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Bound-state evolution in curved waveguides and quantum wires
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Atheoretical study of a waveguide with a uniformly curved section is presented within the envelope function
approximation. Utilizing analytical solutions in each part of the waveguide, exact expression of the scattering
matrix of the system is derived. Based on it, a conductance of the waveguide is calculated for the wide range
of the bend angle and radius. It is shown that a quasibound state formed as a result of the bend, at some critical
parameters of the curve becomes a true bound state with infinite lifetime. It has its degenerate continuum
counterpart, but does not interact with it. As a result of a constructive resonant interference in the bend, dip in
the conductance, which is an essential property for the noncritical values, vanishes with full transmission being
observable instead. Mathematical and physical interpretation of these results is given, and characteristic fea-
tures of the critical parameters are discussed. Comparison with quantum waveguides with other types of
nonuniformity is performed.
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[. INTRODUCTION mined by the parameters of the bend. In particular, for the
sharply bent waveguides the number of the bound states for
Sophisticated modern growth nanotechnologies allow oneach subband changes from one to infinity when the bend
to build up structures where carrier motion may be confinedangle increases from zero to 180°, and for the curved wave-
in one, two or three dimensions. Quantum structures, wherguide, i.e., a structure with a constant cross section, a second
an electron is free to move between two parallel layers bubound state appears only for the physically irrelevant bend
not in the direction perpendicular to them are called quantunangle larger than %.%°
quasi-one-dimension&1D) waveguides. The discovery of ~ We want to note that the problem of the bent waveguide
conductance quantization in such quantum chahfslimu-  possesses quite universal generality applicable in many areas
lated a lot of theoretical and experimental attention to theirof physics and chemistry. For example, in Ref. 17 one of the
transport properties, especially when a uniformity of themodels of quark confinement is reduced to the problem of
waveguide is broken. It was shown that a quantum dot emwave interference in a two-dimensional right-angle channel.
bedded into the waveguide significantly alters its conducit was also used for the investigation of chemical rearrange-
tance, leading to the new dips and resonances which amaent processes.
absent without the scatter&f These resonances were attrib-  Long before nanoelectronics, wave propagation in bent
uted to the appearance of the discrete levels in the continuumaveguides was widely discussed in radiophysics and elec-
and their interaction with the continuum states. A bend pretrodynamics. From a point of view of mathematical physics,
sents another type of nonuniformity frequently met with inboth electron transmission through the quantum wire and
the waveguides. Investigation of its influence on the transelectromagnetic wave propagation along the metallic wave-
port properties of the quantum channels received extensivguide are described by the same type of second-order differ-
consideration recently. It was discovered that a bend in thential equation for scalar fields in two dimensions, namely,
uniform waveguide leads to the bound states spatially localby the Helmholtz equation. Extensive bibliography of the
ized in the bent region with energies below subbandelectromagnetic waves propagation along the bent structures
thresholdS~12 These levels interfere destructively with the dating back to the end of the nineteenth century may be
propagating modes resulting in the dips of thefound in Refs. 19-21. As far back as 1969, B&tdsad
conductancé®%61n a sense, this makes them similar to the shown that the reflection coefficient of the junction between
discrete levels induced by the impurity potential. However,a straight and a curved radio waveguide is expected to in-
there are some significant differences between them. Firstrease sharply in the immediate neighborhood of cutoff fre-
shapes of the conductance resonances in both cases are gaéencies. This was explained by the fact that a mode may be
the same; and, more importantly, origins of these states afgropagating in the curved part while still cut off in the
different. In the case of impurity an attractive potential cre-straight section or vice versa, depending on the wave
ates additional levels while for the bent waveguides the extr@olarization—clear analogy to the bound states in bent quan-
space in the bend accommodates electrons with de Broglieim wires(see also Ref. 23 However, at that time, compu-
