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Decoherence of electron spin qubits in Si-based quantum computers
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Direct phonon spin-lattice relaxation of an electron qubit bound by a donor impurity or quantum dot in SiGe
heterostructures is investigated. The aim is to evaluate the importance of decoherence from this mechanism in
several important solid-state quantum computer designs operating at low temperatures. We calculate the relax-
ation rate 1T; as a function of{100] uniaxial strain, temperature, magnetic field, and silicon/germanium
content for Si:P bound electrons and quantum dots. The quantum dot potential is much smoother, leading to
smaller splittings of the valley degeneracies. We have estimated these splittings in order to obtain upper bounds
for the relaxation rate. In general, we find that the relaxation rate is strongly decreased by uniaxial compressive
strain in a SiGe-Si-SiGe quantum well, making this strain an important positive design feature. Ge in high
concentrationgparticularly over 85% increases the rate, making Si-rich materials preferable. We conclude
that SiGe bound electron qubits must meet certain conditions to minimize decoherence but that spin-phonon
relaxation does not rule out the solid-state implementation of error-tolerant quantum computing.
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I. INTRODUCTION Electron spins also interact weakly with the environment
in some circumstances: relaxation times in excess 8f 40

The prospect of quantum computin@C) has caused have been measured for donor bound states of phosphorus-
great excitement in condensed-matter physics. If a set of qudoped silicon(Si:P).* The corresponding manipulation tech-
bits can be maintained in a coherent, controllable many-bodyology (ESR has also reached a high level of sophistication,
state, certain very difficult computational problems becomébut the magnetic moment of the electron exceeds that of the
tractable. In particular, successful QC would mean a revolunucleus by three orders of magnitude, which presents prob-
tion in the areas of cryptographynd data-base searchifg. lems of isolation. Readout should be easier than for nuclei,
In addition, it would mean a great advance in general techsince detection of single electron charges is certainly
nical capabilities, since the control of individual quantum possible’ and spin-dependent detection is not far out of the
systems and their interactions would represent a new era iasch of current technology.
nanotechnology. _ _ , _ Solid-state implementations of QC are particularly attrac-

However, from a practical point of view, a dilemma pre- e hecause of the possibility of using existing computer

sents itself immediately. On the one hand, one wishes t?echnology to scale small numbers of qubits up to thedio

control quantum degrees of freedom using extemal Influ'so that would be needed for nontrivial computations. The

ences, since that is how a quantum algorithm is imIOIe'first aper to propose using the electron spin in a quantum
mented, and to measure them, since that is the output step. pap brop 9 -tron sp q
0Ot subjected to a strong dc magnetic field was that of Loss

On the other hand, the system must be isolated from th d DiVi ¢ Kand d lovi h |
environment, since random perturbations will destroy the?" IVincenzd. Kane' proposed employing the nuclear

quantum coherence that is the whole advantage of QC. Th&Pin in the Si:P system as the qubit. A specific structure con-
is the isolation-control dilemma, and it leads to a very roughS'Sting of sg|cor?-german|un(_18|Ge layers was proposed by
figure of meritF for any quantum computer. If we define the Vrijen et al” This structure incorporates the idea that ghe
decoherence time as the time it takes to lose quantum factor of an electron can be changed by moving it in a Ge
coherence, and the clock Spwd'oug[‘“y the inverse of the concentration gradient, alIOWing individual electron to be ad-
time to run a logic gate then the figure of merit if=sr  dressed by the external ac field. A different SiGe structure
and a practical machine should sati§fy> 10°~1C° at least. has been proposed by Friesenal® This structure is de-
If the clock speed is limited only by standard electronics,signed so that the electron number on the dots, and the cou-
then we may be able to achiese-10° Hz. This would im-  pling between the dots, can be carefully controlled.
ply that 7=1 ms is a lower limit for the decoherence time.  Solid-state implementations must also face the isolation-
The dilemma has not yet been solved, though a number afontrol dilemma. Decoherence times must exceed the 1-ms
solutions have been proposed. A particularly attractive solunumber in the actual physical structures that are needed for
tion is to use spin degrees of freedom as qubits. Nucleathe operation of quantum algorithms. In this paper, we ex-
spins interact relatively weakly with their environment be- amine whether this can be the case for some of the existing
cause the coupling, proportional to the magnetic moment, iproposals based on electron-spin qubits. In the process, we
small. Yet there has grown up a sophisticated technology fohope to learn something about modifications to these struc-
the manipulation of nuclear spins, and some rudimentaryures that can increage We shall focus on low-temperature
computations have been perforne@eadout is the main operation, since, as we shall see, this will probably be nec-
difficulty with this approach, since the field created by aessary in order to obtain sufficiently large
single moment is tiny, and pure states cannot be achieved in We can build on a large body of work, both theoretical
the macroscopic samples used. and experimental, from the 1950s and 1960s on ESR in
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doped semiconductors. In a series of papers, Feher argimilar result should hold for the dot case. Decoherence at
co-workeré investigated the relaxation time for the spin of this level is certainly acceptable for quantum computing.
electrons bound on donor sites in lightly doped Si. At suffi-These authors also pointed out that the decay of the remain-
ciently low temperatures, the relaxation tifigis dominated der of p;, is due to the spin-flip processes computed in this
by single-phonon emission and absorption. In the presence g@faper. If T, is defined as the dominant decay time of the
spin-orbit coupling, this can relax the spin, causing decohereff-diagonal density matrix element, thdh=T, for spin-
ence. The theory was worked out by Hasegdaad Roth''  phonon processes.

