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Decoherence of electron spin qubits in Si-based quantum computers
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Direct phonon spin-lattice relaxation of an electron qubit bound by a donor impurity or quantum dot in SiGe
heterostructures is investigated. The aim is to evaluate the importance of decoherence from this mechanism in
several important solid-state quantum computer designs operating at low temperatures. We calculate the relax-
ation rate 1/T1 as a function of@100# uniaxial strain, temperature, magnetic field, and silicon/germanium
content for Si:P bound electrons and quantum dots. The quantum dot potential is much smoother, leading to
smaller splittings of the valley degeneracies. We have estimated these splittings in order to obtain upper bounds
for the relaxation rate. In general, we find that the relaxation rate is strongly decreased by uniaxial compressive
strain in a SiGe-Si-SiGe quantum well, making this strain an important positive design feature. Ge in high
concentrations~particularly over 85%! increases the rate, making Si-rich materials preferable. We conclude
that SiGe bound electron qubits must meet certain conditions to minimize decoherence but that spin-phonon
relaxation does not rule out the solid-state implementation of error-tolerant quantum computing.

DOI: 10.1103/PhysRevB.66.035314 PACS number~s!: 72.25.Rb, 03.67.Lx, 85.35.Gv
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I. INTRODUCTION

The prospect of quantum computing~QC! has caused
great excitement in condensed-matter physics. If a set of
bits can be maintained in a coherent, controllable many-b
state, certain very difficult computational problems beco
tractable. In particular, successful QC would mean a revo
tion in the areas of cryptography1 and data-base searching2

In addition, it would mean a great advance in general te
nical capabilities, since the control of individual quantu
systems and their interactions would represent a new er
nanotechnology.

However, from a practical point of view, a dilemma pr
sents itself immediately. On the one hand, one wishes
control quantum degrees of freedom using external in
ences, since that is how a quantum algorithm is imp
mented, and to measure them, since that is the output
On the other hand, the system must be isolated from
environment, since random perturbations will destroy
quantum coherence that is the whole advantage of QC.
is the isolation-control dilemma, and it leads to a very rou
figure of meritF for any quantum computer. If we define th
decoherence timet as the time it takes to lose quantu
coherence, and the clock speeds ~roughly the inverse of the
time to run a logic gate!, then the figure of merit isF5st
and a practical machine should satisfyF.104–105 at least.
If the clock speed is limited only by standard electroni
then we may be able to achieves'109 Hz. This would im-
ply that t51 ms is a lower limit for the decoherence tim

The dilemma has not yet been solved, though a numbe
solutions have been proposed. A particularly attractive so
tion is to use spin degrees of freedom as qubits. Nuc
spins interact relatively weakly with their environment b
cause the coupling, proportional to the magnetic momen
small. Yet there has grown up a sophisticated technology
the manipulation of nuclear spins, and some rudiment
computations have been performed.3 Readout is the main
difficulty with this approach, since the field created by
single moment is tiny, and pure states cannot be achieve
the macroscopic samples used.
0163-1829/2002/66~3!/035314~11!/$20.00 66 0353
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Electron spins also interact weakly with the environme
in some circumstances: relaxation times in excess of 103 s
have been measured for donor bound states of phospho
doped silicon~Si:P!.4 The corresponding manipulation tech
nology ~ESR! has also reached a high level of sophisticatio
but the magnetic moment of the electron exceeds that of
nucleus by three orders of magnitude, which presents p
lems of isolation. Readout should be easier than for nuc
since detection of single electron charges is certai
possible,5 and spin-dependent detection is not far out of t
reach of current technology.

Solid-state implementations of QC are particularly attra
tive because of the possibility of using existing compu
technology to scale small numbers of qubits up to the 105 or
so that would be needed for nontrivial computations. T
first paper to propose using the electron spin in a quan
dot subjected to a strong dc magnetic field was that of L
and DiVincenzo.6 Kane7 proposed employing the nuclea
spin in the Si:P system as the qubit. A specific structure c
sisting of silicon-germanium~SiGe! layers was proposed b
Vrijen et al.8 This structure incorporates the idea that theg
factor of an electron can be changed by moving it in a
concentration gradient, allowing individual electron to be a
dressed by the external ac field. A different SiGe struct
has been proposed by Friesenet al.9 This structure is de-
signed so that the electron number on the dots, and the
pling between the dots, can be carefully controlled.

Solid-state implementations must also face the isolati
control dilemma. Decoherence times must exceed the 1
number in the actual physical structures that are needed
the operation of quantum algorithms. In this paper, we
amine whether this can be the case for some of the exis
proposals based on electron-spin qubits. In the process
hope to learn something about modifications to these st
tures that can increaset. We shall focus on low-temperatur
operation, since, as we shall see, this will probably be n
essary in order to obtain sufficiently larget.

We can build on a large body of work, both theoretic
and experimental, from the 1950s and 1960s on ESR
©2002 The American Physical Society14-1
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doped semiconductors. In a series of papers, Feher
co-workers4 investigated the relaxation time for the spin
electrons bound on donor sites in lightly doped Si. At su
ciently low temperatures, the relaxation timeT1 is dominated
by single-phonon emission and absorption. In the presenc
spin-orbit coupling, this can relax the spin, causing decoh
ence. The theory was worked out by Hasegawa10 and Roth.11

It must of course be recognized that this spin-lattic
relaxation time is not necessarily to be identified with t
decoherence time. The decoherence time is the shortest
for any process to permanently erase the phase informa
in the wave function. This may mean the phase for a sin
spin, but it also means that the relative phases of the w
functions of different spins must also be preserved, so
processes that cause mutual decoherence must also be
into account. The actual decoherence time is the minimum
all of these times. A spin relaxation time in excess of 1 ms
a necessary, not a sufficient, condition for the viability o
solid-state electron-spin QC proposal.

A QC must have precise input as well as an accur
algorithm. Preparation of the spin state is often propose
be done by a thermalization of the spin system at a
temperature. The time to do this actually sets anupper limit
on the relaxation time of whatever processes thermalize
spins to the lattice. A limit of perhaps 1–10 s is a reasona
requirement.