wavelength exceeding the cutoff wavelength of the aboveational difficulties precluded a detailed analysis of this phe-
lying subband. Specific value of this de Broglie wavelengthnomenon. Miscellaneous aspects of the bent metallic
(and, accordingly, bound-state energg uniquely deter- waveguides continue to attract attention of radio sciertfsts.
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In the present paper we return to the problem of the wave-
guide containing uniformly curved section, with two main
aims in mind. First, within an effective-mass approximation
and a noninteracting electron picture we present an exac
form of the scattering matrix of the system. Exact analytical d y
solutions are developed in each region and matched on th
boundaries between them. In particular, in the bend an azi X
muthal component of the wavefunction is expressed througt
trigonometric functions with noninteger angular momentum.
Accordingly, the radial part contains a combination of the
Bessel functions with non integer index, which is either real o
or purely imaginary. Real indices correspond to the modes N
propagating inside the curve, and imaginary ones describe 0 Py y
the evanescent states. Comparative analysis between this ai
other known approaches is given. Among others, one of the X
advantages of our method lies in the fact that, matching wave
function at the junctions, one can derive formally an exact
expression for the scattering mat®E) which is a function
of the incident electron enerdy. Its knowledge allows one
to calculate the two-probe total conductar@g®
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-~ k_nsnn’snn' ’ @) FIG. 1. Schematic picture of the curved quantum waveguide we
study in this paper. Bend radius and angle pgeand ¢, respec-
wherek,, is the electron wave vector of the channeind the tively. width of the waveguide is a constadt Local coordinate
scattering matrix elemer8,,, defines the probability of the systems x,y) and ',y’) for the straight arms are also shown.
electron scattering from channeto n’. Sum in Eq.(1) runs
over all open channels. 1). Hard wall boundary conditions and a uniform curvature
Secondly, studying the conductanGewe concentrate on of the circular bend are assumed for simplicity. Straight parts
the analysis of the resonance dip locatig;, and, mainly, of the waveguide are assumed to be infinitely long. Magnetic
the resonance half width as functions of the parameters of field is assumed to be zero, but, similar to Refs. 16 and 26,
the bend. It is known that a dip in the conductance is due tanay be included into consideration at the later stage.
the interaction of the quasibound state raised into the confhroughout our analysis we also impose a ballistic regime of
tinuum with its degenerate continuum counterpart. Accordthe electron transport.
ingly, the value ofi/T" defines the lifetime of the quasibound  The single-particle Schdinger equation describing elec-
state. We find out that under some values of the bend parantron wavefunction, reads
eters the value df shrinks to zero, which corresponds to the
stable state—the state with infinite lifetime. Physically this h?
state is stable since under these very special conditions it B ﬁA\P(r):E\P(r) )
does not interact with the continuum, accordingly, there is no
reason for it to decay. Constructive interference in this cas&ith the wavefunction¥ vanishing at the boundaries of the
causes the dip in the conductance to disappear. We also draguantum wirem* in Eq. (2) is the effective electron mass.
parallels between our model and the recently studied colAs Fig. 1 shows, the geometry of the system dictates a natu-
lapse of the Fano resonances in the Q1D waveguide withal choice of the two-dimensional radius vectan terms of
embedded quantum dot. We find a very strong similarity berectangular coordinatexy) or (x’,y’) in the straight parts
tween these two cases indicating the same nature of the cof the waveguide and in terms of polar coordinates
herent phenomena in both configurations. (p,®)—in the bend. We will measure all distances in units of
The paper is organized as follows. In Sec. Il our model isthe waveguide widthd. Accordingly, all energies will be
presented and a necessary formulation of our method imeasured in units of>42/(2m*d?). In turn, in these units
given. Several advantages of this approach are also briefthe wave vector of the channel becomes7EY? and its
discussed. Section Ill is devoted to the presentation and déengitudinal componerk,= m+/E—n?. We also accept a unit
tailed physical interpretation of the calculated results. Sumef time as In* d?/(74).
mary of the results is provided in Sec. IV. In the Appendix  To the left of the bend, solution to E) is
we write the explicit form of the scattering matrix for our .
system. W(x,y)= 2, [A,expimE—nx)
Il. MODEL AND FORMULATION nt
+Bnexq_i7TVE_n2X)]Xn(Y) (3