It must of course be recognized that this spin-lattice- A quite different source of decoherence is the hyperfine
relaxation time is not necessarily to be identified with thecoupling to nuclear spins. The nuclear spins produce an ef-
decoherence time. The decoherence time is the shortest tinfgctive random magnetic field on the electrons. Very recent
for any process to permanently erase the phase informatiogalculations using semiclassical averaging technitfuels-
in the wave function. This may mean the phase for a singléained a very short relaxation tim&,~1 ns for GaAs-
spin, but it also means that the relative phases of the waveased dot systems in a strong field. This represents the decay
functions of different spins must also be preserved, so thagf the transverse magnetization of an ensemble of dots. This
processes that cause mutual decoherence must also be takem dephasing time, butot a decoherence time. The elec-
into account. The actual decoherence time is the minimum ofrons spins precess in what is effectively the frozen field of
all of these times. A spin relaxation time in excess of 1 ms ighe nuclei. This field is spatially random, and the differential
a necessary, not a sufficient, condition for the viability of aprecession of the electron spins leads to the magnetization
solid-state electron-spin QC proposal. decay. However, this is not an irreversible loss of the phase

A QC must have precise input as well as an accuraténformation of the collective wave function. Spin echo ex-
algorithm. Preparation of the spin state is often proposed tperiments are very beautiful demonstrations of precisely this
be done by a thermalization of the spin system at a lowpoint. This “inhomogeneous broadening” presents chal-
temperature. The time to do this actually setsupperlimit  |enges for the calibration and operation of quantum comput-
on the relaxation time of whatever processes thermalize thers, but does not destroy coherence.
spins to the lattice. A limit of perhaps 1-10 s is a reasonable Finally, in any implementation based on electron-spin qu-
requirement. bits, there will certainly exist small interactions between the

This paper focuses o, the time for relaxation of the spins themselves. The dipole-dipole interaction, for one, can-
longitudinal component of the magnetization, by spin-not be avoided, and there may be indirect spin-spin interac-
phonon interactions. These processes cause real spin-fliipns mediated by the gates. A recent paper suggests that
transitions. They occur at random times and thus indubitablyhese interactions set the fundamental time s@glefor Si
cause decoherence. In addition to these processes characigiantum dot implementations of Q"é;jrhese interactions do
ized fully by T,, there are processes which introduce randonproduce experimental broadening of ESR lines in experi-
phase changes in the spin wavefunctions. To characterize alients on bulk systems, and this might be taken as decoher-
such processes by a single “dephasing tifig"will usually  ence. In our view, however, these interactions do not destroy
not be sufficient for understanding the operation of a multithe coherence of a state. The system is a set of all the qubits.
qubit systent? Difficulties of definition arise, and care must During the course of a quantum algorithm they are collec-
be taken to specify which phase is involved and to whatively in a pure statein principle). Any decoherence that
extent it is randomized. For a single spin system there is ndestroys the purity of the state comes from averaging over
ambiguity. The 22 density matrixp;; for the qubit with  the unknown states of the environment. The broadening that
cylindrical symmetry involves only two independent param-comes from dipole-dipole interactions comes, in NMR and
eterspii—poy, andp,. The time dependence @fi;—p,,  ESR calculations, from averaging over the states of the sys-
after a system preparation is exponential with a decay cortem itself, which is not an appropriate method for calculating
stantT,, and represents the return of the longitudinal com-decoherence. The effect of qubit-qubit interactions that can-
ponent of the magnetization to its equilibrium value. Thenot be turned off is to complicate the quantum algorithm. A
decay is due to inelastic transitions of the type calculated imuantum algorithm is a unitary transformation that must al-
this paper.p;,, on the other hand, is nonzero only if the ways include the effect of the system Hamiltoniarcluding
preparation of the spin state has a transverse componemtipole-dipole interactionsin addition to external operations.
S(t=0)#0. The decay of this quantity represents the irre-In every case except for very simple ones, this algorithm
versible conversion of this state to an incoherent mixure omust first be computed, presumably with the help of a clas-
“up” and “down” states. Again, this is genuine decoherence sical computer. This step in QC may be termed “quantum
of the spin state, since the phase information cannot be recompilation.” The issue that qubit-qubit interactions raise is
covered. The time dependence mf when the spin is in a not one of decoherence, but rather whether the determination
strong field was calculated by Mozyrsky al® using a Mar-  of the algorithm, the complation step, becomes prohibitively
kovian approximate master equation. They found that thelifficult. This could happen for two reasons. One is that the
time scale of the decay due to spin-phonon coupling is verynteractions are so poorly known that they cannot be cor-
short, of the order of the time for a phonon to cross therected for. It seems likely that quantum error correction can
electron’s wave function, which is about 1¥ s. But the resolve this difficulty. A second and more interesting possi-
decay is incomplete, with,, retaining all but 108 of its  bility is that the interactions convert the computation of the
original value. Their calculation was for Si:P, but a very algorithm itself into a problem that grows exponentially with
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the size of the system. We regard this as an open questiomith any excited states. To the extent that the scale of varia-

and a deep one, that combines many-body theory with algajon of V(r) is much longer than the atomic spacing there
rithm design and error correction. We note that in NMR gre six nearly degenerate ground states. This is referred to as

implementations the interaction between the qultS also calthe “Va”ey degeneracy_" The wavefunctions can be written
not be turned off, but it can be canceled by refocusthg. 547
In this paper, our aim is to evaluate the importance of

spin-phonon coupling as a source of decoherence in quantum 6 .
dot qubits. Fundamentally, the issue is whether the long re- o(n)=2, alF(r) (). 1)
laxation timesT, observed at low temperatures in bulk Si:P =1
carry over to SiGe dots proposed for QC. In Sec. Il we in- : :
trodﬁce the structures thrft ch)e are interested in. In Sec. IlI thgere ¢j 1s @ Bloch function of the form
physics of the spin-phonon relaxation mechanism is de- i
scribed qualitatively. In Sec. IV calculations and results for $i(r)=u;(rjeir, @

ure Si systems are given as a function of the critical design - . - - - ~ ~
gnd operzting paramtgaters. In Sec. V are found the correpog&\fhe[e kj are the sixA minima {+ kOX',_ KoX, Koy, ~ Koy,
ing results for structures containing Ge. Section VI is thet Koz —koz} (we shall always use this orderingndu;(r)
conclusion. are periodic functions with the same periodicity as the crystal

potentiaIVp(F). TheF., are envelope functions that satisfy
the Schrdinger-like equation
Il. STRAINED SILICON QUANTUM WELL

2 2
Si-Ge heterostructures are utilized widely in the digital — | - — — J J
electronics industry, and presently have the shortest switch-
ing times of any device. One reason for their success lies in ) -
the ability to engineer structures of near perfect purity, with =(E-EL)F4(r), ()
control over thicknesses and interfaces that approaches . . ] o
atomic precision—a technological tour de force. An equallyand are independently normalized to unity, Slm"a[ to wave
key achievement has been the harnessing of strain as a tdoinctions. Analogous equations can be given for theand
to control band offsets in heterostructure devices. This papery minima. We see that-,= F_«.Fy=F_,, and F,
presents calculations of spin relaxation for real SiGe struc=F_,, so only three independent envelope functions must
tures such as those proposed by Vrijenal® and Friesen pe computedm, andm, are the longitudinal and transverse
et al? Accordingly, we have calculated the electron waveeffective masses associated with the anisotropic conductions

functions in quantum wells, which is needed as input forpgng vaIIeysEﬁf) is theA conduction-band edge kt. The

these calculations. Details of these calculations were pre- ... . .