This paper focuses onT1, the time for relaxation of the
longitudinal component of the magnetization, by sp
phonon interactions. These processes cause real spin
transitions. They occur at random times and thus indubita
cause decoherence. In addition to these processes char
ized fully by T1, there are processes which introduce rand
phase changes in the spin wavefunctions. To characteriz
such processes by a single ‘‘dephasing time’’T2 will usually
not be sufficient for understanding the operation of a m
qubit system.12 Difficulties of definition arise, and care mus
be taken to specify which phase is involved and to w
extent it is randomized. For a single spin system there is
ambiguity. The 232 density matrixr i j for the qubit with
cylindrical symmetry involves only two independent para
etersr112r22, and r12. The time dependence ofr112r22
after a system preparation is exponential with a decay c
stantT1, and represents the return of the longitudinal co
ponent of the magnetization to its equilibrium value. T
decay is due to inelastic transitions of the type calculated
this paper.r12, on the other hand, is nonzero only if th
preparation of the spin state has a transverse compon
Sx(t50)Þ0. The decay of this quantity represents the ir
versible conversion of this state to an incoherent mixure
‘‘up’’ and ‘‘down’’ states. Again, this is genuine decoheren
of the spin state, since the phase information cannot be
covered. The time dependence ofr12 when the spin is in a
strong field was calculated by Mozyrskyet al.13 using a Mar-
kovian approximate master equation. They found that
time scale of the decay due to spin-phonon coupling is v
short, of the order of the time for a phonon to cross
electron’s wave function, which is about 10210 s. But the
decay is incomplete, withr12 retaining all but 1028 of its
original value. Their calculation was for Si:P, but a ve
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similar result should hold for the dot case. Decoherence
this level is certainly acceptable for quantum computin
These authors also pointed out that the decay of the rem
der of r12 is due to the spin-flip processes computed in t
paper. If T2 is defined as the dominant decay time of t
off-diagonal density matrix element, thenT15T2 for spin-
phonon processes.

A quite different source of decoherence is the hyperfi
coupling to nuclear spins. The nuclear spins produce an
fective random magnetic field on the electrons. Very rec
calculations using semiclassical averaging techniques14 ob-
tained a very short relaxation timeTD'1 ns for GaAs-
based dot systems in a strong field. This represents the d
of the transverse magnetization of an ensemble of dots. T
is a dephasing time, butnot a decoherence time. The ele
trons spins precess in what is effectively the frozen field
the nuclei. This field is spatially random, and the different
precession of the electron spins leads to the magnetiza
decay. However, this is not an irreversible loss of the ph
information of the collective wave function. Spin echo e
periments are very beautiful demonstrations of precisely
point. This ‘‘inhomogeneous broadening’’ presents ch
lenges for the calibration and operation of quantum comp
ers, but does not destroy coherence.

Finally, in any implementation based on electron-spin q
bits, there will certainly exist small interactions between t
spins themselves. The dipole-dipole interaction, for one, c
not be avoided, and there may be indirect spin-spin inter
tions mediated by the gates. A recent paper suggests
these interactions set the fundamental time scaleTM for Si
quantum dot implementations of QC.15 These interactions do
produce experimental broadening of ESR lines in exp
ments on bulk systems, and this might be taken as deco
ence. In our view, however, these interactions do not des
the coherence of a state. The system is a set of all the qu
During the course of a quantum algorithm they are coll
tively in a pure state~in principle!. Any decoherence tha
destroys the purity of the state comes from averaging o
the unknown states of the environment. The broadening
comes from dipole-dipole interactions comes, in NMR a
ESR calculations, from averaging over the states of the s
tem itself, which is not an appropriate method for calculati
decoherence. The effect of qubit-qubit interactions that c
not be turned off is to complicate the quantum algorithm
quantum algorithm is a unitary transformation that must
ways include the effect of the system Hamiltonian~including
dipole-dipole interactions! in addition to external operations
In every case except for very simple ones, this algorit
must first be computed, presumably with the help of a cl
sical computer. This step in QC may be termed ‘‘quantu
compilation.’’ The issue that qubit-qubit interactions raise
not one of decoherence, but rather whether the determina
of the algorithm, the complation step, becomes prohibitiv
difficult. This could happen for two reasons. One is that
interactions are so poorly known that they cannot be c
rected for. It seems likely that quantum error correction c
resolve this difficulty. A second and more interesting pos
bility is that the interactions convert the computation of t
algorithm itself into a problem that grows exponentially wi
4-2
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the size of the system. We regard this as an open ques
and a deep one, that combines many-body theory with a
rithm design and error correction. We note that in NM
implementations the interaction between the qubits also c
not be turned off, but it can be canceled by refocusing.16

In this paper, our aim is to evaluate the importance
spin-phonon coupling as a source of decoherence in quan
dot qubits. Fundamentally, the issue is whether the long
laxation timesT1 observed at low temperatures in bulk Si
carry over to SiGe dots proposed for QC. In Sec. II we
troduce the structures that we are interested in. In Sec. III
physics of the spin-phonon relaxation mechanism is
scribed qualitatively. In Sec. IV calculations and results
pure Si systems are given as a function of the critical des
and operating parameters. In Sec. V are found the correp
ing results for structures containing Ge. Section VI is t
conclusion.

II. STRAINED SILICON QUANTUM WELL

Si-Ge heterostructures are utilized widely in the digi
electronics industry, and presently have the shortest swi
ing times of any device. One reason for their success lie
the ability to engineer structures of near perfect purity, w
control over thicknesses and interfaces that approac
atomic precision—a technological tour de force. An equa
key achievement has been the harnessing of strain as a
to control band offsets in heterostructure devices. This pa
presents calculations of spin relaxation for real SiGe str
tures such as those proposed by Vrijenet al.8 and Friesen
et al.9 Accordingly, we have calculated the electron wa
functions in quantum wells, which is needed as input
these calculations. Details of these calculations were
sented in Ref. 9, and will not be repeated here. In this sec
we only describe those aspects of the calculations that
germane to spin relaxation.

Quantum wells are constructed by sandwiching a v
thin layer of one material between two others. Electrons
be confined in the quantum well layer when the conducti
band offsets produce a potential well. The key to this te
nology is therefore to understand the band structure of
various layers. In this section we will consider a particu
class of wells formed of pure Si, sandwiched between bar
layers of SiGe. We will find that this is optimal from th
standpoint of spin coherence. Metallic gates or impurit
create zero-dimensional bound states that define a qua
dot. We first review briefly effective mass theory for dots
pure, unstrained Si, then unstrained SiGe, and finally stra
Si.

