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Conductance of one-dimensional quantum wires

K.-I. Imura, K.-V. Pham, P. Lederer, and F. Pie´chon
LPS, Universite´ Paris-Sud, Orsay 91405, France

~Received 23 November 2001; revised manuscript received 21 February 2002; published 11 July 2002!

We discuss the conductance of quantum wires in terms of the Tomonaga-Luttinger liquid~TLL ! theory. We
use explicitly the charge fractionalization scheme which results from the chiral symmetry of the model. We
suggest that results of the standard two-terminal~2T! conductance measurement depend on the coupling of
TLL with the reservoirs and can be interpreted as different boundary conditions at the interfaces. We propose
a three-terminal~3T! geometry in which the third contact is connected weakly to the bulk of TLL subjected to
a large bias current. We develop a renormalization-group~RG! analysis for this problem by taking explicitly
into account the splitting of the injected electronic charge into two chiral irrational charges. We study in the
presence ofbulk contact the leading-order corrections to the conductance for two different boundary condi-
tions, which reproduce in the absence ofbulk contact, respectively, the standard 2T source-drain~SD! conduc-
tanceGSD

(2)5e2/h andGSD
(2)5ge2/h, whereg is the TLL charge interaction parameter. We find that under these

two boundary conditions for theend contacts the 3T SD conductanceGSD
(3) shows an UV-relevant deviation

from the above two values, suggesting new fixed points in the Ohmic limit. Nontrivial scaling exponents are
predicted as a result of electron fractionalization.

DOI: 10.1103/PhysRevB.66.035313 PACS number~s!: 71.10.Pm, 72.10.2d, 73.23.2b
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I. INTRODUCTION

Interacting electrons in one spatial dimension are one
the best examples of strongly correlated fermionic syste
They are usually discussed in terms of the Tomona
Luttinger liquid ~hereafter TLL!. The latter has allowed us t
discuss in a precise fashion the breakdown of the Fer
liquid picture which is a good description of interacting ele
trons in broad band metallic three-dimensional~3D! systems.
In one dimension, there are no quasiparticles correspon
to a free electron with charge2e and spin 1/2: the electron
Green’s function exhibits no quasiparticle pole, the dens
of states at the Fermi level vanishes at the Fermi level,
behaves as a power law with noninteger exponents as a f
tion of energy; last but not least, spin degrees of freedom
dynamically split from charge degrees of freedom. Bo
propagate at different velocities.

The TLL is usually understood in terms of the dens
fluctuations at finite wave vector, and zero wave vector ‘‘ze
modes.’’ Recently, however, taking advantage of the ch
symmetry, a different approach of the TLL Hamiltonian su
ceeded in formulating its physics in terms of generallyirra-
tional excitations, i.e., excitations which may have dynam
cally independent irrational charges or spin.1 This constitutes
a generalization of the Laughlinfractional charge excitations
which have been observed in fractional quantum Hall~FQH!
samples.2,3 More precisely, the irrational excitations hav
been shown to be eigenstates of the TLL Hamiltonian in
chiral representation. Their wave functions are formally is
morphic to Laughlin wave functions for FQH states. We co
sider hereafter a spinless TLL for simplicity. The irration
charges carried by the irrational excitations are created
chiral pairs with one excitation moving to the left and t
other to the right; the charges carried by each possible pa
states form a 2D manyfold (Q1 ,Q2), where Q65 1

2 (N
6gJ) with N and J being integers having the same parit
(21)N5(21)J. N and J are standard zero-mode quantu
0163-1829/2002/66~3!/035313~14!/$20.00 66 0353
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numbers associated, respectively, with the total charge
the persistent current of the system.4 g is the so-called TLL
parameter, which contains all the relevant information of
electron-electron interaction.g takes the value, 0,g,1 for
a standard repulsive interaction, whereasg51 for noninter-
acting 1D fermions.

The main question to be asked is whether or not th
irrational charge excitations are observable. Consider
electron incident in the middle of TLL either of infinite
length or sufficiently far away from the boundaries so th
the chiral symmetry is preserved. The injected electron sp
into two eigenexcitations which have irrational chargesQ1

5(11g)/2, Q25(12g)/2 ~or vice versa!, and propagate in
opposite directions. This picture is quite reminiscent o
three-terminal conductance measurement in which the t
terminal is attached to the middle of quantum wires~QW’s!
connected to the source~S! and drain~D! ~see Fig. 1!. The
main findings of this paper are that the standard conducta
measurement done in this geometry does provide some
formation on the charge fractionalization. More precisely,