We consider a Q1D quantum waveguide of widih
which contains a bend of inner radigg and angleg, (Fig.  with
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xn(Y)=2Y%sin(n7ry). (4) the trigonometric basis $8tor discretization of the Schro
dinger equation by nonrectangular méShn particular, it
After the bend one has allows one to directly determine the number of modes propa-

gating inside the bend. Namely, from the properties of the
Bessel functior® it follows that if x(¥'< 7EY2<x(%, with

x(©) beingI-th root of equation

‘I’(X"y'):n; ChexpimVE—n3)xn(y"). (5

In Eq. (3) the terms with coefficients,, describe the waves Yo(Xpo)Jo(X(po+1))—Jo(Xpo) Yo(X(po+1))=0,
incident upon the bend, the terms with coefficieBfsare the (10)
modes reflected fronif E>n?) or localized near iffor E
<n?). In the same way, in Eq5) the terms with positive
E—n? are the modes propagating away from the curved are
and those witfE—n?<0 are the states bounded by it.

In a particular case, foA,, being a Kronecker symbol:
An=6wm, m=1,2,..., due to theonservation law the fol-
lowing relation holds for the energidssuch thate >m?:

then the total number of the propagating modes in the bend
quald. Roots of Eq(10) are well known and can be found,
€.9., in Refs. 27 and 31. For the electromagnetic waveguides,
a comparative discussion of the Bessel and trigonometric
basis sets for different kinds of the bends was presented in
Ref. 32.
At the junctions we have the following relations between

2 the three coordinate systems,Y), (p,®), and &’,y’):

1/2
) (|Cn|2+|Bn|2)0(E_n2):l- (6)

©
>
n=1

E—-m? (x=0y)=(poty,¢=0), (11
6(x) in Eq. (6) is a step function, and termi$E—n?)/(E Y RVIAYAN " b=
—m?)1Y3C, |2 and[(E—n?)/(E—m?)]¥3B,|? are, respec- (X'=0y")=(po*y' 4= do). 12
tively, current transmission and reflection probabilities be- 9 1 9
tween subbandms andn. X[y gl 13

Inside the bend, in the polar coordinate system with the poTy $=0

polar point coinciding with the center of the bend and the
polar axis being the vertical junction between the straight J 1 J 14
and bent parts of the waveguide, solution of the Sdimger ax' |* :0®p0+y’ ) . (14)
equation reads ¢=o

- Keeping this in mind, one can match the wave function and
V(p,b)= R D si +E.co 7 its _derlvatlve in the straight and b_ent parts of the_V\_/avegwd_e.
(p.#) ngl n(P)[Dnsin(vad) + Fq cotvnd) ] (7) This leads to a system of equations for determining coeffi-
cientsA,, B,,, C,,, D,, andF,,. Eliminating from thenB,,
D,, andF,, it is possible to arrive at the relation between
Ry(p)= Yyn(WEllzpo)Jyn(WEllzp) infinite vectorsA andC,

with R,(p) being a radial part of the wave function

—J,,n(ﬂ'Ellpo)YVn(ﬂ'Ellzp). (8) C=SA. (15)

, i An explicit form of the scattering matri$ is given in the
Here J,(x) andY,(x) _areYBesseI functions of the first and appendix. Since its form is a quite complicated one, we do
second kind, respectivefy, and v, is the nth root of the ot extract any analytical information from it, performing

equation instead a direct numerical evaluation of the conducta®@ce
Y (7EY00)3,(rEY po-+ 1))~ 3, (wE o)V (wE W py 0T B (D)
+ 1))=0. (9) I1l. RESULTS AND DISCUSSION

The left-hand side of Eq9) is considered as a function of In the subsequent analysis we confine our attention to the
variablev which is the index of the Bessel functions with all fundamental propagating mode only wit,esE<4. In this
other parameters fixed. Accordingly, contrary to the systentase only one propagating channel exists, and the most char-
with circular symmetry, in our case, are not real integers. acteristic features of the discussed phenomena are not ob-
It is known'®?®that the solutions of E(9) are discrete and scured by the interference between different propagating
countably infinite, and only a finite number of the zeros aremodes. Equatioil) then becomes
real, the remainder being purely imaginary. As H{)
shows, real zeros are naturally associated with the modes
propagating inside the bend, and imaginary values describe
the evanescent waves.

Since Bessel functions are a natural mode for the uni- Also, we do not take into account the physically irrelevant
formly curved guide, representation of the radial part of theangles larger than 180°.
solution in the form given by Eq@8) is advantageous com- Figure 2 shows the normalized conductancg*
pared to other methods such as, for example, expansion irG/(2¢?/h) as a function of the Fermi enerdgfor the bend

2¢?
G(E)= T|511| . (16)
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. FIG. 2. Conductances* =G/(2e%/h) as a
function of the Fermi energk¢ for po=0.001 and
$o=180°. Resonance is characterized by its zero
transmission locatiof,,;, and the half widthl’

. which together form a complex energy of the
quasibound levekEq,=E i, —il'/2.

