, the bl
no longer couple and the resources scale as 4312(NB)3.
There are again four states for each double site. The coup
of the inner sites to each block leads to a factor (NB)2 for the
block fermion and there is an extra factor ofNB for the states
of the other block. The factor of 12 comes from counting t
different interactions up to third neighbor between sites a
blocks. We have found that the resources are similar forNB
;100 in qualitative agreement with this crude analysis.
have used two inner sites for the values ofNB542,64,96 and
three forNB5128.

IV. SINGLE CHAINS

It is of utmost importance to test our DMRG procedure
simpler single-chain problems. There are two delicate
pects that need to be validated, both linked to the open-en
boundary conditions. The first one has to do with the value
N that can be chosen for a specific band filling. The seco
one concerns the numerical treatment that must be don
the data in order to generate information for infinite-leng
chains.

A. Chain length and band filling

The sensitivity to open ended boundary conditions can
illustrated for a chain of spinless fermions with an interacti
extending only to nearest-neighbor sites@V(r )5Vd r ,1# near
half filling. The ground state and the excitation energy a
completely different for theN52Nf andN52Nf21 situa-
tions, whereNf is the number of fermions. Figure 1 show
the superblock excitation energy in both situations for a c
culation with NB542 block states andN5151,152. Al-
thoughNB seems small, the truncation error was neverthel
smaller than 331027 for an open ended chain. A significan
gap develops for the caseN5151 andNf576 but not for the
other. As for the ground states, they show a site occupa
nj5n̄1Amcos(pj2uj) that is alternating between a large an
a small value. This basic pattern is to be expected fo
broken symmetry state with a repulsive interaction. B
while the modulation phaseu j is a constant forN5151, it
varies forN5152. We findu;p j /N in a calculation where
1-2
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POWER LAWS IN A TWO-LEG LADDER OF . . . PHYSICAL REVIEW B 66, 045101 ~2002!
the interaction is introduced right away in the first iterati
of the finite-size algorithm~sudden turn on! but u;3p j /N
when a first set of iterations is done withV50 and thenV is
introduced in the second set of iterations, using the first
as seed~gradual turn on!. The ground-state energy is lowe
in the latter situation. The alternating occupancy in t
ground state can be understood by looking at the largV
limit when one might expect the fermions to segregate
alternating sitesu•••1010•••&. It is the boundary conditions
that will determine the modulation phase. ForN5151, one
would expectu101•••101& to be the stablest situation, wit
u j50, and this would explain a uniform modulation and t
excitation gap. But forN5152, the chain will spontaneousl
create a kink soliton~phase shift ofp from end to end!
u101•••010&⇒u101•••001& which can then redistribute it
self and lead to a gapless excitation situation. This is fou
for the sudden turn on. However, it is also possible for
chain to generate additional kink-antikink excitations. T
results for the gradual turn on confirm this and show that
situation is more stable. Just how many kink-antikink pa
would be generated is impossible to figure out. Curiously,
DMRG seems unable to yield an unambiguous ground s
whenN52Nf for open boundary conditions. We believe th
occurs because of the combination of smallNB and funda-
mental degeneracy of the two configuratio
u101•••010&;u010•••101&. With sudden turn on, the block
are built gradually from information which starts to be tru
cated at relatively small chain lengths,N'2 ln(NB)/ln(2)12
'14 in our case, and with reduced effectiveness becaus
the degeneracy~a form of frustration! which dilutes the in-
formation. For gradual turn on, however, the chain is f
length at startup~finite chain algorithm! and one block is
very long but contains information gathered at smaller int
actions. This inherited information is probably quite diffe
ent, due to initiation at smaller interaction and ensuing tr
cations, from the situation where the blocks grow with f
interaction using the infinite chain algorithm.

The single-chain Hamiltonian we have just been study
is akin to theXXZ problem for a spin-1/2 chain.23 This spin

FIG. 1. Superblock excitation energy for a half filled chain
spinless fermions with nearest-neighbor interaction strengthV using
NB542. The number of sitesN is 151~circles! and 152~triangles!.
The number of fermions isNf576.
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Hamiltonian can be transformed, using the Wigner-Jord
transformation, into our problem withJz5V andJx5Jy52
except for end terms12 V(n11nN), involving the first and last
sites, that occur for open boundary conditions. TheXXZ
chain is known to develop a gap forJz.Jx , that is, forV
.2. For N52Nf , the ground state is degenerat
u101•••010& andu010•••101&, has no soliton because of th
end site repulsion and has a gap. It is the pressure applie
the fermions by the end terms that insures the correct e
tation energy and a uniform modulation amplitude in th
situation. In the case of a chain withN52Nf21, it is the
shorter length that adds extra pressure to the fermions
similarly leads to a properly gapped situation.

