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Transport via a quantum shuttle
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We investigate the effect of a quantized vibrational mode on electron tunneling through a chain of three
guantum dots. The outer dots are coupled to voltage leads, but the position of the central dot is not rigidly
fixed. Motion of the central dot modulates the size of the tunneling barriers in opposite ways so that electron
tunneling is correlated with the position of the oscillator. We treat the electronic part of the problem using a
simple Coulomb-blockade picture, and model the vibration of the central dot as a quantum oscillator. We
calculate the eigenspectrum of the system as a function of the energy level shift between the outer dots. Using
a density matrix method, we include couplings to external leads and calculate the steady-state current through
the device. The current shows marked resonances that correspond to avoided-level crossings in the eigenvalue
spectrum. When the tunneling length of the electrons is of order the zero-point position uncertainty of the
guantum oscillator, current far from the electronic resonance is dominated by electrons hopping on and off the
central dot sequentially; the oscillator can be regarded as shuttling electrons across the lsyst&urelik
et al, Phys. Rev. Lett80, 4526 (1998]. Damping of the oscillator can increase the current by preventing
electrons from hopping “backwards.”
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[. INTRODUCTION A mesoscopic shuttle device similar in some respects to
that proposed by Gorelikt al. has been fabricated by Blick
Electron tunneling rates through mesoscopic junctions aret al>® The device closely resembles a miniaturized bell
strongly modulated by changes in the physical extent of thelapper, consisting of two tunneling contacts with a cantile-
barriers that can arise from excitation of vibrational degreewver in between. However, the cantilever does not “rifigé.,
of freedom!? The tunneling rate of electrons through insu- shuttle electrons spontaneously, but instead is driven by
lating barriers has an exponential dependence on the physicsirong gate voltages applied across the cantilever ifaelay
extent of the barriers and so is sensitive to even relativelfrom the tunneling contactsThe rate of electron tunneling
small changes in their size. In standard semiconductor strucan be controlled by the amplitude of the drive when it is
tures the components are rigidly fixed so that fluctuations iriuned to one of the natural frequencies of the cantilever.
the widths of tunnel barriers are relatively unimportant.Electron transport in this system can again be understood
However, whenever electron transport occurs across flexibleithin orthodox single-electron tunneling theory, modified to
tunnel barriers modulation of the barrier widths due to vibra-account for position-dependent behavior in the tunneling
tions is expected to affect the tunneling. The perturbation ofates®’
tunneling processes across a single mesoscopic junction by a Systems in which electron transport between two contacts
mechanical degree of freedom has been analyzed in sonie mediated by a vibrational mode of a self-assembled struc-
detail, and is now relatively well understobd.However, ture have also been investigaf®iThe most striking ex-
when there are two or more flexible junctions connected irmmple of such a system is thedXingle-electron transistor
series more complicated effects arise, in particular excitatiofiabricated by Parlet al® In this device, a single &g mol-
of vibrational degrees of freedom can lead to shuttling ofecule was deposited in a narrow gap between gold elec-
electrons between the junctions. trodes. The current flowing through the device was found to
The idea of a mesoscopic electron shuttle in which a viincrease sharply whenever the applied voltage was sufficient
brational degree of freedom modulates tunneling rates acrosge excite vibrations of the molecule about the minima of the
two junctions in turn was proposed recently by Gorelikvan der Waals potential between it and the electrodes, or an
et al® (although a fully classical charge shuttle is far from internal mode of the molecule itsétt?*
new'). Gorelik et al. considered a system in which electrons  The device fabricated by Past al. is an example of a
are transported between two leads by a small metallic graimolecular electronic devi¢&in which electrical conduction
embedded in an elastic medium. The interaction betweenccurs through single molecules connected to conventional
charges on the grain and the leads couples to the position &gads. The junctions between molecular components and
the oscillator leading to a dynamic instability. Electrons tun-leads will be much more flexible than those in conventional
nel onto the grain from one of the leads, resulting in a Cousolid-state nanostructures and fluctuations in their width may
lombic repulsion that drives the grain towards the other leadnodify their current characteristics significantly. Further-
where the electrons tunnel off: hence vibrations of the grairmore, vibrational modes of the molecular components them-
shuttle electrons between leads. In the model of Gorelikselves may play an important role in determining the trans-
et al. the electron tunneling is treated within the orthodoxport properties®
theory of single-electron tunneling, whilst the elastic me- Variations in the widths of tunnel barriers are also ex-
dium is treated as a classical oscillator. pected to have an important effect on the transport properties
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of nanoparticle chain¥ Nanoparticle chains consist of small Xo 0 *o ;
metal grains stabilized by ligands, with electronic transport ! ' '
occurring via tunneling between the metal particles. Becaust P |ON\NON\NO|

metal grains can significantly modify the electronic tunneling
rates.

