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Voltage-tunable singlet-triplet transition in lateral quantum dots
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Results of calculations and high source-drain transport measurements are presented, which demonstrate
voltage-tunable entanglement of electron pairs in lateral quantum dots. At a fixed magnetic field, the applica-
tion of a judiciously chosen gate voltage alters the ground state of an electron pair from an entagled spin singlet
to a spin triplet.
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I. INTRODUCTION

Proposals for spin-based quantum computation in a so
state environment1–5 require efficient techniques for manipu
lating the entanglement of coupled qubits. In this paper,
demonstrate theoretically and verify experimentally th
ground-state entaglement can be inducedsolelyby applying
a potential to the gates. This is possible because the
voltage controls not only the chemical potential of the d
but the shape of the confining potential as well. Con
quently, the gate voltage can induce transitions in the
containing a well defined, constant number of particles.

Early far-infrared measurements on arrays of few-elect
dots6,7 and transport through single devices8 were focused on
the tunability of the electron number and, although tran
tions were observed, it was difficult to assign, for examp
quantum numbers to these transitions. Later experiments
ing single-particle capacitance9 and magnetotunneling10

spectroscopy focused on the evolution of the ground state
a function of magnetic field and were able to distingu
features consistent with the two-electron singlet-triplet tr
sition. High source-drain tunneling spectroscopy probes
excited states as well as the ground state and therefore
singlet-triplet transition can be more clearly and unambi
ously observed. This has already been successfully applie
etched vertical quantum dots with~spin! unpolarized
leads.11,12 In the lateral devices employed in the prese
study, the dot is formed within a two-dimensional electr
gas~2DEG!, with the lateral confinement produced electr
statically by voltages applied to gates located above
2DEG. Recent work employing a novel gate design13 has
allowed the electron numberN to be tuned down to a singl
electron.

There are at least two features unique in the lateral
vices. First, since the leads are essentially 2DEG edges
plying a rather weak magnetic field—approximately 0.4 T
practice—is sufficient to produce spin-resolved edge14

Therefore, the tunneling rates into and out of the dots
significantly different for each species of spin. This sp
polarized injection~and detection! allows us to distinguish
orbital effects from spin effects in transpo
measurements.13–16 Second, since the confinement potent
is formed electrostatically by the various gate voltages, al
ing the shape—in particular the nonparabolicity—of t
quantum dot can be accomplished while keeping the par
0163-1829/2002/66~3!/035320~8!/$20.00 66 0353
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number fixed. It is important to note that the familiar single
triplet transition is not caused by the difference in Zeem
energy but rather by changes in the orbital part of the w
function. In multiple-dot systems, in particular with regar
to quantum dot based quantum computation,3 this versatility
is of crucial importance. Quantum-state engineering of t
sort is clearly observable in the experimental results
present below.

From the theoretical side, numerical analyses of the in
acting two-electron17–19 problem, as well as higher electro
numbers,19,20 demonstrated singlet-triplet transitions in par
bolic potentials using either a fixed or anN-dependent har-
monic frequency. These works focused on magnetic-fie
induced transitions. In our experiment, the confini
potential is a function of thecontinuousvariablesVg ~the
gate voltages! and the confinement in our particular quantu
dots deviate from parabolicity. These features, which are
dressed in our theory, allow a spin phase diagram to be c
structed in the gate-voltage/magnetic-field plane and cle
indicate how theN52 singlet-triplet transition can be exte
nally engineered at fixed magnetic field. In double-dot s
tems containing one electron apiece, similar transitions,
for similar reasons, have been theoretically demonstrate
both lateral21,22 and vertical23 devices. Our theory is appli
cable to these systems with only a few modifications rela
to the orbital degrees of freedom—the spin physics are
sentially equivalent.

