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Voltage-tunable singlet-triplet transition in lateral quantum dots
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Results of calculations and high source-drain transport measurements are presented, which demonstrate
voltage-tunable entanglement of electron pairs in lateral quantum dots. At a fixed magnetic field, the applica-
tion of a judiciously chosen gate voltage alters the ground state of an electron pair from an entagled spin singlet
to a spin triplet.
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[. INTRODUCTION number fixed. It is important to note that the familiar singlet-
triplet transition is not caused by the difference in Zeeman
Proposals for spin-based quantum computation in a solidenergy but rather by changes in the orbital part of the wave
state environmeht® require efficient techniques for manipu- function. In multiple-dot systems, in particular with regards
lating the entanglement of coupled qubits. In this paper, weo quantum dot based quantum computafidhis versatility
demonstrate theoretically and verify experimentally thatis of crucial importance. Quantum-state engineering of this
ground-state entaglement can be indusetkly by applying  sort is clearly observable in the experimental results we
a potential to the gates. This is possible because the gafgesent below.
voltage controls not only the chemical potential of the dot, From the theoretical side, numerical analyses of the inter-
but the shape of the confining potential as well. Consegacting two-electrol ~*° problem, as well as higher electron
quently, the gate voltage can induce transitions in the dofumbers'®2°demonstrated singlet-triplet transitions in para-
containing a well defined, constant number of particles.  pgjic potentials using either a fixed or &kdependent har-

Ea7rly far-infrared measurements on arrays of few-electron,gpic frequency. These works focused on magnetic-field-
dot$” and transport through single devifegere focused on induced transitions. In our experiment, the confining

the tunability of the electron number and, although trans"potential is a function of theontinuousvariablesV, (the

tions were observed, it was d|ff|<;l_1|t to assign, for _example, ate voltagesand the confinement in our particular quantum
quantum numbers to these transitions. Later experiments ug-

) ; ) i : ots deviate from parabolicity. These features, which are ad-
ing single-particle capacitanteand magnetotunneling

spectroscopy focused on the evolution of the ground states g%essed in our theory, allow a spin phase diagram to be con-

a function of magnetic field and were able to distinguish_s ructed in the gate-voltage/magnetic-field plane and clearly

features consistent with the two-electron singlet-triplet tran/ndicate how theN=2 singlet-triplet transition can be exter-
sition. High source-drain tunneling spectroscopy probes th82lly engineered at fixed magnetic field. In double-dot sys-
excited states as well as the ground state and therefore ti@MS containing one electron apiece, similar transitions, and
singlet-triplet transition can be more clearly and unambigufor similar reasons, have been theoretically demonstrated in
ously observed. This has already been successfully applied kpth lateral*?* and vertical® devices. Our theory is appli-
etched vertical quantum dots witlispin) unpolarized cable to these systems with only a few modifications related
leads'™'? In the lateral devices employed in the present to the orbital degrees of freedom—the spin physics are es-
study, the dot is formed within a two-dimensional electronsentially equivalent.
gas(2DEG), with the lateral confinement produced electro- In the Coulomb-blockade regime, transport experiments
statically by voltages applied to gates located above thgrobe the two-electron system either by adding an electron to
2DEG. Recent work employing a novel gate designas the one-electron droplet, or by removing an electron from the
allowed the electron numbé\ to be tuned down to a single three-electron droplet. Each case corresponds to a distinct
electron. gate voltage, and in each case the ground and excited states
There are at least two features unique in the lateral decan be probed by high source-drain spectroscopy, which di-
vices. First, since the leads are essentially 2DEG edges, afectly reveals the singlet-triplet transition. Our theory and
plying a rather weak magnetic field—approximately 0.4 T inexperiment show that, for these two different gate voltages,
practice—is sufficient to produce spin-resolved eddes. the transition between the entangled spin singdlgt)
Therefore, the tunneling rates into and out of the dots are-|| 1) and the spin triplef| | ) occurs at two different mag-
significantly different for each species of spin. This spin-netic fields.
polarized injection(and detectionallows us to distinguish The paper is organized as follows: Section Il describes the
orbital effects from spin effects in transport experimental results, including the demonstration of a gate-
measurementS® Second, since the confinement potentialvoltage-induced singlet-triplet transition. Section Il contains
is formed electrostatically by the various gate voltages, altera theoretical analysis, culminating in the spin phase diagram
ing the shape—in particular the nonparabolicity—of theof theN=2 interacting system in the gate-voltage/magnetic-
guantum dot can be accomplished while keeping the particléeld plane. Finally, Sec. IV contains a concluding discussion.
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FIG. 2. High source-drain transport spectroscopy of the two-
FIG. 1. SEM image of the gate geometry forming the qu‘.Jmtumelectron droplet. The lower set of curves corresponds to fluctuations
dot. This geometry enables a precisely known number of electron8étweenN=1 andN=2, while the upper set corresponds to fluc-
(N=0,1,2 . ..,50) to berapped(Ref. 13 and produces a quasipa- tuations betweeiN=2 andN=3. Both sets of curvgs probg the
rabolic confinement potential. Sweeping the plunger-gate voltag§@Me states of the two-electron dropigtound plus first excited

