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Bound-state evolution in curved waveguides and quantum wires
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A theoretical study of a waveguide with a uniformly curved section is presented within the envelope function
approximation. Utilizing analytical solutions in each part of the waveguide, exact expression of the scattering
matrix of the system is derived. Based on it, a conductance of the waveguide is calculated for the wide range
of the bend angle and radius. It is shown that a quasibound state formed as a result of the bend, at some critical
parameters of the curve becomes a true bound state with infinite lifetime. It has its degenerate continuum
counterpart, but does not interact with it. As a result of a constructive resonant interference in the bend, dip in
the conductance, which is an essential property for the noncritical values, vanishes with full transmission being
observable instead. Mathematical and physical interpretation of these results is given, and characteristic fea-
tures of the critical parameters are discussed. Comparison with quantum waveguides with other types of
nonuniformity is performed.
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I. INTRODUCTION

Sophisticated modern growth nanotechnologies allow
to build up structures where carrier motion may be confin
in one, two or three dimensions. Quantum structures, wh
an electron is free to move between two parallel layers
not in the direction perpendicular to them are called quan
quasi-one-dimensional~Q1D! waveguides. The discovery o
conductance quantization in such quantum channels1,2 stimu-
lated a lot of theoretical and experimental attention to th
transport properties, especially when a uniformity of t
waveguide is broken. It was shown that a quantum dot e
bedded into the waveguide significantly alters its cond
tance, leading to the new dips and resonances which
absent without the scatterer.3–8 These resonances were attri
uted to the appearance of the discrete levels in the contin
and their interaction with the continuum states. A bend p
sents another type of nonuniformity frequently met with
the waveguides. Investigation of its influence on the tra
port properties of the quantum channels received exten
consideration recently. It was discovered that a bend in
uniform waveguide leads to the bound states spatially lo
ized in the bent region with energies below subba
thresholds.9–12 These levels interfere destructively with th
propagating modes resulting in the dips of t
conductance.13–16 In a sense, this makes them similar to t
discrete levels induced by the impurity potential. Howev
there are some significant differences between them. F
shapes of the conductance resonances in both cases a
the same; and, more importantly, origins of these states
different. In the case of impurity an attractive potential c
ates additional levels while for the bent waveguides the e
space in the bend accommodates electrons with de Bro
wavelength exceeding the cutoff wavelength of the ab
lying subband. Specific value of this de Broglie waveleng
~and, accordingly, bound-state energy! is uniquely deter-
0163-1829/2002/66~3!/035331~8!/$20.00 66 0353
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mined by the parameters of the bend. In particular, for
sharply bent waveguides the number of the bound states
each subband changes from one to infinity when the b
angle increases from zero to 180°, and for the curved wa
guide, i.e., a structure with a constant cross section, a sec
bound state appears only for the physically irrelevant be
angle larger than 5p.15

We want to note that the problem of the bent wavegu
possesses quite universal generality applicable in many a
of physics and chemistry. For example, in Ref. 17 one of
models of quark confinement is reduced to the problem
wave interference in a two-dimensional right-angle chann
It was also used for the investigation of chemical rearran
ment processes.18

Long before nanoelectronics, wave propagation in b
waveguides was widely discussed in radiophysics and e
trodynamics. From a point of view of mathematical physi
both electron transmission through the quantum wire a
electromagnetic wave propagation along the metallic wa
guide are described by the same type of second-order di
ential equation for scalar fields in two dimensions, name
by the Helmholtz equation. Extensive bibliography of t
electromagnetic waves propagation along the bent struct
dating back to the end of the nineteenth century may
found in Refs. 19–21. As far back as 1969, Bates22 had
shown that the reflection coefficient of the junction betwe
a straight and a curved radio waveguide is expected to
crease sharply in the immediate neighborhood of cutoff f
quencies. This was explained by the fact that a mode ma
propagating in the curved part while still cut off in th
straight section or vice versa, depending on the wa
polarization—clear analogy to the bound states in bent qu
tum wires~see also Ref. 23!. However, at that time, compu
tational difficulties precluded a detailed analysis of this ph
nomenon. Miscellaneous aspects of the bent meta
waveguides continue to attract attention of radio scientist24
©2002 The American Physical Society31-1
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In the present paper we return to the problem of the wa
guide containing uniformly curved section, with two ma
aims in mind. First, within an effective-mass approximati
and a noninteracting electron picture we present an e
form of the scattering matrix of the system. Exact analyti
solutions are developed in each region and matched on
boundaries between them. In particular, in the bend an
muthal component of the wavefunction is expressed thro
trigonometric functions with noninteger angular momentu
Accordingly, the radial part contains a combination of t
Bessel functions with non integer index, which is either r
or purely imaginary. Real indices correspond to the mo
propagating inside the curve, and imaginary ones desc
the evanescent states. Comparative analysis between thi
other known approaches is given. Among others, one of
advantages of our method lies in the fact that, matching w
function at the junctions, one can derive formally an ex
expression for the scattering matrixS(E) which is a function
of the incident electron energyE. Its knowledge allows one
to calculate the two-probe total conductanceG,25

