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First-principles approach to electrical transport in atomic-scale nanostructures
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We present a first-principles numerical implementation of Landauer formalism for electrical transport in
nanostructures characterized down to the atomic level. The novelty and interest of our method lie essentially on
two facts. First of all, it makes use of the versatileGAUSSIAN98code, which is widely used within the quantum
chemistry community. Second, it incorporates the semi-infinite electrodes in a very generic and efficient way
by means of Bethe lattices. We name this method the Gaussian embedded cluster method~GECM!. In order to
make contact with other proposed implementations, we illustrate our technique by calculating the conductance
in some well-studied systems such as metallic~Al and Au! nanocontacts and C-atom chains connected to
metallic~Al and Au! electrodes. In the case of Al nanocontacts the conductance turns out to be quite dependent
on the detailed atomic arrangement. In contrast, the conductance in Au nanocontacts presents quite universal
features. In the case of C chains, where the self-consistency guarantees the local charge transfer and the correct
alignment of the molecular and electrode levels, we find that the conductance oscillates with the number of
atoms in the chain regardless of the type of electrode. However, for short chains and Al electrodes the even-odd
periodicity is reversed at equilibrium bond distances.

DOI: 10.1103/PhysRevB.66.035322 PACS number~s!: 73.63.Rt, 73.23.2b
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I. INTRODUCTION

Molecular- and atomic-scale electronic devices are
tracting an ever-increasing interest due to the impact they
expected to make in the world of nanotechnology. The nu
ber of experimental and theoretical works in this particu
area of research, generically known as molecu
electronics,1 is growing exponentially. The design of device
at the molecular and even atomic scale poses new challe
that require new theoretical and experimental technique
be developed. Scanning tunneling microscopy~STM! is
probably the pioneer of the experimental techniques in
research area. It can be used not only in the tunneling reg
to image adsorbates2,3 but also in the contact regime to buil
few-atom nanoscopic contacts.4 STM can also be used t
investigate the electrical properties of nanotubes5 and DNA
molecules6 with one or both of their ends attached to a su
able electrode. In addition to STM, mechanically contr
lable break junctions have also revealed themselves as p
erful tools to study electrical transport in metall
nanobridges7 or individual molecules.8,9

The basics to calculate the zero-bias conductanceG of a
nanoscale contact had been established by Landauer i
pioneering work10 long before these systems were commo
place. In Landauer’s formalismG is simply given by the
quantum-mechanical transmission of the electrons aro
the Fermi energy.11 The value of this transmission is esse
tially determined by the region where the number of ch
nels available for conduction is the smallest. In molecular
atomic-scale nanocontacts the region of relevance is the
ecule and/or the few atoms forming the nanoscopic bri
between electrodes. The transmission is thus strongly de
dent on the particular molecule, the detailed atomic arran
ment of the electrodes in the contact region, and the chem
nature of them. Knowing the atomic arrangement of the e
0163-1829/2002/66~3!/035322~14!/$20.00 66 0353
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trodes or the way the molecule binds to the electrodes
however, a major problem in itself. Furthermore, even
these important details were known, implementing Land
er’s formalism still requires knowledge of the electron
structure, and this is a formidable task as well.

Calculations based on tight-binding or semiempiric
models12–14have been, and still are, very popular since the
models capture the atomic-scale character in some detail
are easy to implement. However, they do not allow for str
tural relaxations to be performed. Most importantly, the
simple models, in general, do not yield correct values for
local electronic charges. In other words, the chemical pot
tial is not uniform across the entire system in equilibriu
While imposing local charge neutrality is a straightfowa
improvement on these models for metallic nanoconst
tions,13,14 there does not exist any simple modification in t
case of more complex systems such as metal-molecule-m
heterostructures.15 A way around this problem is to perform
self-consistent first-principles calculations that, at least a
mean-field level, guarantee the uniformity of the chemi
potential. However, most numerical implementations co
monly used to carry outab initio electronic calculations are
either restricted to finite systems, such as the Gaus
code,16 or require the infinite system to be periodic such
the SIESTA code.17 None of these methods is suitable to a
dress the systems studied here, which are both infinite
nonperiodic. Finally, a perhaps more serious difficulty is t
intrinsic nonequilibrium character of electrical transport.

In recent years several proposals have appeared to ta
this problem.18–23 Most are based upon density function
~DF! theory. In addition to the well-known virtues of the D
theory, it presents the additional advantange that Landau
theoretical framework does not need to be modified since
DF theory is still a single-particle description of the man
body problem. In the pioneering works of Lang and c
©2002 The American Physical Society22-1
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workers, Tsukada and co-workers, and Guo a
co-workers18,19,24–26the electrodes were described within t
jellium approximation. Jellium models are still use
today21,27,28as they are convenient in one way: They provi
featureless contacts that represent generic situations. As
tioned below this is one major feature of our model to
However, the jellium model presents serious drawbac
How can the differences observed experimentally betwe
for instance, Al and Au electrodes, be taken into account
means of a jellium? Furthermore, this approach is not sa
factory when one is trying to describe, for instance, ST
experiments where the detailed atomic structure of the
determines, to a large extent, whether or not the STM
resolve the topography or molecular structure of the ad
bate.

Recent approaches, which essentially differ only on
numerical implementation, intend to incorporate the atom
structure of the electrodes in the DF calculation.20,22,23,29,30It
is pertinent noting here that in most of these studies a p
odic structure beyond a given point within the leads is
sumed. Efficient transfer matrix techniques31,32 make this
reasonable assumption tractable, but it forces one to cons
a very specific type of lead~typically a finite-section
wire20,22,29,30or an infinite surface23!. Using a jellium model
for the electrodes is harmless but it lacks the minim
atomic detail that is crucial to describe, e.g., contact w
molecules. However, employing well-defined specific el
trodes is not desirable either since their own electronic st
ture can interfere with the interpretation of the results. F
instance, the appearance of gaps in the conductance clo
the Fermi energy for perfectly conducting systems such
Au chains can only be considered an artifact due to the
physical electrode model.22,30 Furthermore, actual nanocon
tacts are not expected to have high symmetry. As explai
below these difficulties are circumvented in our method.

