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Transport via a quantum shuttle
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The Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BW, United Kingdom

~Received 28 March 2002; published 31 July 2002!

We investigate the effect of a quantized vibrational mode on electron tunneling through a chain of three
quantum dots. The outer dots are coupled to voltage leads, but the position of the central dot is not rigidly
fixed. Motion of the central dot modulates the size of the tunneling barriers in opposite ways so that electron
tunneling is correlated with the position of the oscillator. We treat the electronic part of the problem using a
simple Coulomb-blockade picture, and model the vibration of the central dot as a quantum oscillator. We
calculate the eigenspectrum of the system as a function of the energy level shift between the outer dots. Using
a density matrix method, we include couplings to external leads and calculate the steady-state current through
the device. The current shows marked resonances that correspond to avoided-level crossings in the eigenvalue
spectrum. When the tunneling length of the electrons is of order the zero-point position uncertainty of the
quantum oscillator, current far from the electronic resonance is dominated by electrons hopping on and off the
central dot sequentially; the oscillator can be regarded as shuttling electrons across the system@L.Y. Gorelik
et al., Phys. Rev. Lett.80, 4526 ~1998!#. Damping of the oscillator can increase the current by preventing
electrons from hopping ‘‘backwards.’’

DOI: 10.1103/PhysRevB.66.035333 PACS number~s!: 73.23.Hk, 85.85.1j
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I. INTRODUCTION

Electron tunneling rates through mesoscopic junctions
strongly modulated by changes in the physical extent of
barriers that can arise from excitation of vibrational degr
of freedom.1,2 The tunneling rate of electrons through ins
lating barriers has an exponential dependence on the phy
extent of the barriers and so is sensitive to even relativ
small changes in their size. In standard semiconductor st
tures the components are rigidly fixed so that fluctuations
the widths of tunnel barriers are relatively unimporta
However, whenever electron transport occurs across flex
tunnel barriers modulation of the barrier widths due to vib
tions is expected to affect the tunneling. The perturbation
tunneling processes across a single mesoscopic junction
mechanical degree of freedom has been analyzed in s
detail, and is now relatively well understood.1,2 However,
when there are two or more flexible junctions connected
series more complicated effects arise, in particular excita
of vibrational degrees of freedom can lead to shuttling
electrons between the junctions.

The idea of a mesoscopic electron shuttle in which a
brational degree of freedom modulates tunneling rates ac
two junctions in turn was proposed recently by Gore
et al.3 ~although a fully classical charge shuttle is far fro
new4!. Gorelik et al. considered a system in which electro
are transported between two leads by a small metallic g
embedded in an elastic medium. The interaction betw
charges on the grain and the leads couples to the positio
the oscillator leading to a dynamic instability. Electrons tu
nel onto the grain from one of the leads, resulting in a C
lombic repulsion that drives the grain towards the other le
where the electrons tunnel off: hence vibrations of the gr
shuttle electrons between leads. In the model of Gor
et al. the electron tunneling is treated within the orthod
theory of single-electron tunneling, whilst the elastic m
dium is treated as a classical oscillator.
0163-1829/2002/66~3!/035333~10!/$20.00 66 0353
re
e
s

cal
ly
c-
n
.
le
-
f

y a
e

n
n
f

i-
ss

in
n
of
-
-
d
n
ik

-

A mesoscopic shuttle device similar in some respects
that proposed by Goreliket al. has been fabricated by Blick
et al.5,6 The device closely resembles a miniaturized b
clapper, consisting of two tunneling contacts with a canti
ver in between. However, the cantilever does not ‘‘ring’’~i.e.,
shuttle electrons! spontaneously, but instead is driven b
strong gate voltages applied across the cantilever itself~away
from the tunneling contacts!. The rate of electron tunneling
can be controlled by the amplitude of the drive when it
tuned to one of the natural frequencies of the cantilev
Electron transport in this system can again be underst
within orthodox single-electron tunneling theory, modified
account for position-dependent behavior in the tunnel
rates.6,7

Systems in which electron transport between two conta
is mediated by a vibrational mode of a self-assembled st
ture have also been investigated.8,9 The most striking ex-
ample of such a system is the C60 single-electron transisto
fabricated by Parket al.8 In this device, a single C60 mol-
ecule was deposited in a narrow gap between gold e
trodes. The current flowing through the device was found
increase sharply whenever the applied voltage was suffic
to excite vibrations of the molecule about the minima of t
van der Waals potential between it and the electrodes, o
internal mode of the molecule itself.8,10,11

The device fabricated by Parket al. is an example of a
molecular electronic device12 in which electrical conduction
occurs through single molecules connected to conventio
leads. The junctions between molecular components
leads will be much more flexible than those in conventio
solid-state nanostructures and fluctuations in their width m
modify their current characteristics significantly. Furthe
more, vibrational modes of the molecular components the
selves may play an important role in determining the tra
port properties.13

Variations in the widths of tunnel barriers are also e
pected to have an important effect on the transport prope
©2002 The American Physical Society33-1
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of nanoparticle chains.14 Nanoparticle chains consist of sma
metal grains stabilized by ligands, with electronic transp
occurring via tunneling between the metal particles. Beca
of the relative softness of the ligand matrix, vibrations of t
metal grains can significantly modify the electronic tunneli
rates.