In view of this dichotomy with respect to occupation ne
half filling, it is legitimate to ask if this sensitivity persist
near quarter filling. To this end, we did a limited incursio
with gradual turn onat V56,Nf538,N5149,150,152, and
for first neighbor (r 51), second neighbor (r 51,2), and
third neighbor (r 51,2,3) interactions. The ground-state e
ergy per fermion for a given interaction range decrea
slightly with N. The effective constraining ‘‘pressure’’ whe
N54Nf2m(m51,2,3) can explain this. The superblock e
citation energyEx remains small going from 0.046 to 0.11 a
the range increases and is insensitive toN. Judging from Fig.
1, this is not a significant gap and is due to the finite len
of the chains. Figure 2 shows the excitation energy a
function of the inverse of the chain length for a thir
neighbor interaction strengthV56 and NB542. The ex-
trapolated gap forN→` is indeed negligibly small. There is
however, a variation of the modulation of the site occupan
of the form nj5n̄1Amcos(pj/22u j ). Indeed, forN5152,
we findu j5(3p j )/(2N). This situation is the generalizatio
of the one seen above for half filling and gradual turn
condition, the quantum of phase shift beingp/2 instead ofp.
What thisu j means is that the Fermi momentum is dow
ward shifted from its exact quarter filled valuekF5(p/4)
3(123/N) due to fermions being pushed to the ends. T
question spontaneously arises as to any possible detrim
effect of such modulation on the correlation functions. W
shall answer this in the following subsection.

FIG. 2. Superblock excitation energy for a quarter filled chain
spinless fermions with third-neighbor interaction strengthV56 as a
function of the reciprocal of the chain length forNB542.
1-3
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B. Data processing

We have just found that a modulation in the site occ
pancy results from the open boundary conditions which
fermions at the end site and lead to a broken symmetry s
This modulation obviously makes it nontrivial to get occ
pancies~the n̄) or correlation functions resembling those f
periodic boundary conditions or an infinite chain. Taking t
occupancy as an example, for the quarter filled situation
can be seen that the modulated partAmcos(pj/22u j ) can be
made less annoying by averaging over the natural four
cycle. Indeed, if we define, for instance,n̄ j5

1
4 ( i 50

3 nj 1 i5n̄
2Am@cos(pj/22u j )1sin(pj/22u j )#(3p/4N), one immedi-
ately sees that the modulation is reduced by a factor of o
N21. A second averaging,n̄ j5(1/16)( i 50

3 (m50
3 nj 1 i 1m ,

would further reduce it by anotherN21. One can thus, in
principle, remove the effect of the modulation for lon
chains, thus another reason for choosing long chain leng

But, unfortunately, the open boundary conditions produ
yet another deformation. The smoothed quantities, liken̄, are
not global quantities but rather local ones. They vary alo
the chain, the more so the closer a site is to the ends. We
illustrate this by looking at the profile of the single-fermio
transfer functionC1( j ,r ) defined in Eq.~2! using double
averaging,N5152,V56, andNB542. The plots are for 1
< j <(N2r )/2 since the results are symmetrical about t
last value. Figure 3 shows this function forr 51, 19, 54, nor-
malized toC1@(N2r )/2,r #. The healing distance increase
with r and is at the scale ofr. It is quite obvious that the end
can have dramatic effects at the larger values ofr. This sug-
gests using optimal positioning atj 5(N2r )/2.

But are double averaging and optimal positioning su
cient to obtain results close to the thermodynamic limit? C
double averaging introduce distortions? We can check this
extracting the power-law exponent of the intersite trans
function C1(r )5C1@(N2r )/2,r # and of the two-point cor-
relation functionC2(r )5C2@(N2r )/2,r #, where

FIG. 3. Doubly averaged single-fermion transfer function fo
quarter filled chain normalized to its value at the maximum a
function of the site of originj. The plots stop atj 5(N2r )/2. We
have chosenN5152,NB542,V56, and three different transfe
distances~see legend!.
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C2~ j ,r !5Š~nj 1r2^nj 1r&!~nj2^nj&!‹, ~4!

for noninteracting spinless fermions. This latter functi
measures the correlation between occupancy~proportional to
charge! fluctuations on sitej and (j 1r ). It also has the ad-
vantage of getting at the true fluctuation correlations in
broken symmetry state. Exact solutions are available for f
spinless fermions:

C1~r !5E
2kF

kF
cos~kr !5

n̄ sin~kF r !

kF r
, ~5!

corresponding toa50 in Eq. ~2!,

C2~r !52C1~r !2. ~6!

Here kF is the Fermi momentum. We performed a DMR
calculation for a chain havingN5152,V50, andNB542.
The truncation error was less than 1028. The fit to Eq.~5! is
excellent, with a root-mean-square error less than 1% on
modulation amplitude, forr &60. We find a520.007 for
C1 instead of the exact value of zero. Our suggested pro
dure thus has an absolute error of order 0.007 attached to
exponenta. We also verify Eq.~6! up to r'40. This is quite
satisfactory and justifies our use of double averaging
optimal positioning.

In order to do similarly for an interacting fermion gas, on
needs to have an analytic function with which to fit the da
for C1(r ). From the known form of the single-particl
Green’s function of a Luttinger liquid,5,9 this function would
read as

C1~r !5S n̄ sin~kF r !

kF r
D S 1

11~r /L!2D a/2

. ~7!