G~E!5
2e2

h (
nn8

kn8
kn

Snn8
* Snn8 , ~1!

wherekn is the electron wave vector of the channeln and the
scattering matrix elementSnn8 defines the probability of the
electron scattering from channeln to n8. Sum in Eq.~1! runs
over all open channels.

Secondly, studying the conductanceG, we concentrate on
the analysis of the resonance dip locationEmin and, mainly,
the resonance half widthG as functions of the parameters
the bend. It is known that a dip in the conductance is due
the interaction of the quasibound state raised into the c
tinuum with its degenerate continuum counterpart. Acco
ingly, the value of\/G defines the lifetime of the quasiboun
state. We find out that under some values of the bend par
eters the value ofG shrinks to zero, which corresponds to th
stable state—the state with infinite lifetime. Physically th
state is stable since under these very special condition
does not interact with the continuum, accordingly, there is
reason for it to decay. Constructive interference in this c
causes the dip in the conductance to disappear. We also
parallels between our model and the recently studied
lapse of the Fano resonances in the Q1D waveguide
embedded quantum dot. We find a very strong similarity
tween these two cases indicating the same nature of the
herent phenomena in both configurations.

The paper is organized as follows. In Sec. II our mode
presented and a necessary formulation of our metho
given. Several advantages of this approach are also br
discussed. Section III is devoted to the presentation and
tailed physical interpretation of the calculated results. Su
mary of the results is provided in Sec. IV. In the Append
we write the explicit form of the scattering matrix for ou
system.

II. MODEL AND FORMULATION

We consider a Q1D quantum waveguide of widthd,
which contains a bend of inner radiusr0 and anglef0 ~Fig.
03533
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1!. Hard wall boundary conditions and a uniform curvatu
of the circular bend are assumed for simplicity. Straight pa
of the waveguide are assumed to be infinitely long. Magne
field is assumed to be zero, but, similar to Refs. 16 and
may be included into consideration at the later sta
Throughout our analysis we also impose a ballistic regime
the electron transport.

The single-particle Schro¨dinger equation describing elec
tron wavefunction, reads

2
\2

2m*
DC~r !5EC~r ! ~2!

with the wavefunctionC vanishing at the boundaries of th
quantum wire.m* in Eq. ~2! is the effective electron mass
As Fig. 1 shows, the geometry of the system dictates a n
ral choice of the two-dimensional radius vectorr in terms of
rectangular coordinates (x,y) or (x8,y8) in the straight parts
of the waveguide and in terms of polar coordinat
(r,f)—in the bend. We will measure all distances in units
the waveguide widthd. Accordingly, all energies will be
measured in units ofp2\2/(2m* d2). In turn, in these units
the wave vector of the channeln becomespE1/2 and its
longitudinal componentkn5pAE2n2. We also accept a uni
of time as 2m* d2/(p2\).

To the left of the bend, solution to Eq.~2! is

C~x,y!5 (
n51

`

@An exp~ ipAE2n2x!

1Bnexp~2 ipAE2n2x!#xn~y! ~3!

with

FIG. 1. Schematic picture of the curved quantum waveguide
study in this paper. Bend radius and angle arer0 and f0, respec-
tively. Width of the waveguide is a constantd. Local coordinate
systems (x,y) and (x8,y8) for the straight arms are also shown.
1-2
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BOUND-STATE EVOLUTION IN CURVED WAVEGUIDES . . . PHYSICAL REVIEW B 66, 035331 ~2002!
xn~y!521/2sin~npy!. ~4!