In the present work, electron tunneling through an el
tromechanical system in the extreme quantum mechan
and Coulomb blockade limits is investigated. Our interes
focused on the case where the width of the tunnel barriers
electrons are modulated by a quantum mechanical vi
tional degree of freedom. We analyze a model shuttle sys
consisting of a row of three quantum dots in which the c
tral dot is mounted on a quantum harmonic oscillator.

The model considered here is simplified in many respe
so that it is possible to build up an understanding of
characteristics of the transport that occurs when there
strong coupling between the electronic degrees of freed
and the displacement of a quantum harmonic oscillator.
assume that the capacitance of the central grain or dot,
the outer dots is sufficiently high that transport is confined
the Coulomb blockade regime. Furthermore, we assume
the electronic states of the system are coherent. We use
language of semiconductor nanostructures, describing
system in terms of quantum dots, because it provides a
venient shorthand for what is in effect a localized electro
state. In practice, what we refer to as quantum dots could
actual semiconductor dots, large molecules or metallic na
particles. Similarly, the oscillator could be an ultrahig
frequency mechanical resonator with a dot mounted on
tip, like that studied by Blicket al.,5 alternatively, the oscil-
lator mode could arise from vibration of the central ‘‘do
within a stabilizing elastic medium or the potential confini
it between the outer dots.

We find that the current characteristics of the mo
shuttle can largely be understood by analyzing the eigens
trum of the isolated system of three dots and the quan
oscillator. Tunnel coupling of the dot states, to each ot
and to the position of the oscillator, leads to repulsion of
eigenvalues and mixing of the eigenstates associated
states localized on individual dots. The mixed states con
of superpositions of the states associated with the individ
dots and hence lead to delocalization of the electronic st
between the dots. Analysis of the current that flows when
shuttle is weakly coupled to leads, reveals strong resona
corresponding to the occurrence of the delocalized sta
The current through the shuttle is found to depend sensitiv
on the amount by which the oscillator is damped, t
strength of the couplings between the dots and on the b
ground temperature. A preliminary account of some of th
findings has been given elsewhere.15

The organization of the paper is as follows. In Sec. II
describe the details of our model shuttle system. We in
duce the Hamiltonian of the system and describe how c
pling to external leads can be taken into account. In Sec
we examine the eigenspectrum of the system as a functio
the difference in energy between the levels in the fixed d
The current characteristics of the device are described in
IV. A summary and discussion of the results is given in S
03533
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V. Details of how the Hamiltonian can be approximated by
finite matrix are given in Appendix A and the derivation
the density matrix equation of motion is outlined in Appe
dix B.

II. MODEL FORMULATION

We begin by detailing the model Hamiltonian that we u
to describe the behavior of the shuttle system. The shu
consists of a linear chain of three quantum dots and a sin
vibrational mode, as shown schematically in Fig. 1. T
physical locations of the two outer dots are fixed, while t
central dot is mounted on the vibrational mode whose beh
ior is modeled by a quantum oscillator. The electronic par
the system is idealized: each dot is represented by a sin
localized, energy state. The dynamics of electron trans
through the system is analyzed using the density matrix
malism as this allows couplings to external leads and
effects of the oscillator’s environment to be incorporat
most conveniently.

A. Tight-binding model

Within the Coulomb blockade regime, the charging e
ergy of adding more than one electron to the shuttle is
sumed to be sufficiently high that only one transport elect
can occupy the chain of three dots at any one time. The
fore, the electronic degrees of freedom of the isolated sys
can be represented completely by the state in which non
the dots are occupied16,17 u0& and the three localized state
associated with the left-hand, central, and right-hand d
u l &, uc&, and ur &, respectively. The system is modeled by
tight-binding Hamiltonian of the form

H5« l u l &^ l u1« r ur &^r u1«c~ x̂!uc&^cu1\vd̂†d̂

2Ve2a[x01 x̂]~ uc&^ l u1u l &^cu!

2Ve2a[x02 x̂]~ uc&^r u1ur &^cu!, ~1!

FIG. 1. Schematic diagrams of the shuttle system. The geom
and band structure of the system are shown in the upper and lo
panels, respectively.
3-2
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TRANSPORT VIA A QUANTUM SHUTTLE PHYSICAL REVIEW B66, 035333 ~2002!
whereu i &^ i u, i 5 l ,c,r , are projection operators for the thre
electronic states and the vibrational mode, frequencyv, is
operated on byd̂. The tunneling elements between the do
depend exponentially on the displacement operator of
vibrational mode,x̂5Dxzp(d̂

†1d̂), whereDxzp is the zero-
point position uncertainty of the oscillator. The oscillator p
sition has an expectation value of zero when the oscillato
unperturbed. The tunneling amplitude and length are gi
by the positive quantitiesV and 1/a, respectively. Although
we have not stated it explicitly, it is understood that the p
tential energy of the vibrational modes has a hard wall c
off at the left- and right-hand dots~i.e., atx56x0).

The energies of the outer two dots,« l (r ) , together define a
voltage bias across the device,eVb5«b5« l2« r . The en-
ergy of the central level is set by its position between
outer dots as we assume that it undergoes a Stark shift
portional to its position18 so that«c5« l2( x̂1x0)«b/2x0.19

The energy levels in the outer dots are set by external g
whose capacitance is assumed to be much larger than
capacitances of the other junctions~i.e., the junctions be-
tween the dots and the junctions between the outer dots
the leads!, but still small enough that only one of the dots c
be occupied by an electron at any one time.