Recently,33 we have presented an alternative to theab
initio methods mentioned above. Close in spirit to that p
sented in Refs. 20 and 22, the main differences and ad
tages with respect to them are the use of the standardGAUSS-

IAN98 code to carry out the DF calculation of the releva
transport region and the description of the electrodes bulk
means of appropriate Bethe lattices.34,35 The GAUSSIAN98

code provides a versatile method to perfom first-princip
calculations of clusters, incorporating the major advan
ments in the field in terms of functionals, basis sets, pseu
potentials, etc. On the other hand, the Bethe lattices are
fold convenient:~i! They reproduce the essential features
the bulk density of states and~ii ! their directional self-
energies can be easily calculated~see the Appendix!. In Ref.
33 these ideas were applied to investigate electrical trans
of a C60 molecule in between Al electrodes. Here we d
scribe in detail an improvement to our previous approac33

which can be summarized in that we now incorporate s
consistently the semi-infinite electrodes into the conducta
calculation within theGAUSSIAN98code. This requires work
ing with Green’s functions from the very start. The meth
has some resemblance with the cluster Bethe lattice me
developed to investigate the physical properties~electronic
structure, phonons, etc.! of disordered systems.35 We illus-
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trate the possibilities of our method by investigating ele
tronic transport in Al and Au nanocontacts. These syste
have been the subject of extensive studies in the pas
means of tight-binding methods13,14 and, more recently, by
means ofab initio methods.21,22,30 We show that, even in
these systems where charge transfer is apparently une
tial, tight-binding methods may fail to provide a corre
quantitative picture. It turns out that the conductance in
case of Al nanocontacts is strongly dependent on the deta
atomic structure. In the case of Au nanocontacts, on the c
trary, the results are more universal as confirmed by exp
ments. Next, we choose a system with somewhat appea
features: carbon-atom chains. As shown in Ref. 24 th
chains, when contacted by Al electrodes, exhibit a cond
tance that oscillates with the number of atoms in the cha
Here we address this problem by taking proper accoun
the binding to the electrodes and investigate how the res
depend on the type of electrode~Al or Au!.

The rest of the paper is organized as follows. In Sec. II
discuss the main characteristics of our method. Section I
devoted to an extensive discussion of the results. Finally,
end the paper by summarizing the main features of
method and the most remarkable results~Sec. IV!.

II. THE GAUSSIAN EMBEDDED CLUSTER METHOD

In previous work33 we have presented a method to stu
transport in atomic-scale and molecular devices that is ba
on standard quantum chemistry calculations with theGAUSS-

IAN98 code.16 This scheme, which has been recently adop
by other groups~see, e.g., Refs. 36!, is taken here a step
further. A DF calculation of the region that includes the mo
ecule or set of atoms forming the contact between electro
and a significant part of the electrodes is performed~see Fig.
1!. As far as transport is concerned, the Hamiltonian~or Fock
matrix F̂) of this central cluster or supermolecule contai
the relevant information since it embraces the region with
smallest number of channels for conduction. However,
cording to the usual theoretical transport schemes,10 its asso-
ciated Green’s functions are unsuitable for the evaluation
the current~note that they simply have poles!. The retarded
~advanced! Green’s functions associated withF̂ needs to be

FIG. 1. Schematic view of a cluster where phantom atoms fr
the Bethe lattices are shown.
2-2
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extended to include the rest of the semi-infinite electrode

Ĝr (a)~e!5~e Î Ŝ2F̂6 id!21→@e Î Ŝ2F̂2Ŝ r (a)~e!#21.
~1!

In this expression

Ŝ r (a)~e!5ŜR
r (a)~e!1ŜL

r (a)~e!, ~2!

where ŜR (ŜL) denotes a self-energy matrix that accou
for the part of the right~left! semi-infinite electrode that ha
not been included in the DF calculation.Ŝ is the overlap
matrix andÎ is the unity matrix. The added self-energy m
trices can only be explicitly calculated in ideal situation
which, in principle, limits the desired applicability of th
procedure above. For instance, in Refs. 22 and 30 the aut
consider finite-section wires as electrodes. As a result of
choice gaps appear in the conductance of otherwise perfe
conducting central clusters. In order to overcome this type
problem, we choose to describe the bulk electrode wit
Bethe lattice tight-binding model with the appropriate co
dination numbers and parameters~see the Appendix!. The
advantage of choosing a Bethe lattice resides in that it re
duces fairly well the bulk density of states of any metal
electrode, avoiding this way the appearance of spurious
sults. In addition to this the self-energy matrices that app
in Eq. ~1! can be calculated iteratively in a simple way~see
the Appendix for more details!. For each atom of the oute
planes of the cluster, we choose to add a branch of the C
ley tree in the direction of any missing bulk atom~including
those missing in the same plane!. In Fig. 1 the directions in
which branches are added are indicated by smaller atoms
represent the first atom of the branch in that direction. A
suming that the most important structural details of the e
trode are included in the central cluster, the Bethe latti
should have no other relevance than that of introducin
featureless reservoir.