This form was obtained from Bosonization andL is a char-
acteristic cutoff parameter. It has, however, to be modified
account for the DMRG procedure. Using relatively sm
values ofNB introduces a numerical coherence lengthj in
intersite averages. This is due to increasing numerical in
mation loss between the center sites and the block sites
are farther away~nearer the ends! resulting from truncated
block information at each step in the DMRG procedure.
can be observed in Tables I and II as well as in Fig. 7,
superblock excitation energy~gap! increases with decreasin
NB thus leading to an expected decrease in coherence len
Numerical coherence is in this sense analogous to ther
coherence. We thus propose the substitution6,24 r
→jsinh(r/j) and the following form:

C1~r !

5S n̄ sin~kF r !

kF jsinh~r /j!
D S 1

11@jsinh~r /j!/L#2D a/2

. ~8!

We calculated C1(r ) for a chain having N5152,V
51,2•••6, andNB542. The truncation error was again le
than 1028. The fitted parameters, in the range 1<r<100, are
in Table I, along with theV50 results using the same fittin
procedure. We had to impose an arbitraryl51.0 value at

a

1-4
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POWER LAWS IN A TWO-LEG LADDER OF . . . PHYSICAL REVIEW B 66, 045101 ~2002!
V50 since the fitting procedure to Eq.~8! would lead tol
5`. It is seen thatkF;(p/4)(123/N) as expected. The
power-law exponentsa are nearly those found by Cappo
et al.,12 which used a totally different method of calculatio
although they seem systematically larger by 5–8%. The
solute error estimate ona from the exactV50 situation is
60.02. The coherence lengths are satisfactorily quite la
giving added credibility to our fitting function. The Pearso
correlation coefficient26 betweenj and Ex

21 for V>1 is
0.986 indicating that the two parameters are strongly co
lated. Finally, the cutoffL is of order 1, the lattice paramete
as one would expect for fermions on a lattice. It can thus
concluded that the fitting function, Eq.~8!, is quite satisfac-
tory, with an error margin of order 5%, considering the lar
number of adjustable parameters. The thermodynamic l
is thus recovered albeit slightly handicapped by a numer
coherence lengthj.

Now, let us focus on the 2kF charge-density fluctuation
response functionC2(r ) defined earlier. As it turns out, ther
are many wave numbers contributing to two-fermion Gree
functions.5,9 One expectsq50 and 4kF contributions aside
from the sought 2kF correlations. How can one isolate th
latter? We observed thatC2(r ) has a fast oscillating par
Bf(r ) and a slow modulation amplitudeAs(r ), such that
C2(r )'As(r )Bf(r ). What we did was to exponentiate th
dataC2(r )exp$2ln@uAs(r)u#%, do a fast Fourier transform, re
move the unwanted contributions, and unexponentiate b
the remaining 2kF contribution. For spinless fermions, th

TABLE I. Various parameters calculated for a quarter fill
chain at different values ofV, for N5152 andNB542. K is de-
duced froma.

V Ex kF a K j L Kc dc

0 0.031 0.79 20.017 1.00a `b 1.0c 0.98 `b

1 0.049 0.78 0.106 0.63 81 1.5 0.67 10
2 0.064 0.78 0.27 0.49 76 1.2 0.52 87
3 0.076 0.78 0.49 0.39 65 1.2 0.42 69
4 0.088 0.78 0.76 0.31 59 1.3 0.35 59
5 0.101 0.77 1.08 0.25 53 1.4 0.29 53
6 0.114 0.77 1.50 0.21 47 1.5 0.20 43

aExact value.
bLarger than the chain length.
cImposed.

TABLE II. Various parameters calculated for a quarter fille
chain at different values ofV, for N5152 andNB510.

V Ex a j Kc jc dc

0 0.12 20.003 28 0.94 40 41
1 0.20 0.10 19 0.65 30 22
2 0.23 0.26 15 0.50 31 19
3 0.24 0.48 16 0.41 35 22
4 0.26 0.75 17 0.33 34 21
5 0.27 1.10 17 0.26 32 21
6 0.29 1.50 15 0.21 32 21
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occupation correlation function at 2kF behaves liker 22K

whereK is the stiffness defined in Eq.~3!. The 2kF filtered
data could best be fit by the analytical form

C2~r !5C cos~2kF r 1wc!r
22 Kcexp~2r /dc!, ~9!

which has a coherence lengthdc that is related to the exci
tation gap in a finite chain. The resulting power-law exp
nent and coherence length are also shown in Table I.Kc is
within 5% of the calculated values ofK obtained by invert-
ing Eq. ~3!. dc seems closely correlated toj and both to
Ex

21 . The Pearson correlation coefficient betweendc and j
for V>1 is 0.995 and 0.984 betweendc andEx

21 . The two
coherence lengthsj anddc enter the fitting functions of Eqs
~8! and~9! in quite different ways. This probably stems fro
the different role the block statesucB& play in matrix element
storage, off diagonal with respect to total block occupat
NB in single-fermion functionŝcB(N1

B)ucj ucB(N2
B)& but di-

agonal for the occupation correlations^cB(N1
B)unj ucB(N1

B)&.
One last comment concerns theq50 occupation correla-
tions. We found no evidence for this contribution in our da
possibly because of the specific quantity we chose to ca
late in Eq.~4!.