tunes both the shape and the chemical potential of the quantum dditate but at different gate voltages. The singlet-triplet transition is
seen to occur at two different critical fields. The solid line marks the

Il. EXPERIMENTAL RESULTS singlet-triplet ground-state .boundary. This boundary can be tra-
versed along the dashed line B=1 T solely by adjusting the

A scanning electron microscog$EM) image of a device (plunge) gate voltage.
similar to the one used in our experiments is shown in Fig. 1.

This geometry allows us to controllably tune the number ofabove for the lower set of curves. Indeed, the singlet-triplet
trapped electrons in the 2DEG—90 nm below the surface—transition is again clearly seen, but now occurs at a field of
from about 50 down to a single electrbhHigh source-drain B.,~1.1 T. The singlet-triplet gaps for the two different
transport measurements in the Coulomb-blockade regimeases are shown in Fig. 3—the central experimental result of
were carried out in order to detect both the ground and exthis work.

cited states of the two-electron system. Standard low-power Two important conclusions can be drawn from Fig. 3,
ac measurement techniques were used with a¥@excita-  each of which is verified in the subsequent sections. First,
tion voltage applied across the sample at a frequency of 2Because the gaps do not close linearly, the confinement po-
Hz. An additional dc voltage was applied in order to obtain atential cannot be parabolic. Second, because the two curves
high source-drain bias. The differential conductadt&lVsqy  do not fall on each other, the actual shape of the dot must be
is measured directly in such a configuration and the relevandifferent for the two curves. This change can only be due to
data is shown in Fig. 2 for a source-drain voltage ofthe gate voltage, and it therefore follows tlia¢ gates them-
350 V. In this figure we show the inverted gray scale for selves can be used to tune through the singlet-triplet transi-
the N=2 subspace as a function of magnetic fi@ldand tion and hence tune the ground-state entanglement of the
plunger gate voltag®y. The negative differential conduc-

tance, which is also tunabféjs related to the spin-polarized 0.3
injection of electrons.

For the lowest set of curves in Fig. 2, transport proceeds DLW o 1
through the addition and subtraction of a second electron - "\\ o AE,
from a one-electron droplet. At the lowest curve, transport is I \
predominately through the ground state of the two-electron 02 (%) T
droplet(a spin singlet at low fields beginning at the curve I % ]
immediately above this one, transport through the first ex- [ o c
cited statga spin triplet at low fieldsis also allowed. Hence, W%% Y \ ]
the exchange constant can be directly obtained experimen- 01k 3%@8%) 3 i

3 @(()Q) 4
&g%%gb \

9,

AE [meV]

tally from these curves by suitably calibrating the parameters
relating gate voltage to energy. The singlet-triplet transition
is clearly seer{cf. etched vertical dot$'3 at a field ofB,; ORI 1
~0.92 T. The upper set of curves corresponds to adding and I wnss 1
removing a third electron from the two-electron system. Af- 0 02 04 D8 08 10 12 14
ter the third electron has left the dot, the resulting two-
electron droplet can either be in the ground state or in an
excited state(Transport through the ground state is the top-  FIG. 3. Singlet-triplet gag=AE as a function of magnetic field
most curve). Therefore, it should be possible to extract thefor two different gate voltages, as described in the t&&,; and
same exchange constant from these curves as describa@&, are also denoted in Fig. 2.