In pure Si, theD conduction band minima occur near th
symmetry pointsX, in the directions$001%. In a perfect Si
crystal these minima are six-fold degenerate, the valleys
ing equivalent. In the dot the electron feels a potentialVg(rW)
in addition to the atomic potential, which lifts the dege
eracy, though the splittings are not large. The spatial va
tion of Vg(rW) is on length scales generally much longer th
the lattice spacing. For the moment, we shall assume tha
electron is in the ground state ofVg(rW) and ignore mixing
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with any excited states. To the extent that the scale of va
tion of Vg(rW) is much longer than the atomic spacing the
are six nearly degenerate ground states. This is referred
the ‘‘valley degeneracy.’’ The wavefunctions can be writt
as17

Fn~rW !5(
j 51

6

an
( j )F j~rW !f j~rW !. ~1!

Heref j is a Bloch function of the form

f j~rW !5uj~rW !eikW j •rW, ~2!

wherekW j are the sixD minima $1k0x̂,2k0x̂,1k0ŷ,2k0ŷ,
1k0ẑ,2k0ẑ% ~we shall always use this ordering!, anduj (rW)
are periodic functions with the same periodicity as the crys
potentialVp(rW). TheF6z are envelope functions that satis
the Schro¨dinger-like equation

F2
\2

2ml

]2

]z2
2

\2

2mt
S ]2

]x2
1

]2

]y2D 1Vg~rW !GF6z~rW !

5~E2Ekz

(D)!F6z~rW !, ~3!

and are independently normalized to unity, similar to wa
functions. Analogous equations can be given for the6 x̂ and
6 ŷ minima. We see thatFx5F2x ,Fy5F2y , and Fz
5F2z , so only three independent envelope functions m
be computed.ml andmt are the longitudinal and transvers
effective masses associated with the anisotropic conduct
band valleys.Ekz

(D) is theD conduction-band edge atkz . The

splitting of the degeneracy comes from corrections to t
envelope-function approximation. Different choices of t
constantsan

( j ) determine the six states. Their values will b
discussed in Sec. III. This formalism is a good approxim
tion for both dot and impurity bound states, as the val
splitings are much smaller than the energy scales in Eq.~3!.

Germanium is completely miscible in Si, forming a ra
dom alloy. For a variable Ge contentx,Si12xGex exhibits
materials properties that vary gradually over the composit
range. The alloy lattice constanta0(x) follows a linear inter-
polation between pure Si and Ge, known as Vegard’s l
quite accurately for allx: a0(x)5(12x)aSi1xaGe.20 Elec-
tronic properties show an abrupt change in behavior neax
.0.85, where the Si-likeD minima cross over to fourfold-
degenerate, Ge-like,L minima. In this work we focus on the
rangex&0.5, which is strictly Si like, though we will have
some remarks below on Ge-rich structures. Throughout
range, properties such as effective mass and the diele
constant vary only slightly from pure Si values. For our c
culations, the most important parameter is the conduc
band edge,E(D)(x), which remains six fold degenerate in th
rangex&0.5. The theory of the variation ofE(D) with x is
not germane to the present work, and we simply quote
empirical result, linear inx, which is consistent with Ref. 18

DE(D)~x!5E(D)~x!2E(D)~0!.0.23x~eV!. ~4!
4-3
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@We note, however, that Ref. 19 suggested a slope
E(D)(x) of opposite sign.# The relatively weak variations o
the effective mass and the dielectric constant will be igno
here.

We consider thin Si wells in which the Si layer grow
pseudomorphically. The in-plane lattice constantai must be
the same for all layers, causing a tetragonal distortion in
strained layer~s!. Here we consider the case of strained
grown on the~001! surface of relaxed Si12xGex . The in-
plane Si lattice constant depends onx as

ai~x!5~12x!aSi1xaGe. ~5!

SinceaGe.aSi , the Si is under tensile strain in the plan
Hence the out-of-plane Si lattice constanta' is reduced ac-
cording to continuum elastic theory,

a'~x!5aSiF122
c12

c11

ai~x!2aSi

aSi
G , ~6!

wherec11 andc12 are elastic constants for pure Si.
Strain produces shifts of theD band proportional to the

strain variables

« i~x!5
ai~x!2aSi

aSi
and «'~x!5

a'~x!2aSi

aSi
. ~7!

with proportionality constants called the dilational a
uniaxial deformation potentials,Jd

(D) andJu
(D) , respectively.

Because of the anisotropic nature of the strain, the twẑ
minima are shifted down relative to thex̂ and ŷ minima,
resulting in a splitting of theD conduction band. The ne
shifts with respect to the unstrained SiD band are given by18

DE(D')~x!5S Jd
(D)1

1

3
Ju

(D)D @2« i~x!1«'~x!#

1
2

3
Ju

(D)@«'~x!2« i~x!#, ~8!

DE(D i)~x!5S Jd
(D)1

1

3
Ju

(D)D @2« i~x!1«'~x!#

2
1

3
Ju

(D)@«'~x!2« i~x!#. ~9!

The first terms in Eqs.~8! and ~9! are hydrostatic strain
terms, which lower the conduction edge compared to
strained Si. The second terms in Eqs.~8! and~9! produce the
splitting, associated with uniaxial strain. To perform our c
culations, we use the materials parameters given in Tab
However we note that the deformation potentials, parti
larly Jd

(D) , are very difficult to measure experimentall
Considerable disagreement exists in the literature as to
value and even the sign ofJd

(D) .21 The value given in Table
I was reported~but not endorsed! in Ref. 21, and provides
energy- band variations in general agreement with Refs
and 19. We arrive at the following strain-induced shifts of t
conduction band edge for pure Si:
03531
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DE(D')520.86x and DE(D i)520.16x. ~10!

The corresponding shift in the relaxed barrier layers, due
the presence of Ge, was given in Eq.~4!. Together, these
results describe the conduction band offsets for the quan
well that are used in our simulations.