. . . . splitting of the degeneracy comes from corrections to this

sented in Ref. 9, and will not be repeated here. In this section . S ) :

. . envelope-function approximation. Different choices of the

we only describe those aspects of the calculations that are ctantse) determine the six states. Their values will be
germane to spin relaxation. n ! X : I vajues wi

Quantum wells are constructed by sandwiching a ver)}j_iSCUSSEd in Sec. lIl. '_I'his fqrmalism is a good approxima-
thin layer of one material between two others. Electrons cano” for both dot and impurity bound states, as the valley

be confined in the quantum well layer when the conduction—Splltlngs are chh smaller than_ th_e energy scale; in&aq.
Germanium is completely miscible in Si, forming a ran-

band offsets produce a potential well. The key to this tech- . . L
P P y om alloy. For a variable Ge contertSi;_,Gg, exhibits

nology is therefore to understand the band structure of th i . .
materials properties that vary gradually over the composition

various layers. In this section we will consider a particular The allov lati foll i .
class of wells formed of pure Si, sandwiched between barrief2"9€: The alloy lattice constaa(x) follows a linear inter-

layers of SiGe. We will find that this is optimal from the po!atlon between pure Si and Ge, known as V%Jard's law,
standpoint of spin coherence. Metallic gates or impuritiegIUite accurately for aik: ao(x) =(1—x)as;+xag.." Elec-
create zero-dimensional bound states that define a quantuffPnic Properties show an abrupt change in behavior rear
dot. We first review briefly effective mass theory for dots in =0-85, where the Si-lik&\ minima cross over to fourfold-

pure, unstrained Si, then unstrained SiGe, and finally strained€generate, Ge-like, minima. In this work we focus on the
Si. rangex=0.5, which is strictly Si like, though we will have

some remarks below on Ge-rich structures. Throughout this
range, properties such as effective mass and the dielectric
crystal these minima are six-fold degenerate, the valleys beconstant vary only slightly from pure Si values. For our cal-

. . > culations, the most important parameter is the conduction
ing equivalent. In the dot the electron feels a potenfiglr) edgeE®)(x), which remains six fold degenerate in the
in addition to the atomic potential, which lifts the degen- rangex=<0.5. The theory of the variation &) with x is

eracy, though the splittings are not large. The spatial variaz . germane to the present work, and we simply quote the

tion of V4(r) is on length scales generally much longer thanempirical result, linear i, which is consistent with Ref. 18:
the lattice spacing. For the moment, we shall assume that the

electron is in the ground state ¥,(r) and ignore mixing AE® (x)=E®)(x)—E®)(0)=0.2%(eV). (4

+ V(1) |Fy(r)

+ —_
ax?  ay?

In pure Si, theA conduction band minima occur near the
symmetry pointsX, in the directions{001}. In a perfect Si
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[We note, however, that Ref. 19 suggested a slope for TABLE I|. Materials parameters used in this work.
E()(x) of opposite sign. The relatively weak variations of

the effective mass and the dielectric constant will be ignoredarameter Value Ref. No.
here.
. . . . . i 5.43 A 19
We consider thin Si wells in which the Si layer grows Bsi
- : ) Age 5.66 A 19
pseudomorphically. The in-plane lattice constapmust be 1675 19

the same for all layers, causing a tetragonal distortion in the

strained laygs). Here we consider the case of strained Si ﬁlgA) 902'250\/ 12
grown on the(001) surface of relaxed $i,Geg,. The in- ~u 9 €
N =® —-10.7 eV 21
plane Si lattice constant depends>oas —d
3)(x)=(1—x)ag+Xage- 5

. . . o AE®D=—-086x and AE®P=-0.16x. (10
Sinceags>ag;, the Siis under tensile strain in the plane.

Hence the out-of-plane Si lattice constant is reduced ac-

cording to continuum elastic theory, The corresponding shift in the relgxed barrier layers, due to
the presence of Ge, was given in Eg). Together, these
C12a)(X)—asg; results describe the conduction band offsets for the quantum

a, (x)=ag; 1_2011 , (6)  well that are used in our simulations.

asi We now apply our results to two specific quantum well
wherec;; andc,, are elastic constants for pure Si. designs of interest for quantum computing. Design 1, shown
Strain produces shifts of tha band proportional to the in the inset of Fig. 1, is a version of that proposed by Vrijen
strain variables et al.® in which electrons are trapped on donor igosually
P), implanted in a semiconductor matrix. In that work, the
a(x) —ag; a, (X)—ag; quantum well is split into Ge- and Si-rich regions to facilitate
g(X)=——F——— and &, (x)= T ag (7)  single qubit operations. For simplicity, we consider here a

uniform quantum well, formed of pure Si, with a single dop-
with proportionality constants called the dilational andant ion located at the center of the well. In such a device,

uniaxial deformation potentialﬁff) andEﬁA) , respectively.  single qubit operations can be accomplished using a coded

A : 2 ; i 9
Because of the anisotropic nature of the strain, the awo dubit sgher_né. Design 2, proposed by Friesest al.” is

- . . ~ AL shown in Fig. 2. The confinement potential for the electrons
minima are shifted down relative to theand y minima, is much softer than in design 1. Electrons are trapped verti-
resulting in a splitting of theA conduction band. The net an - bp

i - : . . cally by the quantum well, and laterally by the electrostatic
shifts with respect to the unstrained Sband are given b potential arising from lithographically patterned, metallic

top-gates. Additionally, the quantum dot is tunnel-coupled to
[2e)(X)+&, (X)] a degenerate doped back gate. The dimensions for both de-
signs are given in the figures.