After the bend one has

C~x8,y8!5 (
n51

`

Cn exp~ ipAE2n2x8!xn~y8!. ~5!

In Eq. ~3! the terms with coefficientsAn describe the waves
incident upon the bend, the terms with coefficientsBn are the
modes reflected from~if E.n2) or localized near it~for E
,n2). In the same way, in Eq.~5! the terms with positive
E2n2 are the modes propagating away from the curved a
and those withE2n2,0 are the states bounded by it.

In a particular case, forAn being a Kronecker symbol
An5dnm , m51, 2, . . . , due to theconservation law the fol-
lowing relation holds for the energiesE such thatE.m2:

(
n51

` S E2n2

E2m2D 1/2

~ uCnu21uBnu2!u~E2n2!51. ~6!

u(x) in Eq. ~6! is a step function, and terms@(E2n2)/(E
2m2)#1/2uCnu2 and @(E2n2)/(E2m2)#1/2uBnu2 are, respec-
tively, current transmission and reflection probabilities b
tween subbandsm andn.

Inside the bend, in the polar coordinate system with
polar point coinciding with the center of the bend and t
polar axis being the vertical junction between the strai
and bent parts of the waveguide, solution of the Schro¨dinger
equation reads

C~r,f!5 (
n51

`

Rn~r!@Dn sin~nnf!1Fn cos~nnf!# ~7!

with Rn(r) being a radial part of the wave function

Rn~r!5Ynn
~pE1/2r0!Jnn

~pE1/2r!

2Jnn
~pE1/2r0!Ynn

~pE1/2r!. ~8!

Here Jn(x) and Yn(x) are Bessel functions of the first an
second kind, respectively,27 and nn is the nth root of the
equation

Yn~pE1/2r0!Jn„pE1/2~r011!…2Jn~pE1/2r0!Yn„pE1/2~r0

11!…50. ~9!

The left-hand side of Eq.~9! is considered as a function o
variablen which is the index of the Bessel functions with a
other parameters fixed. Accordingly, contrary to the syst
with circular symmetry, in our casenn are not real integers
It is known19,28 that the solutions of Eq.~9! are discrete and
countably infinite, and only a finite number of the zeros a
real, the remainder being purely imaginary. As Eq.~7!
shows, real zeros are naturally associated with the mo
propagating inside the bend, and imaginary values desc
the evanescent waves.

Since Bessel functions are a natural mode for the u
formly curved guide, representation of the radial part of
solution in the form given by Eq.~8! is advantageous com
pared to other methods such as, for example, expansio
03533
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the trigonometric basis set29 or discretization of the Schro¨-
dinger equation by nonrectangular mesh.30 In particular, it
allows one to directly determine the number of modes pro
gating inside the bend. Namely, from the properties of
Bessel functions27 it follows that if xl

(0)<pE1/2,xl 11
(0) with

xl
(0) being l-th root of equation

Y0~xr0!J0„x~r011!…2J0~xr0!Y0„x~r011!…50,
~10!

then the total number of the propagating modes in the b
equalsl. Roots of Eq.~10! are well known and can be found
e.g., in Refs. 27 and 31. For the electromagnetic wavegui
a comparative discussion of the Bessel and trigonome
basis sets for different kinds of the bends was presente
Ref. 32.

At the junctions we have the following relations betwe
the three coordinate systems (x,y), (r,f), and (x8,y8):

~x50,y!⇔~r01y,f50!, ~11!

~x850,y8!⇔~r01y8,f5f0!, ~12!

]

]x Ux50⇔
1

r01y

]

]fU
f50

, ~13!

]

]x8
Ux850⇔

1

r01y8

]

]fU
f5f0

. ~14!

Keeping this in mind, one can match the wave function a
its derivative in the straight and bent parts of the wavegui
This leads to a system of equations for determining coe
cientsAn , Bn , Cn , Dn , andFn . Eliminating from themBn ,
Dn , andFn , it is possible to arrive at the relation betwee
infinite vectorsA andC,

C5SA. ~15!

An explicit form of the scattering matrixS is given in the
Appendix. Since its form is a quite complicated one, we
not extract any analytical information from it, performin
instead a direct numerical evaluation of the conductancG
from Eq. ~1!.