The behavior of the shuttle system is readily investiag
by numerical methods. The Hamiltonian and density ope
tors are represented as matrices, as described in Append
and the time evolution of the system can be obtained num
cally for any initial form of the density matrix. However, th
vibrational degree of freedom is only completely specifi
by an infinite set of states that must be truncated for num
cal calculations. The necessary truncation is best perfor
in the basis of the~unperturbed! energy eigenstates of th
vibrational mode~see Appendix A!. So long as the energy o
the highest-energy state included is much larger than
other energy scale in the problem, the error due to trunca
is small.

B. Coupling to leads

The transport properties of the shuttle system coupled
the leads are obtained by integrating an equation of mo
for the density matrix appropriate to an open quantum s
tem. Apart from the internal dynamics of the shuttle, the
are two effects we need to take account of. Couplings
tween the electronic states in the outer dots and the le
must be incorporated, and the coupling between the osc
tor and its environment must also be included.

The external couplings of the outer dots and oscillator
accounted for in the dynamics via additional terms in
equation of motion for the reduced density matrix of t
shuttle, an approach that is well-known in the field of qua
tum optics and has recently been applied to problems
electron transport in nanostructures.16,20 The electrons in the
leads are assumed to be completely incoherent, which m
that all the off-diagonal elements of the density matrix b
tween the stateu0& and the other electronic states can be
to zero ~notice, however, that the diagonal element in t
density matrix foru0& has both diagonal and off-diagon
matrix elements in the space of the vibrational-mode stat!.
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The appropriate equation of motion for the density mat
of the system generalized to include the leads and the e
ronment of the oscillator therefore takes the general form

ṙ52
i

\
@H,r#1Jr1 ṙd , ~2!

where the ‘‘decay matrix,’’J, incorporates transitions be
tween the leads and the outer dots andṙd accounts for the
decohering and dissipative effects of the oscillator’s envir
ment. The form of the nonunitary terms can be derived
adapting standard techniques used in the field of quan
optics and we will consider both of them in turn.21

The form of decay matrix coupling the shuttle to the lea
can be obtained using the method of Gurvitzet al.,20 as de-
scribed in Appendix B. The components of the mat
@Jr#ab

i j are labeled by the vibrational state~superscripts! and
the electronic states~subscripts!. The matrix is Hermitian
and is specified by the components22

@Jr# l l
i j 5r00

i j G, ~3!

@Jr# rr
i j 52r rr

i j G, ~4!

@Jr#00
i j 52G~r00

i j 2r rr
i j !, ~5!

@Jr# rc
i j 52

G

2
r rc

i j , ~6!

@Jr# lr
i j 52

G

2
r lr

i j , ~7!

@Jr#cc
i j 5@Jr# lc

i j 50, ~8!

whereG is the tunneling rate between the dots and the lea
and all terms@Jr#0a

i j whereaÞ0 are zero as the associate
elements of the density matrix (r0a

i j with aÞ0) are zero by
definition.

Including the environment of the vibrational mode is e
sential to the description as it is the dissipation arising fr
this coupling which gives rise to a steady-state in which
current is constant, as we discuss below. We employ a m
mal model of the environment, assuming it to be compo
of a bath of oscillators at a fixed temperatureT, to which the
vibrational mode is coupled only weakly. Under these
sumptions, the dissipative component in the equation of m
tion for the density matrix is given by21

ṙd52
g

2
n̄~ d̂d̂†r22d̂†rd̂1rd̂d̂†!

2
g

2
~ n̄11!~ d̂†d̂r22d̂rd̂†1rd̂†d̂!, ~9!

whereg is the classical damping rate of the oscillator, andn̄,
is the usual thermal occupation number of the oscillator
temperatureT,
3-3
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n̄5
1

e\v/kBT21
. ~10!

The classical damping rate is just the rate at which the vib
tional mode loses energy due to frictional forces, its va
can be obtained empirically from the quality factor of t
oscillator,2,21 g5v/Q.

The steady-state current through the system~in units of
electrons per unit time! is given by

I

e
5Gr rr

(s) , ~11!

wherer rr
(s) is the occupation probability of the right-hand d

when a steady state has been achieved. In practice the cu
is determined after evolving the equation of motion for t
density matrix until further changes with time become ne
ligible.

The discrete nature of the states in the dots has an im
tant effect on the ways in which energy can be transferre
the shuttle. An electron traveling through the shuttle m
enter at an energy determined by the level in the left-h
dot and leave at the energy determined by the lower leve
the right-hand dot. Hence each electron traveling through
device dissipates an amount of energy proportional to
bias voltage. For a system without an oscillator,18 the energy
is dissipated in the lead with the lower chemical potent
However, for the shuttle we consider here, some of the
ergy ends up in the oscillator—rather like the electr
‘‘pump’’ considered by Stafford and Wingreen in reverse23

Despite this apparent pumping mechanism for the oscilla
the degree to which the oscillator can be excited is stron
limited by damping and a steady-state is always achie
when this effect is included.26

III. EIGENVALUE DYNAMICS
OF THE ISOLATED SHUTTLE

For a system in which the coupling to external leads a
the environment18 is much weaker than the coupling betwe
the dots~i.e., whenG,g!Ve2ax0/\), the current character
istics are expected to be strongly influenced by the eig
states of the isolated system. Under these conditions, we
think of the eigenstates of the system, which in general
not localized on any one dot, as forming independent ch
nels for conduction. The current is carried most effectiv
by those eigenstates in which there is a finite probability
finding an electron in both the left- and right-hand dots, a
the characteristics of the eigenstates can be determined
the behavior of the corresponding eigenvalues. Therefore
examine the dynamics of the eigenvalues as a function of
bias voltage in the uncoupled shuttle system before going
to consider the corresponding behavior of the current in
coupled system.