In our present approach the self-consistent process
not stop once the finite central cluster has been solved.
stead, we reformulate theGAUSSIAN98 code to proceed with
the self-consistency of the now infinite system. More spec
cally, once self-consistency for the finite cluster has be
almost attained, we calculate the Green’s function as
plained above. Then, the density matrix is obtained from
Green’s function according to

n̂52
1

pE2`

eF
Im@Ĝr~e!#de, ~3!

whereeF is the Fermi level fixed by the condition of overa
charge neutrality in the cluster. The integral in Eq.~3! is
calculated along a contour in the complex plane as expla
in Refs. 20,22, and 23 with an efficient automatic numeri
integration scheme of Pe´rez-Jorda´ et al.37 The density matrix
is now used to recalculate the matrix elements of the Fo
operator and the process is repeated until self-consisten
achieved. We note that in this method the standard eig
value problem, inherent to theGAUSSIAN98 code, is replaced
by the calculation of Green’s functions. In the end t
Green’s functions describe an infinite system in a more c
03532
:

s

,

ors
is
tly
f
a
-

o-

e-
ar

y-

at
-
-
s
a

es
n-

-
n
x-
e

d
l

’s
is

n-

-

sistent way than in the method discussed previously by u33

since it effectively removes finite-size effects in the se
consistency. It is interesting to note that the applicability
this approach, which we hereafter name the Gaussian em
ded cluster method~GECM!, goes well beyond the presen
study. In fact it could be a powerful tool whenever an infin
media has to be described~for instance, adsorption of mol
ecules on solid or liquid surfaces!.

The conductance can now be simply calculated throu
the expression10

G5
2e2

h
Tr @ T̂#, ~4!

where Tr denotes the trace over all the orbitals of the clu
and T̂ is the transmission matrix, which, in turn, is given b

T̂5ĜLĜr ĜRĜa, ~5!

where the matricesĜR and ĜL are given byi (ŜR
r 2ŜR

a) and

i (ŜL
r 2ŜL

a), respectively. In order to single out the contrib
tion of individual channels to the current one can diagona
the transmission matrix. It turns out~see below! that only a
few channels give a non-negligible contribution to the c
rent. The symmetry of each channel was identified by lo
ing at its weight on the atomic orbitals of the central atom
the constriction or the C chain.

Finally, it is worth pointing out that if the current in th
finite-bias regime has to be obtained, one should simply
tegrate in energy the expression above with appropr
Fermi distribution functions. Note, however, that a new de
nition of the density matrix generalized to nonequilib
ium20,22,23needs to be used in the calculation of the Gree
functions. Apart from this, the Landauer-type expression~4!
remains valid as long as one does not give up the sin
particle description. In this work we are concerned with ba
and still open aspects of transport in the systems studied
we will focus on the linear regime.

III. RESULTS

For all the DF calculations we have used the Beck
three-parameter hybrid functional using the Lee, Yang, a
Parr correlation functional38 ~B3LYP! together with the
semilocal shape consistent pseudopotential~SCPP! and basis
sets of Christiansen and co-workers.39–41 We have selected
this combination of exchange-correlation functional a
pseudopotential for two reasons: First, the B3LYP is one
the most accurate and certainly the most popular among
gradient-corrected exchange-correlation functionals; seco
the SCPP of Christiansen and co-workers provides accu
results for a wide variety of atoms while retaining the sim
plicity of a minimal basis set.39–42 Needless to say, there i
no need to restrict the calculations to a minimal basis
since the Bethe lattice can be constructed for any basis s
is only a matter of computational convenience that we h
done it so. Nevertheless, in some cases, we have che
that better basis sets and the use of other excha
2-3
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correlation functionals do not modify the main conclusio
of our work.

In all cases we have investigated the influence of the n
ber of electrode atoms included in the DF calculation on
conductance. In general, the results do not vary qualitativ
with the cluster size, allowing us to extract some gene
conclusions. However, at a quantitative level, this is not
ways the case, particularly for Al nanocontacts. Finally
note that, although most of the calculations were carried
taking the bulk interatomic distances for the electrode ato
in some cases we investigated the effects ofab initio relax-
ations.

A. Metallic nanocontacts

A complete theoretical study of electrical transport in m
tallic atomic contacts requires a realistic modelization of
formation process of these nanocontacts. Some struc
studies using molecular dynamics43 for Al and ab initio re-
laxations for Al ~Ref. 44! and Na~Ref. 45! have been re-
ported. This is, however, a problem beyond the scope of
work. Here we consider archetypical atomic structure mod
that are likely to appear in the last stages of the format
process of atomic contacts before the break-up: single-a
contacts and atomic wires. More specifically, our first str
ture consists of two opposite pyramids grown in the~001!
direction and ‘‘glued’’ by a single atom~see Fig. 2!. Single-
atom contacts have been studied in the past with modi
tight-binding models.13 We find to our surprise that, even i
this simple case, ourab initio results are qualitatively differ-
ent from those obtained with these models, particularly
Al. Our second structure is similar to the previous one,
with a chain of three atoms instead of a single atom~see Fig.
3!. Finally we have studied the same chain between
~111! surfaces with the chain placed on top of a surface a
~see Fig. 4!. A similar geometry has been recently studi
with ab initio techniques for Au and Al. Our results agre
with what has been reported for Al using a jellium model f
the electrodes21 but not entirely with what has been obtaine
for Au.22,30