We now apply our results to two specific quantum w
designs of interest for quantum computing. Design 1, sho
in the inset of Fig. 1, is a version of that proposed by Vrij
et al.,8 in which electrons are trapped on donor ions~usually
P!, implanted in a semiconductor matrix. In that work, th
quantum well is split into Ge- and Si-rich regions to facilita
single qubit operations. For simplicity, we consider here
uniform quantum well, formed of pure Si, with a single do
ant ion located at the center of the well. In such a devi
single qubit operations can be accomplished using a co
qubit scheme.22 Design 2, proposed by Friesenet al.,9 is
shown in Fig. 2. The confinement potential for the electro
is much softer than in design 1. Electrons are trapped ve
cally by the quantum well, and laterally by the electrosta
potential arising from lithographically patterned, metal
top-gates. Additionally, the quantum dot is tunnel-coupled
a degenerate doped back gate. The dimensions for both
signs are given in the figures.

TABLE I. Materials parameters used in this work.

Parameter Value Ref. No.

aSi 5.43 Å 19
aGe 5.66 Å 19
c11 1.675 19
c12 0.650 19
Ju

(D) 9.29 eV 18
Jd

(D) 210.7 eV 21

FIG. 1. Probabilityf 2 for finding a donor-bound electron at a G
site, as a function of Ge contentx. The simulated structure, desig
1, is shown in the inset. A strained Si quantum well of thicknes
nm is sandwiched between relaxed Si12xGex barrier regions of
thickness 20 nm. The electron is bound to a P11 ion embedded in
the center of the quantum well.
4-4
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The wave function of the bound electron is computed
the envelope-function formalism@Eq. ~3!#. Couplings be-
tween the different valleys are introduced through the per
bation theory described in Sec. IV. This procedure provi
the specific values ofag

( i ) for the ground state, which we us
in our calculations.

The abrupt conduction-band offsets are handled by ma
ing the ground state wave functionFg(rW) and]zFg(rW) at the
interfaces.~Remember that we have equated effective mas
on both sides of the interfaces.! Due to the linear indepen
dence of the Bloch functions, the boundary conditions do
cause a mixing of the envelope functions. Solutions of
~3! and the analogousFx equation are obtained, using com
mercial three-dimensional finite-element software.

As will be seen in Sec. V, the key quantity for the com
putation ofT1 is f 2, which describes the probability for th
bound electron to be on a Ge atom. Ge is associated
reduced coherence times, by virtue of its large spin-o
coupling. Referring to Eq.~1!, one deduces that this prob
ability may be expressed as

f 25xF4~ag
(x)!2E

Vb

d3rF x
2~r !12~ag

(z)!2E
Vb

d3rF z
2~r !G ,

~11!

whereVb is the volume outside the quantum well, if the we
is pure Si. The subscriptg refers to the ground state. Th
term in the square brackets reflects the probability of find
the bound electron in a barrier region, whilex gives the
probability that the electron is on a Ge site.

Figure 1 shows the results of our calculations forf 2 in
design 1, as a function of the Ge concentrationx in the

FIG. 2. Probability f 2 for finding an electrostatically bound
electron at a Ge site, as a function of quantum-well thicknessz. The
inset shows the heterostructure layers for design 2, beginnin
bottom: a thick, doped semiconductor back gate, a relaxed Si12xGex

barrier layer, a strained Si quantum well, a thick, relaxed Si12xGex

barrier layer, and lithographically patterned metallic top gates.
distance between back and top gates is held fixed at 40 nm, w
the quantum well, of variable thicknessz is centered 15 nm abov
the back gate.
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Si12xGex barriers. Forx.0.02, f 2 decreases withx for two
reasons. First, asx increases, the conduction-band offset
the quantum well also increases, allowing less of the w
function to penetrate the barrier. Second, the spatial ex
the electron in theẑ direction is greater forFx than Fz ,
because of the anisotropic effective mass.

However, less ofFx is mixed into the wave function for
largex, sinceax becomes very small. Forx&0.02,f 2 drops
quickly to zero, due to the absence of Ge in the barriers
the actual design of Vrijenet al.,8 there is Ge in the active
layer. To give an idea of the effect of this, we include
equivalent value off 2 for such a structure.

Figure 2 shows results of thef 2 calculation for design 2,
as a function of the quantum well thickness,z. To perform
the calculations, we have considered a fixed Ge concen
tion, x50.05, and taken the limit of large strain, so th
ag

(6x).ag
(6y).0 andag

(6z).1/A2 for the ground state. Asz
increases, less of the wave function penetrates the ba
regions, causingf 2 to decrease.

III. SPIN RELAXATION DUE TO COUPLING
TO PHONONS

In this section we give the method for calculatingT1, the
spin-flip time of a spin qubit in the ground orbital state d
to emission or absorption of a phonon, following the log
used by Hasegawa10 and Roth11 for bulk Si. Consider a
single impurity with a unit positive charge, such as a ph
phorus atom, at the origin. In the absence of central
corrections, there is a 12-fold-degenerate ground state
cluding spin. This valley degeneracy of the ground state
reduced to 2 by these corrections, and the splitting betw
the two fold spin-degenerate ground state and the hig
states is of orderDE;10 meV. We shall discuss the de
tailed linear combinations (a values! of the states below, as
the coefficients giving the various valley amplitudes play
important role in the calculation of matrix elements. The
12 states may all be thought of as hydrogenic 1s states. The
splitting of 1s and 2s is about 30 meV, larger than the 10
meV valley splittings. Let us now split the twofold degene
ate ground state by applying a dc magnetic field in thz
direction. The transition rates between these states are
noted byW↑↓ andW↓↑ . The relaxation timeT1 is defined by
1/T15W↑↓1W↓↑ .

The transitions are caused by phonons, but there are
portant approximate symmetries that suppress these tra
tions. These are the following~1! Spin rotation symmetry,
meaning that the electron spin cannot be flipped by a p
non; this symmetry is broken by spin-orbit coupling~SOC!
~2! Time-reversal symmetry, meaning that one state can
be changed into its time-reversed partner by emission or
sorption of a phonon; this symmetry is broken by the ext
nal magnetic field~3! Point-group symmetries; these are pa
tially broken when strain is applied.

The spin rotation symmetry would rule out phono
mediated transitions between the two states entirely if th
were no SOC. This means that the effects of SOC on
wave functions, even though these effects are small in r
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CHARLES TAHAN, MARK FRIESEN, AND ROBERT JOYNT PHYSICAL REVIEW B66, 035314 ~2002!
tively low-Z Si, must be taken into account. When we re
to a state as↑ or ↓, these symbols must be taken to refer
the majority-spin content of the state, not to a pure spin st
Transition rates are roughly proportional to (g22)2 @more
precisely (gl2gt)

2, wheregt(gl) is the transverse~longitu-
dinal! g factor, see below for definitions#.