We wish to point out an interesting observation we ma
on the raw~unaveraged! occupationnj near the ends. We ca
fit the occupation by the relation

nj'n̄1n0cos~2kF j 1f!~ j !2Kc, ~10!

wheren̄50.25 and 0.25&n0&0.4. A similar observation has
recently been reported in Ref. 25. The broken symmetry s
resulting from the pinning at the chain ends forces the lo
occupancy variation̂dnj&, wherednj5nj2n̄, to be equal to
the root-mean-square fluctuationA^dn0dnj&.

We wish to end this subsection by examining the situat
for NB510. Why such a small number of block states? W
have already stated that our calculations were made w
NB<128. This is at the limit of our computational capabi
ties. If the chains were independent, this would be equiva
to having some ten block states per chain, which is not la
indeed. At such small values ofNB , we had to introduce
another coherence lengthjc for the occupation correlations

C2~r !5C cos~2kF r 1wc!

3@jcsinh~r /jc!#
22 Kcexp~2r /dc!. ~11!

We used a fitting procedure which weighed more heavily
data forr &j so as to be able to recover key parameters w
values close to those atNB542. Truncation errors run typi-
cally at the level of a few times 1025. This is considerably
larger than forNB542. Table II gives some of the param
eters of the fit. We have used the values ofL of Table I. a
andKc compare favorably. The superblock excitation ene
has appreciably increased and the coherence length
shortened. They are rather featureless, a signature of
small number of block states. Note thatjc;dc is somewhat
‘‘elastic’’ in the sense that its value can drift significant
without marked effect~within the 5% error bar! on the fit.
1-5
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V. COUPLED CHAINS

Now that we have acquired sufficient experience and c
fidence in data management, we can tackle the study of
coupled chains. One final observation is warranted.
found that convergence of our DMRG algorithm could on
be achieved relatively quickly for an odd number of fermio
Nf5(2Nf 011). This can be understood in view of our di
cussion in Sec. IV A. First of all, fermions are pushed to t
ends by the Coulomb repulsion. The fermion occupancies
both chains thus start site synchronized at the ends. Sec
the transverse hopping favors out of phase occupancie
the chains. Figure 4 illustrates this. It shows the on-site
cupation (̂ nj ,1&1^nj ,2&) and polarization (̂nj ,1&2^nj ,2&)
that is typical of the broken-symmetry ground state. T
largerV is, the more pronounced the out of phase chara
~polarization! is and the larger the 4kF charge component
This behavior can be achieved more easily in a state in wh
one chain has one extra fermion. The chain with (Nf 011)
fermions is more compressed and cannot easily sustain
tons. But then, the chain withNf 0 fermions can easily ac
commodate a kink-antikink pair which then allows the inn
part of this chain to be out of phase with the ends and w
the other chain. Broken symmetry states also have the ad
tage of focusing the computational resources to a single n
degenerate state instead of splitting them between degen
states thus decreasing the numerical coherence length
have thus chosen to do our calculations forN5150. Our
truncation error varies from 531025 for NB542 to 5
31026 for the larger valuesNB5128. We have kept theL
values of the single chain. We shall first look at sing
fermion behavior and then at some two-fermion correlat
functions.

A. Single-fermion transfer function

The perturbative renormalization-group formulation
Ref. 3 presented a unified description of the renormaliza

FIG. 4. On-site occupation~full line, 1 sign! and polarization
~dotted line,2 sign! in typical broken symmetry states atV52,6
and for t'50.5,N5150,NB596.
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of t' and the generation of interchain couplings in quasi-
solids. Although the basic elements are present, the treatm
is perturbative and subject to caution for large interactio
The Bosonization approaches have the potential to do be
in this respect since the single-chain interacting spinless
mion problem has an exact solution.

Let us then examine the predictions of Bosonizatio
There are two key treatments which look at our Hamilton
from two different perspectives. Nersesyan, Luther, a
Kusmartsev15 ~NLK ! Bosonize the chain fermion operato
cj ,b , whereas Yoshioka and Suzumura14 ~YS! do so with the
band operators

cj ,s5~cj ,11scj ,2!/A2. ~12!

Heres561 is the band index. One hask'5(12s)(p/2).
The procedure yields two separated sectors, polarization
occupation, that, by analogy to a chain of spins1

2 in a mag-
netic field}t' , are sometimes labeled spin and charge.

In Ref. 15, there is spin-charge separation and the C
lomb interaction is absorbed within the stiffnessesKc and
Ks . Here Kc has the same value as for a single chain.t'
appears in the polarization sector and acts as the generat
interchain two-fermion couplingsG andG̃ corresponding to
particle-hole and particle-particle pair hopping. Th
renormalization-group~RG! equations forG readsG852(1
2Ks)G1(Ks2K̃s)t