In the present work, electron tunneling through an elec-
tromechanical system in the extreme quantum mechanice ——
and Coulomb blockade limits is investigated. Our interest isp,
focused on the case where the width of the tunnel barriers fo
electrons are modulated by a quantum mechanical vibra
tional degree of freedom. We analyze a model shuttle systen

of the relative softness of the ligand matrix, vibrations of the / ct C C, xC
Lead / \ \

Lefthand dot Central dot ~ Righthand dot

consisting of a row of three quantum dots in which the cen-
tral dot is mounted on a quantum harmonic oscillator.
The model considered here is simplified in many respects Flexible barriers
so that it is possible to build up an understanding of the Rigid barriers

characteristics of the transport that occurs when there is o

strong coupling between the electronic degrees of freedom FIG. 1. Schematic diagrams of the shuttle system. The geometry
and the displacement of a quantum harmonic oscillator. weand band structlure of the system are shown in the upper and lower
assume that the capacitance of the central grain or dot, arRfnels. respectively.

the outer dots is sufficiently high that transport is confined to

the Coulomb blockade regime. Furthermore, we assume that Details of how the Hamiltonian can be approximated by a
the electronic states of the system are coherent. We use tfgit€ matrix are given in Appendix A and the derivation of
language of semiconductor nanostructures, describing odff® density matrix equation of motion is outlined in Appen-

system in terms of quantum dots, because it provides a corftix B
venient shorthand for what is in effect a localized electronic
state. In practice, what we refer to as quantum dots could be Il. MODEL FORMULATION

actual semiconductor dots, large molecules or metallic nano- We begin by detailing the model Hamiltonian that we use

particles. S|m|larly,_ the oscillator .COUId be an uItrahlgh_- to describe the behavior of the shuttle system. The shuttle
frequency mechanical resonator with a dot mounted on It%:onsists of a linear chain of three quantum dots and a single
tip, like that studied by Blicket al.® alternatively, the oscil- q 9

lator mode could arise from vibration of the central “dot” vibrational mode, as shown schematically in Fig. 1. The

within a stabilizing elastic medium or the potential confinin physical locations of the wo outer dots are fixed, while the
. 9 P 9 central dot is mounted on the vibrational mode whose behav-
it between the outer dots.

We find that the current characteristics of the model©" 'S modeled by a quantum oscillator. The electronic part of

. ; the system is idealized: each dot is represented by a single,
shuttle can largely be understood by analyzing the CI9ENSPeLs alized energy state. The dynamics of electron transport

trum of the isolated system of three dots and the quamunﬁhrough the system is analyzed using the density matrix for-

oscillator. Tunnel coupling of the dot states, to each othe{,nalism as this allows couplings to external leads and the

2?%;?/;Tjegozg'§nm?;i;he gfs ('ill’:leatg? Ieeni;?Zt;Os rggg:)sclg:e(g wﬁ%ﬁects of the oscillator's environment to be incorporated
9 g 9 ost conveniently.

states localized on individual dots. The mixed states consisrp
of superpositions of the states associated with the individual _ -
dots and hence lead to delocalization of the electronic states A. Tight-binding model
between the dots. Analysis of the current that flows when the Wwithin the Coulomb blockade regime, the charging en-
shuttle is weakly coupled to leads, reveals strong resonancesgy of adding more than one electron to the shuttle is as-
corresponding to the occurrence of the delocalized stategsumed to be sufficiently high that only one transport electron
The current through the shuttle is found to depend sensitivelgan occupy the chain of three dots at any one time. There-
on the amount by which the oscillator is damped, thefore, the electronic degrees of freedom of the isolated system
strength of the couplings between the dots and on the backan be represented completely by the state in which none of
ground temperature. A preliminary account of some of thesgne dots are occupié®'’ |0) and the three localized states
findings has been given elsewhére. associated with the left-hand, central, and right-hand dots
The organization of the paper is as follows. In Sec. Il W6||>' |C>, and|r>' respectively. The system is modeled by a
describe the details of our model shuttle system. We introtight-binding Hamiltonian of the form
duce the Hamiltonian of the system and describe how cou-

pling to external leads can be taken into account. In Sec. llI H=g,|1){1]| +&,|r)(r| + eo(X)|c){c| + hwd'd

we examine the eigenspectrum of the system as a function of i

the difference in energy between the levels in the fixed dots. _Ve*a[Xo+X1(|C><| |+]1){c|)

The current characteristics of the device are described in Sec. .

IV. A summary and discussion of the results is given in Sec. —Ve o= X(|c)\(r|+]|r){c]|), (1)
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whereli)(i|, i=1,c,r, are projection operators for the three  The appropriate equation of motion for the density matrix
electronic states and the vibrational mode, frequengys  of the system generalized to include the leads and the envi-

operated on byl. The tunneling elements between the dotsfonment of the oscillator therefore takes the general form
depend exponentially on the displacement operator of the
vibrational modex=Ax,,(d"+d), whereAx,, is the zero-
point position uncertainty of the oscillator. The oscillator po-
sition has an expectation value of zero when the oscillator is h he “d e " b
unperturbed. The tunneling amplitude and length are givel/Nere the “decay matrix,"=, incorporates transitions be-
by the positive quantitie¥ and 1k, respectively. Although tween the leads and the outer dots adaccounts for the
we have not stated it explicitly, it is understood that the po-decohering and dissipative effects of the oscillator’s environ-
tential energy of the vibrational modes has a hard wall cutment. The form of the nonunitary terms can be derived by