Magnetic Field B [Tesla]
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system. Figure 2 shows how this may be accomplished. The
solid line demarcates the boundary between the singlet an'dzz SiaCiTgCiaJr 7,2 hijCiTaCjo
triplet ground-state phases. At a fixed field of {farked on e b
the figure as a dashed linghe ground-state entanglement
can be tuned to be either a singlet or a triplet solely by l
adjusting the gate voltage appropriately. +ai J-Ekl Vije Clo J(r’CkU'C'U' 2

In the following, we present the theoretical justification of N
the above statements.

where the Latin indices,j,k,| are a composite denoting the
lIl. THEORETICAL RESULTS two oscillator quantum numbers and n. The operator;

—c! creates a particle in the stgmno) with thez com-
ponent of angular momentunm(-n) andc;,. is the conju-
gate annihilation operator. Unless otherwise noted, all ener-
gies are expressed in units of the effective Rydberg Ry
=m*e*/(24%) (=5.9 meV in GaAy and all lengths in
units of the effective Bohr radiusay,=#%2%/(m*e?)
(~9.8 nm in GaAs

The diagonal one-body term—the first term in E2)—is
just the Fock-Darwin energy coming from parabolic confine-

ent; &;,— &mne 1S given in Eq.(1). We consider theotal
confinement to be composed of a parabolic piece plus a non-

We begin this section with a description of the model we
shall use throughout the paper. We shall work primarily in
the 2D harmonic oscillatofFock-Darwin basis, character-
ized by the two oscillator quantum numbers,n
=0,1,2 ... and thespin quantum number= *1/2. This is
the diagonal basis of 2D electroiitaken to lie in thex-y
plane with charge—e and effective masm*, moving in a
uniform magnetic field=(0,0B) oriented perpendicular to
the 2DEG plane, and with a parabolic confinement potenti
Vpa= M* w§(x?+y?)/2. The single-particle energy levels are

given by the familiar = Zeeman-split —Fock-Darwin capolic piece; the parabolic piece, along with the kinetic

5—
spectrun. energy, is incorporated into the diagonal term; the nonpara-
1 bolic piece is represented by the off-diagonal one-body
Emne=0 4| N+ > +Q_| m+ > +gugBo. (1) term—the second term in ER)—whose overall strength is

governed by the dimensionless paramegefThis term di-
The first two terms in this equation are the oscillator enertectly affects the single-particle spectrum, and also signifi-
gies, withQ . = (Vo + (2wg) 2+ w.)/2, w=eB/(m*c) de-  cantly alters the singlet-triplet transition in the two-electron
noting the cyclotron frequency, and, the parabolic con- drop_let. We discuss this term in detail in Sec. Il B.
finement frequency. The final term is the Zeeman energy Finally, the two-body term in Eq(2) represents mterkallc-
wheregugB~0.01% w, in GaAs. tions, where the matrix element Vj
Neglecting environmental influences, the Hamiltonian of—(my,n;;m,,n,|€?/(e|r1—r,|)|m3,n3;m,,n,) is the fuII
an isolated quantum dot can be written in the Fock-DarwinCoulomb interaction in the 2D harmonic-oscillator basis (

basi¢® as is the dielectric constaptan exact expression is given 8y

E, (—1)N2tma+ngtm min(mq ,my) my\ [ m, min(ny ,ng) ny\(ny

V27 ETRYngmytng!mylngtmglngim,! K=o ki/\ ki) =0 T \ko/\ky

min(my, ,ms) m-\ [ ma\ Mn2.n3) n n —1\% 1
2 3 2 3
X ky! k,! — | ' k+=]. 3
k32:0 1(k3)(k3) k4210 2("4)("4)( 2) 2 @
|

The energy scale of the Coulomb interaction is setHyy The dimensionless parameterin Eq. (2) controls the