In the Coulomb-blockade regime, transport experime
probe the two-electron system either by adding an electro
the one-electron droplet, or by removing an electron from
three-electron droplet. Each case corresponds to a dis
gate voltage, and in each case the ground and excited s
can be probed by high source-drain spectroscopy, which
rectly reveals the singlet-triplet transition. Our theory a
experiment show that, for these two different gate voltag
the transition between the entangled spin singletu↑↓&
2u↓↑& and the spin tripletu↓↓& occurs at two different mag
netic fields.

The paper is organized as follows: Section II describes
experimental results, including the demonstration of a ga
voltage-induced singlet-triplet transition. Section III contai
a theoretical analysis, culminating in the spin phase diag
of theN52 interacting system in the gate-voltage/magne
field plane. Finally, Sec. IV contains a concluding discussi
©2002 The American Physical Society20-1
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II. EXPERIMENTAL RESULTS

A scanning electron microscopy~SEM! image of a device
similar to the one used in our experiments is shown in Fig
This geometry allows us to controllably tune the number
trapped electrons in the 2DEG—90 nm below the surfac
from about 50 down to a single electron.13 High source-drain
transport measurements in the Coulomb-blockade reg
were carried out in order to detect both the ground and
cited states of the two-electron system. Standard low-po
ac measurement techniques were used with a 10-mV excita-
tion voltage applied across the sample at a frequency o
Hz. An additional dc voltage was applied in order to obtain
high source-drain bias. The differential conductancedI/dVsd
is measured directly in such a configuration and the relev
data is shown in Fig. 2 for a source-drain voltage
350 mV. In this figure we show the inverted gray scale f
the N52 subspace as a function of magnetic fieldB and
plunger gate voltageVg . The negative differential conduc
tance, which is also tunable,24 is related to the spin-polarize
injection of electrons.

For the lowest set of curves in Fig. 2, transport proce
through the addition and subtraction of a second elec
from a one-electron droplet. At the lowest curve, transpor
predominately through the ground state of the two-elect
droplet ~a spin singlet at low fields!; beginning at the curve
immediately above this one, transport through the first
cited state~a spin triplet at low fields! is also allowed. Hence
the exchange constant can be directly obtained experim
tally from these curves by suitably calibrating the parame
relating gate voltage to energy. The singlet-triplet transit
is clearly seen~cf. etched vertical dots11,12! at a field ofBc1
'0.92 T. The upper set of curves corresponds to adding
removing a third electron from the two-electron system. A
ter the third electron has left the dot, the resulting tw
electron droplet can either be in the ground state or in
excited state.~Transport through the ground state is the to
most curve.! Therefore, it should be possible to extract t
same exchange constant from these curves as desc

FIG. 1. SEM image of the gate geometry forming the quant
dot. This geometry enables a precisely known number of elect
(N50,1,2, . . . ,50) to betrapped~Ref. 13! and produces a quasipa
rabolic confinement potential. Sweeping the plunger-gate volt
tunes both the shape and the chemical potential of the quantum
03532
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above for the lower set of curves. Indeed, the singlet-trip
transition is again clearly seen, but now occurs at a field
Bc2'1.1 T. The singlet-triplet gaps for the two differen
cases are shown in Fig. 3—the central experimental resu
this work.

Two important conclusions can be drawn from Fig.
each of which is verified in the subsequent sections. F
because the gaps do not close linearly, the confinement
tential cannot be parabolic. Second, because the two cu
do not fall on each other, the actual shape of the dot mus
different for the two curves. This change can only be due
the gate voltage, and it therefore follows thatthe gates them-
selves can be used to tune through the singlet-triplet tran
tion and hence tune the ground-state entanglement of

ns

e
ot.

FIG. 2. High source-drain transport spectroscopy of the tw
electron droplet. The lower set of curves corresponds to fluctuat
betweenN51 andN52, while the upper set corresponds to flu
tuations betweenN52 and N53. Both sets of curves probe th
same states of the two-electron droplet~ground plus first excited
state! but at different gate voltages. The singlet-triplet transition
seen to occur at two different critical fields. The solid line marks
singlet-triplet ground-state boundary. This boundary can be
versed along the dashed line atB51 T solely by adjusting the
~plunger! gate voltage.