III. RESULTS AND DISCUSSION

In the subsequent analysis we confine our attention to
fundamental propagating mode only with 1<E<4. In this
case only one propagating channel exists, and the most c
acteristic features of the discussed phenomena are not
scured by the interference between different propaga
modes. Equation~1! then becomes

G~E!5
2e2

h
uS11u2. ~16!

Also, we do not take into account the physically irreleva
angles larger than 180°.

Figure 2 shows the normalized conductanceG*
5G/(2e2/h) as a function of the Fermi energyE for the bend
1-3
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FIG. 2. ConductanceG* 5G/(2e2/h) as a
function of the Fermi energyE for r050.001 and
f05180°. Resonance is characterized by its ze
transmission locationEmin and the half widthG
which together form a complex energy of th
quasibound levelEqb5Emin2 iG/2.
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radius r050.001 and the bend anglef05180°. It is seen
that immediately after the lower threshold, from zero t
conductance rapidly grows with energy and very soon
proaches values very close to unity. Another remarkable
ture of the energy-conductance relation is the pronounced
in the conductance near the next threshold. Namely, as F
shows, close to the next subband conductivity drops abru
at energyEmin reaches minimum equal to zero, and th
rapidly grows again. This dip in the transmission is explain
by the formation, in the circular part, of a localized mo
with energy below the threshold value. The bend provides
additional space where a particle can dwell with its mom
tum smaller compared to the straight sections. This locali
state interferes destructively with the continuum states ca
ing the conductance to drop, and atEmin we have a complete
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interference blockade of the electron transport. Such lo
ized level is split off from each subband, however, only t
level split off from the fundamental mode is a true bou
state with its wave function in the straight parts being
evanescent exponent in the longitudinal direction. As
mentioned before, we assume the infinite length of
straight waveguides, thus forbidding tunneling of this lev
out of the bend into the leads. All levels splitting off from th
higher-lying subbands, due to their interaction with the co
tinuum are, in general, quasibound states, or resonan
which may escape into the infinity. EnergiesEmin at which
zero transmission occurs are functions of the radiusr0 and
the anglef0. They are shown in Fig. 3 as a function of th
bend anglef0 for several values ofr0. It is seen that quasi-
bound state energy monotonically decreases with the b
r

FIG. 3. EnergyEmin as a function of the bend
anglef0 for several values of the radiusr0: the
solid line is forr050.001, the dashed line is fo
r050.01, the dotted line is forr050.1, and the
dash-dotted line is forr051.
1-4
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FIG. 4. Half widthG as a function of the bend
anglef0 for several values of the radiusr0.The
same convention as in Fig. 3 is used. Curve
r051 has four zero minima onf0 axis ~exclud-
ing point f050).
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angle growing. Also,Emin deviates stronger from the highe
lying subband threshold for the smaller radiusr0. This is
quite understandable since a larger bend angle and a sm
radius present a larger perturbation to the electron motio
the uniform waveguide causing quasibound state energ
deviate stronger from the unperturbed values.

When one talks of the resonant scattering, another v
important parameter to discuss is the half width of the re
nanceG. This value is shown by the arrows in Fig. 2. In fac
we can say that a quasibound state has a complex en
Eqb ,

Eqb5Emin2 iG/2. ~17!

G determines the lifetime of the quasibound statet by

t5
1

G
. ~18!

Figure 4 shows the half widthG as a function of the angle
f0 for several values ofr0. It is seen thatG increases to-
gether with the moderate values of the bend angle, rea
maximum ~for example, forr050.01, Gmax50.018 37 is
reached atf0.76°) and then decreases to minimum ofzero
after which it grows again. Depending onr0, such situation
can be repeated a few times. For example, forr051 one can
observe four minima ofG. Zero magnitude of the half width
in the minimum means that the corresponding level at th
critical parameters turns into the true bound state with i
nite lifetime, as it follows from Eq.~18!. Thus, under these
special conditions transformation from the quasilocaliz
state to the true bound level takes place.

To explain this, we write the most general form of th
wave function of the quasibound level in one of the strai
parts of the waveguide,
03533
ller
in
to

ry
-

rgy

es

e
-

d

t

Q1 exp~2 ipAE21x!x1~y!