2 ,where t5ut'u L/(2pus),us is the
polarization excitation velocity,K̃s51/Ks , and the prime in-
dicates the derivative with respect to l
5 ln@max(v/E0,T/E0,vFk/E0)# whereE0 is the starting energy
scale. This is discussed in Refs. 1 and 3. The equation foG̃

is obtained by the substitutionK̃s�Ks . Note thatG( l 50)
5G̃(0)50. This RG equation is different from
Yakovenko’s16 whoset2 term is larger by a factor 8p2. This
does not change the qualitative behavior of the equatio
only the numbers. Furthermore, it is more in line with t
coefficients of the RG equations in Ref. 3. The RG a
renormalizest' ,t85(22Ds)t where Ds5

1
2 (Ks1K̃s), and

Ks is governed by (lnKs)85
1
2(K̃s

2G̃22KsG
2). Note that one

hasKs( l 50)5Kc . There are additional contributions of o
der t2 to this last equation,3 a fact acknowledged by Ners
esyanet al.,15 but which will remain unexplored by us. Whe
G reaches strong coupling (G;1) then a gap opens in th
polarization sector and only the occupation sector contribu
to power laws.

In Ref. 14, there is also spin-charge separation for sm
t' . But the authors point out that this is no longer true f
large transverse hopping, when the Fermi velocities for
two bands are appreciably different. This should be kep
mind as our values oft'>0.1 should qualify. The occupatio
sector behaves essentially as in Ref. 15, withh[Kc . The
polarization sector, however, transforms the Coulomb in
action into two interband couplingsg2f1 andg2f2 such that
the polarization stiffnesshf51 at l 50. This dichotomy be-
tween polarization and occupation sectors is satisfactory
small V. The RG equations~when corrected for typographi
cal errors! yield solutions qualitatively similar to Ref. 15 fo
t'( l ). But it rapidly becomes annoying at large interactio
1-6
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POWER LAWS IN A TWO-LEG LADDER OF . . . PHYSICAL REVIEW B 66, 045101 ~2002!
since the polarization sector quickly, too quickly, goes
strong coupling wheng2f1 or g2f2;1 and develops a gap
It then appears that the NLK approach should do better
fore the single-fermion dimensionality crossover and YS
ter the crossover, when bands have formed.

Let us now focus on the predictions of these models
the transverse hopping as a function of length scalex( l )
5exp(l). We first start with NLK atl 50. The RG equations
will switch to YS once the dimensionality crossover
reached, whent( l x);(2p)21, via the mapping proposed i
NLK. We have chosen this value as it produces crossove
scales comparable with the ones of Bourbonnais3 and
Yoshioka and Suzumura.14 With this choice, the renormal
ized transverse hopping,

t'~ l !5~2pus /L!t~ l !exp~2 l !'2pvFt~ l !/x~ l !,

leads to a dimensionality crossover at

t'~ l x!5~2pus /L!t~ l x!exp~2 l x!'vFexp~2 l x!5vF /x~ l x!,
~13!

in which we have setL51 andus5vF . This is the result of
Bourbonnais for the crossover. Figure 5~a! shows the results
for the renormalized transverse hoppingt'( l ) at both inter-
mediate (V52) and strong (V56) Coulomb interactions
This was obtained using theKs5K values in Table I atl
50. On the one hand, theV52 results are typical of smallV
and larget' and clearly show the dimensionality crossov
The ‘‘ladder’’ diagram is typical of this crossover regim
The renormalized hopping after the crossover satisfies
relation

@ t'~ l x!/t'#}~ t'!a/(12a) ~14!

as proposed by Bourbonnais and verified by Capponi. On
other hand, theV56 curves for differentt' all superimpose,
a signature of the confined regime (a.1).

FIG. 5. Transverse hopping as a function of the length sc
normalized to the bare value for various situations atN5150,NB

596. The curves forV52 are for 0.5>t'>0.1 from top to bottom.
~a! NLK bosonization results. TheV56 curves are for all values o
t' . ~b! DMRG results. TheV56 curves are for 0.5>t'>0.2, from
top to bottom, respectively. The stars are set at the values of
coherence lengthj.
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The DMRG calculations we now present were taken
NB596. The following band transfer functions were calc
lated:

C1~r ,s!5C1@~N2r !/2,r ,s#, ~15!

whereC1( j ,r ,s)5^cj 1r ,s
† cj ,s&. Each of these twoC1(r ,s)

was fitted with Eq.~8!. The fit could only be made by allow
ing thekF(r ,s) which characterize the bandss to vary as a
function of r, a situation not seen in single chains. This
how the renormalization of the transverse hopping manife
itself most directly. We could then calculate the renormaliz
transverse hopping from

t'~r !'@kF~r ,s51!2kF~r ,s521!#/vF . ~16!

The results for this last quantity are reproduced in Fig. 5~b!.
The four upper curves forV52 clearly show the ‘‘ladder’’
characteristic of the crossover situation. This crossover, fr
Eq. ~13!, is approximately atr x'vF /t'(r x) which has been
reached before the coherence length is reached fort'>0.2.
The renormalized transverse hopping is also rather flat
r .r x . This is not the case for thet'50.1 curve which has a
‘‘drooping’’ ~negative slope! characteristic. This intermediat
value ofV has this nice property of showing both the cros
over and its absence due to numerical coherence. Moreo
the predicted renormalization law of Eq.~14! gives a value
a;0.26 for the top four curves, a value in excellent agre
ment with the single chain one. This is somewhat accide
as the same analysis performed on theV51 data for 0.2
<t'<0.5 yields a value ofa;0.14, somewhat larger that it
value in a single chain. The problem, if there is one, may
with Eq. ~16! which does not account for the change
Fermi velocity that occurs when the values ofk'50,p are
appreciably different~large t') or due to renormalization
One must bear in mind that the DMRG is on a lattice and
fermion energy is far from the linear dispersion of the R
Nonuniversal band-edge effects~pre-RG! might be consider-
able and this might explain the discrepancy at the siza
values oft' we have used. We find no clear evidence fo
crossover atV>3 asj,r x and thet'(r ) curves do not flat-
ten out atr x .