FIG. 3. Singlet-triplet gapJ5DE as a function of magnetic field
for two different gate voltages, as described in the text.DE1 and
DE2 are also denoted in Fig. 2.
0-2
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system. Figure 2 shows how this may be accomplished.
solid line demarcates the boundary between the singlet
triplet ground-state phases. At a fixed field of 1 T~marked on
the figure as a dashed line! the ground-state entangleme
can be tuned to be either a singlet or a triplet solely
adjusting the gate voltage appropriately.

In the following, we present the theoretical justification
the above statements.

III. THEORETICAL RESULTS

We begin this section with a description of the model
shall use throughout the paper. We shall work primarily
the 2D harmonic oscillator~Fock-Darwin! basis, character
ized by the two oscillator quantum numbersm,n
50,1,2, . . . and thespin quantum numbers561/2. This is
the diagonal basis of 2D electrons~taken to lie in thex-y
plane! with charge2e and effective massm* , moving in a
uniform magnetic fieldB5(0,0,B) oriented perpendicular to
the 2DEG plane, and with a parabolic confinement poten
Vpar5m* v0

2(x21y2)/2. The single-particle energy levels a
given by the familiar Zeeman-split Fock-Darwi
spectrum:25–27

«mns5V1S n1
1

2D1V2S m1
1

2D1gmBBs. ~1!

The first two terms in this equation are the oscillator en
gies, withV65(Avc

21(2v0)26vc)/2, vc5eB/(m* c) de-
noting the cyclotron frequency, andv0 the parabolic con-
finement frequency. The final term is the Zeeman ene
wheregmBB'0.012\vc in GaAs.

Neglecting environmental influences, the Hamiltonian
an isolated quantum dot can be written in the Fock-Darw
basis25 as
-
.,
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H5(
i ,s

« iscis
† cis1g (

i , j ,s
hi j cis

† cj s

1a (
i , j ,k,l ,
s,s8

Vi j
klcis

† cj s8
† cks8cls , ~2!

where the Latin indicesi , j ,k,l are a composite denoting th
two oscillator quantum numbersm and n. The operatorcis

†

→cmns
† creates a particle in the stateumns& with thez com-

ponent of angular momentum (m2n) andcis is the conju-
gate annihilation operator. Unless otherwise noted, all en
gies are expressed in units of the effective Rydberg
5m* e4/(2\2) ('5.9 meV in GaAs!, and all lengths in
units of the effective Bohr radiusa05\2/(m* e2)
('9.8 nm in GaAs!.

The diagonal one-body term—the first term in Eq.~2!—is
just the Fock-Darwin energy coming from parabolic confin
ment; « is→«mns is given in Eq.~1!. We consider thetotal
confinement to be composed of a parabolic piece plus a n
parabolic piece; the parabolic piece, along with the kine
energy, is incorporated into the diagonal term; the nonpa
bolic piece is represented by the off-diagonal one-bo
term—the second term in Eq.~2!—whose overall strength is
governed by the dimensionless parameterg. This term di-
rectly affects the single-particle spectrum, and also sign
cantly alters the singlet-triplet transition in the two-electr
droplet. We discuss this term in detail in Sec. III B.

Finally, the two-body term in Eq.~2! represents interac
tions, where the matrix element Vi j

kl

→^m1 ,n1 ;m2 ,n2ue2/(eurW12rW2u)um3 ,n3 ;m4 ,n4& is the full
Coulomb interaction in the 2D harmonic-oscillator basise
is the dielectric constant!; an exact expression is given by28
Vi j
kl→ E0

A2p
dRL ,RR

~21!n21m21n31m3

An1!m1!n2!m2!n3!m3!n4!m4!
(

k150

min(m1 ,m4)

k1! S m1

k1
D S m4

k1
D (

k250

min~n1 ,n4!