1. Aluminum

Figure 5~top panel! shows the conductance versus ene
for a single-atom Al contact. We have considered a 3s3p
basis set and bulk interatomic distances. Curves~a!, ~b!, and
~c! correspond to clusters~a!, ~b!, and ~c! in Fig. 2, respec-
tively. In all the clusters the contact between electrodes
curs through a single atom, but the number of~001! planes
explicitly included in the DF calculation for each pyram
increases from~a! to ~c! ~remember that Bethe lattices a
always attached to the outer planes as in Fig. 1!. It is impos-
sible to know the actual atomic structure of the metallic co
tact in detail unless relaxation calculations are perform
but we do not expect the detailed geometry away from
neck to be important. In fact, as Fig. 5 shows, the cond
tance does not change significantly from~b! to ~c!, apart
from minor changes in the fine structure. This is a cle
indication that, to a good extent, the conductance is de
mined by the atomic structure in the narrowest region of
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neck. However, from our results we see that, at least, the
central atoms must be explicitly considered in this examp

This is in contrast to the conclusions drawn in Ref. 13
Cuevaset al. using a modified tight-binding model. Furthe
more, the value ofG around the Fermi level is'3 which is
remarkably different from the value they obtained. This d
crepancy is due to a combination of facts. First, the hopp
parameters that reproduce bulk properties in tight-bind

FIG. 2. Atomic structure of the single-atom contact model co
sidered in this work. The number of~001! planes increases by on
from ~a! to ~c! in both electrodes increasing the size of the pyram
and the corresponding atomic detail in the electrode bulk. In
atomic bulk distances have been considered for the whole clus
2-4
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models are not adequate for atoms with low coordinat
numbers, these being typically smaller than theab initio
ones. Second, there are non-negligible contributions fr
next-nearest-neighbor hoppings in Al. This is clearly seen
the bottom panel of Fig. 5 where the contributions to t
total current of the main individual channels for the clus
~c! are depicted. As shown in the figure, a channel associ
with second-nearest-neighbor hoppings~labeled s8) can
give a contribution of almost one conductance quantumG0
(G052e2/h) at the Fermi level. The main contribution ateF
comes from two degeneratepx ,py-like channels (px ,py)
that account for almost two conductance quanta 2G0. ~Thez
axis has been chosen along the main symmetry axis of
cluster.! In addition, there are two channels that havespz
character (s) with non-negligible contributions at the Ferm
energy that add approximately 0.3G0 and 0.1G0 to the total
conductance, respectively. None of this seems consis
with the tight-binding results for a similar geometry.13

The conductance of the three-atom chain shows a dif
ent behavior from the one in the previous example and p
sents the same features for the two-electrode models co
ered~see top panels in Figs. 6 and 7!. For the first electrode

FIG. 3. Atomic structure of the first atom-chain constrictio
model considered. The number of~001! planes increases by on
from ~a! to ~c! in both electrodes, increasing the size of the py
mids and the atomic detail in the electrode bulk. The distance
tween pyramid apex atoms is 4.8 Å.
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model we have chosen a separation of 4.8 Å between a
atoms of the pyramids. The conductance changes apprec
from ~a! to ~b! in Fig. 6, but not from~b! to ~c!. ~This de-
pendence is similar to that in the single-atom contact.! In the
second case we have chosen a separation of 9.1 Å betw
planes and we have performed anab initio relaxation of the
chain atom positions~only the surface layer is included i
the DF calculation where the number of atoms increa
from 7 to 35!. Here the conductance does not depend
much on the number of surface atoms@see Figs. 4~a!, ~b!,
and~c!#. In all cases there are oscillations as a function of
energy, which, as the bottom panels in Figs. 6 and 7 sh
appear mostly in thep channels. This is reminiscent of th
behavior of the transmission in a Fabry-Perot interferome
due to scattering at the interfaces. These results are simil

-
e-

FIG. 4. Atomic structure of the second atom-chain constrict
model considered. The number of atoms in the~111! electrode sur-
face increases from~a! to ~c! in both electrodes, increasing th
atomic detail of the surface. The distance between planes is 9.
and the positions of the atoms in the chain have been optimize
2-5
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the ones reported in Ref. 21 where a jellium model was u
to describe the Al electrodes.

In the three cases considered there is no trace of pos
conductance quantization. A general trend that can be
served in our results for the chain is that the onset of
transmission through thep channels occurs close to th
Fermi energy.21 This makesG strongly dependent on sma
variations in the positions of the atoms in the chain and
the atomic structure of the electrodes close to the chain. T
might explain why the experimental conductance histogra
for Al are much more irregular than those for Au~see below!
and other metals.4,7 However, there are many open questio
regarding the details of the conductance steps for Al t
illustrate the necessity of performing both relaxation a
conductance calculations at the same time.46

2. Gold

We have repeated the conductance calculations for
same structures considered above, but now consisting o
atoms~we have used a here 5d6s6p basis set!. In principle,
only the electron of the 6s orbital is expected to contribute t
the conductance at the Fermi energy which should make
analysis of conductance simpler. As Fig. 8 shows, the c
ductance around the Fermi energy for the single-atom c

FIG. 5. Top: Conductance versus energy~Fermi energy set to
zero! of the single-atom Al contact seen in Fig. 2 for the three ca
shown there. Bottom: Individual contribution of the different acti
conduction channels for~c!. The labels indicate the orbital nature o
the channels. The primed label is associated with second-nea
neighbor hoppings.
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tact varies little from~a! to ~c!. We note again that, contrar
to the tight-binding predictions,13 the conductance at th
Fermi energy surpassesG0 in all the curves. As concerns th
contribution of the individual channels we note that the m
jor contribution~almost a conductance quantum! hasspzd0

character (s). Two degenerate channels (px ,py) of pxd1

andpyd21 character~mainly d) give around 0.25G0 quanta
each. This should be expected since thed orbitals contribute
significantly to the density of states in bulk atoms and
number of near neighbors~eight! of the central atom in this
cluster is almost the bulk coordination number of an f
structure~twelve!. Of the two channels that give a significa
contribution at rather high energies~above 2.0 eV! one has
spzd0 symmetry (s) and the other corresponds to secon
nearest neighbors.