AEAD(x)=

=@, Tz
~d 3'_'U

2H(A)
3B le () —e)(X)], (8) 10
=
A —), Lo 8ra, 11
AE@D(x)=| 2™+ §:<u> [2e)(x)+&, ()]
1 ~ B 10.75
— My
—3EV e (0 —g(0)]. (9) T -
N
- 4 0.5
The first terms in Egs(8) and (9) are hydrostatic strain
terms, which lower the conduction edge compared to un- > lo.os

strained Si. The second terms in E¢3.and(9) produce the
splitting, associated with uniaxial strain. To perform our cal-

culations, we use the materials parameters given in Table . %07 o0z 03 04 05
However we note that the deformation potentials, particu- G
larly E((,A), are very difficult to measure experimentally. e content, x

Considerable disagreement exists in the literature as to the 5 1 Probabilityf2 for finding a donor-bound electron at a Ge

value and even the sign agA) 2! The value given in Table site, as a function of Ge contert The simulated structure, design

| was reportedbut not endorsedin Ref. 21, and provides 1, is shown in the inset. A strained Si quantum well of thickness 6
energy- band variations in general agreement with Refs. 18m is sandwiched between relaxed, SiGe, barrier regions of
and 19. We arrive at the following strain-induced shifts of thethickness 20 nm. The electron is bound to'da Ron embedded in
conduction band edge for pure Si: the center of the quantum well.
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4.5 ; : Si,_,Ge, barriers. Forx>0.02, f? decreases with for two

; reasons. First, as increases, the conduction-band offset at
the quantum well also increases, allowing less of the wave
function to penetrate the barrier. Second, the spatial extent

the electron in thez direction is greater fof, thanF,,
because of the anisotropic effective mass.

However, less of, is mixed into the wave function for
large x, sincea, becomes very small. For=0.02f2 drops
quickly to zero, due to the absence of Ge in the barriers. In
the actual design of Vrijert al.? there is Ge in the active
layer. To give an idea of the effect of this, we include an
equivalent value of? for such a structure.

1 TT— ] Figure 2 shows results of the& calculation for design 2,
Oq i j as a function of the quantum well thicknegs,To perform
0 15 20 25 the calculations, we have considered a fixed Ge concentra-
Well thickness, z (nm) tion, x=0.05, and taken the limit of large strain, so that

ai™=a{"V=0 andaf ?=1/y2 for the ground state. As
FIG. 2. Probabilityf? for finding an electrostatically bound increases, less of the wave function penetrates the barrier
electron at a Ge site, as a function of quantum-well thickaeSse  regions, causing? to decrease.
inset shows the heterostructure layers for design 2, beginning at
bottom: a thick, doped semiconductor back gate, a relaxgd Sg,
barrier layer, a strained Si quantum well, a thick, relaxed Jbe, II. SPIN RELAXATION DUE TO COUPLING
barrier layer, and lithographically patterned metallic top gates. The TO PHONONS
distance between back and top gates is held fixed at 40 nm, while
the quantum well, of variable thicknegss centered 15 nm above In this section we give the method for calculatifig, the
the back gate. spin-flip time of a spin qubit in the ground orbital state due
to emission or absorption of a phonon, following the logic
The wave function of the bound electron is computed inused by HasegaW4 and Roth! for bulk Si. Consider a
the envelope-function formalisrfEq. (3)]. Couplings be- single impurity with a unit positive charge, such as a phos-
tween the different valleys are introduced through the perturphorus atom, at the origin. In the absence of central cell
bation theory described in Sec. IV. This procedure providegorrections, there is a 12-fold-degenerate ground state, in-
the specific values o&(g') for the ground state, which we use cluding spin. This valley degeneracy of the ground state is
in our calculations. reduced to 2 by these corrections, and the splitting between
The abrupt conduction-band offsets are handled by matctthe two fold spin-degenerate ground state and the higher

ing the ground state wave functi@]g(F) and&Zd)g(F) atthe States is of orderA.E~. 10 meV. We shall discuss the de-
interfaces(Remember that we have equated effective masseéiled linear combinationsd( values of the states below, as
on both sides of the interfacéDue to the linear indepen- the coefficients giving the various valley amplitudes play an
dence of the Bloch functions, the boundary conditions do notmportant role in the calculation of matrix elements. These
cause a mixing of the envelope functions. Solutions of Eq12 States may all be thought of as hydrogerscstates. The
(3) and the analogous, equation are obtained, using com- SPlitting of 1s and % is about 30 meV, larger than the 10-
mercial three-dimensional finite-element software. meV valley splittings. Let us now split the twofold degener-

As will be seen in Sec. V, the key quantity for the com- ate ground state by applying a dc magnetic field in zhe
putation of T, is f2, which describes the probability for the direction. The transition rates between these states are de-
bound electron to be on a Ge atom. Ge is associated witAoted byW;, andW ;. The relaxation timd', is defined by
reduced coherence times, by virtue of its large spin-orbil/T1=W; +W;.

coupling. Referring to Eq(1), one deduces that this prob- ~ The transitions are caused by phonons, but there are im-
ability may be expressed as portant approximate symmetries that suppress these transi-

tions. These are the followin@l) Spin rotation symmetry,
(02 52 (22 52 meaning that the electron spin cannot be flipped by a pho-
4(ay’) fﬂ d°rF(r)+2(ag’) JQ d>rFz(r) |, non; this symmetry is broken by spin-orbit couplit§0Q
b b (11) (2) Time-reversal symmetry, meaning that one state cannot
be changed into its time-reversed partner by emission or ab-
where(},, is the volume outside the quantum well, if the well sorption of a phonon; this symmetry is broken by the exter-
is pure Si. The subscrigg refers to the ground state. The nal magnetic field3) Point-group symmetries; these are par-
term in the square brackets reflects the probability of findingially broken when strain is applied.
the bound electron in a barrier region, whitegives the The spin rotation symmetry would rule out phonon-
probability that the electron is on a Ge site. mediated transitions between the two states entirely if there
Figure 1 shows the results of our calculations férin  were no SOC. This means that the effects of SOC on the
design 1, as a function of the Ge concentratioin the  wave functions, even though these effects are small in rela-

f2=x
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tively low-Z Si, must be taken into account. When we refer12-fold degeneracy in the effective-mass approximation is
to a state ag or |, these symbols must be taken to refer tobroken by central-cell corrections in the impurity case and
the majority-spin content of the state, not to a pure spin statesmaller corrections in the quantum dot.