= \/mezl(el o) where the hybrid length |g strength of the Coulomb interaction, with=1 representing
=ﬁcl(eB\/m(%§). E, is the sum of all exchange en- f‘bare" Coulomb interactions. At ang length scales, screen-
ergies in the lowest Landau level, ie. ing effects from the nearby metglhc gates and leads decrease
- ) o 2 2 A A . the strength of the Coulomb interaction. At short length
Zm=0o{m,0;0,4e%/(elr;1—r5])[m,0;0,0=Eo, and addition-  gopies  the finite width of the 2DEG layer also decreases the
ally, (0,0;0,0e?/(e|r;—r,[)|0,0;0,0=Ey/\2. The Cou- strength of interactions. Since Coulomb interactions are not
lomb interaction conserves angular momentie Z;(m; the primary focus at present, we shall use the parameter 0
—n;). This is enforced in Eq(3) by the Kronecker delta <a<1 to describe the strength of Coulomb interactions,
function: R_=(m;—ny)+(my,—n,), Rg=(m3z—nz)+(m,  rather than considering a more sophisticated functional form.
—ny). Also in Eq. (3), k=(m;+m,+nz+n,)—(ks+ks In order to determine which of the main results are spe-
+ks+k,), andI'(k+ 1/2) is the gamma function. cific to the details of the confinement and which are more
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FIG. 4. Comparison of experiment and theory for the one- FIG. 5. Eigenvalues of the interacting two-electron droplet with
electron droplet. The data was fit to E@), with wg as a fitting ~ parabolic confinement. The plot is f@&=0 T, wy=1 meV, and
parameter. for singlets and triplets witls,=0.

general, we shall first consider the usual parabolic confine

t and sub v i tioate th ticular deviati ducing a high-energy cutof . ; For eachN-particle basis
ment, and subsequently investigate the particular devialiongg ., Iminioq, ... ,mynyoy), We calculate its ¢=0)
from parabolicity present in our device.

eigenenergy and discard it if this energy is greater than
Ecuorf- We then numerically diagonalize the resulting finite-
A. Parabolic confinement dimensional Hamiltonian

In this section, we consider the case of pure paraboliéMNINON, - - MiNyoy|HIMingoy, ... mynyog)  (with
confinement §=0). We shall see that our central result of finite ) to obtain both the eigenstates and the spectrum. We

voltage-tuned entanglement is already present in this simpléen keep repeating this process with a progressively larger
case. E.utorf UNtil the eigenvalues converge to a constant value.

For small magnetic fieldsB<5 T, forwg=1 meV) and
1. Noninteracting electrons two electrons, convergence is reached rather quickly. For ex-
. . . . , ample, for a 112-dimensional Hilbert space, convergence to
The single-particle problem with parabolic confinement, inin 494 has been achieved for the lowest 65 eigenstates
(y=a=0) yields the Fock-Darwin spectrum in BQ). This ¢, (\ B R|S,)=(2,0,1,0)(this spin value includes both sin-

approximation should be most valid for the lowest-energyy ot anq triplet statgsand to within 0.5% for the lowest 49
level of the one-electron droplet; in addition to having no igenstates. The eigenvalues far=—10-10, B=0, and
intradot Coulomb interactions, the zero-point energy shoul ~0 are sﬁown in Fig. 5 ' '

be smallest for the one-electron droplet. A comparison of the Experimentally, we have seen that the magnetotransport

Fock-Darwin spectrum and experiment is shown in Fig. 4'data of the one-electron droplet is very well described by

The gxperimental p.oin.ts are the position of current peak as Barabolic confinement with a confinement frequencywgf
function of magnetic field for the one-electron droplet. The_ ; meV. In the two-electron droplet, where Coulomb inter-

parabolic coqflnerient frequenayo was used' as a ﬂttmg actions are now relevant, the ground-state singlet-triplet tran-
Riﬁmue;e:hw'gmo_.l mﬁ:ﬁ t:cemgh_dlspllayed n tuelr'?uée' sition is experimentally seen to occur at approximately

gh the data is well fit for this value, we shall find & _ ;1 "t \ve assume the confinement frequency remains
rather different situation for the two-electron droplet. constant at 1 meV, theB.=1 T occurs fore~0.2, and thus