The time-reversal symmetry implies that transitions c
not take place directly between Kramers-degenerate s
even in the presence of spin-orbit coupling. The dir
phonon-mediated transitions between the two states of in
est to us are strongly suppressed by this approximate s
metry. It is broken only by the external fieldH. The fastest
processes then involve a virtual excitation to higher-ene
states that are mixed into the ground state byH. Hence 1/T1
involves a factor (mBH/DE)2. There is an additional facto
of H2 from the phonon density of states, giving an over
rate 1/T1;H4 in the limit of smallH.

The point group symmetry is reduced from cubic to
tragonal under strain. This has complex effects that we
explain below.

Before giving actual calculations, we summarize tho
differences between the electrons in donor impurity sta
and in an artificial dot that affectT1. The most obvious is the
single-particle potential that binds the electron. The g
potential is much smoother than the hydrogenic potentia
the impurity. This implies that the corrections to th
effective-mass approximation are much weaker, andDE will
be much reduced. It is difficult to compute the energy sp
tings precisely, but considerations based on the metho
Sham and Nakayama23 give splittings in the range
;0.05–0.1 meV in the structure of Friesenet al.9 This in-
creases the relaxation rate.~In fact, a naive estimate of th
enhancement is a factor of 400.! On the other hand, the struc
tures we consider have strong lattice strain. This partly l
the valley degeneracy and also reduces the matrix elem
which decreases the rate. Another aspect of some of the
posed designs is the presence of Ge with its much stro
SOC. This will act to decrease the spin relaxation time.

IV. PURE SI QUANTUM DOTS

We first consider the case of pure Si under uniaxial stra
The ingredients of the calculation are as follows.

From Sec. II we have the solutions to the Schro¨dinger
equation@H01Vg(rW)#Fn0(rW)5EnFn0(rW). H0 is the unper-
turbed crystal Hamiltonian without SOC and it has a f
space group symmetry.Vg(rW) is the gate and/or impurity
potential.

To calculateT1, we must also include SOC, which w
treat as a perturbation:HSOC5lSi(RW LW RW •SW RW . The resulting
statesFn(rW) are twofold degenerate because of time-reve
symmetry. Let us denote these states asFn↑(rW) andFn↓(rW).
They are not eigenstates of spin, so the arrows deno
pseudospin. We may define the pseudo-up state as that w
evolves from the spin-up state as spin-orbit coupling
turned on adiabatically, and similarly for the pseudo-do
state. Because of valley and pseudospin degeneracy, ther
two ground statesFgs(rW) and ten excited statesF rs(rW). The
03531
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12-fold degeneracy in the effective-mass approximation
broken by central-cell corrections in the impurity case a
smaller corrections in the quantum dot.

There is also the Zeeman Hamiltonian of the external fi
HZ5mBBW •(LW 12SW ). In the fieldFn↑(rW) andFn↓(rW) are no
longer degenerate. Note that the energy splitting may dep
on the direction ofBW .

Finally, we have the electron-phonon coupling Ham
tonianHep . A phonon represents a time-dependent pertur
tion. This will create transitions whose rate is given
the Fermi golden rule. We are interested in the tra
itions between Fg↑(rW) and Fg↓(rW). However,

^Fg↑(rW)uHepuFg↓(rW)&50 in the absence of the extern
field. Thus we need to calculate in next order in perturbat
theory using an effective Hamiltonian

H 85(
rs

1

Eg2Er
$@HZuF rs~rW !&^F rs~rW !uHep#

1@HepuF rs~rW !&^F rs~rW !uHZ#%. ~12!

Here r runs over the excited states,r 52, . . . ,6.s5↑,↓.
The relaxation time is given by 1/T15W↑↓1W↓↑ , where

W↓↑5 ( 2p / \ ) 3 (qW lu ^ Fg↑ ( rW )uH 8uFg↓(rW) & u2d ( Eg↓2Eg↑
2\vqW l)@11n(vqW l)# is the rate for transitions from
the higher-energy~pseudo-spin down! state to the lower-
energy ~pseudo-spin-up! state and W↑↓ 5 ( 2p/
\ ) (qW lu ^Fg↓ ( rW)uH8uFg↑ ( rW) & u2d (Eg↓2Eg↑2\vqW l )n(vqW l )
is the rate for transitions from the lower-energy~pseudo-
spin-up! state to the higher-energy~pseudo-spin-down! state
where the sum is over phonon modesqW l with energiesvqW l .
A thermodynamic average over the lattice states has b
taken. It yields the Bose occupation factorsn(vqW l) for the
phonons.

The matrix elements ofH 8 are computed as follows. Th
expectation value of the external fieldHZ can be written as

^Fns~rW !uHZuFn8s8~rW !&5(
i 51

6

an
( i )(

j 51

6

an8
( j )mBBW •g( i )

•sW s,s8d i j

5mBBW •F(
i 51

6

an
( i )an8

( i )g( i )G•sW s,s8

[mBBW •Dnn8•sW s,s8 ~13!

and the tensorg( i ) is the effectiveg factor at thei th valley.
This equation defines the tensorDnn8 that characterizes the
coupling of the various states by the external field. The pr
cipal axes of theg tensor are the same as that of the effect
mass tensor at thei th valley. It has the form

g(6x)5S gl 0 0

0 gt 0

0 0 gt

D , g(6y)5S gt 0 0

0 gl 0

0 0 gt

D ,

g(6z)5S gt 0 0

0 gt 0

0 0 gl

D . ~14!
4-6
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DECOHERENCE OF ELECTRON SPIN QUBITS IN SI- . . . PHYSICAL REVIEW B 66, 035314 ~2002!
There are only two independent constants.
A simple example of the diagonal part of theD tensor is

that for the ground state of an impurity in theunstrained
lattice when the central cell corrections are included. Th
we haveag

( i )51/A6, andDgg is proportional to the unit ma
trix,

^Fgs~rW !uHzuFgs8~rW !&5ggmBBW •sW ss8 , ~15!

with

gg5
2

3
gt1

1

3
gl . ~16!