Transition rates are roughly proportional tg-{2)? [more There is also the Zeeman Hamiltonian of the external field
precisely @, —g,)% whereg,(g,) is the transverséongitu-  Hz=pugB-(L+2S). In the field®(r) and®, (r) are no
dinal) g factor, see below for definitions longer degenerate. Note that the energy splitting may depend

The time-reversal symmetry implies that transitions can-on the direction oB.

not take place directly between Kramers-degenerate states Finally, we have the electron-phonon coupling Hamil-
even in the presence of spin-orbit coupling. The directtonian’.,. A phonon represents a time-dependent perturba-
phonon-mediated transitions between the two states of intetion. This will create transitions whose rate is given by
est to us are strongly suppressed by this approximate synthe Fermi golden rule. We are interested in the trans-
metry. It is broken only by the external field. The fastest itions  petween CDgT(F) and q’gL(F)- However,
processes then involve a virtual excitation to hlgher-energy< P
states that are mixed into the ground staté-HbyHence 1T,
involves a factor igH/AE)?. There is an additional factor
of H? from the phonon density of states, giving an overall

g1 (D[ Hep @4 ())=0 in the absence of the external
field. Thus we need to calculate in next order in perturbation
theory using an effective Hamiltonian

rate 1T,~H* in the limit of smallH. 1 - -
The point group symmetry is reduced from cubic to te- H'=2 £ g [ Hz Prs(r)(Prs(r)| Hep]
tragonal under strain. This has complex effects that we will S
explain below. _ . [ Hepl (NN Prs(N|H1}- (12
Before giving actual calculations, we summarize those ,
differences between the electrons in donor impurity state§l€rer runs over the excited states=2, ... ,6.s=1,]|.

and in an artificial dot that affedt;. The most obvious is the ~ 1he relaxation time is given by T{=W; ,+ W, , where
single-particle potential that binds the electron. The gatdV ;= (2m/%) X S| (Pg; (r)|H'|Dg (1) )[?6(Eg —Egy
potential is much smoother than the hydrogenic potential of-wg)[1+n(wg)] is the rate for transitions from
the impurity. This implies that the corrections to the the higher-energy(pseudo-spin downstate to the lower-
effective-mass approximation are much weaker, Agdwill energy (pseudo-spin-up state and W, =(27/
be much reduced. It is difficult to compute the energy Sp“t-ﬁ)E&)\|<(Dgl(F)lH,l(b_gj(F)Hz&(Egl_EgT_ﬁwﬁ)\)n(wﬁ)\)
tings precisely, but considerations based on the method a§ the rate for transitions from the lower-ener@yseudo-
Sham and Nakayarfia give splittings in the range spin-up state to the higher-energpseudo-spin-downstate

~0.05-0.1 meV in the structure of Friesehal® This in- where the sum is over phonon mocfps with energieswg, .
creases the relaxation ratgn fact, a naive estimate of the A thermodynamic average over the lattice states hqas been
enhancement is a factor of 40@n the other hand, the struc- taken. It yields the Bose occupation factar&w;,) for the
tures we consider have strong lattice strain. This partly ”ﬁsphonons. a
the valley degeneracy and also reduces the matrix elements, Tha matrix elements OF(' are computed as follows. The

which decreases the rate. Another aspect of some of the pras e ctation value of the external fightl, can be written as
posed designs is the presence of Ge with its much stronger

SOC. This will act to decrease the spin relaxation time. 6 6

<(Dns(r)|HZ|q)n’s’(r)>:i21 ag)jgl aE]Jr)MBB'g(i)' Os,s é\ii
IV. PURE SI QUANTUM DOTS

6
We first consider the case of pure Si under uniaxial strain. ZMsé' 2 aﬂ)af]i)g(i) '53,5'
The ingredients of the calculation are as follows. i=1
From Sec. Il we have the solutions to the Sclinger - -
= ugB- Dnn"o's,s’ (13

equation] Ho+ Vg(r) 1@ no(r) = E,@o(r). Ho is the unper- o . '
turbed crystal Hamiltonian without SOC and it has a fulland the tensog(') is the effectiveg factor at theith valley.
space group symmetrwg(F) is the gate and/or impurity This equation defines the tensby,,, that characterizes the
potential. coupling of the various states by the external field. The prin-

To calculateT,, we must also include SOC, which we cipal axes of theg tensor are the same as that of the effective

treat as a perturbatiori—:lsoc=)\SiEF§I:§-§§. The resulting mass tensor at thieh valley. It has the form

statesP ,(r) are twofold degenerate because of time-reversal g 0 O g 0 O
symmetry. Let us denote these state®as(r) and®, (r). g#0=0 g O, g&=v=[0 g 0],
They are not eigenstates of spin, so the arrows denote a 0 0 0 0o
pseudospin. We may define the pseudo-up state as that which 9t 9t
evolves from the spin-up state as spin-orbit coupling is g9 0 O

turned on adiabatically, and similarly for the pseudo-down (+2)

state. Because of valley and pseudospin degeneracy, there are g"?={ 0 g 0]. (14
two ground state® (r) and ten excited stateB,s(r). The 0 0 g
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There are only two independent constants. N 1_
A simple example of the diagonal part of tBetensor is <‘I>gs(f)||‘|(q @ge(1)g=| Eq+ 35u
that for the ground state of an impurity in thmstrained
lattice when the central cell corrections are included. Then XA(q)(bq)\+b £ )t s
we havea{’=1/\/6, andDgyg is proportional to the unit ma- d
trix, (21)
> > 3 > 1 . s -
(Pgo(N[HPgs (1)) =ggusB- o5y, 19 (@ NHE|Drsr (M)5=5 EADLI6,(0) - Dy -GG,
with . .
5 1 _le:(Q)'Dgr'qbaA]gs,s' '
99=39F 39 (16) (22
where
The matrix elements between ground and excited states
have the form A(i)(a)zz F(i)*(EJra)F(i)(g):j d3rF2(r)e“i'F.
k
<q)gs(r)|HZ|q)rs’(r)>:g,1ufBB'Dgr'o'ss’ ) (17) (23
with Thus the electron-phonon interaction involves a form factor

for the bound states. Sinc& is normalized, we have
AD(q)~1 when the wavelength of the phonon is much