TheV56 curves are bunched together and show confi
ment. This is in qualitative agreement with Bosonizatio
Our results indicate that the coherence length sets the s
for the evolution of the transfer function. Further evolutio
such as crossovers, are blocked at distances beyondj. The
splitting, albeit small, of the differentV56 curves is caused
by just this effect. The coherence lengths are shorter for
larger values oft' thus leading to larger, that is less reno
malized, values oft'( l ).

It is important to understand the connection betwe
t'(r ) and t'( l ). t'(r ) can be viewed, from Ref. 3, as a
average over all momentum scalesk&kr[2p/r . It is thus an
average oft'( l ) over l & ln(vFkr /E0). Thus clearlyt'(r 50)
5t'( l )Þt'( l 50). That is whyt'(r 50) is larger thant'(r )
yet smaller than the bare valuet' .

Figure 6~a! shows the fitted values fora for both k'

50,p. They are surprisingly nearly independent oft' or of
the existence or not of a dimensionality crossover. This is

le
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L.G. CARON AND C. BOURBONNAIS PHYSICAL REVIEW B66, 045101 ~2002!
expected from Bosonization which would predict a variati
of Ks( l ) and thus ofa. This is perhaps a consequence of t
absence of true spin-charge separation. Yoshioka and
zumura also predict a change in exponent at the crosso
Figure 6~b! shows the average numerical coherence leng
for k'50,p. The coherence lengths monotonically decre
at constantV as t' increases. Curiously,j is smallest atV
52,3. We will come back to this in the next subsection.

Quite obviously, it would be futile to study the scalin
behavior of these quantities with the chain length sincej is
much shorter. But it would be possible to study the scal
with (NB)21 which acts like a temperature. In an attempt
better understand our results, we thus repeated the cal
tions at other values ofNB . Figure 7 shows the scaling be
havior of the superblock excitation energy and the recipro
of the coherence length forV52. The gap is seen to extrapo
late, asNB→`, to small values ofEx compatible withN
5150. There is thus no indication of an energy gap. Butj21

FIG. 6. Fitted values for the DMRG transfer function at diffe
ent transverse hopping and Coulomb interaction strengths aN
5150,NB596. ~a! Power-law exponent results. The downwa
pointing triangles are fork'5p while the upward pointing ones ar
for k'50. ~b! Mean values of the numerical coherence length.

FIG. 7. Superblock excitation energyEx ~full symbols! and in-
verse coherence lengthj21 ~empty symbols! as a function ofNB

21

for V52 andN5150. The curves are for 0.5>t'>0.1 from bottom
to top, forEx , and top to bottom forj21.
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no longer correlates well withEx in contrast to results for
single chains. As a matter of fact, the extrapolated va
increases quasilinearly witht' . The same behavior is foun
for all valuesV>1. Figure 8 shows theNB→` extrapolated
inverse coherence lengths forV52 andV56 as well as the
reciprocal of the threshold values to strong coupling com
from numerical solutions of the Bosonization equations.
see there is a tight correlation between Bosonization
DMRG behaviors witht' , though the length scales are di
ferent, in both situations with or without a crossover. Th
suggests the coherence lengths are affected by the onco
strong-coupling regime at which our fitting formula, Eq.~8!,
would no longer be valid.

B. Two-particle correlations

Following Eq. ~4!, we define the on-site occupatio
(n51) and polarization (n52) correlation functions
C2(r ,n)5C2@(N2r )/2,r ,n#, where

C2~ j ,r ,n!5Š~nn, j 1r2^nn, j 1r&!~nn, j2^nn, j&!‹, ~17!

and

n6, j5nj ,16 nj ,2 . ~18!

What should we expect for the power-law exponents,

C2~r ,n!}r 2Kn, ~19!

characterizing these correlation functions? It is quite cl
that as t'→0, the chains become independent and o
should haveKn5Kc1Ks52Kc . This is consistent with
NLK. From the band perspective, the approach of YK p
dicts K15(h1hf) and K25(h11/hf) when there is no
gap. Sincehf.1 for repulsive interactions, one should e
pectK1.K2 .

FIG. 8. Inverse coherence length extrapolated to an infin
number of block states atN5150, circles, and reciprocal of th
thresholds to strong coupling calculated from the Bosonizat
equations, squares, as a function of the transverse hopping.
results for V52, full symbols, andV56, empty symbols, are
shown.
1-8
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POWER LAWS IN A TWO-LEG LADDER OF . . . PHYSICAL REVIEW B 66, 045101 ~2002!
We have calculated these correlation functions and t
fitting them to forms reminiscent of Eq.~11!. The polariza-
tion correlation function behaves nicely and can be fit
with

C2~r ,2 !5C2cos@~kF~r ,1!1kF~r ,21!#r 1w2!