01} 1

radius p,=0.001 and the bend angl¢,=180°. It is seen interference blockade of the electron transport. Such local-
that immediately after the lower threshold, from zero theized level is split off from each subband, however, only the
conductance rapidly grows with energy and very soon aplevel split off from the fundamental mode is a true bound
proaches values very close to unity. Another remarkable feastate with its wave function in the straight parts being an
ture of the energy-conductance relation is the pronounced dipvanescent exponent in the longitudinal direction. As we
in the conductance near the next threshold. Namely, as Fig. @entioned before, we assume the infinite length of the
shows, close to the next subband conductivity drops abrupthgtraight waveguides, thus forbidding tunneling of this level
at energyE,i, reaches minimum equal to zero, and thenout of the bend into the leads. All levels splitting off from the
rapidly grows again. This dip in the transmission is explainechigher-lying subbands, due to their interaction with the con-
by the formation, in the circular part, of a localized modetinuum are, in general, quasibound states, or resonances,
with energy below the threshold value. The bend provides awhich may escape into the infinity. EnergiEs;;, at which
additional space where a particle can dwell with its momenzero transmission occurs are functions of the ragigiand

tum smaller compared to the straight sections. This localizethe angle¢,. They are shown in Fig. 3 as a function of the
state interferes destructively with the continuum states causend anglep, for several values of. It is seen that quasi-

ing the conductance to drop, andeg;, we have a complete bound state energy monotonically decreases with the bend

4
398t
396
3.94f
FIG. 3. EnergyE i, as a function of the bend
Bool angle% fpr several values of the radi%: Fhe
solid line is forpy=0.001, the dashed line is for
po=0.01, the dotted line is fopy=0.1, and the
39 dash-dotted line is fopy=1.
3.88f
3.86
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FIG. 4. Half widthI" as a function of the bend

angle ¢, for several values of the radiys.The
same convention as in Fig. 3 is used. Curve for
po=1 has four zero minima ogh, axis (exclud-

ing point ¢,=0).
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angle growing. AlsoE,,;, deviates stronger from the higher- Qq exp —imVE—1X) x1(Y)
lying subband threshold for the smaller radipg This is

quite understandable since a larger bend angle and a smaller - .

radius present a larger perturbation to the electron motion in +nZZ Qn exp(mVn“—EX) xn(y) (19

the uniform waveguide causing quasibound state energy to

deviate stronger from the unperturbed values. (recall that we confine our consideration to the fundamental

~ When one talks of the resonant scattering, another vengode only. Similar expression can be written for the other
important p_aramete_r to discuss is the half \_Nldt_h of the resoxyrm as well. Magnitude ofQ, |2 defines the escape rate of
nancel’. This value is shown by the arrows in Fig. 2. In fact, the corresponding state. In fact, it is proportional to the half
we can say that a quasibound state has a complex energydth. Generally, when it is not zero, there is a nonzero
Eqbs probability of the electron escape to the infinity. However, if
somehow we create conditions such tat=0, then there is
Eqv=Emin—iT/2. (17)  no channel for the electron to tunnel out of the bend since its
wave function does not contain a plane-wave component
now, but instead exponentially vanishes in the straight arms.
Thus, we have a true bound state. Using an analogy with
elementary quantum mechanics, we can call this |évst
1 excitedtrue bound state, and the level split off from the
=T (18)  fundamental mode-groundtrue bound state. They are simi-
lar, since particles in both of them are trapped by the bend
and (for the infinite arm$ cannot perform infinite motion
Figure 4 shows the half width as a function of the angle away from it. However, there are some considerable differ-
¢, for several values op,. It is seen thall’ increases to- ences between these two states. First, a ground true bound
gether with the moderate values of the bend angle, reache&sate always exists for any magnitude of the bend radius and
maximum (for example, forpy=0.01, I',,,=0.01837 is the angle. And, as we saw above, the excited true bound state
reached atpy=76°) and then decreases to minimumzefo  appears only under very special conditions when the coher-
after which it grows again. Depending @g, such situation ent resonant phenomena in the bend cancel out the plane
can be repeated a few times. For examplepfpr 1 one can  waves in the straight arms. Second, the ground bound state is
observe four minima of . Zero magnitude of the half width split off from the lowest subband threshold and, as such,
in the minimum means that the corresponding level at thesdoes not have a degenerate continuum counterpart. In its
critical parameters turns into the true bound state with infiturn, excited true bound state still is degenerate with the
nite lifetime, as it follows from Eq(18). Thus, under these continuum. However, contrary to the quasibound case, this
special conditions transformation from the quasilocalizeddegeneracy now does not cause any interaction between
state to the true bound level takes place. them. Instead, a constructive interference in the bend now
To explain this, we write the most general form of the erases the dip on the energy-conductance dependence, as can
wave function of the quasibound level in one of the straightoe seen from Fig. 5. It showS* as a function of the Fermi
parts of the waveguide, energy for the case gfy=0.01 and¢,=136.90°, i.e., when