FIG. 1. A bulk contact in the presence of a large stationa
currentI bias. The chiral symmetry of the TLL isnot destroyed by
the bulk contact. At thebulk contact a currenti back is backscattered
from (1) chirality to (2) chirality due to the tunneling of Laughlin
quasiparticle. A net currenti bulk is injected through thebulk contact
into the sample. As soon as it is injected into the TLL sample
splits into two partsi 1 andi 2 corresponding, respectively, to one o
the TLL eigenmodes with1(2) chirality.
©2002 The American Physical Society13-1
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consider a source-drain~SD! conductanceGSD
(3) , under a

large bias currentI bias circulating through the QW’s betwee
S and D, and in thepresenceof bulk-injected currenti bulk .
The third terminal, or a bulk contact, at voltageV is then
connected by an Ohmic wire either to theS or to theD. We
consider the case of smalli bulk , i.e., the case in which
2eV is close to the chemical potential of the reservoir fro
which i bulk is provided. We find under these circumstanc
GSD

(3) is subjected to a change characterized by unusual s
ing exponents which take different values depending onGSD

(2)

in the absenceof i bulk . In Sec. III we will explain at length
that different values ofGSD

(2) can be interpreted as differen
boundary conditions at theend contacts toS and D. In this
paper, we highlight two specific boundary conditions whi
correspond toGSD

(2)5e2/h (↔ boundary conditionA) and
GSD

(2)5ge2/h (↔ boundary conditionB). In these terms we
found a nontrivial scaling exponent (2D)221 @see Eq.~28!#
under a specific boundary conditionA, whereas a standar
scaling exponent 2D21 @see Eq.~29!# for boundary condi-
tion B, which is simply related to the anomalous scali
dimensionD of the TLL electron operator. This result is
remarkable consequence of electron fractionalization und
stationary bias currentI bias.

A motivation of this paper is therefore closely related
the so-called ‘‘conductance puzzle’’ of the QW: an appar
contradiction among different theoretical and experimen
results for the two-terminal~2T! conductanceGSD

(2) in the
Ohmic regime.5–7 In spite of the theoretical prediction tha
the interaction should renormalize the conductance asGSD

(2)

5ge2/h,8 one of the first conductance measurements o
QW by Taruchaet al.9 has found a nonrenormalized unive
sal conductanceGSD

(2)5e2/h for an interacting system. On th
contrary, in the case of the fractional quantum Hall~FQH!
edge mode, an example of a chiral TLL,10 the Hall conduc-
tance, usually measured in a four-terminal geometry, is m
mally renormalized at a topological number:GH5ne2/h.11

It turns out that a rapidly growing number of experimen
results is now available, on the conductance of QW’s,12–14

and of carbon nanotubes.15–17 Carbon nanotubes18,19 have
been expected since their discovery20 to be ideal 1D quantum
wires. The single-walled nanotubes~SWNT! have four con-
ducting channels indicating an expected quantized cond
tance:GSD54e2/h.21 The ballistic transport in carbon nano
tubes was observed in only one channel of multiwal
nanotubes~MWNT’s! with GSD;2e2/h.22 The temperature
and bias voltage dependence of the conductance report
Ref. 15 do suggest that this system is a strongly correla
1D electronic liquid. The TLL theory for carbon nanotubes23

has suggested an interaction parameterg in the range 0.2–
0.3.

Recent data on the conductance of QW and carbon n
tubes display a variety of results. In Refs. 12 and 13, sign
cant deviations from the quantized valuee2/h were ob-
served. In Ref. 16, the observed conductance exhi
fluctuations versus Fermi energy approaching the unre
malized theoretical value 4e2/h as the temperature is low
ered. On the other hand, in the experiment by Kasum
et al.17 the isolated SWNT exhibits a resistance which sa
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rates at low temperature~in the presence of a sufficientl
intense magnetic field! to a factor of about 0.25 times th
expected unrenormalized value. In our route to sugges
experimental ways of observing irrational excitations, w
had to spend some time trying to understand this variety
results. Our understanding, as explained in the body of
paper, is that two terminal conductance measurements sh
indeed display this variety of results, which may be und
stood as expressing a variety of boundary conditions at
endcontacts.

The main effort of this paper is devoted to studying mo
involved experimental geometries than two terminal ones.
our knowledge the only way to describe injection of ele
trons in a QW through a weakbulk contact is to resort to the
irrational excitation picture, which should be taken into a
count in the theoretical description of this process. Thus
amining electron injection, from one~various! weak bulk
contact~s! in a QW connected to reservoirs at its ends, sho
lead to specific experimental predictions, as we argue in
body of this work. We were stimulated in that direction b
the work of Chamon and Fradkin.25 That work deals with the
FQH effect and examines the conductance of a FQH bar~see
Sec. III C!. In the case of the nonchiral liquid, one cann
easily manufacture electrical contacts which inject electr
only in one chiral eigenmode of the TLL Hamiltonian de
sity, so that one cannot use the results of Ref. 25. One m
actually solve the problem of the nonchiral TLL with man
leads.