3@j2sinh~r /j2!#2K2exp~2r /d2! ~20!

using the filtering procedure explained in the data proces
of single-chain correlations. The exponentsK2 are essen-
tially those of the occupation correlations of single chains
witnessed in Fig. 9. Again, this is unexpected. It is as ifh
11/hf) or (Kc1Ks) remained nearly constant. This beha
ior is like the one observed for the single-particle expon
a. This points to the breakdown of spin-charge separation
a highly nonlinear dispersion. As forj2 and d2 , we find
they are generally larger thanj, sometimes by a sizable fac
tor, and also fairly ‘‘elastic’’ as observed for single chains

The occupation correlation function proved a bit mo
subtle to fit. The occupation correlations generally decre
much faster than the polarization correlations. They rapi
become quite noisy when they reach the limits set by
truncation error. This can easily be monitored on a logar
mic plot of the amplitude ofC2(r ,1) as a function ofr.
There is a sudden break in the general linearlike decre
The range of values in which a function having an amplitu
of the type proposed in Eq.~20! can be appropriate is ofte
limited to r &30 when the coherence lengths are small.
have extended our calculations toNB5128 for a few cases a
a check of the sturdiness of our calculations. It is mostlyj2

that is affected by a noticeable increase. Curve fitting w
many parameters can thus become delicate and leads to
uncertainties which we estimate at 10% forK1 . We found
that we could fitC2(r ,1) with a form equivalent to Eq.~20!
with n51 instead ofn52 for all casesV>3. The fast
Fourier transform reveals only one broad ‘‘2kF’’ wave num-
ber.K1 is always of the same size or a bit larger thanK2 in
this chainlike regime as can be seen in Fig. 9. For th
situationsV<2, the fast Fourier analysis reveals two wa
numbers associated with 2kF(r ,1) and 2kF(r ,21). We
sometimes fitted the most prominent wave number or so

FIG. 9. Power-law exponents for occupation, circles, and po
ization, boxes, for various values ofV and t' and N5150. Most
calculations are for NB596 while NB5128 for (V,t')
5(1,0.1),(1,0.2),(1,0.5),(3,0.5),(6,0.2).
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times both, when the separation was not big enough, wi
form that combines contributions of both bands@see Eq.
~12!#,

C2~r ,1 !5(
s

C1,scos@2kF~r ,s! r 1w1,s#

3@j1sinh~r /j1!#2K1exp~2r /d1!. ~21!

As can bee seen from Fig. 9,K1 is appreciably larger than
K2 in the low V regime. We foundj1 andd1 to be some-
what smaller thanj and still ‘‘elastic.’’ It is quite apparent
from Fig. 9 that there is a discontinuity inK1 going from
V52 to V53, with values dropping from 2 to 1. This be
havior is, we believe, intrinsic to the coupled chains and
not a result of short coherence lengths since these are o
same size forV52,3. It indicates a crossover from a singl
fermion dominated behavior, when the occupation fluct
tions are propagated through independent bandlike par
and hole motion showing two wave numbers in the occu
tion response function, to a pair behavior, when the fluct
tions are carried by particle-hole pairs having chainlike ch
acter sharing a common wave number. Such a crossover
deduced by Capponi12 in the same range of values ofV. In
this crossover region, there is fierce competition betwe
single-fermion behavior and coherent pair motion. The co
puter resources are shared between the two competing
haviors and this explains the shorter coherence lengths in
crossover region. In spite of the domination of the pair m
tion, the transverse hopping is not necessarily confined
Fig. 10 shows. There are no clear crossovers at the largert' ,
using the criteria discussed in the previous subsection,
the hopping is considerable and decreases only slowly w
distance. There may well be coexistence between cohe
interchain pairing and some sort of interband single-part
behavior before the strong-coupling limit is reached, a p
sibility raised by NLK.

It should finally be mentioned that, as was described
Sec. IV B for single chains, we find a broken symmetry st

r-

FIG. 10. Transverse hopping as a function of the length sc
normalized to the bare value forV53 ~full lines! andV54 ~dotted
lines! at N5150 andNB596. The curves are for 0.5>t'>0.2 from
top to bottom.
1-9
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L.G. CARON AND C. BOURBONNAIS PHYSICAL REVIEW B66, 045101 ~2002!
in which the total on-site occupancy variation^dn1, j& is pro-
portional to the square root of the occupation correlat
amplitude@j1sinh(j/j1)#2K1/2exp(2j/2d1) near the ends.

VI. SUMMARY

Let us now sum up the more important findings on t
quarter filled double-chain problem. Our working hypothe
is that the fitting functions and the data treatment we h
used for the analysis of one- and two-particle functio
which were validated for single chains, can safely be carr
over to two coupled chains.