S :
p==7[H.pl+Ep+pa, 2

off at the left- and right-hand dofg.e., atx= £Xg). adapting standard techniques used in the field of quantum
The energies of the outer two dotsy,, together define a  OPtics and we will consider both of them in tuth.
voltage bias across the deviceY,=e,=¢,—¢,. The en- The form of decay matrix coupling the shuttle to the leads

ergy of the central level is set by its position between thecan be obtained using the method of Gunétzal,” as de-

outer dots as we assume that it undergoes a Stark shift prgcribed in Appendix B. The components of the matrix
portional to its positiolf so thate,=e,— (X+xg)ey/2X.10 L= Plap are labeled by the vibrational staiperscriptsand
The energy levels in the outer dots are set by external gatd3€ €lectronic stategsubscripts The matrix is Hermitian
whose capacitance is assumed to be much larger than t3&d is specified by the componéfits

capacitances of the other junctiofise., the junctions be-

tween the dots and the junctions between the outer dots and [Eplif=pool, ()

the leadg but still small enough that only one of the dots can - -

be occupied by an electron at any one time. [Epli=—p;T, (4)
The behavior of the shuttle system is readily investiagted

by numerical methods. The Hamiltonian and density opera- [Ep]30= —F(pgo_ pirir), (5)

tors are represented as matrices, as described in Appendix A,

and the time evolution of the system can be obtained numeri- r

cally for any initial form of the density matrix. However, the [Ep]irjc: — —Pirjc , (6)

vibrational degree of freedom is only completely specified 2

by an infinite set of states that must be truncated for numeri-
cal calculations. The necessary truncation is best performed - i i

in the basis of thgunperturbed energy eigenstates of the [Epli=— 2P (7)
vibrational modesee Appendix A So long as the energy of
the highest-energy state included is much larger than any

= 1 == A7 =
other energy scale in the problem, the error due to truncation [Zplec=[Eplic=0, ®
is small. wherel is the tunneling rate between the dots and the leads,
and all terms[Ep]ioia wherea+#0 are zero as the associated
B. Coupling to leads elements of the density matrip}, with a+0) are zero by

The transport properties of the shuttle system coupled téefinition.
the leads are obtained by integrating an equation of motion Including the environment of the vibrational mode is es-
for the density matrix appropriate to an open quantum Syssgnual to .the de_scrlpt_lon asitis the dissipation arising from
tem. Apart from the internal dynamics of the shuttle, therethis coupling which gives rise to a steady-state in which the
are two effects we need to take account of. Couplings becurrent is constant, as we discuss below. We employ a mini-
tween the electronic states in the outer dots and the lead8al model of the environment, assuming it to be composed
must be incorporated, and the coupling between the oscilla?f @ bath of oscillators at a fixed temperattteio which the
tor and its environment must also be included. vibrational mode is coupled only weakly. Under these as-
The external couplings of the outer dots and oscillator aréumptions, the dissipative component in the equation of mo-
accounted for in the dynamics via additional terms in thetion for the density matrix is given By
equation of motion for the reduced density matrix of the

shuttle, an approach that is well-known in the field of quan- © o Y=t onp oA AAg

tum optics and has recently been applied to problems of Pa= 2n(dd p—2dipd+pdd)

electron transport in nanostructuré$’ The electrons in the

leads are assumed to be completely incoherent, which means Y = N o At ATA

that all the off-diagonal elements of the density matrix be- 2 (n+1)(d"dp—2dpd+pd'd), ©

tween the stat¢0) and the other electronic states can be set o

to zero (notice, however, that the diagonal element in thewherey is the classical damping rate of the oscillator, and
density matrix for|0) has both diagonal and off-diagonal is the usual thermal occupation number of the oscillator at
matrix elements in the space of the vibrational-mode statestemperatureT,
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. 1 illustrated in Fig. 2a) [note that all the energies in the figures

= (10 are measured in units défw, and the distances are measured
elt@/kgl — 1 i . i

in units of Ax,,]. The energy levels at zero-bias are threefold

The classical damping rate is just the rate at which the vibradegenerate states separated=hyw. For small applied bias,

tional mode loses energy due to frictional forces, its valuehe splittings between energy levels are linear. The spacings
can be obtained empirically from the quality factor of the Petween the sets of three levels at zero-bias are not exactly

oscillator>?! y=w/Q. fiw, but increase slightly with energy. This is because the
The Steady_state current through the Sys(ﬂ'ﬂmunits of oscillator is in fact confined by hard wall pOtentials that it
electrons per unit timeis given by begins to feel at higher energies, leading to an increase in the

eigenenergies.
I © When the electronic states are decoupled the individual
o= lew’, (1) dot states are readily identified: the left- and right-hand-dot
energy levels increase and decrease respectively with in-
wherep'? is the occupation probability of the right-hand dot creasing voltage bias, whilst the energy of the central-dot
when a steady state has been achieved. In practice the currerectronic states drop off quadraticallghis state is equiva-
is determined after evolving the equation of motion for thelent to an oscillator in a linear potentiallhe eigenvalues for
density matrix until further changes with time become neg-+the left- and right-hand energy levels cross fg=n7%w
ligible. with n an integer. Foe,=2% w, the crossing of the left- and
The discrete nature of the states in the dots has an imporight-hand-dot energy levels almost coincides with the