Coulomb interactions are significantly reduced from their
bare value. Alternatively, since the critical field scales with
When Coulomb interactions are switched @ut with y  the ratio wg/(@Ey), wg may increase, rather tham de-
=0 for the moment m andn are no longer good quantum creases, to give the same effect. This is shown in Fig. 6,
numbers, but, since circular symmetry is still manifested, thevhere all curves are for the caae=1. The main plot shows
total angular momenturR is indeed conserved, as are total the evolution of the singlet-triplet gapwith magnetic field.
spinSand totalS,. The Hamiltonian can therefore be diago- The lower curve hasw,=1 meV while the upper has,
nalized in eachR,S,S,) subspace separately. =1.5 meV. The inset shows the actual singlet-triplet cross-
We have numerically diagonalized E@) with y=0 ac- ing for wy=1 meV. This simple model of parabolic con-
cording to the following procedure: We work in a fixed finement with full Coulomb interactions is clearly insuffi-
(R,S,) subspace—alternativefy,one may work in a fixed cient to quantitatively reproduce the experimental findings of
(R,S,S,) subspace, a particularly useful approach for largefFig. 3. The linear closing of the gap in the theory—there are
particle numbers—and we use the 2D harmonic-oscillatoactually very slight deviations from linearity not discernible
basis, with the Coulomb matrix elements given by E). in Fig. 6—appears to be a feature of Coulomb interactions
We truncate the infinite-dimensional Hilbert space by intro-combined with parabolic confinement. The experimental

2. Interacting electrons
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0.6 ; ; ; - = 7 - second term of our model in E(R), and we investigate the
influence of this term in this section.

The first problem is to obtain a functional form for the
confinement potential. Since the gate voltages are the pri-
mary contribution to the confinement potential, the simplest
approach is to consider the electrostatic potential in the
2DEG induced by the gate voltages. Defining #g plane
to be the plane of the gates so that the potes{alz=0) is
experimentally giverir=(x,y)], an analytic expression can
be derived® for the potentiaM(r,z) at an arbitrary point:

0.5 9

04

0.3 o

J [meV]

02

0.1

0.0 s - - s s :
dr’ V(r’,0
00 01 02 03 04 05 06 07 08 V(r.2)= f (r’,0) @

R Z _
Magnetic Field [Tesla] 2T | | (22 + | r—r’ |2)3/2

FIG. 6. Inset: Lowest-energy singl8,S,)=|0,0) (lower curvé  Thjs equation yields the corre@—0 limit, as well as
and triplet|1,—1) (upper cur\_@ for th_e two-elgct_ron_ droplet w_lth aV19z—0 for |z]—. The integration, performed at each
a=1 gnda)(,:_l meV. The smgle_t-trlplet gap |s'|nd'|cated. Main pointr in the 2DEG planeZ=90 nm), yields the potential
plot: Slnglet-trlplet. gap as a function of magnetic field for the two- that laterally confines electrons. A contour plot of this con-
;er:c;cltcr)svr;;jrho;ﬁtivim;elv. The upper curve haso=1.5 meV and finement is shown in Fig. 7. We have neglected the contri-

0 ' bution of anyB-dependent effects of the edge stdies, the
. S i leads. In the Coulomb-blockade regime we are interested
curves of Fig. 3 are thus an indication that the confinementig o .o" thep dependence of the lead states will primarily in-
nonparabolic. fluence the tunneling rates into and out of the dot. That is to

. What this.simple thearyloescapture Is that t_he.crifcical say, the amplitude of the current will be affected, rather than
field B.(wg) is controlled by the gate voltage via its influ- the spectrum of the dot.