The eigenvalue spectrum of the shuttle at zero bias v
age is controlled by the relative values of the energy sc
of the oscillator,\v, and the tunneling matrix element,V;
and by the length-scalesx0 and 1/a. The eigenvalue dynam
ics in the limit where the dots are uncoupled~i.e., V50) is
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illustrated in Fig. 2~a! @note that all the energies in the figure
are measured in units of\v, and the distances are measur
in units ofDxzp#. The energy levels at zero-bias are threefo
degenerate states separated by.\v. For small applied bias
the splittings between energy levels are linear. The spac
between the sets of three levels at zero-bias are not exa
\v, but increase slightly with energy. This is because
oscillator is in fact confined by hard wall potentials that
begins to feel at higher energies, leading to an increase in
eigenenergies.

When the electronic states are decoupled the individ
dot states are readily identified: the left- and right-hand-
energy levels increase and decrease respectively with
creasing voltage bias, whilst the energy of the central-
electronic states drop off quadratically~this state is equiva-
lent to an oscillator in a linear potential!. The eigenvalues for
the left- and right-hand energy levels cross for«b.n\v
with n an integer. For«b.2\v, the crossing of the left- and
right-hand-dot energy levels almost coincides with t
central-dot energy level. The level crossings of the low
eigenvalues occur at almost precisely integer values of\v,
but at higher energies the level crossings drift to larger b
values because of the increased spacing between leve
zero bias.

For finite values of the tunneling matrix elementV the
eigenvalue dynamics as a function of«b becomes more com
plex, as shown in Fig. 2. The energy levels at zero-bias s
so that the degeneracy of the levels is lifted. At finite bias
levels no longer cross, but instead repel each other.
strength of the level repulsion depends strongly onV, but the
oscillator state also plays a role as larger number states
the oscillator lead to stronger couplings between leve
However, away from the anticrossings, the levels vary w
«b in almost the same way as for the decoupled case, im
ing that the eigenvalues in these regions can still be ass
ated with states localized on the individual dots.

The level repulsions that occur at«b.n\v for finite V
have a different character for odd and even values ofn. For
odd values ofn, levels associated with the left- and righ
hand dots anticross, leading to mixing of the levels. For e
values ofn, levels associated with the central dot mix fir
with levels associated with the left-hand dot and then w
levels associated with the right-hand dot within a very n
row range of«b . The simultaneous curvature of the thre
levels implies that, over a narrow range of«b , the mixing
involves all of them. The left-hand dot level mixes with th
central-dot level first partly because the central dot le
curves downwards, and partly because the left-hand dot l
is associated with a less excited state of the oscillator, wh
lies closer to the central-dot level at zero bias than the rig
hand-dot level.

In the vicinity of the level-anticrossing states associa
with either the left-hand and right-hand dots, or with all thr
dots, become strongly mixed. The mixing of these lev
implies that the electron will be highly delocalized near t
anticrossings, leading to a strong enhancement of the cur
through the shuttle. The variation in the location and stren
of anticrossings of levels~and hence mixings of states ass
ciated with different dots! with the eigenvalue energy implie
3-4
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TRANSPORT VIA A QUANTUM SHUTTLE PHYSICAL REVIEW B66, 035333 ~2002!
that the actual current characteristics will be sensitive to
energy of the shuttle in the steady state.

At zero bias the system will be at resonance as the
energy levels will be aligned, and we expect a large curr
to flow. However, the large current at zero bias can also
understood in terms of the current channels formed by
eigenstates. At very small bias energies the eigenvalues
finite V have a quadratic dispersion, and the eigenstates
composed of almost symmetrical mixtures of the left-ha
central, and right-hand dot states and hence are hig
delocalized.27

In studying the eigenspectra and the steady-state cu
we concentrate on a range of bias values of a few\v, for a
combination of reasons. As the bias voltage increases,
eigenspectra become more complex. The spread in the l
tions of the anticrossings with eigenenergy increases with«b
and the energies of the levels that anticross increase.
complexity of the eigenspectra at large values of«b means
that it will become increasingly difficult to understand th
current characteristics of the system by reference to
eigenspectrum. Furthermore, our simple modeling of
electronic part of the system, including only a single ene
level for each dot, will become increasingly unreliable as
bias is increased and higher levels in the dots become ac
sible.

IV. CURRENT CHARACTERISTICS

In order to obtain the current characteristics of the shu
system we integrate the equation of motion for the den
matrix from a given initial state, until a steady state is o
tained. The steady state is achieved when the energy ga
by the oscillator from the electrons is matched by losses
to damping by the surrounding medium.

The steady-state current for a chain of quantum dots
fixed positions has been studied extensively.17,18,24,25,28In the
Coulomb blockade regime, it is found that if the energy le
in each of the dots is shifted by an amount proportional to
position ~forming a ‘‘Stark ladder’’!, the decay in curren
with the shift in energy levels is rapid.18 For the shuttle, we
find that the presence of the oscillator leads to signific
changes in the current characteristics.