tant effect on the ways in which energy can be transferred igentral-dot energy level. The level crossings of the lower
the shuttle. An electron traveling through the shuttle mustigenvalues occur at almost precisely integer values@f
enter at an energy determined by the level in the left-handbut at higher energies the level crossings drift to larger bias
dot and leave at the energy determined by the lower level ivalues because of the increased spacing between levels at
the right-hand dot. Hence each electron traveling through theero bias.
device dissipates an amount of energy proportional to the For finite values of the tunneling matrix elemevitthe
bias voltage. For a system without an oscilldfbthe energy  eigenvalue dynamics as a functionsgf becomes more com-
is dissipated in the lead with the lower chemical potential.plex, as shown in Fig. 2. The energy levels at zero-bias split
However, for the shuttle we consider here, some of the enso that the degeneracy of the levels is lifted. At finite bias the
ergy ends up in the oscillator—rather like the electronlevels no longer cross, but instead repel each other. The
“pump” considered by Stafford and Wingreen in revefde. strength of the level repulsion depends stronglyobut the
Despite this apparent pumping mechanism for the oscillatogscillator state also plays a role as larger number states for
the degree to which the oscillator can be excited is stronglyhe oscillator lead to stronger couplings between levels.
limited by damping and a steady-state is always achievetiowever, away from the anticrossings, the levels vary with

when this effect is includef. ey, in almost the same way as for the decoupled case, imply-
ing that the eigenvalues in these regions can still be associ-
lIl. EIGENVALUE DYNAMICS ated with states localized on the individual dots.

have a different character for odd and even values. d¢for

For a system in which the coupling to external leads ancbdd values ofn, levels associated with the left- and right-
the environmenf is much weaker than the coupling between hand dots anticross, leading to mixing of the levels. For even
the dots(i.e., whenl',y<Ve “*o/#;), the current character- values ofn, levels associated with the central dot mix first
istics are expected to be strongly influenced by the eigenwith levels associated with the left-hand dot and then with
states of the isolated system. Under these conditions, we cd@vels associated with the right-hand dot within a very nar-
think of the eigenstates of the system, which in general areow range ofe,. The simultaneous curvature of the three
not localized on any one dot, as forming independent chanlevels implies that, over a narrow range ©f, the mixing
nels for conduction. The current is carried most effectivelyinvolves all of them. The left-hand dot level mixes with the
by those eigenstates in which there is a finite probability ofcentral-dot level first partly because the central dot level
finding an electron in both the left- and right-hand dots, anccurves downwards, and partly because the left-hand dot level
the characteristics of the eigenstates can be determined froig associated with a less excited state of the oscillator, which
the behavior of the corresponding eigenvalues. Therefore wies closer to the central-dot level at zero bias than the right-
examine the dynamics of the eigenvalues as a function of theand-dot level.
bias voltage in the uncoupled shuttle system before going on In the vicinity of the level-anticrossing states associated
to consider the corresponding behavior of the current in thevith either the left-hand and right-hand dots, or with all three
coupled system. dots, become strongly mixed. The mixing of these levels

The eigenvalue spectrum of the shuttle at zero bias voltimplies that the electron will be highly delocalized near the
age is controlled by the relative values of the energy scaleanticrossings, leading to a strong enhancement of the current
of the oscillator,w, and the tunneling matrix elemen¥;  through the shuttle. The variation in the location and strength
and by the length-scaleg and 1k. The eigenvalue dynam- of anticrossings of levelénd hence mixings of states asso-
ics in the limit where the dots are uncoupléet., V=0) is  ciated with different dotswith the eigenvalue energy implies
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that the actual current characteristics will be sensitive to the 8
energy of the shuttle in the steady state.

At zero bias the system will be at resonance as the dot
energy levels will be aligned, and we expect a large current
to flow. However, the large current at zero bias can also be
understood in terms of the current channels formed by the
eigenstates. At very small bias energies the eigenvalues for
finite V have a quadratic dispersion, and the eigenstates are 0
composed of almost symmetrical mixtures of the left-hand,
central, and right-hand dot states and hence are highly 21 (a)
delocalized?’ B , ,

In studying the eigenspectra and the steady-state current 0 2 4 6
we concentrate on a range of bias values of afewy for a
combination of reasons. As the bias voltage increases, the 8
eigenspectra become more complex. The spread in the loca-
tions of the anticrossings with eigenenergy increases ayjth
and the energies of the levels that anticross increase. The
complexity of the eigenspectra at large valuesgfmeans
that it will become increasingly difficult to understand the 5 e
current characteristics of the system by reference to the e ]
eigenspectrum. Furthermore, our simple modeling of the 0 %
electronic part of the system, including only a single energy \

level for each dot, will become increasingly unreliable as the 21 (b)
c)

energy
n

energy
»

bias is increased and higher levels in the dots become acces-
sible.

o

2 4 6
8b

IV. CURRENT CHARACTERISTICS

In order to obtain the current characteristics of the shuttle
system we integrate the equation of motion for the density af
matrix from a given initial state, until a steady state is ob-
tained. The steady state is achieved when the energy gained
by the oscillator from the electrons is matched by losses due

to damping by the surrounding medium. o ]
The steady-state current for a chain of quantum dots at 5| 1
fixed positions has been studied extensivéff?42>%n the 2!

Coulomb blockade regime, it is found that if the energy level “
in each of the dots is shifted by an amount proportional to its 0 2 4 6
position (forming a “Stark ladder?’), the decay in current
with the shift in energy levels is rapid.For the shuttle, we
find that the presence of the oscillator leads to significant I
changes in the current characteristics.