ence on the confining frequenay,(V,) for afixed particle The confinement potential in Fig. 7 can be viewed as a
nulmberN. ';_hus, alr.](caady at this !e\fli we see how the galem of 5 parabolic dot and a parabolically confined semicir-
Vr:) tagi, ?lt ixed IU”' erln magnetic field, can be used 10 tungjar wire of diameteD, which intersects the quantum point
through the singlet-triplet transition. -~~~ contactgseen as saddle points in Fig.ahd the center of the
The parabolic-confinement model is insufficient o repro-go These considerations lead to an analytic expression
duce both the critical field3; and the zerofield gago  \yhich very closely approximates thaumerically deriveg
=J(B=0). Finite-width effects ¢<1) or an increasingo  potential in Fig. 7. This potential is given by,
serve to increase bot andJo. In the following section, we YH where H_,= (1/2)m* w2(x?+y?) is the USFL)Ja|
investigate the influence of nonparabolic confinement on th?)arabngﬁ?:r’confinemepr?{ and 0
singlet-triplet gap. '
©)

X— —

y2\2
D

: ) _ 2
B. Nonparabolic confinement Hnopar—zm* Wy

The confinement potential produced by the gate geometry
shown in Fig. 1 exhibits only approximate circular symmetryis the nonparabolic piece of the confinement potential.
and this explicit symmetry breaking can be clearly seen idn Eq. (2), the parabolic piece is incorporated into the
experiment already at the two-electron level, as shown irfliagonal one-body term, while the off-diagonal one-body
Fig. 3. This deviation from parabolicity is included as theterm is the second-quantized version of EE) with h;;

_’<mn|Hnoparlm’n’>-
300 —— . : . . - The computational consequences of the explicit
symmetry-breaking termsy( 0) are that the Hilbert-space
truncation scheme must be altered to incorporate the mixing
of different angular-momentum subspaces. One possibility
for the interacting problem is to begin with the single-
particle stategno longer simple Fock-Darwin stajesnd
then solve the interacting problem in the exact single-particle
basis. Another approach, indeed the one we present below, is
to treat the parabolically confined interacting problem (
—_— S =0,a#0) exactly, as was done in Sec. Ill A, and, in this
%00 w00 500 500 000 1200 400 basis, treat the one-body symmetry-breaking terms.
X That Eq.(5) mixes differentR subspaces can be explicitly

FIG. 7. Contour plot(thin lines of the two-dimensional con- Seen by rewriting the position operators in terms of the usual
finement potential produced by the gattsck lines located 90 nm  oscillator  ladder operators:  x=lq(a'+a+b"+b)/
above the 2DEG. J2 and y=—ilg(a'-a—b'+b)/\2, where a'=3(n

200 |

=]
S

y [nm]
o
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+1)C;1,n+1,(rcm,n,rr and bT:E(m"'1)CL+1,n,(rCm,n,rr- Using 6 W
these relations, we rewrite the second term of @y.as s e A A e
W
2 4 \/\/\/\—___—
yold N S ——
¥ hijclc,=—5 > 2 (Vart+ ViR),
ij,o wc+4w0 SR=0

|

(6a)
— 7
where 6V sz changes the angular momentum-n) of the 2 / % ]
single-particle statémn) by an amountR, 5VZ§R= 6V _sr 1 e ]
(6V, is Hermitian, and where 0 0 1 5
0 I 1 1 1 1
8Vo=3p%(a’?d?*+2a'd’b+d?b?) 0 0.5 1 15 2 25 3

+(1+128%)(atd+db)+(1+68%),  (6b B [Testa]

FIG. 8. Main plot: Single-particle spectrum as a function of
8V, =—2pB(a’d?+2d+d?b), (60)  magnetic field for a nonparabolically confined dot with,
=1 meV, y=1, andD=10a,. Remnants of shell structure at zero
oV,=—4p%(a’d®+d%b) +(1-128%)d?, (6d) field can be discerned. Inset: The same spectrum, but witl®,
i.e., the Fock-Darwin spectrum.