We derive new scaling exponents associated with the
rents injected frombulk contacts. More generally we discus
effects which are derived using the irrational excitation p
ture, allowing measurements ofg through multiterminal con-
ductance measurements. Deviations from the unrenormal
perfect conductance value are predicted in the Ohmic lim
In the renormalization-group~RG! picture this naturally sug-
gests a possibility of new intermediate fixed points. We ha
not been able, though, to prove that our results areunique
predictions of the irrational excitation scheme, so that exp
mental observation of, say, the new scaling exponent m
tioned above would be at best a plausibility argument
favor of this scheme. The discussion of shot-noise exp
ments is also left for a future publication.26

This paper is organized as follows: Sec. II describes
model we are studying. That section is an attempt to cla
the notion of the chemical potential for~interacting! eigen-
modes, as opposed to the chemical potential for bare e
trons. Section III discusses equilibration of 1D conducto
with the 3D reservoirs: in actual experiments, which are
particles which equilibrate with the reservoirs: the bare el
trons, or the eigenmodes of the TLL? This analysis allow
physical interpretation of our boundary conditions. In S
IV we solve ourchiral electric circuit equations using th
technology developed in Sec. III. Section V is devoted to
RG analysis of abulk contact. Using ourfractional scaling
analysis, we demonstrate that a nontrivial scaling expon
appears as a result of a specific boundary condition~bound-
ary conditionA). Section VI is a generalization to many bu
contacts. Some remarks on the application to SWNT a
3-2
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CONDUCTANCE OF ONE-DIMENSIONAL QUANTUM WIRES PHYSICAL REVIEW B66, 035313 ~2002!
MWNT will be found in Sec. VII. Our conclusions are dis
cussed in Sec. VIII.

II. MODEL, NOTATIONS, AND CHIRAL DENSITIES

Of importance to us in this paper is the distinction to
made between bare chiral electron densities and eigenm
chiral densities of the TLL. The bare chiral electron densit
r6

(0)(x,t) correspond to the densities of electrons created
ther at the left or right Fermi points of anoninteractingsys-
tem. The total electronic densityr(x,t) and the current den
sity j (x,t) are related tor6

(0)(x,t) as r(x,t)5r1
(0)1r2

(0) ,
j (x,t)5vF(r1

(0)2r2
(0)). In the noninteracting system the

bare chiral electron densities are indeed two independ
eigenmodes of the system:r6

(0)(x,t)5r6
(0)(x7vFt). It is,

however, no longer true in the TLL. In the interacting syste
the left- and right-moving electrons of the noninteracti
system are strongly coupled together; accordingly, the b
electronic densities are no longer chiral. In order to clar
this point we consider the harmonic Hamiltonian density
the spinless TLL,

HTLL5
u

2F1

gS ]F~x,t !

]x D 2

1gP~x,t !2G , ~1!

where we have introduced the standard phase fieldF related
to the electron density byr(x,t)5(1/Ap)@]F(x,t)/]x#, and
its conjugate canonical momentumP(x,t). u5vF /g is the
dressed velocity. Note also that the continuity equat
shows that the current density is simply:j (x,t)52(1/Ap)
3@]F(x,t)/]t#. The stationary components ofr(x,t) and
j (x,t) are the zero modes:N5*2L/2

L/2 r(x,t), J5*2L/2
L/2 j (x,t),

which obey the Fermionic selection rule (21)N5(21)J.4

Using Hamilton equations,ug P(x,t)5]F(x,t)/]t, (u/g)
3@]2F(x,t)/]x2#5@]P(x,t)/]t#, one finds immediately

S ]

]x
7

1

u

]

]t D F]F~x,t !

]x
6gP~x,t !G50. ~2!

This shows thatr6(x,t)5(1/2Ap)@]F(x,t)/]x6gP(x,t)#
are indeed chiral eigenmodes of the system:r6(x,t)
5r6(x7ut). Observing that r(x,t)5r11r2 , j (x,t)
5ul(r12r2r ), one concludes thatr1 and r2 correspond
to a different decomposition of the total density into chi
densities from the noninteracting case. These eigenmode
ral densities mix both left- and right-moving electrons, sin
the bare chiral densities~obtained wheng51) are: r6

(0)

5(1/2Ap)@]F(x,t)/]x6P(x,t)#. In terms of these eigen
mode chiral densities obeying the anomalous Kac-Moo
commutation relations, the Hamiltonian density splits in
two commuting chiral parts:H5(pu/g)r1

