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Variational and nonvariational principles in quantum transport calculations
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A variational principle is not generally satisfied in steady-state quantum transport as opposed to the case of
ground-state problems. We show that for a short-range potential, a functional for the scattering amplitude can
be introduced that is stationary for arbitrary variations about the exact scattering wave function. However,
except for the special case of spherically symmetric potentials, the functional does not satisfy any minimum
principle even in linear response and for single-channel scattering. The absence of a minimum principle puts
severe limitations on the choice of trial wave functions in transport calculations. Examples of electronic
transport in selected quantum wires will be presented to illustrate the problem.
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The variational method is a powerful tool to estimate t
ground-state energy of a particle with HamiltonianH.1 The
method relies on the use of a trial wave functionx ~or a
family of trial wave functions! which reproduces as closel
as possible the actual ground-state wave functioncGS. The
functional

E@x#5
^xuHux&

^xux&
~1!

has then the property that

E@x#>EGS5^cGSuHucGS&. ~2!

If the trial wave functionx depends on certain paramete
then due to Eq.~2!, the best estimate for the ground-sta
wave function and consequently the ground-state energy
be obtained by minimizing the functional@Eq. ~1!# with re-
spect to these parameters. Total-energy calculations
condensed-matter physics, for instance, are based on su
principle.2 The families of trial wave functions used in actu
calculations vary from linear combinations of atomic orbita
to plane waves, and the choice of one family with respec
another depends mainly on numerical convenience.2 In all
choices, however, confidence in the convergence of the
sults with respect to the best estimate of the ground-s
wave function is guaranteed by the existence of the va
tional principle@Eq. ~2!#.

Electronic transport in a given sample connected to ex
nal reservoirs is neither an equilibrium nor a ground-st
problem. The physical observable that one needs to calcu
in this case is the electric current across the sample. In g
eral, therefore, one should not expect to have a minim
principle from which the best estimate of thescattering am-
plitudes can be obtained. Note that the absence of suc
principle puts severe limitations on the choice of trial wa
functions in transport calculations since a minimum princi
is necessary to uniquely determine the best estimate fro
family of trial wave functions.3 This problem was recognize
a long time ago.4 It was demonstrated4 that a minimum prin-
ciple still applies to the scattering amplitudes for a sphe
cally symmetric potential at zero energy for the very spec
case when~i! a singles-wave channel contributes to scatte
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ing at that energy and (i i ) the potential does not suppo
bound states or, if it does, the radial part of the Hamilton
has a negative expectation value on the bound states
wave functions.4

In recent years, electric-current calculations have recei
renewed attention in view of the remarkable experimen
progress in nanoscale electronics.5 In particular, computa-
tional methods are being developed that address fundam
issues in quantum transport in nanoscale structures from
principles.6–13 These types of calculations are shedding n
light on the microscopic mechanisms of electronic transp
in nanoscale devices.9,10,12–15These methods rely on eithe
the self-consistent solution of the Lippman-Schwing
equation6–9 or the Keldish nonequilibrium Green’s functio
formalism.10–13 In the noninteracting quasiparticle approx
mation, both approaches are equivalent. In this type of
culation, the basis set used to represent the scattering-w
functions ranges, as in usual total-energy calculations, fr
localized basis functions to plane waves.6–13 The choice of
one basis set with respect to the other depends on nume
convenience. However, unlike the case of total-energy ca
lations and for the reasons described above, caution has
used in choosing a given family of trial wave functions.

In this paper we show that for any short-range potentia
functional for the scattering amplitude can be introduced t
is stationary for arbitrary variations about the exa
scattering-wave function. Except for spherically symmet
potentials, however, the functional does not satisfy any m
mum principle. In this case, the calculation of the curre
could thus show large errors if completeness of the basis
is not properly checked. We will illustrate the problem wi
selected examples of transport in quantum wires using p
waves as the basis set.

Our starting point is the integral Lippman-Schwing
equation6,7 that can be written for each scattering energy
operator notation as

uC&5uC0&1G0VuC&, ~3!

whereG0 anduC0& are the Green’s function and wave fun
tion, respectively, of the system in the absence of the s
©2002 The American Physical Society05-1
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tering potentialV. The potentialV is assumed to tend asymp
totically to zero more rapidly than 1/r .7 The wave function
uC0& satisfies usual scattering boundary conditions.7,16 We
now introduce a functional for the scattering amplitude. T
latter is proportional to3,17

f 5^C0uVuC&. ~4!

For a given energy and for single-channel scattering
current is simply proportional to the scattering amplitud
Under these conditions then, stationarity of the scatter
amplitude implies stationarity of the current. We introdu
the following functional

A@x#5
u^C0uVux&u2

^xuV2VG0Vux&
. ~5!

We first show that ifx5cC, wherec is a proportionality
constant, thenA@x#5 f , i.e., it is proportional to the exac
scattering amplitude. Indeed, the wave functionx satisfies
the Lippman-Schwinger equation3

ux&5cuC0&1G0Vux&. ~6!

The denominator of Eq. ~5! therefore reduces to
c2^C0uVuC&, which exactly cancels a factor from the n
merator to giveA@x#5 f .

We are now left to demonstrate that for any arbitra
variation ofx of the type

ux&5cuC&1udx&, ~7!

the functional@Eq. ~5!# is stationary. To first order in the
variationdx, the variationdA is

dA52^dxuVuC0&2^dxuV2VG0VuC&. ~8!

The variationdA can be zero for arbitrarydx if and only if

ug&52VuC0&2~V2VG0V!uC& ~9!

is zero. This implies

~12G0V!uC&5buC0&, ~10!

whereb is a multiplicative constant. The last equation is t
Lippman-Schwinger equation@Eq. ~3!# for a generic exact
solutionbC of the scattering problem.