k2! S n1

k2
D S n4

k2
D

3 (
k350

min(m2 ,m3)

k1! S m2

k3
D S m3

k3
D (

k450

min(n2 ,n3)

k2! S n2

k4
D S n3

k4
D S 21

2 D k

GS k1
1

2D . ~3!
n-
ase
th
the
not
er 0
s,

rm.
pe-
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The energy scale of the Coulomb interaction is set byE0

[Ap/2e2/(e l 0) where the hybrid length l 0
2

5\c/(eBA114v0
2/vc

2). E0 is the sum of all exchange en
ergies in the lowest Landau level, i.e

(m50
` ^m,0;0,0ue2/(eurW12rW2u)um,0;0,0&5E0, and addition-

ally, ^0,0;0,0ue2/(eurW12rW2u)u0,0;0,0&5E0 /A2. The Cou-
lomb interaction conserves angular momentumR[( i(mi
2ni). This is enforced in Eq.~3! by the Kronecker delta
function: RL5(m12n1)1(m22n2), RR5(m32n3)1(m4
2n4). Also in Eq. ~3!, k5(m11m21n31n4)2(k11k2
1k31k4), andG(k11/2) is the gamma function.
The dimensionless parametera in Eq. ~2! controls the
strength of the Coulomb interaction, witha51 representing
‘‘bare’’ Coulomb interactions. At long length scales, scree
ing effects from the nearby metallic gates and leads decre
the strength of the Coulomb interaction. At short leng
scales, the finite width of the 2DEG layer also decreases
strength of interactions. Since Coulomb interactions are
the primary focus at present, we shall use the paramet
<a<1 to describe the strength of Coulomb interaction
rather than considering a more sophisticated functional fo

In order to determine which of the main results are s
cific to the details of the confinement and which are mo
0-3
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JORDAN KYRIAKIDIS et al. PHYSICAL REVIEW B 66, 035320 ~2002!
general, we shall first consider the usual parabolic confi
ment, and subsequently investigate the particular deviat
from parabolicity present in our device.

A. Parabolic confinement

In this section, we consider the case of pure parab
confinement (g50). We shall see that our central result
voltage-tuned entanglement is already present in this sim
case.

1. Noninteracting electrons

The single-particle problem with parabolic confineme
(g5a50) yields the Fock-Darwin spectrum in Eq.~1!. This
approximation should be most valid for the lowest-ene
level of the one-electron droplet; in addition to having
intradot Coulomb interactions, the zero-point energy sho
be smallest for the one-electron droplet. A comparison of
Fock-Darwin spectrum and experiment is shown in Fig.
The experimental points are the position of current peak
function of magnetic field for the one-electron droplet. T
parabolic confinement frequencyv0 was used as a fitting
parameter, withv051 meV being displayed in the figure
Although the data is well fit for this value, we shall find
rather different situation for the two-electron droplet.

2. Interacting electrons

When Coulomb interactions are switched on~but with g
50 for the moment!, m andn are no longer good quantum
numbers, but, since circular symmetry is still manifested,
total angular momentumR is indeed conserved, as are tot
spinSand totalSz . The Hamiltonian can therefore be diag
nalized in each (R,S,Sz) subspace separately.

We have numerically diagonalized Eq.~2! with g50 ac-
cording to the following procedure: We work in a fixe
(R,Sz) subspace—alternatively,29 one may work in a fixed
(R,S,Sz) subspace, a particularly useful approach for lar
particle numbers—and we use the 2D harmonic-oscilla
basis, with the Coulomb matrix elements given by Eq.~3!.
We truncate the infinite-dimensional Hilbert space by int

FIG. 4. Comparison of experiment and theory for the on
electron droplet. The data was fit to Eq.~1!, with v0 as a fitting
parameter.
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ducing a high-energy cutoffEcutoff ; For eachN-particle basis
vector um1n1s1 , . . . ,mNnNsN&, we calculate its (a50)
eigenenergy and discard it if this energy is greater th
Ecutoff . We then numerically diagonalize the resulting finit
dimensional Hamiltonian
^mNnNsN , . . . ,m1n1s1uHum18n18s18 , . . . ,mN8 nN8 sN8 & ~with
finite a) to obtain both the eigenstates and the spectrum.
then keep repeating this process with a progressively la
Ecutoff until the eigenvalues converge to a constant value