I' determines the lifetime of the quasibound statiey
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FIG. 5. Conductanc&* as a function of the

. Fermi energyE for py=0.01 and¢y=136.90°.
There is no dip in the transmission for these criti-
. cal parameters of the bend.

03] -

02} 1

0.1 1

the corresponding' turns to zero in Fig. 4. Instead of the dip lute transparency through the obstacle, and a quasibound
we see the resonant tunneling through the bend with transstate can be transformed into the true bound level, which has
mission in the wide range of energy being practically indis-it degenerate continuum counterpart. This strong similarity
tinguishable from the unity. The only influence of the bendstems from the same physical origin of these effects, namely,
on the conductance in this case is the zero transmission &bm the coherent resonant phenomena in the nonuniformi-
E=1 and its quick approach to unity with the energy grow-ties of the waveguide.

ing from the subband threshold. Thus, a bent waveguide is
added to the class of quantum physical syst®fisyhere a
bound state in the continuum appears as a very special solu-

tion of the Schrdinger equation. We have considered the transmission properties of the
Since the disappearance of the dip in the conductance 91D waveguide with uniformly curved section in the wide
caused by the wave interference in the bend, one can qualiange of the bend parameters. Expressing solutions of the
tatively explain the different number of the minima for the wave equation in the bent part by the analytical functions
different radii in Fig. 4. As all the resonances we considerallowed us to derive an exact expression for the scattering
here take place near the second subband threshold, in the fifgtrix S. It also allowed us to conveniently calculate trans-
approximation we can say that the longitudinal de Broglieport properties of the structure. We have found that under
wavelength\ i, = 2/(Ex2 — 1) of the bound state is inde- some critical parameters of the curve, quasibound level in
pendent ofpy and ¢g: Apin=2. On the other hand, for the the bend transforms into the true bound state. Accordingly, as
larger pg length of the arc fo+ 1/2)¢o, which roughly de- a result of a coherent resonant phenomena in a circular arc, a
termines the resonant length, is also larger, and, accordinglgip in the conductance typical for the noncritical parameters,
the first resonant condition when only one half of the wave-disappears, turning into the full transmission resonant tunnel-
length\ i, is accommodated by the bend, is achieved for theng. These interference effects open up the possibility of con-
smaller angle. For the sufficiently largk, the second reso- trolling the transport properties of the waveguide by simple
nant condition can be realized when the bend can accommadning of the geometry of its bend.
date one full wavelength ;. As Fig. 4 shows, for the bend Only circular bends have been considered in this paper.
radii po=<0.1 it occurs at the angles,=180°, however, for The relevant geometrical parameters in this case are the bend
the large radii higher-order resonances can be achieved a fenadius p, and the bend anglé,. On the contrary, for the
times in the physically interesting range of9%,<180°. sharply bent waveguide the only factor affecting the trans-
Finally, we want to compare the above presented resultsiission is the bend angle. Some comparative analysis of the
with the study of the collapse of the Fano resonances in theharply and circularly bent waveguides has been performed
straight Q1D waveguide with embedded quantum®e  in Ref. 15. Because of the additional extra space in the cor-
see many similarities between these two cases. Both waveer of the sharply bent waveguide, it binds the electrons
guide nonuniformities raise the quasibound states into thetronger with the bound-state energy being always lower
continuum and, as a result, form their corresponding peculiathan that for the circular bend. The other difference is the
resonances; in both cases, by changing the geometrical ppresence of many bound states below the fundamental
rameters of the waveguide perturbation, this resonance cahreshold for the bend angle close to 180°. However, all
be erased or substituted by the resonant tunneling with absother physical effects described here for the curved structures