We begin by analyzing the simplest case, where the d
are strongly coupled to each other~and weakly coupled to
the leads! and the temperature is set to zero. In this regi
the current characteristics can be understood in terms o
energy eigenspectrum of the system and the effect of
oscillator’s environment that causes scattering between
eigenstates. However, we also consider the behavior w
the tunneling length of the electrons is reduced, so that
coupling between the dots becomes weak, as it is in
regime that current can flow by hopping on and off the c
tral dot sequentially, in a manner very reminiscent of t
semiclassical shuttles.3,5–7Furthermore, in practice, tempera
ture will play an important role and so we extend our ana
sis to small but finite temperatures. Working at finite te
peratures complicates the numerical calculation as
naturally increases the importance of higher-energy oscill
states. This means that care needs to be taken in trunc
03533
e

ot
nt
e
e

for
re
,
ly

nt

he
a-

he

e
e
y
e
es-

e
y
-
ed
e

at

l
s

t

ts

e
he
e

he
en
e

is
-

e

-
-
it
or
ing

FIG. 2. Dynamics of the lowest 18 eigenvalues for systems w
various parameter values. In the upper panels,a50.2, x055 with
V50 ~a! andV50.5 ~b!; in the lower panelsV50.25, a50.2 ~c!
andV50.5, a50.4 ~d!.
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A.D. ARMOUR AND A. MacKINNON PHYSICAL REVIEW B 66, 035333 ~2002!
the matrix of oscillator states~as described in Appendix A! to
ensure that the results obtained do not depend strongly on
size of the truncated Hamiltonian matrix. The errors due
truncation only become significant for temperatures such
\v!kBT. The matrix method can readily be adapted to
vestigate the effect of temperature when\v;kBT.

The initial state of the system describes the initial wa
functions of the electronic and oscillator parts of the syste
The initial form of electronic part of the wave function
unimportant: it simply describes the initial probabilities
finding an electron on each of the dots, which does no
practice affect the form of the steady state that is la
achieved. However, the initial state of the oscillator is
some importance as it depends on the background temp
ture, but at zero temperature, the oscillator is initially in
ground state.

The steady-state current through the dots as a functio
«b with and without the oscillator is illustrated in Fig. 3 fo
the case of strong coupling between the dots. The tunne
rate to the leads isG50.05 and the damping rate for th
quantum oscillator isg50.025 @all rates are measured i
units of v#.

When the bias is zero, all three dot levels are align
leading to resonant transmission of electrons. Without
oscillator, the current decays rapidly with increasing bias«b ,
as expected. When the oscillator is present, the current
tially decays with increasing bias, though more slowly th
before, but at larger values of«b prominent current reso
nances dominate the behavior.

For strong coupling between the dots~compared to the
couplings to the leads!, the current peaks are best describ
in terms of the conduction channels formed by the eig
states of the shuttle system. Comparison of the current p
in Fig. 3 with the corresponding eigenspectrum in Fig.
shows that the resonances coincide with avoided-level cr
ings where the eigenstates are formed from mixtures of st
localized on the individual dots. Further resonances sho
occur at higher values of«b , but the model will eventually
break down when the shift in levels exceeds the energy le
spacing in the dots themselves. The peak in the curren
zero bias arises because the eigenstates for«b50 each con-
sist of ~symmetrical! mixtures of the states associated w
each of the dots. Of course, the peak at zero bias can als
seen as due to resonant tunneling through the shuttle.

FIG. 3. Steady-state current through the shuttle with~upper
curve! and without~lower curve! the oscillator;V50.5, G50.05,
g50.025,x055 anda50.2.
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The second current peak, which occurs at«b.0.86 ~in
units of \v), is due to the mixing of levels associated wi
the left- and right-hand dots. The resulting eigenstates
symmetrical as they contain almost equal weights for
left- and right-hand dots~i.e., in these states the probabilit
of finding the electron on the left- and right-hand dots a
almost equal!. The third current peak occurs at«b.1.95, and
corresponds to a mixing of the central-dot level, more or l
simultaneously, with both left- and right-hand-dot levels.
this case the resulting eigenstates are not entirely symm
cal: there are larger weights for the left-hand dot in so
states and larger weights for the right-hand dots in oth
The fourth current peak, occuring at«b.2.92, is similar to
the second peak, in that it too is due to the mixing of lev
associated with the left- and right-hand dots. The magnit
of the fourth current peak is rather lower than that of t
second peak, partly because the left- and right-hand-dot
els that are mixed~at «b.2.92), correspond to oscillato
states differing by three quanta~whereas states differing b
only one oscillator quantum are mixed at«b.0.86), and
partly because anticrossings progressively disappear f
the lower part of the energy spectrum as the bias is increa

A. Effects of oscillator damping

The dynamics of the system is strongly influenced by
magnitude of the oscillator damping,g. Without any damp-
ing, the oscillator would gain energy continuously from t
electrons and no steady state would be achieved~without
including higher electronic levels!. The effect ofg in pro-
ducing a steady state can be seen by examining the ave
energy of the shuttle as a function of time.

The average energy is readily computed from the den
matrix and Hamiltonian of the system~suitably generalized
to account for the energy of the oscillator when none of
dots are occupied!. Figure 4 shows the evolution of the av
erage energy,̂E&5Tr@Hr#, as a function of time for a range
of different damping constants. The average energy att50 is
given by the initial state of the system with the oscillator
its ground state and an electron present on the left-hand
~the bias energy,«b50.86, corresponds to a peak in the cu
rent!. For each value ofg, the average energy varies wit

FIG. 4. Evolution of the energy expectation value of the shu
over time ~in units of the oscillator period! as a function of the
damping, g. From top to bottom, the curves correspond tog
50.015, 0.025, and 0.05, with«b50.86, V50.5, a50.2, x055
andG50.05.
3-6
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TRANSPORT VIA A QUANTUM SHUTTLE PHYSICAL REVIEW B66, 035333 ~2002!
time before eventually settling down to a constant val
indicating that the system has reached a steady state.