It is interesting to compare the single-atom contact res
for Al and Au. As noted above, whereas in the case of
there was a very important contribution to the current at
Fermi level coming from second-nearest-neighbor hoppin
in Au this was only appreciable at high energies. This can
be understood in terms of the respective atomic radii, wh
are very similar (1.43 Å and 1.45 Å for Al and Au
respectively47!, but rather it is due to the character of th
wave functions at the Fermi level in each case. Nam
while in Al the density of states atEF mainly comes fromp
orbitals that are rather extended, in Au the wave function
that energy mainly hass character and is more localized.

s

st-

FIG. 6. Same as in Fig. 5, but with three Al atoms forming
linear chain between the electrodes~see Fig. 3!.
2-6
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On the other hand, the conductance around the Ferm
ergy for the three-atom Au chain shows clearly an up
limit of G0 ~see top panels in Figs. 9 and 10!, and it does not
change qualitatively with the cluster size. Nevertheless,
exact value at the Fermi energy is elusive, changing by
much as 20% from cluster to cluster. We have not been a
to verify whether the conductance curves for larger clus
converge to a given one, but all the curves present a cha
teristic behavior: Above the Fermi energy the conductanc
fairly constant while below it oscillates and vanishes rig
above thed channel contribution. The channel decompo
tion analysis is quite simple: A singlespzd0-like channel (s)
contributes around the Fermi energy. Nevertheless, it is
difficult to explain from our results the robustness of t
quantization observed in the experiments4,7 that does not de-
viate fromG0 by more than a small percentage over a la
range of stretching force. Large-scale structural studies a
with conductance calculations are also desirable here in o
to make a precise quantitative comparison with experime
Recentab initio works22,30 for Au nanocontacts have pa
tially addressed this problem. However, as already poin
out, the electrode model considered there seems to intro
serious difficulties in the interpretation of their conductan
results.

B. Carbon chains

The conductance of C-atom chains attached to Al e
trodes has been calculated from first principles in previ

FIG. 7. Same as in Fig. 6, but here the pyramids have b
substituted by~111! surface planes. The number of atoms includ
in the planes are~a! 7, ~b! 19, and~c! 35 ~see Fig. 4!.
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works by Lang and Avouris.24,27 In their calculations semi-
infinite jellium models were used to describe the metal el
trodes and a pseudopotential for the C cores. The s
consistent density functional procedure they used~see Refs.
24 and 27 for details! predicted an oscillatory behavior in th
conductance at the Fermi level with maxima~minima! in
those chains that had an odd~even! number of electrons.
This oscillatory behavior differs from that corresponding to
closed-shell electronic structure and anspz hybridization of
linear C chains. In this situation each C atom added to
chain provides twosp orbitals that contribute to thes mo-
lecular orbitals~MO’s! and twop orbitals that contribute to
the correspondingp MO’s. With a closed-shell electronic
structure and anevennumber of C atoms there is a partial
filled p shell, and the chain could be considered to be intr
sically a conductor. On the other hand, if the chain has
odd number of C atoms, thep ands shells are completely
filled and we would have a semiconductor. Thus, one wo
expect that chains with anevennumber of C atoms would
provide higher conductances than chains with anoddnumber
of C atoms.24 However, if we consider an open-shell ele
tronic structure for the C chain, or if the edge C atoms
bonded to a metal surface, the MO’s can be filled in a d
ferent way, which may lead to aninversionof the aforemen-
tioned trend, that is, chains with anodd number of C atoms

n FIG. 8. Top: Conductance versus energy~Fermi energy set to
zero! of the single-atom Au contact seen in Fig. 2 for the three ca
shown there. Bottom: Individual contribution of the different acti
conduction channels for~c!. The labels indicate the orbital natur
ands8 indicates second nearest neighbors.
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having a partially filledp shell while chains with aneven
number of C atoms having this shell completely filled. T
first scenario, i.e., an open-shell electronic structure, is a
ally the ground state for isolated linear C chains, while
second one explains the findings of Lang and Avouris for
conductance of C chains attached to Al electrodes.24,27In this
second situation the details of the bonding region betw
the C and metal atoms is of primary importance. This
volves knowing the geometry of the contact, the C-me
surface distance, and the electronic structure of the m
under interest. This, however, cannot be easily deduced
using a jellium model to describe the leads.

For this reason, we have applied the method describe
the previous sections to these kind of systems. More p
cisely, we have calculated the conductance for C chains s
ing with three C atoms attached to Al and Au~001! fcc
electrodes. The distance between C atoms was fixed to
used in Refs. 24 and 27, i.e., an equal spacing of 2.5
between C atoms. The description of the electrode sur
was reduced to four metal atoms describing a hollow
~see Fig. 11! in the center of which the C chain was attache
The importance of the C-Al surface distance was analy
by making two sets of calculations for each C chain. In
first set this distance was kept fixed at a reference valu
2 Å, while in the second one the distance between th
chain and the metal electrode was that which provided
minimum energy of the corresponding cluster. The results
discussed next.

FIG. 9. Same as in Fig. 8, but with three Au atoms forming
linear chain in between the electrodes~see Fig. 3!.
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1. Al electrodes

The discussion about the conductor or semiconduc
character of C chains given in the preceding section can
easily extended to the conductance of these chains once
have been contacted to semi-infinite electrodes. Note tha
oscillatory character of the conductance at the Fermi le
with the number of C atomsn in the chain found in these
systems can be understood as a consequence of the os
tory nature of the conductance with respect to the ene

FIG. 10. Same as in Fig. 9, but here the pyramids have b
substituted by~111! surface planes. The number of atoms includ
in the planes are~a! 7, ~b! 19, and~c! 35 ~see Fig. 4!.