=3(9— 90, (18 longer than the spatial exteaf* of the bound stateqa*
<1. The calculations of Sec. Il indicate that this is the case.
and the tensob; is defined by A)(q) is also independent df).

. In the golden rule calculation, the energy denoninator
0 OO0 (EQ,—E,)*2 will suppress contributions from the excited
Dgr:3i=21 ag’ay KUK (19 states ofV,. Thus we will keep only states that are split off
from the ground state by corrections to the effective mass
wherek® is the “local” anisotropy axis. If the originaly approximation. This approach works very well in Si:P and
were isotropic, therg’ =0 and there would be no coupling Should be even better for the quantum dot.
between different states and no spin relaxation. This produces the golden-rule transition rate
If the lattice is strained, then the coefficients become

2
strain-dependent and _thg gener.al gxpressioerdinom Eq. anzﬁ_w §Eug',u3 E AZ(a) 8(Eqi—Eg—fhwg)
(13) must be used. Uniaxial strain lifts the degeneracy of the

valleys. We include this effect in the Hamiltonian and it de-

termines the proper combinations of thf) defined in Eq. X(ag,ak) 2 B-Dy;- 0,8,(q) - Dy:- A0ss|’

(1). These then feed intDy, . As a function of strain'? for P Eq—E |

the ground state cross over from the completely symmetric (24)
combination ag)—ll\/g to the combinationa$ ™=

=0 a(g) 1/y/2 in the limit of large strairf. We approximate the phonon dispersionegg =v,q. Set-

The phonons involved are just the acoustic ones, one lorting A=1, performing the integral over the magmtudecpf
gitudinal and two transverse—these are the only ones witland repeating the calculation fa¥; , we obtain a total spin
low enough energy to play a role in relaxing the spins. Thaelaxation time
matrix elements of the electron-phonon interaction are only
nonzero within one valley and for a single phonon mode they 1

=W, +W
are conventionally parametrized as Ts Tl 1

(i) (q)\) @i = 1 ’ BE 2
<\I,cks(r)|H |\Pck’s(r)> = 9 HeB=u [2n(g,uBB)+1]gg,u§B3
8772pﬁ4 3

=ibgen(q): (Eq1+EkVkD).q+H.c. (20

R 2 T
near thath valley, whereg=k—k’ ande, is the polarization X E dqs’f sing'dé’
. - =1
vector.bg, destroys a phonon with wave vectprand polar- UX 0
ization . Once again, we see that the interaction can be
characterized by just two parameters, in this caseand
.., as already defined in E¢r). Performing the integration

over the envelope function at wave vecﬁanow gives (25

A(CI) ?

gr UH] —grq(el o' )}

035314-7



CHARLES TAHAN, MARK FRIESEN, AND ROBERT JOYNT PHYSICAL REVIEW B56, 035314 (2002

40 —~ 1073 N
5 .
20 3 [110]
- = 10°
g o g
[l 7
E -20 e 10
(= S
s 40 ® 10°
2 *
w g % COMPRESSION | TENSION
o 10-11
-80 -3 -2 -1 0 05
COMPRESSION | TENSION Valley strain parameter, s
-3 -2 -1 0 05

FIG. 4. Relaxation rates of a P impurity bound electrofli@Q]
uniaxially strained silicon vs strain paramesdor a temperature of
3 K and a magnetic fielt = H(cosécos¢,cosé,sin6) of 1 T in the
[111] (6= ¢=w/4) and[110] (6= w/4,/=0) directions respec-
—3 corresponds to the strain caused in the pure silicon

Valley strain parameter, s

FIG. 3. Energy of the six 4-like donor levels of an electron
bound by aP impurity in silicon (with respect to the energy center
of gravity) vs the strain parametarwith an uniaxial stress applied tvely. s= .
in the[100] direction. (It is important to note for clarity that what layer by a S ¢Ge, » sublayer.
we call compression relative to tH&00] or growth direction is ) ) ) o o
equivalent to tension in the plane of the quantum well. This labeldence becomes highly anisotropic, as seen in Fig. 5. This is
convention differs across fieldsFor references= —3 corresponds due to the elimination of all but the-z valleys from the
to the compressivés negative strain caused in a pure silicon layer problem at high strain. We note that the limiting vallig
by a SjsGey, sublayer. The energies are expressed in eV and the—o when the external field is along a crystal axis is cut off
numbers in parenthesis indicate the degeneracy of the level. The Ay intervalley scattering effects not included in the present
(ground state, solid lineand T, level wave functions are mixed by calculation®
strain (causing valley population intermixingand the relaxation The change in the confining potential reduces the correc-
rate is proportional to IVE. Thus, with all else equal, an increase in tions to the effective-mass approximation, as discussed in
strain causes the relaxation rate to decrease. For a detailed analysigc. |1l which in turn reduces the energy denominators, lead-
see Wilson and FehéRef 4), wheres here is theirs’ times 100, or |ng to a decrease |'rﬁ1 In Friesenet al’s Structure, we have
Koiller et al. (Ref. 24 whose notation was=100(6xyAc/Z).- estimated the splittting&, — E, using the method of Sham

and Nakayam&® and they range from 0.05 to 0.1 meV, de-

Here (9, ¢) are the polar axes of the direction®fmeasured
from the[ 100] direction of the crystalp is the mass density.
This is our basic result, in a form very similar to that given
by Hasegawa’

In Fig. 3 the effect of strain on the lowest energy levels is
shown. Here the zero-strain splittings are those of a P impu-
rity. A similar plot was given in Ref. 4, but at that time the
correct zero-strain splittings were not known. In the dot, the
energy splittings for the unstrained case would be two to
three orders of magnitude smallesee below for a discus-
sion).