1 (
n52

`

Qn exp~pAn22Ex!xn~y! ~19!

~recall that we confine our consideration to the fundamen
mode only!. Similar expression can be written for the oth
arm as well. Magnitude ofuQ1u2 defines the escape rate o
the corresponding state. In fact, it is proportional to the h
width. Generally, when it is not zero, there is a nonze
probability of the electron escape to the infinity. However,
somehow we create conditions such thatQ1[0, then there is
no channel for the electron to tunnel out of the bend since
wave function does not contain a plane-wave compon
now, but instead exponentially vanishes in the straight ar
Thus, we have a true bound state. Using an analogy w
elementary quantum mechanics, we can call this levelfirst
excited true bound state, and the level split off from th
fundamental mode—groundtrue bound state. They are sim
lar, since particles in both of them are trapped by the be
and ~for the infinite arms! cannot perform infinite motion
away from it. However, there are some considerable diff
ences between these two states. First, a ground true b
state always exists for any magnitude of the bend radius
the angle. And, as we saw above, the excited true bound s
appears only under very special conditions when the co
ent resonant phenomena in the bend cancel out the p
waves in the straight arms. Second, the ground bound sta
split off from the lowest subband threshold and, as su
does not have a degenerate continuum counterpart. In
turn, excited true bound state still is degenerate with
continuum. However, contrary to the quasibound case,
degeneracy now does not cause any interaction betw
them. Instead, a constructive interference in the bend n
erases the dip on the energy-conductance dependence, a
be seen from Fig. 5. It showsG* as a function of the Ferm
energy for the case ofr050.01 andf05136.90°, i.e., when
1-5
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FIG. 5. ConductanceG* as a function of the
Fermi energyE for r050.01 andf05136.90°.
There is no dip in the transmission for these cri
cal parameters of the bend.
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the correspondingG turns to zero in Fig. 4. Instead of the d
we see the resonant tunneling through the bend with tra
mission in the wide range of energy being practically ind
tinguishable from the unity. The only influence of the be
on the conductance in this case is the zero transmissio
E51 and its quick approach to unity with the energy gro
ing from the subband threshold. Thus, a bent waveguid
added to the class of quantum physical systems,8,33 where a
bound state in the continuum appears as a very special s
tion of the Schro¨dinger equation.

Since the disappearance of the dip in the conductanc
caused by the wave interference in the bend, one can q
tatively explain the different number of the minima for th
different radii in Fig. 4. As all the resonances we consid
here take place near the second subband threshold, in the
approximation we can say that the longitudinal de Brog
wavelengthlmin52/(Emin

1/2 21) of the bound state is inde
pendent ofr0 andf0 : lmin'2. On the other hand, for th
larger r0 length of the arc (r011/2)f0, which roughly de-
termines the resonant length, is also larger, and, accordin
the first resonant condition when only one half of the wa
lengthlmin is accommodated by the bend, is achieved for
smaller angle. For the sufficiently largef0 the second reso
nant condition can be realized when the bend can accom
date one full wavelengthlmin . As Fig. 4 shows, for the bend
radii r0<0.1 it occurs at the anglesf0>180°, however, for
the large radii higher-order resonances can be achieved a
times in the physically interesting range of 0°<f0<180°.

Finally, we want to compare the above presented res
with the study of the collapse of the Fano resonances in
straight Q1D waveguide with embedded quantum dot.8 We
see many similarities between these two cases. Both w
guide nonuniformities raise the quasibound states into
continuum and, as a result, form their corresponding pecu
resonances; in both cases, by changing the geometrica
rameters of the waveguide perturbation, this resonance
be erased or substituted by the resonant tunneling with a
03533
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lute transparency through the obstacle, and a quasibo
state can be transformed into the true bound level, which
it degenerate continuum counterpart. This strong simila
stems from the same physical origin of these effects, nam
from the coherent resonant phenomena in the nonunifor
ties of the waveguide.