SV3=2pd3, (60
q whose presence in the spectra becomes concealed. Thus, we
an do not expect nonparabolicity effects to play an appreciable
n pp
5V, = B2d*, (6f) role beyondv=2.
with d=(a+b"), andg=D *1(w§+ 4w§) —la 2. Interacting electrons

_ Before going on to the main task of investigating the |5 gec. |11 A, we treated the parabolically confined inter-
s_lnglgt—trlp!et transition in this non—parabollc potential, we acting case by first solving for the noninteractifigock-
first investigate how the Fock-Darwin spectrum is affectedpanyin) case: these states were then used as the basis states
by these symmetry-breaking terms. in which the interacting problem was solved. Continuing the
progression, we now use the exaoteracting many-body
states computed in Sec. lll A as the basis states in which we
We have been unable to find an exact analytic solution tdreat the nonparabolic piece of the confinement potential.
the nonparabolically confined y&0) single-particle & The method of truncating the Hilbert space must again be
=0) problem, and we therefore employ a numerical treatchosen. As an example, Fig. 5—for all angular momenta
ment. It is simplest to again work in the 2D harmonic oscil-Since they are no longer conserved—may be considered the
lator (Fock-Darwin basis. In the single-particle problem, Hilbert space for the particular case afp=1 meV, B
Zeeman effects are rather trivial and shall therefore be ne=0 T, andS,=0. Two methods of truncating this Hilbert
glected in the present discussion. We include a fixed numbespace can be considered. First, thdowest-energy states
of Fock-Darwin states in our Hilbert space, diagonalize thewithin each angular-momentum channel may be chosen as
Hamiltonian, and repeat with a larger number of Fock-the reduced Hilbert space, with all higher-energy states dis-
Darwin states, progressively increasing the Hilbert-space dicarded. For example, k=10 and there are 21 angular-
mension until convergence of the spectrum is attained for thenomentum channelgs in Fig. 5, then the Hilbert space has
lowest few levels. 10X 21=210 dimensions. In this scheme, the cutoff energy
An example of the resulting spectrum is shown in Fig. 8,is variable, but the number of states within each angular-
with the equivalent Fock-Darwin spectrum as an inset. Thanomentum channel is fixed. The second method is to employ
most dramatic effect of nonparabolicity is at low magnetica fixed energy cutofE s and to allow a variable number
fields, where the shell structure is heavily renormalized, alof states within each angular-momentum channel; all states
though its remnants are still observable. The plot was comabove E ., regardless of angular momentum, are dis-
puted using the 1891 lowest-energy Fock-Darwin levels—carded and all states beldsy, o, regardless of angular mo-
corresponding, at zero field, to the first 61 shells in thementum, are retained. In principle, it matters little which
parabolic case—and withwg=1 meV, y=1, and D truncation scheme is used so long as each method, of course,
=10a,. At much largery, the shell splitting becomes so converges to the same values. In practice, the second
large that different shells overlap, and a Fock-Darwin deimethod, with a fixed cutoff energy, achieves convergence
scription at low fields becomes dubious. Apparent anticrossfaster.
ings are also seen in Fig. 8, whereas the Fock-Darwin spec- Figure 9 shows results analogous to Fig. 6, but for the
trum contains only crossings. Another important feature isnonparabolic confinement discussed above. All curves shown
that thev=2 line at moderate fields is still clearly visible, in Fig. 9 have ¢,y,D)=(1,3,58,). In the main plot, the gap
even for largery; beyond this point, field effects begin to J is plotted for wg=1 meV (lower curve and wg
play a more prominent role than nonparabolicity effects,=1.5 meV(upper curvg The upper inset shows the singlet-

1. Noninteracting electrons

035320-6



VOLTAGE-TUNABLE SINGLET-TRIPLET TRANSITION . .. PHYSICAL REVIEW B66, 035320 (2002

0.5 . r T T N=2 Subspace
L T T T T
04 | Ly 1] 20 ¢ Singlet Phase
7.0 18 kb
= 0.3 9 6.8 " L . 1 — 1.6 Phase boundary
2 0.0 02 04 06 038 T L4
- 02 r B [T] % ’ Field—tuned transition
S 12
0.1 ¢ 10 F ]
Triplet Phase
0.0 ) . ) ) ) 0.8 r, Voltage—tuned transition 1
00 02 04 06 08 10 12 14 06 08 10 12 14 16 18
Magnetic Field [Tesla] B [Tesla]
FIG. 9. Main Plot: Singlet-triplet gag as a function of mag- FIG. 10. Spin phase diagram for the two-electron system in the

netic field forwg=1 meV(Iower gurve.andwof 1.5 meV(upper  ,-B, plane. This plot hast=1, y=3, andD=>5a,, and w, is
curve for nonparabolically confined interacting electrons. Uppercontrolled by the gate voltages. The usual field-induced singlet-