For small magnetic fields (B,5 T, for v051 meV) and
two electrons, convergence is reached rather quickly. For
ample, for a 112-dimensional Hilbert space, convergence
within 4% has been achieved for the lowest 65 eigensta
for (N,B,R,Sz)5(2,0,1,0)~this spin value includes both sin
glet and triplet states!, and to within 0.5% for the lowest 49
eigenstates. The eigenvalues forR5210–10, B50, and
Sz50 are shown in Fig. 5.

Experimentally, we have seen that the magnetotrans
data of the one-electron droplet is very well described
parabolic confinement with a confinement frequency ofv0
51 meV. In the two-electron droplet, where Coulomb inte
actions are now relevant, the ground-state singlet-triplet tr
sition is experimentally seen to occur at approximatelyBc
51 T. If we assume the confinement frequency rema
constant at 1 meV, thenBc51 T occurs fora'0.2, and thus
Coulomb interactions are significantly reduced from th
bare value. Alternatively, since the critical field scales w
the ratio v0 /(aE0), v0 may increase, rather thana de-
creases, to give the same effect. This is shown in Fig
where all curves are for the casea51. The main plot shows
the evolution of the singlet-triplet gapJ with magnetic field.
The lower curve hasv051 meV while the upper hasv0
51.5 meV. The inset shows the actual singlet-triplet cro
ing for v051 meV. This simple model of parabolic con
finement with full Coulomb interactions is clearly insuffi
cient to quantitatively reproduce the experimental findings
Fig. 3. The linear closing of the gap in the theory—there
actually very slight deviations from linearity not discernib
in Fig. 6—appears to be a feature of Coulomb interactio
combined with parabolic confinement. The experimen

- FIG. 5. Eigenvalues of the interacting two-electron droplet w
parabolic confinement. The plot is forB50 T, v051 meV, and
for singlets and triplets withSz50.
0-4
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curves of Fig. 3 are thus an indication that the confinemen
nonparabolic.

What this simple theorydoescapture is that the critica
field Bc(v0) is controlled by the gate voltage via its influ
ence on the confining frequencyv0(Vg) for a fixedparticle
numberN. Thus, already at this level, we see how the g
voltage, at fixed uniform magnetic field, can be used to tu
through the singlet-triplet transition.

The parabolic-confinement model is insufficient to rep
duce both the critical fieldBc and the zero-field gapJ0
5J(B50). Finite-width effects (a,1) or an increasingv0
serve to increase bothBc andJ0. In the following section, we
investigate the influence of nonparabolic confinement on
singlet-triplet gap.

B. Nonparabolic confinement

The confinement potential produced by the gate geom
shown in Fig. 1 exhibits only approximate circular symme
and this explicit symmetry breaking can be clearly seen
experiment already at the two-electron level, as shown
Fig. 3. This deviation from parabolicity is included as t

FIG. 6. Inset: Lowest-energy singletuS,Sz&5u0,0& ~lower curve!
and triplet u1,21& ~upper curve! for the two-electron droplet with
a51 andv051 meV. The singlet-triplet gapJ is indicated. Main
plot: Singlet-triplet gap as a function of magnetic field for the tw
electron droplet witha51. The upper curve hasv051.5 meV and
the lower hasv051 meV.

FIG. 7. Contour plot~thin lines! of the two-dimensional con-
finement potential produced by the gates~thick lines! located 90 nm
above the 2DEG.
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second term of our model in Eq.~2!, and we investigate the
influence of this term in this section.

The first problem is to obtain a functional form for th
confinement potential. Since the gate voltages are the
mary contribution to the confinement potential, the simpl
approach is to consider the electrostatic potential in
2DEG induced by the gate voltages. Defining thex-y plane
to be the plane of the gates so that the potentialV(r ,z50) is
experimentally given@r[(x,y)#, an analytic expression ca
be derived30 for the potentialV(r ,z) at an arbitrary point:

V~r ,z!5E dr 8
2p

uzu
V~r 8,0!