IV. CONCLUDING REMARKS

We have considered the transmission properties of
Q1D waveguide with uniformly curved section in the wid
range of the bend parameters. Expressing solutions of
wave equation in the bent part by the analytical functio
allowed us to derive an exact expression for the scatte
matrix S. It also allowed us to conveniently calculate tran
port properties of the structure. We have found that un
some critical parameters of the curve, quasibound leve
the bend transforms into the true bound state. Accordingly
a result of a coherent resonant phenomena in a circular a
dip in the conductance typical for the noncritical paramete
disappears, turning into the full transmission resonant tun
ing. These interference effects open up the possibility of c
trolling the transport properties of the waveguide by sim
tuning of the geometry of its bend.

Only circular bends have been considered in this pa
The relevant geometrical parameters in this case are the
radius r0 and the bend anglef0. On the contrary, for the
sharply bent waveguide the only factor affecting the tra
mission is the bend angle. Some comparative analysis of
sharply and circularly bent waveguides has been perform
in Ref. 15. Because of the additional extra space in the c
ner of the sharply bent waveguide, it binds the electro
stronger with the bound-state energy being always low
than that for the circular bend. The other difference is
presence of many bound states below the fundame
threshold for the bend angle close to 180°. However,
other physical effects described here for the curved struct
1-6



tr
ar
ll.
th
in

ed
a

re
n

ap
e
o
r

u
l a
ts
t
fie

a
sid
w

ca
rs
o
th
he
in
wi
t

ell
e

nt
ic
m
uc
n
co
a

ig

rin

the

BOUND-STATE EVOLUTION IN CURVED WAVEGUIDES . . . PHYSICAL REVIEW B 66, 035331 ~2002!
such as the quasibound state transformation into the
bound level with its degenerate continuum counterp
should be present in the sharply bent waveguides as we

The first experimental confirmation of the existence of
bound states in the bent guiding structures has been obta
by the use of the transverse-electric mode microwaves
metallic waveguides.14,15 The same technique may be us
for detecting the bound states discussed above and for m
ping their spatial localization.

A few possible continuations of the present work a
worth mentioning. First, we found a very strong correspo
dence between our excited true bound state and the coll
of the Fano resonances in the Q1D waveguide with emb
ded quantum dot. It is intriguing to find out how these tw
nonuniformities—bend and embedded attractive scattere
will interact with each other.

Next, as we mentioned earlier, the magnetic-field infl
ence on the bent waveguides was calculated by severa
thors. It was shown16 that applied static magnetic field shif
upwardsEmin and squeezesG. It is natural to wonder: wha
happens with excited true bound states when a magnetic
is taken into the consideration?

Throughout the paper we assumed the hard-wall bound
conditions meaning that the fields do not penetrate out
the waveguide. It is a good approximation for the hollo
metallic guiding structures. On the contrary, in the opti
waveguides34 and quantum wires with finite height barrie
some part of the energy propagates outside the guide c
Accordingly, when such a structure is bent, guided along
structure energy is lost due to the radiation from t
bend.20,35,36In its turn, the mode that was truly localized
the metallic waveguide becomes a quasilocalized state
finite lifetime with the additional possibility to leak out no
only into the straight parts, but in the radial direction as w
Calculation of the amount of the bending loss and localiz
modes behavior in such structures is not only of fundame
theoretical interest, but also of a paramount applied techn
significance. A phenomenal growth of the fiber optic co
munication industry insistently dictates further spatial red
tion in the design of integrated optical circuits where ma
separate optical devices on a single chip are to be inter
nected by the channels with bends. We are not aware of
results addressing quasibound state behavior in bends in
optical waveguides. This problem needs a special invest
tion.

APPENDIX

We provide here the exact expression for the scatte
matrix,

S5$Q5~Q12Q2Q4
21Q3!211Q6~Q22Q1Q3

21Q4!21%Q7 ,
~A1!

where the infinite matricesQi ( i 51, 2, 3, 4, 5, 6, 7) have the
following structure:
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~Q1!nn85nn8F (
m51

` S 11 ipAE2m2

12 ipAE2m2
I mn

(3)I mn8
(1) D 1I nn8

(4) G ,

~A2!

~Q2!nn85 (
m51

` S 11 ipAE2m2

12 ipAE2m2
I mn

(3)I mn8
(2) D 2I nn8

(5) , ~A3!

~Q3!nn85sin~nn8f0!~Q2!nn82cos~nn8f0!~Q1!nn8 ,
~A4!

~Q4!nn85cos~nn8f0!~Q2!nn81sin~nn8f0!~Q1!nn8 ,
~A5!