The matrix elements between ground and excited st
have the form

^Fgs~rW !uHZuF rs8~rW !&5g8mBBW •Dgr•sW ss8 , ~17!

with

g85
1

3
~gl2gt!, ~18!

and the tensorDr is defined by

Dgr53(
i 51

6

ag
( i )a r

( i )k̂( i )k̂( i ) ~19!

where k̂( i ) is the ‘‘local’’ anisotropy axis. If the originalg
were isotropic, theng850 and there would be no couplin
between different states and no spin relaxation.

If the lattice is strained, then thea coefficients become
strain-dependent and the general expression forD from Eq.
~13! must be used. Uniaxial strain lifts the degeneracy of
valleys. We include this effect in the Hamiltonian and it d
termines the proper combinations of thean

( i ) defined in Eq.
~1!. These then feed intoDgr . As a function of strainan

(g) for
the ground state cross over from the completely symme
combination ag

( i )51/A6 to the combinationag
(6x)5a (g)

6y

50,a (g)
6z51/A2 in the limit of large strain.4

The phonons involved are just the acoustic ones, one
gitudinal and two transverse—these are the only ones w
low enough energy to play a role in relaxing the spins. T
matrix elements of the electron-phonon interaction are o
nonzero within one valley and for a single phonon mode th
are conventionally parametrized as

^CckWs
( i )

~rW !uHep
(qW l)uCckW8s

( i )
~rW !&

5 ibqW lêl~qW !•~Jd11Juk̂( i )k̂( i )!•qW 1H.c. ~20!

near thei th valley, whereqW 5kW2kW8 andêl is the polarization
vector.bqW l destroys a phonon with wave vectorqW and polar-
ization l. Once again, we see that the interaction can
characterized by just two parameters, in this caseJd and
Ju , as already defined in Eq.~7!. Performing the integration
over the envelope function at wave vectorqW now gives
03531
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^Fgs~rW !uHep
(qW l)uFgs8~rW !&qW5S Jd1

1

3
JuD

3A~qW !~bqW l1bqW l
* !ds,s8 ,

~21!

^Fgs~rW !uHep
(qW l)uF rs8~rW !&qW5

1

3
JuA~qW !@ i êl~qW !•Dgr•qW bqW l

2 i êl* ~qW !•Dgr•qW bqW l
* #ds,s8 ,

~22!

where

A( i )~qW !5(
kW

F ( i )* ~kW1qW !F ( i )~kW !5E d3rF 2~r !eiqW •rW.

~23!

Thus the electron-phonon interaction involves a form fac
for the bound states. SinceF is normalized, we have
A( i )(qW )'1 when the wavelength of the phonon is mu
longer than the spatial extenta* of the bound state:qa*
!1. The calculations of Sec. II indicate that this is the ca
A( i )(qW ) is also independent of~i!.

In the golden rule calculation, the energy denonina
(Eg2Er)

22 will suppress contributions from the excite
states ofVg . Thus we will keep only states that are split o
from the ground state by corrections to the effective m
approximation. This approach works very well in Si:P a
should be even better for the quantum dot.

This produces the golden-rule transition rate

W↑↓5
2p

\ F1

3
Jug8mBG2

(
qW l

A2~qW !d~Eg↑2Eg↓2\vqW l!

3^aqW laqW l
* &U(

r 52

6
BW •Dgr•sW ↑↓êl~qW !•Dgr•qW dss8

Eg2Er
U2

.

~24!

We approximate the phonon dispersion asvqW l5vlq. Set-
ting A51, performing the integral over the magnitude ofqW ,
and repeating the calculation forW↓↑ , we obtain a total spin
relaxation time

1

Ts
5W↑↓1W↓↑

5
1

8p2r\4 S g8mBBJu

3 D 2

@2n~gmBB!11#gg
3mB

3B3

3 (
l51

3
1

vl
5E0

2p

df8E
0

p

sinu8du8

3U(
r 52

6

@BW ~u,f!•Dgr•sW ↑↓#F êl~qW !•Dgr•q̂

Eg2Er
~u8,f8!GU2

.

~25!
4-7
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Here (u,f) are the polar axes of the direction ofBW measured
from the@100# direction of the crystal.r is the mass density
This is our basic result, in a form very similar to that give
by Hasegawa.10

In Fig. 3 the effect of strain on the lowest energy levels
shown. Here the zero-strain splittings are those of a P im
rity. A similar plot was given in Ref. 4, but at that time th
correct zero-strain splittings were not known. In the dot,
energy splittings for the unstrained case would be two
three orders of magnitude smaller~see below for a discus
sion!.

In Fig. 4, we show the effect of strain on the relaxati
time of an electron in a P impurity potential. There are tw
effects: the overall increase of the energy denominators
the change of the ground state to a less symmetric va
weighting. This leads to a nonmonotonic dependence ofT1
on strain, but in the region of interest, the effect of strain is
greatly increaseT1, since most proposed structures haves
,21. At large strain, only one energy denominator rema
small, that between the ground state, symmetric in the6z
valleys, and the first excited state, antisymmetric in the6z
valleys. The overlap matrixD is very small between thes
two state. This reduction of the matrix element is the dom
nant effect.

Also of interest is the dependence ofT1 on the angle of
the external field, since this may serve as a diagnostic too
experiments to verify that the relaxation process is really
to spin-phonon coupling. As a function of strain, this depe

FIG. 3. Energy of the six 1s-like donor levels of an electron
bound by aP impurity in silicon ~with respect to the energy cente
of gravity! vs the strain parameters with an uniaxial stress applied
in the @100# direction.~It is important to note for clarity that wha
we call compression relative to the@100# or growth direction is
equivalent to tension in the plane of the quantum well. This la
convention differs across fields.! For reference,s523 corresponds
to the compressive~s negative! strain caused in a pure silicon laye
by a Si0.8Ge0.2 sublayer. The energies are expressed in eV and
numbers in parenthesis indicate the degeneracy of the level. Th1

~ground state, solid line! and T1 level wave functions are mixed b
strain ~causing valley population intermixing! and the relaxation
rate is proportional to 1/DE. Thus, with all else equal, an increase
strain causes the relaxation rate to decrease. For a detailed an
see Wilson and Feher~Ref. 4!, wheres here is theirs8 times 100, or
Koiller et al. ~Ref. 24! whose notation wass5100(6xDc /Jc).
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dence becomes highly anisotropic, as seen in Fig. 5. Th
due to the elimination of all but the6z valleys from the
problem at high strain. We note that the limiting valueT1
→` when the external field is along a crystal axis is cut
by intervalley scattering effects not included in the pres
calculation.4