~i! The central result, which motivated this whole study,
the confirmation of strong renormalization of the intercha
hopping in the presence of the Coulomb interactionV. This
was measured by monitoring the difference in the Fermi m
mentum of the two bands beyond the dimensionality cro
over. The extent of the renormalization is much stronger t
expected from the RG or Bosonization at smallV. It is con-
siderable at the largerV. It is most likely going to zero as can
be concluded by observing the trend int'(r )/t' which de-
creases witht' . The proposed crossover law, Eq.~14!, was
seen to be only approximately valid when the crossover
ists. It is probably our definition, Eq.~16!, and band-edge
effects that are responsible.
ly

,

X

,
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~ii ! The single-fermion transfer function power-law exp
nenta and the polarization correlation function exponentK2

were seen to be essentially those of the single chain. Th
interpreted as a sign of possible violation of spin-cha
separation.

~iii ! The occupation correlation function shows superp
sition of two wave numbers and has an exponentK1 that is
twice as large as the one for polarization forV<2. This
indicates the existence of a crossover from independ
particle-hole motion to correlated pair motion betweenV
52 andV53.

~iv! The superblock excitation energy, when extrapola
to NB→`, is as expected for a finite system of 150 sites. T
coupled chains thus remain gapless. There are also ind
tions, in the same limit, of possible strong-coupling regim
as inferred from the linearliket' dependence of the extrapo
lated inverse coherence lengths, much in the same way
Bosonization predicts.

The rather short numerical coherence lengths we have
countered with the DMRG, although expected from the stu
on single-chains, did put some stress on the curve fit
procedures. This resulted in fairly large errors in o
exponents.
i,

A

ys.

n
l,

of
e-
*Electronic address: caron@physique.usherb.ca
†Electronic address: cbourbon@physique.usherb.ca
1J. Solyom, Adv. Phys.28, 201 ~1979!.
2Y.A. Firsov, Y.N. Prigodin, and C. Seidel, Phys. Rep.126, 245

~1985!.
3C. Bourbonnais and L.G. Caron, Int. J. Mod. Phys. B5, 1033

~1991!.
4C. Bourbonnais, inLes Houches, Session LVI (1991), Strong

Interacting Fermions and High-Tc Superconductivity, edited by
B. Doucot and J. Zinn-Justin~Elsevier Science, Amsterdam
1995!, p. 307.

5J. Voit, Rep. Prog. Phys.58, 977 ~1995!.
6V.J. Emery, inHighly Conducting One-Dimensional Solids, edited

by J.T. Devreese, R.E. Evrard, and V.E. van Doren~Plenum,
New York, 1979!, p. 247.

7S. Brazovskii and Y. Yakovenko, Sov. Phys. JETP62, 1340
~1985!.

8H.J. Schulz, inProceedings of Les Houches Summer School L,
edited by E. Akkermans, G. Montambaux, J. Pichard, and
Zinn-Justin~Elsevier, Amsterdam, 1995!, p. 533.

9H.J. Schulz, G. Cuniberti, and P. Pieri, inField Theories for Low-
dimensional Condensed Matter Systems, edited by G. Morandi,
P. Sodano, A. Tagliacozzo, and V. Tognetti~Springer, New York,
2000!.

10C. Bourbonnais and D. Je´rome, inAdvances in Synthetic Metals
Twenty Years of Progress in Science and Technology, edited by
P. Bernier, S. Lefrant, and G. Bidan~Elsevier, New York, 1999!,
I
J.

pp. 206–261.
11S. Biermann, A. Georges, A. Lichtenstein, and T. Giamarch

Phys. Rev. Lett.87, 276405~2001!.
12S. Capponi, D. Poilblanc, and E. Arrigoni, Phys. Rev. B57, 6360

~1998!.
13M. Fabrizio, Phys. Rev. B48, 15 838~1993!.
14H. Yoshioka and Y. Suzumura, J. Phys. Soc. Jpn.64, 3811~1995!.
15A.A. Nersesyan, A. Luther, and F.V. Kusmartsev, Phys. Lett.

176, 363 ~1993!.
16V.M. Yakovenko, JETP Lett.56, 510 ~1992!.
17P. Donohue, M. Tsuchiizu, T. Giamarchi, and Y. Suzumura, Ph

Rev. B63, 045121~2001!.
18S.R. White and R.M. Noack, Phys. Rev. Lett.68, 3487~1992!.
19S.R. White, Phys. Rev. Lett.69, 2863~1992!.
20S.R. White, Phys. Rev. B48, 10 345~1993!.
21Density-Matrix Renormalization: a New Numerical Method i

Physics, Lecture Notes in Physics, Vol. 528, edited by I.Pesche
X. Wang, M. Kaulke, and K. Hallberg,~Springer, Heidelberg,
1999!.

22K. Yonemitsu, Synth. Met.120, 845 ~2001!.
23F.D.M. Haldane, Phys. Rev. Lett.45, 1358~1980!.
24H. Frahm and V.E. Korepin, Phys. Rev. B42, 10 553~1990!.
25S.R. White, I. Affleck, and D.J. Scalapino, Phys. Rev. B65,

165122~2002!.
26The Pearson correlation coefficient is equal to the covariance

the two variables divided by the products of their standard d
viations.
1-10