For a spherically symmetric potential the functional@Eq.
~5!# can be decomposed in partial-wave contributions, e
of which is proportional to the functional introduced b
Schwinger.4 In this case a minimum principle is satisfied f
single-s-wave-channel scattering and no bound states.4,18 In
general, however, the functional@Eq. ~5!# does not satisfy
either a minimum or a maximum principle.

We now illustrate the implications of these findings f
actual calculations. We restrict ourselves to the study of
lected atomic wires. A schematic of one such wire is rep
sented in Fig. 1~a!, where a sample is sandwiched betwe
two metal electrodes that we model with ideal metals~jel-
lium model!.6,7 The two electrodes are kept at a finite biasVB
~see Fig. 1~b!, where we have assumed the left-hand el
trode is positively biased!. The electron wave functions ar
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computed by solving the Lippman-Schwinger equation@Eq.
~3!# iteratively to self-consistency in steady state for the co
tinuum part of the spectrum.6,7 The bound states, if any, ar
calculated by direct diagonalization of the tot
Hamiltonian.7 Exchange and correlation are included in t
density-functional formalism within the local-densit
approximation.19 The current at zero temperature is com
puted from the wave functionsuc& of the electrode-molecule
system by integrating the energy region between the r
and left Fermi levels@see Fig. 1~b!#. The continuum region
between the bottom of the left-hand electrode@indicated as
veff(2`) in Fig. 1~b!# and the right Fermi level has bee
divided into 40 energy points and convergence has b
checked by increasing the number of energy points.

For each scattering energy, we are now faced with
choice of the trial wave functions to represent the best e
mate of the exact scattering solution. We choose plane wa
to represent the wave functions.7 Apart from other technical
advantages, like, e.g., the fact that the Green’s functionG0

and the potentialV can be analytically written in this basi
set, or the absence of Pulay-like forces in the calculation
current-induced forces,7,8 plane waves form a complete set
any Hilbert space, and convergence of both scattering am
tudes and electric current can be easily checked by sim
increasing their number in the family of trial wave function

FIG. 1. ~a! Schematic of one of the systems under investigati
Three atoms are sandwiched between semi-infinite bulk electro
~b! Schematic of the total effective potential of the bare electro
with biasVB . The left electrode is positively biased. Electrons i
cident from the right electrode are partly transmitted into the
electrode with probabilityt, and partly reflected back into the righ
electrode with probabilityr.
5-2
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We stress here that any other basis set could be use
principle provided that convergence with increasing num
of basis functions be checked. In the examples below,
each total number of plane waves the total charge densit
the system~sum of the charge density from both the co
tinuum and discrete part of the spectrum7! has been con-
verged to less than 131023% for each plane-wave compo
nent.

In Fig. 2 we plot the electric current as a function of t
number of plane waves for a single hydrogen atom betw
two metal electrodes. The distance of the hydrogen a
from the electrodes is 4 a.u.20 The external bias isVB
50.01 V ~linear-response regime! and thes orbital of the
hydrogen atom is mostly responsible for transport in t
system~corresponding to the peak of the density of states
the inset of Fig. 2!. Furthermore, the scattering potential h
almost spherical symmetry in the region of interest, and
total Hamiltonian does not support any bound state. T
physical situation then corresponds to the one for which
functional @Eq. ~5!# satisfies a minimum principle. This i
clearly evident in Fig. 2 where the current for a fixed numb
of plane waves~or equivalently the scattering amplitude
this linear-regime case! is always larger than the~asymptoti-
cally! converged current~dotted line in Fig. 2!.

As we have shown in this paper, for a general short-ra
potential a minimum principle is not guaranteed. This cas
illustrated in Fig. 3 where we plot the electric current as
function of the number of plane waves for three Si ato
between metal electrodes. The external potential isVB

FIG. 2. Current vs number of plane waves for one H at
sandwiched between two bulk electrodes. The bias is 0.01 V.
inset shows the density of states as a function of energy. The
energy value is taken as the left Fermi level.
.D
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50.1 V. The Si atomic positions are kept equal to their
laxed value at zero bias: the Si-Si distances are 4.2 a.u.,
the left and right Si atoms are at 2.1 a.u. from the electro
@see Fig. 1~a!#. It is evident from Fig. 3 that the current fo
different values of the number of plane waves can be eit
larger or smaller than the~asymptotically! converged current
~dotted line in Fig. 3!. Furthermore, convergence with th
number of plane waves is reached in an oscillatory way. I
also evident from this figure that relative errors of as much
30% in the value of the current can be obtained with a fix
number of basis functions.

In summary, we have shown that for any short-range
tential, a functional for the scattering amplitude can be int
duced that is stationary for arbitrary variations about the
act scattering-wave function. The functional, however, do
not satisfy any minimum principle. This puts severe limit
tions in the choice of trial wave functions in transport calc
lations. In particular, this study shows that a fixed number
basis functions is not generally enough to assure con
gence in electric current calculations.

This work is supported in part by the National Scien
Foundation Grants No. DMR-01-02277 and DMR-01-3307
Carilion Biomedical Institute, and Oak Ridge Associat
Universities. Acknowledgement is also made to the Don
of The Petroleum Research Fund, administered by
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search. The calculations reported in this paper were
formed on the beowulf cluster of the Laboratory for A
vanced Scientific Computing and Applications at Virgin
Tech.
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FIG. 3. Current vs number of plane waves for three Si ato
sandwiched between two bulk electrodes. The bias is 0.1 V.
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