Inset: Lowest-energy singl¢$,S,)=[0,0) (lower curve and triplet  griplet transition and the voltage-induced transitions are indicated.
|1,—1) (upper curvg as a function of magnetic field fomw,

=1 meV. Lower Inset: Shape of total confinement potential in real

space. All curves in the main plot and in the insets aredferl, . ) . . . L
y=3, andD = 5a,. This figure is the analog to Fig. 6 for nonpara- transition at fixed is achievable. As shown in Sec. I, this is

bolic confinement. indeed the case for the present experiment.

triplet transition forowg=1 meV, and the lower inset shows V. DISCUSSION

a sketch of the shape of the confinement potential for these The fact that the gate voltager set of gate voltages in
parameter values. All these parameters, excepyfare as  the present cageontrols not only the chemical potential of
in Fig. 6. The nonparabolic spectrum differs significantly the dot but also thehapeof the dot has been exploited in the
from the parabolic spectrum, particularly at small fields, 5resent work to tune the ground-state entanglement of an
where the triplet has a much weaker field dependence in thgecron pair in a lateral quantum dot. The experimental evi-

present case relative to the parabolic-confinement case. Thigynce clearly shows that the two-electron singlet-triplet tran-

IS tlrrlle benharwlortﬁllsc;] sre]enrlnbe;i(penr]lmde(llﬁetia I';'g'rz)' Its m hsition occurs at a critical field that depends on the gate volt-
general, the nonparabolic model yields resuts .uc.age. The confinement potential is not parabolicor

closer to experiment than parabolic confinement, and it i, ;0214 this allows great flexibility in changing the
clear that the confinement potential in experiment is not P g y ging

parabolic. The available phase space—uwith variatiomwgn sha]E)e ?Jtr;e ?Ot th'.le z|m|_l|JItaneoustIr3]/ keeplng thetntu(?ber of
a, vy, andD—is rather large and so an optimal fit has not confinéd electrons hixed. However, the expenmental demon-

been performed. Nevertheless, the theoretical curves in Figtation of voltage-tuned entanglement is not dependent upon

9 are in qualitative agreement with the experimental curved€ Precise shape of the potential, and should be achievable
in Fig. 3. Future analyses of high source-drain spectroscoplf? & Wide range of potential shapes. The main requirement is
with higher electron numbers will produce additional con-that the gate voltages appreciably change the shape of the
straints that will more meaningfully reduce the range of thesdotential while the particle number remains constant. The
parameters. present work is a modest step towards the construction of a
The central point is that the particular critical fieR, =~ quantum gate in a solid-state environment; it does not, for
obtained istself a function of the confining-potential param- example, demonstrate thenitary evolution of the system
eters,wg, y, andD. Since each of these parameters is con-between singlet and triplet states.
trolled by the voltage on the gates shown in Fig. 1, it follows Because the tunneling barriers into and out of the dot are
that the gates themselves can be used to tune through tHarge, only the leading-order contribution to the tunneling
singlet-triplet transitionand hence tune the ground-state en-current can be seen in our experiment. In principle, however,
tanglement of the system. This is shown explicitly in Fig. 10the tunnel barriers can be reduced while still remaining in the
where we plot the spin phase diagram in theB. plane. In Coulomb-blockade regime in order to measure an appre-
this figure, the singlet-triplet gap is computed for various ciable cotunneling currert. In this way, the singlet-triplet
values ofw (tunable by the gate voltagethe critical field transition may be experimentally probed throughout the
B, is then extracted from the solution I{wy,B:;)=0. In =2 subspace, and thus give a more stringent test of theory.
practice, the range ab,, which is experimentally accessible  In a double-dot system with one trapped electron apiece,
is delimited by theN=3 andN=1 subspaces as the gate essentially the same spin physics occurs, and thus a voltage-
voltage is swept. However, if the accessible range is suffituned ground-state transition should also occur along with
cient to be seen by experiment, a voltage-tuned singlet-triplethe consequent implications for quantum computing. Alter-
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