The time taken to reach the steady state, and the ave
energy in that state vary considerably. Forg;0.025 the os-
cillator appears to be ‘‘critically damped’’ in the sense th
the energy in the steady state is roughly the initial energy
the system. In contrast, forg.0.025 the system achieves
steady state by losing energy to the environment, imply
overdamping of the oscillator. As soon as the electron lea
the lefthand dot and moves to states on the other dot
lower energies, some of the initial energy is dissipated i
the environment via the oscillator. Wheng,0.025, the os-
cillator is underdamped and the system gains energy f
the electron reservoirs as successive electrons pass thr
the system until a steady state is eventually achieved. Fo
underdamped case, the time taken to achieve the steady
is longer than for either critical or overdamping and it eve
tually diverges wheng is set to zero.

The value of the oscillator damping also has a strong
fect on the magnitude of the steady state current through
shuttle, as shown in Fig. 5. The way in whichg affects the
current depends sensitively on the value of«b . The first and
second current peaks are almost unaffected by the varia
in the oscillator damping constantg, whilst damping of the
oscillator increases the current at the third peak and
creases it at the fourth peak. The reason for this differ
behavior is readily understood in terms of a picture of ind
pendent conduction channels arising from the eigenstate
the shuttle. If the damping is weak, it can be thought of
causing scattering between channels with slightly differ
energies. Therefore, damping can increase the current w
ever scattering can transfer electrons from channels wi
larger weights on the left-hand dot~where the electrons ente
the system! to the ones with large weights on the right-ha
dot ~from which the electron leaves the system!. At the first
and second current peaks the states that carry the curren
largely symmetrical, in that they contain almost equ
weights for the left- and right-hand dots, so the damp
cannot increase the current. In contrast, at the third peak
current can increase as there is considerable asymmetr
tween nearby eigenstates. At the fourth current peak, incr
ing the damping reduces the current because at this bias

FIG. 5. Effect of the oscillator damping on the current. T
curves have been displaced for clarity, from top to bottom th
correspond tog50.005, 0.025, and 0.05, withV50.5, a50.2,
x055 andG50.05.
03533
,

ge

t
f

g
es
at
o

m
gh

he
tate
-

f-
he

on

e-
g
-
of
s
g
er-
a

are
l
g
he
be-
s-
n-

ergy the current is very sensitive to the reduction in t
average energy caused by the higher damping.

B. Current in weak-coupling regime

At larger values ofa ~i.e., for smaller tunneling lengths
l51/a) the coupling between the dots grows weaker a
the picture of the current as arising from the passage of e
trons through weakly coupled eigenstates acting as con
tion channels begins to break down. Instead we must thin
the electrons as tunneling between states localized on
individual dots.

When the bias energy is;\v or 3\v the electrons mus
tunnel coherently from the left-hand dot to the right-hand d
via a virtual~non-energy-conserving! transition to the centra
dot. However, when the bias energy is;2\v electrons can
tunnel through the system incoherently via two separate
neling events in each of which a quantum of energy
dumped in the oscillator. Of course when«b50 there is no
need to dump energy into the oscillator and all tunnel
processes through the central dot conserve energy.

The effect of increasinga is clearly shown in Fig. 6: the
second and fourth peaks are strongly suppressed, whils
third peak is only slightly reduced. As the tunneling leng
becomes smaller, coherent tunneling directly between
left- and right-hand dots becomes more difficult. Howev
electrons can still flow through the device by tunneling on
the central dot and then off again later in a sequence of
separate tunneling events, i.e., current flows by shuttling
electrons through the central dot.

As for strongly coupled dots, an increase in damping
the oscillator enhances the current when«b.2\v. When the
coupling between the dots is weak the damping assists
rent flow by removing energy from the oscillator and there
helps prevent electrons from tunneling backwards~i.e., from
the right-hand dot to the central dot or from the central do
the right-hand dot!.

C. Finite temperatures

The effects of finite temperature on the current charac
istics of the shuttle can be taken into account by generaliz
the initial state of the oscillator to a thermal mixture a
modifying the damping terms~described in Sec. II! to take
account of the environment’s temperature. As long as

y
FIG. 6. Steady-state current through the shuttle whereV50.5,

G50.05, g50.025, x055 and a50.2 ~continuous line! and 0.4
~dashed line!.
3-7



s
e

r

ef
t

w
t

ily
Th
s
es
th
es
ng

ag
se
gi

na
re
en
th
le

ct
e
e

vi-
g
s

le
r
b

re

er it
on

the
qual
nd

u-
s of
lied.
the

f the
ra-
n-
ra-
hen
p-
on.
on
by

se-
els
f

d
nd
e.

rgy
dot

.
der

nce
nt

-

ms:
s
ted

her
rk
e

of
ty,

ly

hich
n

i-
R/

A.D. ARMOUR AND A. MacKINNON PHYSICAL REVIEW B 66, 035333 ~2002!
temperature does not approach the charging energies as
ated with the Coulomb blockade on the dots, no adjustm
to the electronic part of the model is required.