~Q5!nn85
1

12 ipAE2n2
@sin~nn8f0!I nn8

(2)

2nn8cos~nn8f0!I nn8
(1)

#, ~A6!

~Q6!nn85
1

12 ipAE2n2
@cos~nn8f0!I nn8

(2)

1nn8sin~nn8f0!I nn8
(1)

#, ~A7!

~Q7!n54 (
m51

`
ipAE2m2

12 ipAE2m2
I nm

(3) , ~A8!

and

I nn8
(1)

521/2E
0

1 1

r01x
sin~npx!Rn8~r01x!dx, ~A9!

I nn8
(2)

521/2E
0

1

sin~npx!Rn8~r01x!dx, ~A10!

I nn8
(3)

521/2E
0

1

~r01x!sin~npx!Rn8~r01x!dx, ~A11!

I nn8
(4)

521/2E
0

1

Rn~r01x!Rn8~r01x!dx, ~A12!

I nn8
(5)

521/2E
0

1

~r01x!Rn~r01x!Rn8~r01x!dx

~A13!

with Rn(r) given by Eq.~8!, n, n851, 2, . . . .
Since, in general, there is no a analytical expression of

integrals ~A10!–~A13! in the literature,37,38 we performed
their direct numerical evaluation.
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60, 10 962~1999!; Zh. Éksp. Teor. Fiz.116, 263 ~1999! @ JETP
89, 144 ~1999!#.

9R.L. Schult, D.G. Ravenhall, and H.W. Wyld, Phys. Rev. B39,
5476 ~1989!.

10P. Exner, Phys. Lett. A141, 213 ~1989!; P. Exner and P. S˘eba, J.
Math. Phys.30, 2574~1989!; P. Exner, P. S˘eba, and P. S˘ tovic̆ek,
Chech. J. Phys. B39, 1181 ~1989!; Phys. Lett. A150, 179
~1990!; M.S. Ashbough and P. Exner,ibid. 150, 183 ~1990!.

11J. Goldstone and R.L. Jaffe, Phys. Rev. B45, 14 100~1992!.
12D.W.L. Sprung, H. Wu, and J. Martorell, J. Appl. Phys.71, 515

~1992!.
13F. Sols and M. Macucci, Phys. Rev. B41, 11 887~1990!.
14J.P. Carini, J.T. Londergan, K. Mullen, and D.P. Murdock, Ph

Rev. B46, 15 538~1992!.
15J.P. Carini, J.T. Londergan, K. Mullen, and D.P. Murdock, Ph

Rev. B48, 4503~1993!.
16K. Vacek, H. Kasai, and A. Okiji, J. Phys. Soc. Jpn.61, 27 ~1992!.
17F. Lenz, J.T. Londergan, E.J. Moniz, R. Rosenfelder, M. Stin

and K. Yazaki, Ann. Phys.~N.Y.! 170, 65 ~1986!.
18K.T. Tang, B. Kleinman, and M. Karplus, J. Chem. Phys.50, 1119

~1969!.
19J.A. Cochran and R.G. Pecina, Radio Sci.1, 679 ~1966!.
20L. Lewin, D. C. Chang, and E. F. Kuester,Electromagnetic Waves

and Curved Structures~Peter Peregrinus, Stevenage, UK, 197!.
03533
-
,

,
d

.

.

l,

21B. Z. Katsenelenbaum, L. Mercader del Rı´o, M. Pereyaslavets
M. Sorolla Ayza, and M. Thumm,Theory of Nonuniform
Waveguides~IEE, London, UK, 1998!.

22C.P. Bates, Bell Syst. Tech. J.49, 2259~1969!.
23M. Jouguet, Ann. Telecommun.2, 78 ~1947!; Cables Transm.1,

39 ~1947!.
24M. Spivack, J. Ogilvy, and C. Sillence, Waves Random Media12,

47 ~2002!.
25R. Landauer, IBM J. Res. Dev.1, 223 ~1957!; Philos. Mag.21,

863 ~1970!.
26E.N. Bulgakov and A.F. Sadreev, Pis’ma Zh. E´ksp. Teor. Fiz.66,

403 ~1997! @ JETP Lett.66, 431 ~1997!#; Zh. Éksp. Teor. Fiz.
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