FIG. 11. Atomic structure of a C3 chain attached to hollow site
between~001! fcc Al surfaces.
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~reflected in Fig. 12!. The oscillations inG(E) come from
two degeneratep channels, thus explaining the maximu
value of 2G0 ~the only exceptions being the C3 and C4
chains where additionals channels appear around the Fer
energy!. The number of peaks is given by the number ofp
orbitals in the chain, which, in turn, depends on the num
of C atoms present in the chain. The positioning of the Fe
level near the center of these peaks~partially filled p shell!
or between peaks~completely filledp shell! would deter-
mine the oscillatory trend withn. On the other hand, both th
exact position of the conductance peaks with respect to
Fermi level and their average size are governed by the
tance between the edge of the C chain and the Al electr

After inspection of Fig. 12, where we plot theG(E) for
the two sets of calculations mentioned at the beginning
this section, it is evident that at a distance of 2 Å betwe
the edge C atom and the Al metal surface we end up with
same situation found by Lang and Avouris,24,27 namely,

FIG. 12. Top: conductance versus energy~Fermi energy here se
to zero! of Cn linear chains (n5325) attached to Al at the equi
librium C-Al distance (1 Å). Bottom: the same at a distance C-
of 2 Å.
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maxima~minima! located atn odd ~even! ~see Fig. 13!. Nev-
ertheless, at the equilibrium distance, where the C-Al surf
distance is smaller (1 Å) and the transferred charge fr
the metal to the C chain is larger, the situation has chan
and now the maxima are located on chains with an e
number of C atoms~the only exception being again the C3
chain! as Fig. 13 shows. However, one would expect that
influence of the bonding region, a local effect, would beco
less important as the size of the C chain increases. Th
what is actually found in the conductance of a larger num
of atoms, such as those presented in Fig. 14, where we
G(E) for n514,15 and forn530,31 and a distance C-A
surface of 1 Å. In both cases the chains withn odd give
larger values forG(eF) than those withn even. The same
behavior is found for the same chains attached to Al el
trodes at a distance of 2 Å, but has not been included in
figures for simplicity. It is worth noting that, strictly speakin
at zero temperature, the peaks inG(E) and thus the oscilla-
tions inG(eF) are expected to survive in the thermodynam
limit n→`. This effect will disappear when the temperatu

l

FIG. 13. Top: conductance at the Fermi level of Cn linear chains
(n5327) attached to Al electrodes. Bottom: charge transferred
the C chain.
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becomes of the same magnitude as the peaks width, w
G(eF) will be the average value for the odd- and evenn
chains.

2. Au electrodes

Another key point in the conductance of nanocontacts
the nature of the metal used in the electrodes, which has b
thoroughly discussed in previous sections. This is espec
the case when the chemical bond between the molecule
the metal contact changes markedly as reflected in Fig. 1
compared to Fig. 12. There we showG(E) for the same
systems previously analyzed for Al but with Au instead us
a Sd6s basis set. When we move from Al to Au the bondin
between the C chain and the metal surface weakens.
reflects in a sharpening of the conductance peaks and in
amount of charge transferred from the metal to the C ch
~compare Figs. 16 and 13!. The equilibrium distance betwee
the edge C atom and the Au surface is also typically large
this case: 1.5 Å for all the chains. As for Al, there al

FIG. 14. Top: conductance vs energy~Fermi energy here set to
zero! of Cn linear chains (n514,15) attached to Al electrodes. Bo
tom: the same forn530,31.
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appear twop channels, except for the C3 and C4 chains.
However, the narrowing of the conductance peaks ma
critical the alignment of the Fermi level. With respect to t
oscillations ofG(eF), we observe the same tendency irr
spective of the C-Au distance, that is, maxima located an
odd. This is also a consequence of the weaker bond betw
Au and C and the lesser amount of charge transferred f
the former to the latter.

IV. CONCLUDING REMARKS

In summary, we have developed a methodology to s
consistently calculateab initio transport properties in atomic
scale systems based upon theGAUSSIAN98 code. This pro-
vides the possibility to apply the most standard quant
chemistry tool to the study of transport through molecul
an interdisciplinary subject of increasing interest. We ha
chosen to study two systems that illustrate the capabilitie
our approach: metallic constrictions of simple and no

FIG. 15. Top: conductance vs energy~Fermi energy here set to
zero! of Cn linear chains (n5325) attached to Au at equilibrium
C-Au distance (1.5 Å). Bottom: the same at a distance C-Au
2 Å.
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FIRST-PRINCIPLES APPROACH TO ELECTRICAL . . . PHYSICAL REVIEW B 66, 035322 ~2002!
metals and C chains with a reactive electrode~Al ! and an
‘‘inert’’ ~Au! electrode. In the first case, we have shown t
assuming local charge neutrality, as commonly done in se
empirical methods, may lead to qualitatively incorrect
sults. On the other hand, the metal–C-chain–metal sys
illustrated how the chemistry of the contact may determ
electrical transport and therefore the incorrectness of asc
ing a behavior to a given molecule without consideration
the specific electrode/molecule chemistry. One should sp
instead, of electrical transport characteristics of the wh
electrode-molecule-electrode system.
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APPENDIX

In this appendix we discuss how self-energies for Be
lattices~BL’s! with no symmetry can be calculated. Symm
try can be broken due to the spatial atomic arrangement,
orbitals on the atoms that occupy each lattice site, or b
When no symmetry exists the self-energy in an arbitrary
rection cannot be obtained by rotating that for a given dir
tion as done in Ref. 34. Instead, the following procedure
to be followed. The method is valid for any basis set
lattice. Let ti be theN nearest-neighbor directions of th
lattice we are interested in andV̂ti

the interatomic interaction
matrix in these directions. The self-energies associated w
each direction have to be obtained from the following set
2N coupled self-consistent equations:

Ŝti
5V̂ti

@E1̂2Ê02~Ŝ T̄2Ŝ t̄i
!#21V̂ti

† , ~A1a!