We begin by analyzing the simplest case, where the dots 4
are strongly coupled to each oth@nd weakly coupled to
the leads and the temperature is set to zero. In this regime -
the current characteristics can be understood in terms of the K
energy eigenspectrum of the system and the effect of the 0 x
oscillator’s environment that causes scattering between the
eigenstates. However, we also consider the behavior when 21 (d) ]
the tunneling length of the electrons is reduced, so that the ” , ,
coupling between the dots becomes weak, as it is in this 0 2 4 6
regime that current can flow by hopping on and off the cen-
tral dot sequentially, in a manner very reminiscent of the
semiclassical shuttlés>~’ Furthermore, in practice, tempera-
ture will play an important role and so we extend our analy-
sis to small but finite temperatures. Working at finite tem-  FIG. 2. Dynamics of the lowest 18 eigenvalues for systems with
peratures complicates the numerical calculation as itarious parameter values. In the upper panets0.2, xo=5 with
naturally increases the importance of higher-energy oscillatov=0 (a) andV=0.5 (b); in the lower panels/=0.25, «=0.2 (c)
states. This means that care needs to be taken in truncatimgdV=0.5, «=0.4 (d).

energy
n

energy
»
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FIG. 3. Steady-state current through the shuttle wiipper FIG. 4. Evolution of the energy expectation value of the shuttle
curve and without(lower curve the oscillator;vV=0.5, I'=0.05, over time (in units of the oscillator periodas a function of the
vy=0.025,x,=5 anda=0.2. damping, yv. From top to bottom, the curves correspond o

=0.015, 0.025, and 0.05, with,=0.86, V=0.5, «=0.2, Xg=5

the matrix of oscillator state@s described in Appendix)fo  andI’=0.05.
ensure that the results obtained do not depend strongly on the
size of the truncated Hamiltonian matrix. The errors due to The second current peak, which occursegt=0.86 (in
truncation only become significant for temperatures such thainits of 4 w), is due to the mixing of levels associated with
hw<kgT. The matrix method can readily be adapted to in-the left- and right-hand dots. The resulting eigenstates are
vestigate the effect of temperature whiea ~kgT. symmetrical as they contain almost equal weights for the

The initial state of the system describes the initial waveleft- and right-hand dotsi.e., in these states the probability
functions of the electronic and oscillator parts of the systemof finding the electron on the left- and right-hand dots are
The initial form of electronic part of the wave function is almost equal The third current peak occurs &=1.95, and
unimportant: it simply describes the initial probabilities of corresponds to a mixing of the central-dot level, more or less
finding an electron on each of the dots, which does not irsimultaneously, with both left- and right-hand-dot levels. In
practice affect the form of the steady state that is latethis case the resulting eigenstates are not entirely symmetri-
achieved. However, the initial state of the oscillator is ofcal: there are larger weights for the left-hand dot in some
some importance as it depends on the background temperstates and larger weights for the right-hand dots in others.
ture, but at zero temperature, the oscillator is initially in its The fourth current peak, occuring ag=2.92, is similar to
ground state. the second peak, in that it too is due to the mixing of levels

The steady-state current through the dots as a function efssociated with the left- and right-hand dots. The magnitude
g, with and without the oscillator is illustrated in Fig. 3 for of the fourth current peak is rather lower than that of the
the case of strong coupling between the dots. The tunnelingecond peak, partly because the left- and right-hand-dot lev-
rate to the leads i$°=0.05 and the damping rate for the els that are mixedat £,=2.92), correspond to oscillator
quantum oscillator isy=0.025 [all rates are measured in states differing by three quantahereas states differing by
units of w]. only one oscillator quantum are mixed at=0.86), and

When the bias is zero, all three dot levels are alignedcpartly because anticrossings progressively disappear from
leading to resonant transmission of electrons. Without thehe lower part of the energy spectrum as the bias is increased.
oscillator, the current decays rapidly with increasing ligs
as expected. When the oscillator is present, the current ini-
tially decays with increasing bias, though more slowly than
before, but at larger values af, prominent current reso- The dynamics of the system is strongly influenced by the
nances dominate the behavior. magnitude of the oscillator damping, Without any damp-

For strong coupling between the ddisompared to the ing, the oscillator would gain energy continuously from the
couplings to the leadsthe current peaks are best describedelectrons and no steady state would be achieweithout
in terms of the conduction channels formed by the eigenincluding higher electronic levelsThe effect ofy in pro-
states of the shuttle system. Comparison of the current peakhkicing a steady state can be seen by examining the average
in Fig. 3 with the corresponding eigenspectrum in Fig. 2energy of the shuttle as a function of time.
shows that the resonances coincide with avoided-level cross- The average energy is readily computed from the density
ings where the eigenstates are formed from mixtures of statamatrix and Hamiltonian of the systefsuitably generalized
localized on the individual dots. Further resonances shoultb account for the energy of the oscillator when none of the
occur at higher values aof,,, but the model will eventually dots are occupied Figure 4 shows the evolution of the av-
break down when the shift in levels exceeds the energy levedrage energy,E)=Tr[Hp], as a function of time for a range
spacing in the dots themselves. The peak in the current af different damping constants. The average enerdy-& is
zero bias arises because the eigenstatesfei0 each con- given by the initial state of the system with the oscillator in
sist of (symmetrical mixtures of the states associated with its ground state and an electron present on the left-hand dot
each of the dots. Of course, the peak at zero bias can also lfghe bias energy,=0.86, corresponds to a peak in the cur-
seen as due to resonant tunneling through the shuittle. reny. For each value ofy, the average energy varies with