~z21ur2r 8u2!3/2
. ~4!

This equation yields the correctz→0 limit, as well as
]V/]z→0 for uzu→`. The integration, performed at eac
point r in the 2DEG plane (z590 nm), yields the potentia
that laterally confines electrons. A contour plot of this co
finement is shown in Fig. 7. We have neglected the con
bution of anyB-dependent effects of the edge states~i.e., the
leads!. In the Coulomb-blockade regime we are interes
here, theB dependence of the lead states will primarily i
fluence the tunneling rates into and out of the dot. That is
say, the amplitude of the current will be affected, rather th
the spectrum of the dot.

The confinement potential in Fig. 7 can be viewed a
sum of a parabolic dot and a parabolically confined semi
cular wire of diameterD, which intersects the quantum poin
contacts~seen as saddle points in Fig. 7! and the center of the
dot. These considerations lead to an analytic expres
which very closely approximates the~numerically derived!
potential in Fig. 7. This potential is given byHpar

1gHnopar, where Hpar5(1/2)m* v0
2(x21y2) is the usual

parabolic confinement, and

Hnopar5
1

2
m* v0

2S x2
y2

D D 2

~5!

is the nonparabolic piece of the confinement potent
In Eq. ~2!, the parabolic piece is incorporated into th
diagonal one-body term, while the off-diagonal one-bo
term is the second-quantized version of Eq.~5! with hi j
→^mnuHnoparum8n8&.

The computational consequences of the expl
symmetry-breaking terms (gÞ0) are that the Hilbert-spac
truncation scheme must be altered to incorporate the mix
of different angular-momentum subspaces. One possib
for the interacting problem is to begin with the singl
particle states~no longer simple Fock-Darwin states! and
then solve the interacting problem in the exact single-part
basis. Another approach, indeed the one we present belo
to treat the parabolically confined interacting problemg
50,aÞ0) exactly, as was done in Sec. III A, and, in th
basis, treat the one-body symmetry-breaking terms.

That Eq.~5! mixes differentR subspaces can be explicitl
seen by rewriting the position operators in terms of the us
oscillator ladder operators:25 x5 l 0(a†1a1b†1b)/
A2 and y52 i l 0(a†2a2b†1b)/A2, where a†5((n
0-5
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11)cm,n11,s
† cm,n,s and b†5((m11)cm11,n,s

† cm,n,s . Using
these relations, we rewrite the second term of Eq.~2! as

g (
i , j ,s

hi j cis
† cj s5

gv0
2/4

Avc
214v0

2 (
dR50

4

~dVdR1dVdR
† !,

~6a!

wheredVdR changes the angular momentum (m2n) of the
single-particle stateumn& by an amountdR, dVdR

† 5dV2dR

(dV0 is Hermitian!, and where

dV053b2~a†2d212a†d2b1d2b2!

1~1112b2!~a†d1db!1~116b2!, ~6b!

dV1522b~a†d212d1d2b!, ~6c!

dV2524b2~a†d31d3b!1~1212b2!d2, ~6d!

dV352bd3, ~6e!

and

dV45b2d4, ~6f!

with d5(a1b†), andb5D21(vc
214v0

2)21/4.
Before going on to the main task of investigating t

singlet-triplet transition in this non-parabolic potential, w
first investigate how the Fock-Darwin spectrum is affec
by these symmetry-breaking terms.

1. Noninteracting electrons

We have been unable to find an exact analytic solution
the nonparabolically confined (gÞ0) single-particle (a
50) problem, and we therefore employ a numerical tre
ment. It is simplest to again work in the 2D harmonic osc
lator ~Fock-Darwin! basis. In the single-particle problem
Zeeman effects are rather trivial and shall therefore be
glected in the present discussion. We include a fixed num
of Fock-Darwin states in our Hilbert space, diagonalize
Hamiltonian, and repeat with a larger number of Foc
Darwin states, progressively increasing the Hilbert-space
mension until convergence of the spectrum is attained for
lowest few levels.