IV. CONCLUDING REMARKS
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such as the quasibound state transformation into the true “ [1+imJE—m?
bound level with its degenerate continuum counterpart, (Qy)ay=vy| 2 | ——=—=IN\),
should be present in the sharply bent waveguides as well. m=1\1—-i7yE—m

The first experimental confirmation of the existence of the (A2)
bound states in the bent guiding structures has been obtained

+1

nn’ |’

by the use of the transverse-electric mode microwaves in 1+i7JE—m? ) c
metallic waveguide&*'® The same technique may be used (=2 | —— ﬁﬁ%‘m 15 (A3)
for detecting the bound states discussed above and for map- m=1 \1-i7myE-m
ping their spatial localization.
A few possible continuations of the present work are  (Qa)nn' = SIN(v $0)(Q2)nnr = COL ¥ o) (Qu)nn
worth mentioning. First, we found a very strong correspon-
dence between our excited true bound state and the collapse
of the Fano resonances in the Q1D waveguide with embed-  (Q4)nn=C0L v,y d)(Q2)nny +SIN( vy Do) (Q1) iy
ded quantum dot. It is intriguing to find out how these two
nonuniformities—bend and embedded attractive scatterer—
will interact with each other.
Next, as we mentioned earlier, the magnetic-field influ- (Q)pnr=— Z[Sin(vn/%)I(n?,
ence on the bent waveguides was calculated by several au- 1-imyE—n
thors. It was showtf that applied static magnetic field shifts (1)
upwardsE;, and E. It is natural to wonder: what = Vnr €O v bo)l . (A6)
pwardsE,;, and squeezeB. It is natural to wonder: wha
happens with excited true bound states when a magnetic field
is taken into the consideration? 1 5
Throughout the paper we assumed the hard-wall boundary (Qe)nn =———===[cogvn ¢l ﬁm),
conditions meaning that the fields do not penetrate outside 1=imyE=n
the waveguide. It is a good approximation for the hollow ; (1)
metallic guiding structures. On the contrary, in the optical T oSN o)l oy, (A7)
waveguide¥' and quantum wires with finite height barriers
some part of the energy propagates outside the guide core. 451 imJE—m? @) A8
Accordingly, when such a structure is bent, guided along the (Q7)n 11— imJE—m "™ (A8)

structure energy is lost due to the radiation from the

bend?®2%3®|n its turn, the mode that was truly localized in and

the metallic waveguide becomes a quasilocalized state with

finite lifetime with the additional possibility to leak out not 11

only into the straight parts, but in the radial direction as well. |§]1n),:21/2f ——sin(n7X)Ry/ (po+Xx)dx,  (A9)
Calculation of the amount of the bending loss and localized 0potX
modes behavior in such structures is not only of fundamental

theoretical interest, but also of a paramount applied technical 2) _ A2
significance. A phenomenal growth of the fiber optic com- Lo =2 f
munication industry insistently dictates further spatial reduc-

tion in the design of integrated optical circuits where many N
separate optical devices on a single chip are to be intercon- |§1?;1),:21/2f (potX)siNNmX) Ry (po+x)dx, (Al1)
nected by the channels with bends. We are not aware of any 0

results addressing quasibound state behavior in bends in the

1
sin(Nmx)R, (po+x)dX, (A10)
0

optical waveguides. This problem needs a special investiga- . 1
tion. |<nn),=21/2J Ru(pot+X)Ry (po+x)dx,  (A12)
0
APPENDIX
1
We provide here the exact expression for the scattering |$1?1),=21/2J’0 (Pot+X)Rn(potX)Ry (po+x)dX
matrix,

(A13)
S={Qs(Q:—Q,Q; 'Qy) 1+ QG(QZ_Q1Q§1Q4)71}QKL with Ry(p) given by Eq.(8), n,n"=1,2,....
( Since, in general, there is no a analytical expression of the

where the infinite matrice®; (i=1,2,3,4,5,6,7) have the integrals (A10)—(A13) in the literature’”*® we performed
following structure: their direct numerical evaluation.
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