Figure 7 compares the current through the shuttle fo
particular choice of parameters atkBT50 and kBT53 ~in
units of \v). The finite temperature has two noticeable
fects. First, the current characteristics are smeared out:
peaks are broader and lower, while the troughs are shallo
Second, the maxima of the peaks are shifted to sligh
higher bias energies.

The effect of finite temperature on the current is read
interpreted with reference to the eigenspectra in Fig. 2.
finite temperature increases the average energy of the
tem, whilst also broadening the distribution of probabiliti
of finding the system in a given state. The broadening of
probability distribution implies that a whole range of stat
contribute to the current, each of which have anticrossi
occurring at different values of«b , leading to a broadening
of the current peaks. The overall increase in the aver
energy leads to a general increase in the current becau
the increased strength in the anticrossings at higher ener
especially at larger values of«b where anticrossings no
longer occur in the lower parts of the eigenspectrum.

V. CONCLUSIONS AND DISCUSSION

We have investigated the effect of a quantized vibratio
degree of freedom on transport through a chain of th
quantum dots where the tunneling between the dots dep
exponentially on the displacement of the oscillator. When
dots are strongly coupled to each other and weakly coup
to the leads, the current through the chain can be predi
by looking at places where anticrossings in the eigensp
trum give rise to electronic states that are delocaliz
amongst the dots.

The damping of the oscillator due to coupling to its en
ronment has important effects on the current flowing throu
the system. The current through the shuttle only reache
steady value when the energy pumped into it from the e
trons is balanced by the dissipation due to the oscillato
environment. For weak damping, the environment can
thought of as causing scattering between different cur

FIG. 7. Steady-state current through the shuttle atkBT53
~dashed line!, compared with that atkBT50 ~full line!. The para-
meters are as follows:V50.5, a50.2, g50.05, x055 and
G50.05.
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channels. The scattering enhances the current whenev
can transfer electrons from states strongly concentrated
the left-hand dot to the ones strongly concentrated on
right-hand dot. However, when the eigenstates contain e
probabilities of finding the electron on the left-hand a
right-hand dots, scattering has no effect on the current.

When the tunneling length is reduced the effective co
pling between the dots is reduced and the picture in term
independent conduction channels can no longer be app
Instead we can think of the electrons as passing through
shuttle via transitions between states localized on each o
dots. When the energy difference is an odd number of vib
tional quanta, current flow is via a virtual transition. In co
trast, when the energy difference is an even number of vib
tional quanta, electrons can tunnel sequentially onto and t
off, the central dot. The virtual transitions are strongly su
pressed by reductions in the tunneling length of the electr
However, the sequential transitions—electrons hopping
and then off the central dot—are much less affected
changes in the tunneling length.

The transport of electrons through the central dot via
quential tunneling, is analogous to the semiclassical mod
of electron shuttling.3,7 As in the case of the experiments o
Blick and co-workers,5,6 the vibrational mode is driven an
current flows by electrons tunneling onto the central dot a
then tunneling off in the opposite direction at a later tim
However, for the system we consider the driving ene
comes from the electrons themselves as the difference in
energy levels forces them to lose energy to the oscillator

The shuttling mechanism dominates over higher-or
processes when the tunneling length,l, is of order the zero-
point position uncertainty of the oscillator,Dxzp , and can
give rise to a larger current than at the electronic resona
~i.e., when«b50!. However, the sharp features in the curre
characteristics begin to be smeared out whenkBT.\v.

In order to havekBT;\v in the range 0.1–1 K the fre
quency of the oscillator must be;1 –10 GHz. This high-
frequency range is accessible in a wide variety of syste
the elastic links in nanoparticle arrays have frequencie14

;10 GHz, micromechanical resonators can be fabrica
with frequencies approaching 1 GHz,29 and indeed the vibra-
tional modes in many molecular systems have much hig
frequencies.8 The tunneling length depends on the wo
function of the surfaces involved, but typically lies in th
range3 0.05–3 Å. Unfortunately, raising the frequency
the oscillator reduces the zero-point position uncertain
Dxzp5A\/2mv, but the effective masses of even artificial
fabricated oscillators can be extremely small~for example,
nanoparticles can have masses14 ;10223 kg). Therefore, it
should be possible to fabricate or assemble systems in w
both l;Dxzp and kBT;\v, and thereby observe electro
shuttling in the quantum regime.
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APPENDIX A: HAMILTONIAN IN MATRIX FORM

The Hamiltonian of the isolated system of three dots a
an oscillator has three electronic states and a number o
brational states which is in principle infinite, but which
practice we limit to a numberN;25 so that the largest
energy state of the oscillator (Emax5N\v) is much greater
than any other energy scale in the problem.

The full Hamiltonian for the shuttle consists of nineN
3N submatrices, corresponding to the three electronic st
and the tunneling elements between them

H5S HLL HLC HLR

HCL HCC HCR

HRL HRC HRR

D . ~A1!

The sub-matrices have rows and columns labeled in a s
able basis of the oscillator states. In the numerical repre
tation of the oscillator states the diagonal submatrices t
the form

^nuHLLum&5~« l1m\v!dnm , ~A2!

^nuHCCum&5
«d

Dxzp
^nu~ x̂1x0!um&1~« l1m\v!dnm ,

~A3!