An example of the resulting spectrum is shown in Fig.
with the equivalent Fock-Darwin spectrum as an inset. T
most dramatic effect of nonparabolicity is at low magne
fields, where the shell structure is heavily renormalized,
though its remnants are still observable. The plot was co
puted using the 1891 lowest-energy Fock-Darwin levels
corresponding, at zero field, to the first 61 shells in
parabolic case—and withv051 meV, g51, and D
510a0. At much largerg, the shell splitting becomes s
large that different shells overlap, and a Fock-Darwin d
scription at low fields becomes dubious. Apparent anticro
ings are also seen in Fig. 8, whereas the Fock-Darwin s
trum contains only crossings. Another important feature
that then52 line at moderate fields is still clearly visible
even for largerg; beyond this point, field effects begin t
play a more prominent role than nonparabolicity effec
03532
d

o

t-
-

e-
er
e
-
i-
e

,
e

l-
-

e

-
s-
c-
s

,

whose presence in the spectra becomes concealed. Thu
do not expect nonparabolicity effects to play an apprecia
role beyondn52.16

2. Interacting electrons

In Sec. III A, we treated the parabolically confined inte
acting case by first solving for the noninteracting~Fock-
Darwin! case; these states were then used as the basis s
in which the interacting problem was solved. Continuing t
progression, we now use the exactinteracting many-body
states computed in Sec. III A as the basis states in which
treat the nonparabolic piece of the confinement potential

The method of truncating the Hilbert space must again
chosen. As an example, Fig. 5—for all angular mome
since they are no longer conserved—may be considered
Hilbert space for the particular case ofv051 meV, B
50 T, andSz50. Two methods of truncating this Hilber
space can be considered. First, thek lowest-energy states
within each angular-momentum channel may be chosen
the reduced Hilbert space, with all higher-energy states
carded. For example, ifk510 and there are 21 angula
momentum channels~as in Fig. 5!, then the Hilbert space ha
103215210 dimensions. In this scheme, the cutoff ener
is variable, but the number of states within each angu
momentum channel is fixed. The second method is to emp
a fixed energy cutoffEcutoff and to allow a variable numbe
of states within each angular-momentum channel; all sta
above Ecutoff , regardless of angular momentum, are d
carded and all states belowEcutoff , regardless of angular mo
mentum, are retained. In principle, it matters little whic
truncation scheme is used so long as each method, of co
converges to the same values. In practice, the sec
method, with a fixed cutoff energy, achieves converge
faster.

Figure 9 shows results analogous to Fig. 6, but for
nonparabolic confinement discussed above. All curves sh
in Fig. 9 have (a,g,D)5(1,3,5a0). In the main plot, the gap
J is plotted for v051 meV ~lower curve! and v0
51.5 meV~upper curve!. The upper inset shows the single

FIG. 8. Main plot: Single-particle spectrum as a function
magnetic field for a nonparabolically confined dot withv0

51 meV, g51, andD510a0. Remnants of shell structure at zer
field can be discerned. Inset: The same spectrum, but withg50,
i.e., the Fock-Darwin spectrum.
0-6
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VOLTAGE-TUNABLE SINGLET-TRIPLET TRANSITION . . . PHYSICAL REVIEW B66, 035320 ~2002!
triplet transition forv051 meV, and the lower inset show
a sketch of the shape of the confinement potential for th
parameter values. All these parameters, except forg, are as
in Fig. 6. The nonparabolic spectrum differs significan
from the parabolic spectrum, particularly at small field
where the triplet has a much weaker field dependence in
present case relative to the parabolic-confinement case.
is the behavior also seen in experiment.~See Fig. 2.!