In Fig. 4, we show the effect of strain on the relaxation
time of an electron in a P impurity potential. There are two
effects: the overall increase of the energy denominators and
the change of the ground state to a less symmetric valley
weighting. This leads to a nonmonotonic dependencé,of
on strain, but in the region of interest, the effect of strain is to
greatly increasdl;, since most proposed structures have
< —1. At large strain, only one energy denominator remains
small, that between the ground state, symmetric intie
valleys, and the first excited state, antisymmetric in the
valleys. The overlap matri® is very small between these
two state. This reduction of the matrix element is the domi-
nant effect. FIG. 5. Dependence of the relaxation rate on the magnetic-field

Also of interest is the dependence Bf on the angle of  direction, withH =H(cosf cos,cosé,sin6), for (a) unstrained Si
the external field, since this may serve as a diagnostic tool iand (b) compressively strained Scorresponding to a $iGe,»
experiments to verify that the relaxation process is really duaublayey. The magnetic field is set at 1 T, and the temperature
to spin-phonon coupling. As a function of strain, this depen-is 3 K.

Relaxation rate (1/sec)

Relaxation rate (1/sec)
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FIG. 6. Relaxation rate of a bound electron in silicon. The solid e 10 (b)
line is for a fixed[100] uniaxial strains= — 3, corresponding to the 2 joM
strain caused in the pure silicon layer by g e, , sublayer. The %
dashed line is the unstrained case. The rate is plotted for varying the ® 1071
intervalley coupling constam.. A. corresponds to 1/6th of the E A9
it ; ; 10
energy splitting between the singl@round stateand triplet(next 2
excited statpvalley energiesn unstrained SiAs a result, it con- [ 1023
trols the mixing between the-x and =y valley wave functions %
o

with the =z valley wave functions. The magnetic field issetat 1 T

along the[111] direction, and the temperature is 3 K. 0 20 40 60 80 100

Magnetic field (kGauss)

pendinglon the gate \{oltages that prqduce the potgntial. This FIG. 7. Relaxation rates of a P impurity bound electrofli@Q]
may be incorporated into the calculation of thig by intro- uniaxially strained silicon §=—3, corresponding to the strain
ducing a variable coupling\. that mixes thexx and *vy caused in the pure silicon layer by a,$5e,, sublayey vs (a) a
valley wave functions with thetz valley wave functions. temperature with the magnetic field set at 1 T dbpa magnetic-
For a precise definition ol\., see Ref. 4. Approximately, field strength with the temperature set at 3 K.
however,Ac~0.2(E,—Eg)<10‘4 eV. The results of the

calculations are shown in Fig. 6. The graphs show the abso- HoW is= Eni¥ i (26)
lutely crucial role that strain plays in the determinationmef

Because of the small energy denominators in the dot, the ratghere

is extremely fast at smalA, for the unstrained case: T/

N 2 3
~A;2. _1 S e O (For
We also point out that in stuctures whéfgappears to be W= N. 121 lzl explik rJ|)mZ:0 Am(NK) Gue(r —r31),
too long for efficient preparation of the spifes discussed in (27)

Sec. ) the deficiency can be made up by increasing the tem- . . ) .
peratureT. As seen in Fig. 7T, decreases very rapidly s whereN; is the numper of unit cellg_,labels the unit celld,

is increased. Actually, this calculation even underestimatel@PelS the two positions in the unit cefiy labels the four
the decrease, since multiphonon processes begin to contriBloMIC Statesgy, are the atomic orbitals, and the coeffi-
ute at about 3 K. However, it must be borne in mind that thecientsa;,(nk) give the proper linear combination of atomic
temperature must be small enough that the initial state igrbitals for the state at momentuknand bandn. The nor-
essentially purdall spins up, for examp)eA more practical malization condition is

method of decreasin@; would be to increase the magnetic
fele 2> Jaim(nk)2=1. (28)

V. STRUCTURES CONTAINING GE

In the VCA, thea,,(nk) are the same for the Si and Ge

The effect of alloying with Ge is to increase the SOC andsites. The SOC Hamiltonian for the alloy is written as

hence to increasfy — 2|. First-principles calculations of Ge
impurities in Si have shown that there is little effect on the
states near the bottom of the conduction band, though this is Hsoc= > Mala Sq, (29
not r;gcessarily the case for higher energy states in the R

band<> This is in accord with the isoelectronic character of . = .
the atoms in the alloy. It is then reasonable to employ thé’vhere}‘R is the SOC strength for %Ge) whenR is a Si(Ge)

Virtua'_crysta' approximation(VCA)_ The approximation site. The energy shift of an electron in the external f|é|d

should be quantitatively accurate for smaay <10%) = (Bx.By.B;) can be written as

concentrations of Ge, but may be taken as a good qualitative

guide also to higher concentrations. The Bloch functions in AE, ;(B)=— (nk)B;s (30)
the absence of SOC satisfy il MBi:;y-z 9i(nkB
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unstrained strained By contrast, if we cross the critical point around
—~ 0.08 5x10°1° =0.85 where the conduction band minima switch positions,
Q . . N
e 0 then there is a very rapid decreaseTgf This is due to the
= 006 10 much greateg-factor anisotropy of th¢111] minima: g’ ~
£ 0.04 3x107"° —0.4, (as compared tg’ <0.001 in SJ. The results for the
s 251010 Ge-rich region are much simpler than in the Si-rich region.
B o002 o0 Uniaxial strain does not affect the relative valley energies or
3 1x10 the matrix elements parametrized By The only effect of
& 0 0 going to the dot from the impurity is to reduce corrections to
0 0.2 0.4 0.6 0.8 the effective mass approximation, which will strongly de-
Ge content, x crease the relaxation time. Indeed, if we take the impurity