A. Effects of oscillator damping
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FIG. 5. Effect of the oscillator damping on the current. The FIG. 6. Steady-state current through the shuttle whéte.5,
curves have been displaced for clarity, from top to bottom theyl'=0.05, y=0.025,x,=5 and «=0.2 (continuous ling¢ and 0.4
correspond toy=0.005, 0.025, and 0.05, wit=0.5, «=0.2, (dashed ling
Xo=5 andI'=0.05.

ergy the current is very sensitive to the reduction in the

time before eventually settling down to a constant Value’average energy caused by the higher damping.

indicating that the system has reached a steady state.
The time taken to reach the steady state, and the average
energy in that state vary considerably. Ror 0.025 the os- At larger values ofa (i.e., for smaller tunneling lengths
cillator appears to be “critically damped” in the sense thatA =1/«) the coupling between the dots grows weaker and
the energy in the steady state is roughly the initial energy ofhe picture of the current as arising from the passage of elec-
the system. In contrast, foy>0.025 the system achieves a trons through weakly coupled eigenstates acting as conduc-
steady state by losing energy to the environment, implyingion channels begins to break down. Instead we must think of
overdamping of the oscillator. As soon as the electron leave€ electrons as tunneling between states localized on the
the lefthand dot and moves to states on the other dots dtdividual dots. _
lower energies, some of the initial energy is dissipated into When the bias energy isfiw or 3hw the electrons must
the environment via the oscillator. When< 0.025, the os- tgnnel .coherently from the Ieft—hqnd dot _tq the right-hand dot
cillator is underdamped and the system gains energy fro |aaV|rtual(non-energy-cc_mserwI)gransmon to the central
the electron reservoirs as successive electrons pass throu At I-:O\r/]veverhwhhen the b'?‘S eﬂergyﬂléﬁ.w electrons can
the system until a steady state is eventually achieved. For thner;i?lz te\r/zl;?s ;[n eesglcsr:er.; mwch?ck? rznzﬁgﬁl}vr;l]o §fe %?,frtgytuig'
underdamped case, the time taken to achieve the steady stadte

is longer than for either critical or overdamping and it even- umped in the oscillator. Of course whep=0 there is no
ge i ping need to dump energy into the oscillator and all tunneling
tually diverges wheny is set to zero.

: : processes through the central dot conserve energy.
The value of the oscillator damping also has a strong ef- The effect of increasing is clearly shown in Fig. 6: the

fect on the magnitude of the steady state current through thgecond and fourth peaks are strongly suppressed, whilst the

shuttlet, gts sh%wn In F;g |5 Th(i[:hway Im er"?_;aﬁ?mts thz third peak is only slightly reduced. As the tunneling length
current depends sensitively on e valuesg efirstan becomes smaller, coherent tunneling directly between the

§econd cqrrent peaks. are almost unaffected bY the variatiqgft_ and right-hand dots becomes more difficult. However,
n th”e tosc[llator dam}i[);]ng consta:ryt twtr;:|5ttﬁa31p'ngk0f thde q electrons can still flow through the device by tunneling onto
osciiiator increases the current at the third peak and 0&ne central dot and then off again later in a sequence of two

creases it at the_ fourth peak. _The reason fo_r this d'ﬁ_e”ngseparate tunneling events, i.e., current flows by shuttling of
behavior is readily understood in terms of a picture of inde- #ectrons through the central dot

, L ; e
pendent conduction channels arising from the eigenstates o As for strongly coupled dots, an increase in damping of
e oscillator enhances the current whgp= 24 ». When the

the shuttle. If the damping is weak, it can be thought of asy,
oupling between the dots is weak the damping assists cur-

causing scattering between channels with slightly diﬂ‘eringC
energies. Therefore, damping can increase the current Whetrént flow by removing energy from the oscillator and thereby
ﬁelps prevent electrons from tunneling backwa(ids, from

ever scattering can transfer electrons from channels with
larger weights on the left-hand d@where the electrons enter the right-hand dot to the central dot or from the central dot to
the right-hand dot

the systemto the ones with large weights on the right-hand
dot (from which the electron leaves the syspert the first

and second current peaks the states that carry the current are
largely symmetrical, in that they contain almost equal
weights for the left- and right-hand dots, so the damping The effects of finite temperature on the current character-
cannot increase the current. In contrast, at the third peak thistics of the shuttle can be taken into account by generalizing
current can increase as there is considerable asymmetry bise initial state of the oscillator to a thermal mixture and

tween nearby eigenstates. At the fourth current peak, increasodifying the damping term&escribed in Sec. JIto take
ing the damping reduces the current because at this bias eaecount of the environment's temperature. As long as the

B. Current in weak-coupling regime

C. Finite temperatures
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channels. The scattering enhances the current whenever it
can transfer electrons from states strongly concentrated on
the left-hand dot to the ones strongly concentrated on the
right-hand dot. However, when the eigenstates contain equal
probabilities of finding the electron on the left-hand and
right-hand dots, scattering has no effect on the current.
When the tunneling length is reduced the effective cou-
pling between the dots is reduced and the picture in terms of
independent conduction channels can no longer be applied.
0.00 . . Instead we can think of the electrons as passing through the
0 1 2 3 shuttle via transitions between states localized on each of the
& dots. When the energy difference is an odd number of vibra-
tional quanta, current flow is via a virtual transition. In con-
trast, when the energy difference is an even number of vibra-
tional quanta, electrons can tunnel sequentially onto and then
off, the central dot. The virtual transitions are strongly sup-
pressed by reductions in the tunneling length of the electron.
Iélc_)wever, the sequential transitions—electrons hopping on
nd then off the central dot—are much less affected by
changes in the tunneling length.