In general, the nonparabolic model yields results mu
closer to experiment than parabolic confinement, and i
clear that the confinement potential in experiment is
parabolic. The available phase space—with variation inv0 ,
a, g, andD—is rather large and so an optimal fit has n
been performed. Nevertheless, the theoretical curves in
9 are in qualitative agreement with the experimental cur
in Fig. 3. Future analyses of high source-drain spectrosc
with higher electron numbers will produce additional co
straints that will more meaningfully reduce the range of th
parameters.

The central point is that the particular critical fieldBc
obtained isitself a function of the confining-potential param
eters,v0 , g, andD. Since each of these parameters is co
trolled by the voltage on the gates shown in Fig. 1, it follo
that the gates themselves can be used to tune through
singlet-triplet transitionand hence tune the ground-state e
tanglement of the system. This is shown explicitly in Fig.
where we plot the spin phase diagram in thev0-Bc plane. In
this figure, the singlet-triplet gapJ is computed for various
values ofv0 ~tunable by the gate voltage!; the critical field
Bc is then extracted from the solution toJ(v0 ,Bc)[0. In
practice, the range ofv0, which is experimentally accessibl
is delimited by theN53 and N51 subspaces as the ga
voltage is swept. However, if the accessible range is su
cient to be seen by experiment, a voltage-tuned singlet-tri

FIG. 9. Main Plot: Singlet-triplet gapJ as a function of mag-
netic field forv051 meV ~lower curve! andv051.5 meV~upper
curve! for nonparabolically confined interacting electrons. Upp
Inset: Lowest-energy singletuS,Sz&5u0,0& ~lower curve! and triplet
u1,21& ~upper curve! as a function of magnetic field forv0

51 meV. Lower Inset: Shape of total confinement potential in r
space. All curves in the main plot and in the insets are fora51,
g53, andD55a0. This figure is the analog to Fig. 6 for nonpar
bolic confinement.
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transition at fixedB is achievable. As shown in Sec. II, this
indeed the case for the present experiment.

IV. DISCUSSION

The fact that the gate voltage~or set of gate voltages in
the present case! controls not only the chemical potential o
the dot but also theshapeof the dot has been exploited in th
present work to tune the ground-state entanglement of
electron pair in a lateral quantum dot. The experimental e
dence clearly shows that the two-electron singlet-triplet tr
sition occurs at a critical field that depends on the gate v
age. The confinement potential is not parabolic~nor
elliptical! and this allows great flexibility in changing th
shape of the dot while simultaneously keeping the numbe
confined electrons fixed. However, the experimental dem
stration of voltage-tuned entanglement is not dependent u
the precise shape of the potential, and should be achiev
in a wide range of potential shapes. The main requiremen
that the gate voltages appreciably change the shape o
potential while the particle number remains constant. T
present work is a modest step towards the construction
quantum gate in a solid-state environment; it does not,
example, demonstrate theunitary evolution of the system
between singlet and triplet states.

Because the tunneling barriers into and out of the dot
large, only the leading-order contribution to the tunneli
current can be seen in our experiment. In principle, howe
the tunnel barriers can be reduced while still remaining in
Coulomb-blockade regime in order to measure an app
ciable cotunneling current.31 In this way, the singlet-triplet
transition may be experimentally probed throughout theN
52 subspace, and thus give a more stringent test of the

In a double-dot system with one trapped electron apie
essentially the same spin physics occurs, and thus a volt
tuned ground-state transition should also occur along w
the consequent implications for quantum computing. Alt

r

l

FIG. 10. Spin phase diagram for the two-electron system in
v0-Bc plane. This plot hasa51, g53, andD55a0, and v0 is
controlled by the gate voltages. The usual field-induced sing
triplet transition and the voltage-induced transitions are indicate
0-7



s
th
in
y

Na-
d-

JORDAN KYRIAKIDIS et al. PHYSICAL REVIEW B 66, 035320 ~2002!
natively, the current work may be speculatively viewed a
possible gate-controlled single-qubit operation, where
single coded qubit exists in a single quantum dot contain
two ~or more! electrons. This conjecture will be more full
developed in a future publication.
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