Ŝ t̄i
5V̂t̄i

@E1̂2Ê02~ŜT2Ŝti
!#21V̂t̄i

† , ~A1b!

wherei 51, . . . ,N and t̄i52ti . E1̂ is the energy times the
identity matrix,Ê0 is a diagonal matrix containing the orbita
levels, V̂ti

is the interatomic interaction in theti direction,

and ŜT and Ŝ T̄ are the sums of the self-energy matric
entering through all the Cayley tree branches attached to
atom and their inverses, respectively, i.e.,

ŜT5(
i 51

N

Ŝti
, ~A2a!

Ŝ T̄5(
i 51

N

Ŝ t̄i
. ~A2b!

This set of 2N matricial equations has to be solved iter
tively. It is straightforward to check that, in cases of fu
symmetry, it reduces to the single equation discussed in
34.

The tight-binding parameters, which include only neare
neighbor interactions, used in these calculations are give
Table I. The table reports data not only for the metals tak
as electrodes in the present work~Al and Au! but also for
two additional metals~Ti and W! commonly used in experi-
ments and/or calculations. All were obtained through fittin
to the electronic bulk band structures calculated by includ
second- or even third-nearest-neighbor interactions.48 In the
case of hexagonal-close-packed Ti we took as nearest ne
bors six out-of-plane and six in-plane neighbors, as ac
interatomic distances differ in less than 2%.49 The densities
of states on bulk atoms are shown in Figs. 17 and 18.
though some of the features of the actual density of sta
~DOS! are not reproduced~as it commonly occurs in the

to
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TABLE I. Tight-binding parameters~in rydbergs! used in the calculation of the density of states and self-energies of the Bethe lattic
the metals commonly taken as electrodes, namely, aluminum, gold, titanium, and tungsten~the last two not considered in the present wor!.
Orbital on-site energies are represented byei while nearest-neighbor interactions are denoted byv i . The electronic configurations taken i
each case are: Al-a (3s23p1), Al-b (3s23p13d0), Au-a (5d106s1), Au-b (5d106s16p0), Ti-a and Ti-c (3d24s24p0), Ti-b (3d24s2) and W
(5d46s26p0). Actual lattices are face-centered cubic for Al-a, Al-b, Au-a, Au-b, Ti-b, and Ti-c, hexagonal-close-packed for Ti-a
body-centered-cubic for W. The parameters were obtained by fitting the bulk electronic band structures given in Ref. 48. The FermeF

corresponding to these parameters is also given.

Parameter Al-a Al-b Au-a Au-b Ti-a Ti-b Ti-c W

es 0.355 12 0.506 58 0.419 96 0.510 34 0.881 00 0.736 09 1.072 96 0.616
ep 0.886 53 1.056 86 - 1.280 39 1.150 42 - 1.381 06 1.463 0
edxy

- 1.736 44 0.229 63 0.275 29 0.694 49 0.651 65 0.691 43 1.120
edxz

- 1.736 44 0.229 63 0.275 29 0.686 17 0.651 65 0.691 43 1.120
edyz

- 1.736 44 0.229 63 0.275 29 0.686 17 0.651 65 0.691 43 1.120
edx22y2 - 1.644 57 0.229 30 0.255 42 0.694 49 0.637 35 0.672 93 1.043
ed3z22r 2 - 1.644 57 0.229 30 0.255 42 0.698 28 0.637 35 0.672 93 1.043

vsss 20.048 52 20.062 25 20.066 82 20.069 31 20.068 09 20.063 53 20.079 60 20.073 15
vsps 20.082 96 20.089 14 - 0.085 43 0.076 76 - 0.112 04 20.004 19
vsds - 0.087 41 20.038 68 20.052 82 0.048 83 20.042 23 20.045 67 20.073 23
vpps 0.193 17 0.164 91 - 0.171 66 0.098 83 - 0.175 87 0.374 6
vppp 0.063 39 20.009 99 - 20.010 84 20.016 46 - 20.003 86 0.087 30
vpds - 20.173 52 - 20.093 05 0.066 92 - 20.055 80 20.239 96
vpdp - 0.044 72 - 0.010 08 20.027 18 - 0.031 58 20.061 60
vdds - 20.164 16 20.043 91 20.048 72 20.052 11 20.043 37 20.047 94 20.187 62
vddp - 0.077 76 0.033 67 0.024 94 0.028 62 0.039 07 0.035 4220.065 43
vddd - 20.012 79 20.008 74 20.004 62 20.006 03 20.004 62 20.009 85 0.069 17

eF 6.98 8.24 6.84 7.16 7.83 8.02 7.89 10.45
o

rre-
c
er

t

FIG. 17. Density of states for the Bethe lattices of~a! Al and ~b!
Au obtained with the parameters of Table I. Continuous lines c
respond to results obtained with aspd basis while broken lines to
those obtained with either asp ~Al ! or a sd ~Au! basis. The Fermi
level was set at zero energy.
03532
r-

FIG. 18. Density of states for the Bethe lattices of~a! Ti and ~b!
W obtained with the parameters of Table I. Continuous lines co
spond to results obtained with aspd basis and the hcp and bc
lattices for Ti and W, respectively. In the case of Ti two furth
curves are given that correspond to the fcc lattice with aspd basis
~broken line! or a sd basis~chain line!. The Fermi level was set a
zero energy.
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Bethe lattice approximation! the overall results are satisfac
tory. The major discrepancy is noted for Ti since in this me
the Fermi level in the crystalline case lies in a valley of t
DOS.49 In the calculations reported in this work thesp basis
was used for Al. We have described the electronic struc
s

e

-

.

dy
ec
e

s,
is
.