^nuHRRum&5~« r1m\v!dnm , ~A4!

where«d5Dxzp(« r2« l)/2x0, with Dxzp the zero-point posi-
tion uncertainty of the oscillator. Of the other submatric
only those coupling adjacent dots~i.e., HLC and HCR , and
their Hermitian conjugates! are nonzero,

^nuHLCum&52V^nue2a[x01 x̂] um&, ~A5!

^nuHCRum&52V^nue2a[x02 x̂] um&. ~A6!

The most efficient representation of the oscillator sta
for computational purposes is the position basis. The osc
tor displacement is restricted between the values set by
positions of the outer dots, a restriction that is readily e
forced in the position representation. The set of posit
states is obtained by diagonalizing the position operato
the number basis~a matrix of sizeN3N!, then those state
amongst the resultingN position states with eigenvalues ou
side the range (2x0 ,x0) are projected out, leading to
somewhat smaller submatrix. This simple-minded proced
is appropriate at relatively low energies when the weight
the wave function in the region outside the cutoffs is re
tively small.

APPENDIX B:
DENSITY MATRIX EQUATION OF MOTION

In this appendix we detail how the dissipative terms in
density matrix equation of motion are obtained when
voltage difference between the leads is less than the spa
of energy levels within each of the dots, so that transpor
restricted to the Coulomb blockade regime. We begin by
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riving the rates that describe the transitions to and from
leads that are attached to the system, before going o
calculate the equation of motion for the density matrix fo
lowing the prescription of Gurvitzet al.20

Following the usual theory of single-electron tunneling30

we can write the net tunneling rate from a lead with chemi
potentialm through a barrier to an isolated state with effe
tive energy« as

Gnet5V0@P~0! f ~D!2P~1!„12 f ~D!…#, ~B1!

where D5«2m, V0 is the tunneling amplitude that is as
sumed to be independent of the energy,f is the Fermi func-
tion andP(0)„P(1)… is the probability that the isolated sta
is unoccupied~occupied!.

For the shuttle, we need to consider transitions betw
the left-hand lead and left-hand dot, and between the rig
hand lead and right-hand dot. In addition, the strong C
lomb blockade means that transitions onto any of the d
can only occur if all of the dots are unoccupied. Therefo
for transitions between the left-hand lead and left-hand d
P(0)5r0 where we use the notationrk5( irkk

ii , for the
probability that the electronic statek is occupied, with the
superscripts and subscripts of the density matrix labeling
oscillator and electronic states, respectively. Thus the
tunneling rate from the left-hand lead to the left-hand d
takes the form

Gnet
L 5GL

1r02GL
2r l , ~B2!

whereGL
15V0f (D), GL

25V0„12 f (D)…. Similarly, we find

Gnet
R 5GR

1r r2GR
2r0 . ~B3!

These net rates can be separated into individual terms
enter into the equations of motion of the elements of
density matrix. We assume thatD5« l2m l5m r2« r , where
m l (r ) is the Fermi level in the left~right! lead. The tunneling
rates for the right-hand lead take the formGR

25V0f (2D)
andGR

15V0„12 f (2D)….
In order to simplify the analysis, we will work in the

large-bias limit whereuDu@kBT. In this limit, the backward
tunneling ratesGL(R)

2 go to zero and the forward rates tak
the simplified formGL(R)

1 5V0. We shall restrict our analysis
to this regime for simplicity, but the generalization to th
master equation for the case whereuDu;kBT is relatively
straightforward.

Gurvitz et al.,20 have developed a way of extending th
density matrix description of electronic nanostructures to
clude couplings between localized, coherent, electro
states and leads containing a very large number of st
where the electrons can be regarded as incoherent. Accor
to this approach, the equation of motion for the density m
trix including couplings to the leads~but not the environmen
of the vibrational mode! takes the general form31

ṙaa
i j 52 i @H,r#aa

i j 2raa
i j (

dÞa
Ga→d1rcc

i j (
cÞa

Gc→a ,

~B4!
3-9
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ṙab
i j 52 i @H,r#ab

i j 2
rab

i j

2 S (
dÞa

Ga→d1 (
dÞb

Gb→dD ,

~B5!

where the superscripts on the density matrix label the vib
tional state and the subscripts label the electronic parts.
termsGn→m give the transition rates from statesun& to um&.

Following the prescription given in Eqs.~B4! and ~B5!,
and taking into account only tunneling onto the left-hand d
from the left-hand lead and tunneling off the right-hand d
into the right-hand lead, we obtain

ṙ l l
i j 5@H,r# l l

i j 1r0
i j GL , ~B6!

ṙcc
i j 5@H,r#cc

i j , ~B7!

ṙ rr
i j 5@H,r# rr

i j 2GRr rr
i j , ~B8!
t

s

.

r

t.

,

tt

d

n
o
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ṙ0
i j 52GLr0

i j 1GRr rr
i j ~B9!

ṙ lc
i j 5@H,r# lc

i j , ~B10!

ṙ lr
i j 5@H,r# lr

i j 2
1

2
GRr lr

i j , ~B11!

ṙcr
i j 5@H,r#cr

i j 2
1

2
GRrcr

i j , ~B12!

where we have omitted the superscript ‘ ‘1 ’ ’ from the tun-
neling rates and the off-diagonal terms in the electronic s
u0& are zero, by definition, and so are omitted. Assuming
dot-lead junctions are identical, we can simplify the equ
tions further by writingG5GR5GL , and the terms coupling
the dots to the leads are given by the matrixJr given in
Eqs.~3!–~8!.
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