The change in the confining potential reduces the corr
tions to the effective-mass approximation, as discussed
Sec. III which in turn reduces the energy denominators, le
ing to a decrease inT1. In Friesenet al.’s structure, we have
estimated the splitttingsEr2Eg using the method of Sham
and Nakayama,23 and they range from 0.05 to 0.1 meV, d

l

e
A

ysis

FIG. 4. Relaxation rates of a P impurity bound electron in@100#
uniaxially strained silicon vs strain parameters for a temperature of
3 K and a magnetic fieldH5H(cosu cosf,cosu,sinu) of 1 T in the
@111# (u5f5p/4) and @110# (u5p/4,f50) directions respec-
tively. s523 corresponds to the strain caused in the pure silic
layer by a Si0.8Ge0.2 sublayer.

FIG. 5. Dependence of the relaxation rate on the magnetic-fi
direction, withH5H(cosu cosf,cosu,sinu), for ~a! unstrained Si
and ~b! compressively strained Si~corresponding to a Si0.8Ge0.2

sublayer!. The magnetic field is set at 1 T, and the temperat
is 3 K.
4-8
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pending on the gate voltages that produce the potential.
may be incorporated into the calculation of thean

( i ) by intro-
ducing a variable couplingDc that mixes the6x and 6y
valley wave functions with the6z valley wave functions.
For a precise definition ofDc , see Ref. 4. Approximately
however,Dc;0.2 (Er2Eg),1024 eV. The results of the
calculations are shown in Fig. 6. The graphs show the ab
lutely crucial role that strain plays in the determination ofT1.
Because of the small energy denominators in the dot, the
is extremely fast at smallDc for the unstrained case: 1/T1

;Dc
22 .

We also point out that in stuctures whereT1 appears to be
too long for efficient preparation of the spins~as discussed in
Sec. I! the deficiency can be made up by increasing the te
peratureT. As seen in Fig. 7,T1 decreases very rapidly asT
is increased. Actually, this calculation even underestima
the decrease, since multiphonon processes begin to con
ute at about 3 K. However, it must be borne in mind that
temperature must be small enough that the initial state
essentially pure~all spins up, for example!. A more practical
method of decreasingT1 would be to increase the magnet
field.

V. STRUCTURES CONTAINING GE

The effect of alloying with Ge is to increase the SOC a
hence to increaseug22u. First-principles calculations of Ge
impurities in Si have shown that there is little effect on t
states near the bottom of the conduction band, though th
not necessarily the case for higher energy states in
band.25 This is in accord with the isoelectronic character
the atoms in the alloy. It is then reasonable to employ
virtual-crystal approximation~VCA!. The approximation
should be quantitatively accurate for small,~say ,10%)
concentrations of Ge, but may be taken as a good qualita
guide also to higher concentrations. The Bloch functions
the absence of SOC satisfy

FIG. 6. Relaxation rate of a bound electron in silicon. The so
line is for a fixed@100# uniaxial strains523, corresponding to the
strain caused in the pure silicon layer by a Si0.8Ge0.2 sublayer. The
dashed line is the unstrained case. The rate is plotted for varying
intervalley coupling constantDc . Dc corresponds to 1/6th of the
energy splitting between the singlet~ground state! and triplet~next
excited state! valley energiesin unstrained Si. As a result, it con-
trols the mixing between the6x and 6y valley wave functions
with the6z valley wave functions. The magnetic field is set at 1
along the@111# direction, and the temperature is 3 K.
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H0CnkWs5EnkWCnkWs , ~26!

where

CnkWs5
1

ANc
(
j 51

Nc

(
l 51

2

exp~ ikW•r j l ! (
m50

3

alm~nkW !fms~rW2r j l !,

~27!

whereNc is the number of unit cells,j labels the unit cells,l
labels the two positions in the unit cell,m labels the four
atomic states,fms are the atomic orbitals, and the coeffi
cientsalm(nkW ) give the proper linear combination of atom
orbitals for the state at momentumkW and bandn. The nor-
malization condition is

(
lm

ualm~nkW !u251. ~28!

In the VCA, thealm(nkW ) are the same for the Si and G
sites. The SOC Hamiltonian for the alloy is written as

HSOC5(
RW

lRW LW RW •SW RW , ~29!

wherelRW is the SOC strength for Si~Ge! whenRW is a Si~Ge!
site. The energy shift of an electron in the external fieldBW
5(Bx ,By ,Bz) can be written as

DEnkWs~BW !52mB (
i 5x,y,z

gi~nkW !Bis, ~30!

he

FIG. 7. Relaxation rates of a P impurity bound electron in@100#
uniaxially strained silicon (s523, corresponding to the strain
caused in the pure silicon layer by a Si0.8Ge0.2 sublayer! vs ~a! a
temperature with the magnetic field set at 1 T and~b! a magnetic-
field strength with the temperature set at 3 K.
4-9



h

en
er

re

tio
hi
r
t t

io
e
C

th

s
in

ns,

n.
or

to
e-
rity

e
t
ich

ned

he
we

if-
y
is
de-

ion
he
see
e

ab-
le to
res
his
e of

der
the
ally
e-

g in
dot

the
ates
tally
ot
ss
e

is
ive
y is
nd
ex-
r, is
the
le

hin

iu
as
on
w
lle
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where

gi~nkW !5222\2S (
RW

lRW /NcD (
n8Þn,l ,m,m8

ualm~nkW !u2

3ualm8~n8kW !u2~EnkW2En8kW !
21~« imm8!

2 ~31!

and « imm8 is the completely antisymmetric symbol wit
«12351.

Our approximation now consists in regarding the dep
dence on the Ge concentration as coming only in the t
((RW lRW /Nc). Hence any component of theg tensor is propor-
tional to a weighted average oflSi and lGe . In particular,
consider the conduction band minimum atkW5(0,0,k0) in the
compound Si12xGex . Then we havegz(x)225@gz(0)22#
3@(12x)1x(lGe /lSi)#, wheregz(0) is the value for pure
silicon. The numbers, known from atomic physics, a
lGe /lSi50.295/0.04456.71, sogz(x)225@gz(0)22#@(1
2x)16.71x#. Similarly, we havegy(x)225@gy(0)22#
3@(12x)16.71x#, etc. Only the overall scale ofg changes,
not the anisotropy in the VCA.