result for Ge:P from Ref. 10, which §;,=2.3x10 % s, and
estimate the decreaseAE as about a factor of 100, then we
obtainT;~10 ®to 107 s, which is vastly shorter than that

tical axis, corresponding to a SiGe, , sublayey pure silicon. The of Si-rich struptures. The physics i; th_e same as that which
magnetic field is set at 1 T along the11] direction, and the tem- JOVverns the divergence of the rate in Fig. 6 for the unstrained

perature is 3 K. Here we assume that the addition of germaniur§@s€,namely the much smaller energy denominators.
does not affect the strain within the bulk and only acts to increase 10 make contact with Sec. Il note that if there is Ge in the
the g factor and spin-orbit coupling. We expect this approximationbarrier regions, as is the case in most SiGe designs, then we
to hold for small concentrations of germanium and to break dowrwill have an envelope function that weights Si and Ge dif-
with increasing concentration as the conduction-band valleyferently, thenx in the VCA formulas must be replaced by
minima switch fromX-type silicon toL-type germanium. f2=3g|fg|?, where|fg|? is the amplitude that the electron is
on a Ge site and the sum runs only over Ge sites, as de-
where scribed in Sec. Il. This is the product of the Ge concentration
in the layer, times the probability that the electron is on the
layer, summed over layers. Referring to Figs. 1 and 2, we see
> Jam(nk)|? thatf2 is always less than 10 for structures that have pure
n’#n,lmm’ Si active layers and Ge in the barrier layers. The effect pn
is small, so these structures are “phonon safe.”

FIG. 8. Relaxation rate of a P impurity bound electrorj 100]
uniaxially strained silicon vs the concentration of germanium within
unstrainedleft vertical axis and compressively strainddght ver-

gi(nR)ZZ—ZhZ(Z Mg /N
R

X |y (N'K)[2(Eni— En'd)~ Heimm)? (31

and &,y is the completely antisymmetric symbol with VI. CONCLUSION

125~ 1. N o ) Decoherence due to spin relaxation by emission and ab-
Our approximation now consists in regarding the depeng wiion of single phonons does not pose a major obstacle to
dence on the Ge concentration as coming only in the ey, ,antym computation in quantum dot SiGe heterostructures
(ZrAr/N). Hence any component of tigtensor is propor-sing spin qubits, if these qubits are properly designed. This
tional to a weighted average afs; andAg.. In particular,  gpin rejaxation mechanism is the dominant one in the case of
consider the conduction band minimumkat (0,0ko) inthe  electrons in donor bound states, such as in Si:P.
compound Si-,Ge,. Then we havey,(x) —2=[g,(0)—2] In order that this source of decoherence be kept under
X[(1—x)+x(Nge/Nsi) ], whereg,(0) is the value for pure control, however, certain conditions must be satisfied in the
silicon. The numbers, known from atomic physics, aredesign of the structure. Unstrained SiGe alloys generally
Age/Asi=0.295/0.044-6.71, s0g,(x)—2=[g9,(0)—2][(1  have relatively short spin relaxation times due to valley de-
—Xx)+6.71x]. Similarly, we haveg,(x)—2=[g,(0)—2]  generacy. This degeneracy produces a strong spin mixing in
X[(1—x)+6.71], etc. Only the overall scale @fchanges, the Kramers-degenerate ground states of the quantum dot
not the anisotropy in the VCA. once the field is turned on. This in turn increases the
The presence of Ge in the lattice breaks the translatioelectron-phonon matrix element that connects the two states
symmetry, an effect that is neglected in the VCA. Taking thisand decreases the relaxation time. This effect, fundamentally
into account would lead to g factor that is averaged over due to spin-orbit coupling, is stronger in the quantum dot
momentum space rather than one that is evaluated only at thiean in the impurity state. The corrections to effective-mass
Si conduction-band minima. If we take theminimum of  theory, stronger for the impurity potential, tend to lift the
pure Ge as an example, we would expect that the correctiontegeneracy.
to |g—2| would be greater if there is some averaging over The crucial role that strain plays, in Si-rich structures, is
momentum space. Thus a calculation going beyond the VCAo lift the valley degeneracy. In this respect compressive
would give corrections that would redudeg. uniaxial strain is the best, since the residual degeneracy is
We show the results for differing Ge concentrations in thereduced to two valleys. The wave function for the ground
active region of the well in Fig. 8. In the Ge-poor regime state is then symmetric in the valley index, and the first ex-
<0.85, the relaxation rate T{ decreases fairly slowly. Thus cited state, the only one with a small energy denominator, is
designs with a Si-rich well will not suffer from very fast spin antisymmetric in this index. This fact strongly suppresses the
relaxation on the minority Ge sites. spin mixing effect of the external field. Thus a workable
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design should include uniaxial strain that exceeds a criticabf the effective-mass approximation. As we have seen in the
value. This value is small enough that there will be sufficientcontext of the impurity calculations, these effects generally
strain in most practical structures in which the active layer isncrease the spin relaxation time because of reduced degen-
Si rich and sandwiched between relatively Ge-rich layerseracy. On the other hand, localized bound states can form at
The active layer must be thin enough to avoid dislocation-such imperfections. If this results in free-electron spins, it
mediated relaxation. could have seriously negative effects on the relaxation time.

Spin-orbit coupling is stronger in Ge than in Si due to theSimilar effects would result from lattice defects that produce
higher atomic number. This suggests that Si-rich structurelcalized phonon modes.
are to be preferred, and the calculations bear this out. The Finally, it appears that quantum dot designs will need
relaxation time decreases with increasimgn a Si_,Ge,  rather low temperatures in order to operate. The impurity
alloy. In fact, if x increases beyond=0.85, decoherence experiments clearly indicate that multiphonon relaxation in-
becomes very strong, and quantum dots in these Ge-rictrease rapidly with temperatut@with a crossover to this
structures, such as those proposed by Vrieal.? may well  regime at about 3 K. We speculate that this crossover tem-
run into difficulties for this reason. A key point for these perature is pushed up when the effects of strain are included,
structures is that uniaxial stress does not lift the valley debut we have not yet done the requisite calculations.
generacy, since the valleys have moved off the crystal axes.
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