0.015

0.010f }

current

0.005

FIG. 7. Steady-state current through the shuttlekgf=3
(dashed ling compared with that atgT=0 (full line). The para-
meters are as followsV=0.5, «=0.2, y=0.05, x,=5 and
I'=0.05.

temperature does not approach the charging energies asso
ated with the Coulomb blockade on the dots, no adjustme

to the electronic part of the model is required. .
Figure 7 compares the current through the shuttle for a The transport of electrons through the central dot via se-

particular choice of parameters k§T=0 andksT=3 (in quential tunneling, is analogous to the semiclassical models
units of 4w). The finite temperature has two r?oticeable ef—Of electron shutding:! As in the case of the experiments of

- ~ '6 - B . .
fects. First, the current characteristics are smeared out: th%IICk and co-workers,” the vibrational mode is driven and

peaks are broader and lower, while the troughs are shaIIowe(P.urrent flows by electrons twnneling onto the central dot and

Second, the maxima of the peaks are shifted to slightl hen tunneling off in the opposite direction at a later time.
higher b,ias energies owever, for the system we consider the driving energy

The effect of finite temperature on the current is reaclilycomes from the electrons themselves as the difference in dot

interpreted with reference to the eigenspectra in Fig. 2. ThENE'YY Ievels. forces them_ to lose energy to the qscﬂlator.
finite temperature increases the average energy of the sys- The shuttling mechanls_m dommqtes over higher-order
tem, whilst also broadening the distribution of probabilitiespr(.)cesses. .when the t“.””e"“g Iength,_ls of order the zero-
of finding the system in a given state. The broadening of thé’.Olnt .posmon uncertainty of the oscillatohXx,, gnd can
probability distribution implies that a whole range of statesd'V€ M€ to a larger current than at the electrqnlc resonance
contribute to the current, each of which have anticrossingé"e" whensl?=0). H'owever, the sharp features in the current
occurring at different values afy,, leading to a broadening characteristics begin to be s.meared out Whgh>7%.o.
of the current peaks. The overall increase in the average In order to hanfBTNﬁw in the range 0.1-1 K. thg fre-
energy leads to a general increase in the current because $f€NcY of the oscillator must be'1-10 GHz. This high-
the increased strength in the anticrossings at higher energiefi,equency range 1s acce55|bl_e in a wide variety of syiféems.
especially at larger values of, where anticrossings no the elastic I|n!<s n nanopartlcle arrays have freque cIes
longer occur in the lower parts of the eigenspectrum. ~'10 GHz, mlcromechanlpal resonators_ can be faprlcated
with frequencies approaching 1 GHE%and indeed the vibra-
tional modes in many molecular systems have much higher
frequencie$. The tunneling length depends on the work

We have investigated the effect of a quantized vibrationafunction of the surfaces involved, but typically lies in the
degree of freedom on transport through a chain of threéang€ 0.05-3 A. Unfortunately, raising the frequency of
quantum dots where the tunneling between the dots dependde oscillator reduces the zero-point position uncertainty,
exponentially on the displacement of the oscillator. When the\X,p,= v//2mw, but the effective masses of even artificially
dots are strongly coupled to each other and weakly coupletfbricated oscillators can be extremely snitir example,
to the leads, the current through the chain can be predicte@anoparticles can have mas¥es 10°2 kg). Therefore, it
by looking at places where anticrossings in the eigenspechould be possible to fabricate or assemble systems in which
trum give rise to electronic states that are delocalizedoth A\~Ax,, andkgT~%w, and thereby observe electron
amongst the dots. shuttling in the quantum regime.

The damping of the oscillator due to coupling to its envi-
ronment has important effects on the current flowing through
the system. The current through the shuttle only reaches a
steady value when the energy pumped into it from the elec- One of us(A.M.) would like to thank The Cavendish
trons is balanced by the dissipation due to the oscillator'd.aboratory, at the University of Cambridge, for their hospi-
environment. For weak damping, the environment can beality. This work was funded by the EPSRC under grant GR/
thought of as causing scattering between different current142909/01.

V. CONCLUSIONS AND DISCUSSION
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APPENDIX A: HAMILTONIAN IN MATRIX FORM riving the rates that describe the transitions to and from the

eads that are attached to the system, before going on to

The.Ham|Iton|an of the |sola§ed system of three dots anAcalculate the equation of motion for the density matrix fol-
an oscillator has three electronic states and a number of v[-

lowing the prescription of Gurvitet al2°
brational states which is in principle infinite, but which in : L
practice we limit to a numbeN~25 so that the largest- Following the usual theory of single-electron tunnefthg

energy state of the oscillatoE(, .= N7 w) is much greater we can write the net tunneling rate from a lead with chemical
9y max= M@ 9 potential x through a barrier to an isolated state with effec-
than any other energy scale in the problem.