The presence of Ge in the lattice breaks the transla
symmetry, an effect that is neglected in the VCA. Taking t
into account would lead to ag factor that is averaged ove
momentum space rather than one that is evaluated only a
Si conduction-band minima. If we take theL minimum of
pure Ge as an example, we would expect that the correct
to ug22u would be greater if there is some averaging ov
momentum space. Thus a calculation going beyond the V
would give corrections that would reduceT1.

We show the results for differing Ge concentrations in
active region of the well in Fig. 8. In the Ge-poor regimex
,0.85, the relaxation rate 1/T1 decreases fairly slowly. Thu
designs with a Si-rich well will not suffer from very fast sp
relaxation on the minority Ge sites.

FIG. 8. Relaxation rate of a P impurity bound electron in@100#
uniaxially strained silicon vs the concentration of germanium wit
unstrained~left vertical axis! and compressively strained~right ver-
tical axis, corresponding to a Si0.8Ge0.2 sublayer! pure silicon. The
magnetic field is set at 1 T along the@111# direction, and the tem-
perature is 3 K. Here we assume that the addition of german
does not affect the strain within the bulk and only acts to incre
the g factor and spin-orbit coupling. We expect this approximati
to hold for small concentrations of germanium and to break do
with increasing concentration as the conduction-band va
minima switch fromX-type silicon toL-type germanium.
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By contrast, if we cross the critical point aroundx
50.85 where the conduction band minima switch positio
then there is a very rapid decrease ofT1. This is due to the
much greaterg-factor anisotropy of the@111# minima: g8'
20.4, ~as compared tog8,0.001 in Si!. The results for the
Ge-rich region are much simpler than in the Si-rich regio
Uniaxial strain does not affect the relative valley energies
the matrix elements parametrized byD. The only effect of
going to the dot from the impurity is to reduce corrections
the effective mass approximation, which will strongly d
crease the relaxation time. Indeed, if we take the impu
result for Ge:P from Ref. 10, which isT152.331023 s, and
estimate the decrease inDE as about a factor of 100, then w
obtainT1;1026 to 1027 s, which is vastly shorter than tha
of Si-rich structures. The physics is the same as that wh
governs the divergence of the rate in Fig. 6 for the unstrai
case,namely the much smaller energy denominators.

To make contact with Sec. II note that if there is Ge in t
barrier regions, as is the case in most SiGe designs, then
will have an envelope function that weights Si and Ge d
ferently, thenx in the VCA formulas must be replaced b
f 25(RW u f RW u2, whereu f RW u2 is the amplitude that the electron
on a Ge site and the sum runs only over Ge sites, as
scribed in Sec. II. This is the product of the Ge concentrat
in the layer, times the probability that the electron is on t
layer, summed over layers. Referring to Figs. 1 and 2, we
that f 2 is always less than 1023 for structures that have pur
Si active layers and Ge in the barrier layers. The effect onT1
is small, so these structures are ‘‘phonon safe.’’

VI. CONCLUSION

Decoherence due to spin relaxation by emission and
sorption of single phonons does not pose a major obstac
quantum computation in quantum dot SiGe heterostructu
using spin qubits, if these qubits are properly designed. T
spin relaxation mechanism is the dominant one in the cas
electrons in donor bound states, such as in Si:P.

In order that this source of decoherence be kept un
control, however, certain conditions must be satisfied in
design of the structure. Unstrained SiGe alloys gener
have relatively short spin relaxation times due to valley d
generacy. This degeneracy produces a strong spin mixin
the Kramers-degenerate ground states of the quantum
once the field is turned on. This in turn increases
electron-phonon matrix element that connects the two st
and decreases the relaxation time. This effect, fundamen
due to spin-orbit coupling, is stronger in the quantum d
than in the impurity state. The corrections to effective-ma
theory, stronger for the impurity potential, tend to lift th
degeneracy.

The crucial role that strain plays, in Si-rich structures,
to lift the valley degeneracy. In this respect compress
uniaxial strain is the best, since the residual degenerac
reduced to two valleys. The wave function for the grou
state is then symmetric in the valley index, and the first
cited state, the only one with a small energy denominato
antisymmetric in this index. This fact strongly suppresses
spin mixing effect of the external field. Thus a workab
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design should include uniaxial strain that exceeds a crit
value. This value is small enough that there will be sufficie
strain in most practical structures in which the active laye
Si rich and sandwiched between relatively Ge-rich laye
The active layer must be thin enough to avoid dislocati
mediated relaxation.

Spin-orbit coupling is stronger in Ge than in Si due to t
higher atomic number. This suggests that Si-rich structu
are to be preferred, and the calculations bear this out.
relaxation time decreases with increasingx in a Si12xGex
alloy. In fact, if x increases beyondx50.85, decoherence
becomes very strong, and quantum dots in these Ge-
structures, such as those proposed by Vrijenet al.,8 may well
run into difficulties for this reason. A key point for thes
structures is that uniaxial stress does not lift the valley
generacy, since the valleys have moved off the crystal a
A strain-induced suppression of the spin relaxation can
occur.

Beyond design issues, fabrication quality is also imp
tant. Even a small concentration of magnetic impurities w
negatively impact the spin relaxation. In modern semic
ductor technology, however, concentrations of magnetic
purities much less than 0.1 ppm are routine. The impac
lattice imperfections is less clear. These will generally ac
lower the symmetry of the system, and to lessen the accu
th
r
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of the effective-mass approximation. As we have seen in
context of the impurity calculations, these effects genera
increase the spin relaxation time because of reduced de
eracy. On the other hand, localized bound states can form
such imperfections. If this results in free-electron spins
could have seriously negative effects on the relaxation tim
Similar effects would result from lattice defects that produ
localized phonon modes.

Finally, it appears that quantum dot designs will ne
rather low temperatures in order to operate. The impu
experiments clearly indicate that multiphonon relaxation
crease rapidly with temperature,26 with a crossover to this
regime at about 3 K. We speculate that this crossover t
perature is pushed up when the effects of strain are includ
but we have not yet done the requisite calculations.
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