03532
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re

of Au by means of thespdbasis~see Fig. 17 and Table I!. In
the case of Au and Ti, the reducedsd basis gives an exces
sively narrow conduction band. Finally, we note that in t
case of Ti there are no major differences between the D
for the fcc and hcp lattices.
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Costa-Krämer, N. Garcı´a, and H. Olin, Phys. Rev. Lett.78, 4990
~1997!; G. Rubio-Bollingeret al., ibid. 87, 026101~2001!; N.
Agraı̈t et al., ibid. ~to be published!, cond-mat/0110601~unpub-
lished!.

5For a nice review on nanotubes see C. Dekker, Phys. Today52~5!,
22 ~1999!.

6P.J. de Pabloet al., Phys. Rev. Lett.85, 4992~2000!.
7C.J. Muller, J.M. van Ruitenbeek, and L.J. de Jong, Phys. R

Lett. 69, 140 ~1992!; Physica C191, 485 ~1992!; J.M. Krans
et al., Phys. Rev. B48, 14 721~1993!; J.M. Kranset al., Nature
~London! 375, 767 ~1995!; A.I. Yanson and J.M. van Ruiten
beek, Phys. Rev. Lett.79, 2157~1997!; E. Scheeret al., Nature
~London! 394, 154 ~1998!.

8M.A. Reedet al., Science278, 252 ~1997!.
9C. Kergueriset al., Phys. Rev. B59, 12 505 ~1999!; H. Park

et al., Nature~London! 407, 57 ~2000!.
10For a review on the issue see S. Datta, inElectronic Transport in

Mesoscopic Systems,edited by H. Ahmed, M. Pepper, and A
Broers~Cambridge University Press, Cambridge, 1995!.

11An extension to nonequilibrium transport including many-bo
effects has also been developed by means of Keldysh t
niques. See, e. g., Y. Meir and N.S. Wingreen, Phys. Rev. L
68, 2512 ~1992!; S. Hershfield, J.H. Davies, and J.W. Wilkin
ibid. 67, 3720 ~1991!. Landauer’s description emerges in th
case as the limiting case for zero bias and zero temperature

12C. Joachimet al., Phys. Rev. Lett.74, 2102~1995!; C. Joachim,
J.K. Gimzewski, and H. Tang, Phys. Rev. B58, 16 407~1998!;
V. Mujica, M. Kemp, and M. Ratner, J. Chem. Phys.101, 6849
~1994!; S. Dattaet al., Phys. Rev. Lett.79, 2530~1997!; Y. Xue
et al., Phys. Rev. B59, 7852 ~1999!; S.N. Yaliraki and M.A.
Ratner, J. Chem. Phys.109, 5036~1998!; E.G. Emberly and G.
Kirczenow, Phys. Rev. B58, 10 911~1998!.

13J.C. Cuevaset al., Phys. Rev. Lett.80, 1066~1998!; J.C. Cuevas
et al., ibid. 81, 2990~1998!.
ki,

v.

h-
tt.

14M. Brandbyge, N. Kobayashi, and M. Tsukada, Phys. Rev. B60,
17 064 ~1999!; K. Hansenet al., Appl. Phys. Lett.77, 708
~2000!.

15M. Paulsson and S. Stafstro¨m, Phys. Rev. B64, 035416~2001!.
16GAUSSIAN 98 ~Gaussian Inc., Pittsburgh, PA, 1998!.
17P. Ordejón, E. Artacho, and J.M. Soler, Phys. Rev. B53, R10 441

~1996!; D. Sánchez-Portal, P. Ordejo´n, E. Artacho, and J.M.
Soler, Int. J. Quantum Chem.65, 453 ~1999!.

18N.D. Lang, Phys. Rev. B52, 5335~1995!.
19K. Hirose and M. Tsukada, Phys. Rev. B51, 5278~1995!.
20J. Taylor, H. Guo, and J. Wang, Phys. Rev. B63, 245407~2001!.
21N. Kobayashi, M. Aono, and M. Tsukada, Phys. Rev. B64,

121402~2001!; N. Kobayashi, M. Brandbyge, and M. Tsukad
ibid. 62, 8430~2000!.

22M. Brandbyge, J. Taylor, K. Stokbro, J.L. Mozos, and P. Ordej´n,
Phys. Rev. B65, 165401~2002!.

23S.N. Yaliraki et al., J. Chem. Phys.111, 6997~1999!; Y. Xue, S.
Datta, and M.A. Ratner, cond-mat/0112136~unpublished!.

24N.D. Lang and Ph. Avouris, Phys. Rev. Lett.81, 3515~1998!.
25G. Taraschiet al., Phys. Rev. B58, 13 138~1998!.
26C.C. Wan, J.-L. Mozos, G. Taraschi, J. Wang, and H. Guo, Ap

Phys. Lett.71, 419 ~1997!.
27N.D. Lang and Ph. Avouris, Phys. Rev. Lett.84, 358 ~2000!.
28M. Di Ventra, S.-G. Kim, S.T. Pantelides, and N.D. Lang, Ph

Rev. Lett.86, 288 ~2001!.
29J. Taylor, H. Guo, and J. Wang, Phys. Rev. B63, 121104~2001!.
30H. Mehrezet al., Phys. Rev. B~to be published!.
31F. Guinea, C. Tejedor, F. Flores, and E. Louis, Phys. Rev. B28,

4397 ~1983!.
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