The full Hamiltonian for the shuttle consists of nime tive energys as
X N submatrices, corresponding to the three electronic states _ _ _
and the tunneling elements between them Tne=Vol P(O)F(4)=P(L) (A= F(A)], BD

where A=g—u, Vq is the tunneling amplitude that is as-
Hio Hic Hir sumed to be independent of the enelfgis the Fermi func-
H=| Hc. Hce Hcerl. (A1)  tion andP(0)(P(1)) is the probability that the isolated state
is unoccupietbccupied.

For the shuttle, we need to consider transitions between
The sub-matrices have rows and columns labeled in a suithe left-hand lead and left-hand dot, and between the right-
able basis of the oscillator states. In the numerical represeirand lead and right-hand dot. In addition, the strong Cou-
tation of the oscillator states the diagonal submatrices taklobmb blockade means that transitions onto any of the dots
the form can only occur if all of the dots are unoccupied. Therefore,

for transitions between the left-hand lead and left-hand dot,
(n[HL [m)=(&|+ Miw) Sy, (A2)  P(0)=p, where we use the notatiop,=3;p},, for the
probability that the electronic stateis occupied, with the
superscripts and subscripts of the density matrix labeling the
oscillator and electronic states, respectively. Thus the net
(A3) tunneling rate from the left-hand lead to the left-hand dot
takes the form

HRL HRC HRR

€4 ~
(n|Hcclm)= F<n|(x+xo)|m>+(8l+ MAw) Spm,
zp

<n|HRR|m>:(8r+mhw)5nma (A4)

L _p+ S ahe
whereey= AX, (e, — &)/2X, With AX,, the zero-point posi- Ire=Tlpo=TLpr, (B2)
tion uncertainty of the oscillator. Of the other submatriceswherer+zv F(A). T =Va(1—f(A)). Similarly. we find
only those coupling adjacent dotse., H, ¢ andHcg, and L =Vol(4), I\ =Vo(1=1(4)). ¥,

their Hermitian conjugatésare nonzero, -
ugatg Fﬁetzrgpr_FRPO- (B3)
(n[H_c[m)=—V(n|e™“o"¥|m), (A5)  These net rates can be separated into individual terms that
. enter into the equations of motion of the elements of the
(n|Hcrlm)=—V(n|e” «loX|m), (A6)  density matrix. We assume thAt=g,— u,=u,—¢,, where

wi(ry is the Fermi level in the leftight) lead. The tunneling

The most efficient representation of the oscillator statesates for the right-hand lead take the folng = Vof(—A)
for computational purposes is the position basis. The oscillaandrg —V,o(1—f(—A)).

tor displacement is restricted between the values set by the |, order to simplify the analysis, we will work in the

positions of the outer dots, a restriction that is readily Myarge-bias limit wherdA|>kgT. In this limit, the backward

e o b pUTEing e 90 1 2610 and the foward rts ke
y diag 9 P b the simplified forml“,f(R =V,. We shall restrict our analysis

the number basia matrix of sizeNxN), then those states to this regime for simplicity, but the generalization to the

amongst the resultiny position states with eigenvalues out- master eguation for th% cgée Whémlgk T is relativel

side the range | xg,Xo) are projected out, leading to a . d B y
gtra|ghtforward.

somewhat smaller submatrix. This simple-minded procedur Gunvitz et al.2° have developed a way of extending the

is appropriate at relatively low energies when the weight of . . o . o
the wave function in the region outside the cutoffs is rela_denslty matrix description of electronic nanostructures to in

clude couplings between localized, coherent, electronic

tively small. states and leads containing a very large number of states
where the electrons can be regarded as incoherent. According
APPENDIX B: to this approach, the equation of motion for the density ma-
DENSITY MATRIX EQUATION OF MOTION trix including couplings to the leadbut not the environment

In this appendix we detail how the dissipative terms in thef the vibrational modetakes the general forth
density matrix equation of motion are obtained when the

voltage difference between the leads is less than the spacing  :ij _ —iTH o1 — pii . o+l I
of energy levels within each of the dots, so that transport is 3@ [H.plaa paacga a~d Pcc;a e
restricted to the Coulomb blockade regime. We begin by de- (B4)
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ij

N i Pab pd=—T_pg+Tgp} (B9)
par=—1[H.plap— Ta > Ta_gt 2 Thogl, o Lo R
d7a d#b . N
(B5) pit=[H.plit, (B10)
where the superscripts on the density matrix label the vibra- 1
tional state and the subscripts label the electronic parts. The pil=[H,p]il - EFRPH i (B11)

termsT,,_,, give the transition rates from statg® to |m).
Following the prescription given in Eq$B4) and (B5),
and taking into account only tunneling onto the left-hand dot D —TH ol — 11‘ ij B12
. . per=[H,p]c RPcr s ( )
from the left-hand lead and tunneling off the right-hand dot 2

into the right-hand lead, we obtain where we have omitted the superscript" from the tun-

neling rates and the off-diagonal terms in the electronic state

D — i] i
pi=tH.plitpol'L, (B6) |0) are zero, by definition, and so are omitted. Assuming the
o dot-lead junctions are identical, we can simplify the equa-
i =[H,p]l (B7) ) RSty X
Pcc Plees tions further by writingl =T'r=T" , and the terms coupling
N . i the dots to the leads are given by the maftfiy given in
prr=[H.plr —Trorr s (B8) Egs.(3)—(8).

*Present address: School of Physics and Astronomy, University of capacitances. However, we have neglected this detail in the

Nottingham, Nottingham NG7 2RD, United Kingdom. interest of simplicity.
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