2 1(pu/g)r2
2

5H11H2 . The stationary component ofr6(x,t) are noth-
ing but the chiral chargesQ65*2L/2

L/2 r6(x,t).27 It is conve-
nient to introduce a vector notation for the chiral densiti
The dressed eigenmode density

rW 5Fr1

r2
G
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is related to the bare density

rW (0)5Fr1
(0)

r2
(0)G

in the matrix equation asrW 5V rW (0), where the matrix

V5
1

2 F11g 12g

12g 11gG ~3!

characterizes the fractionalization of electronic charge2e.
In the absence of applied external voltageVS2VD the

average currentI 5^ j (x,t)& is zero. In order to drive a ne
current through the sample, let us allow for independ
variations of the left and right bare chemical potentials. T
possibility to adjust them independently expresses the ch
separation of TLL. This is accomplished by adding a chem
cal potential to the Hamiltonian. But once again a distincti
should be made betweenbare chemical potentials

mW (0)5Fm1
(0)

m2
(0)G

corresponding to a variation of the bare electron densi
andeigenmodechemical potentials

mW 5Fm1

m2
G

corresponding to the eigenmode chiral densities. More p
cisely,mW (0) andmW are defined, respectively, by minimizing

HTLL2m1
(0)r1

(0)2m2
(0)r2

(0)5
up

2g
rW (0)TV2rW (0)2mW (0)TrW (0),

HTLL2m1r12m2r25
up

2g
rW TrW 2mW TrW .

Completing the square densities, one findsmW (0)

5(up/g)V2^rW (0)&, mW 5(up/g)^rW &5(up/g)V^rW (0)&.5,28

Comparing the two expressions, the relation between b
and dressed chemical potential is found to bemW 5VmW (0).

It would be worth mentioning here that in the fou
terminal conductance measurement by Picciottoet al. the re-
sistance data~Fig. 3 of Ref. 14! shows that the chemica
potentialm coupled to additional probes~probeA andB) is
neither bare nor dressed chiral chemical potentials. Inst
the additional probes seem to be coupled almost equall
both chiralities;m is coupled to the total density: we shou
rather minimize the Hamiltonian densityHTLL2mr to find
m5(m11m2)/2. If the electronic transport through th
conductor is perfectly ballistic, this chemical potentialm is
uniform throughout the conductor, which explains the data
Picciottoet al.

In the presence of an electric field the chemical poten
becomes an electrochemical potential and one may introd
the following chiral voltages:
3-3



in

a

pl
o

LL
si
n

th

al
at

a
d

i
u
fo
in

in
al
t t
o

de

h
ea

c
re
th
e
a

in
la-

s
oir

his

as

e

on
1D

this

ate

rac-
r

tion
he

e
s

e
t-
the

ed
nce

K.-I. IMURA, K.-V. PHAM, P. LEDERER, AND F. PIÉCHON PHYSICAL REVIEW B66, 035313 ~2002!
mW (0)52eVW (0)5F2eV1
(0)

2eV2
(0)G ,

mW 52eVW 5F2eV1

2eV2
G .

They are related, of course, via the relationVW 5VVW (0). Thus
the total currentI 52e^ j (x,t)& can be expressed either
terms of the bare voltagesI 52eu @1,21#rW 5(e2/h)@1,
21# VW (0) or in terms of the dressed eigenmode voltages
I 52evF @1,21#rW (0)5g (e2/h) @1,21# VW , where we
have used@1,21# V5g @1,21#. Note that we are working
in the unit where\51. These relations together withVW

5VVW (0) play a central role in later sections when the sam
is connected to the reservoirs through various boundary c
ditions.

We have summarized the Bosonized formulation of T
as well as its response to external electric field by empha
ing the difference between bare and eigenmode chiral de
ties. Let us now turn to a discussion of its implications on
transport through TLL.

III. BOUNDARY CONDITIONS AT THE END
CONTACTS — SCREENING AND EQUILIBRATION

In the approach developed by Landauer and Bu¨ttiker for
noninteracting electrons, the chiral chemical potenti
2eV1 , 2eV2 of the bulk sample are equilibrated with th
of the reservoir from which the electrons are injected:24 VS
5V1 , VD5V2 , whereas in the bulk the total currentI is
related toV1 , V2 as I 5(e2/h)(V12V2). Thus the above
boundary condition ensures the 2T SD conductance, usu
defined asGSD

(2)5I /(VS2VD), to be given by the standar
unit conductance:GSD

(2)5e2/h.
Let us now switch on the interaction. As we have seen

the last section, the conductance of the system as meas
against either the bare or eigenmode voltage yields there
different values, e.g., if the conductance is measured aga
V12V2 , this gives the conductancege2/h in the bulk,
which is reminiscent of the four-terminal measurement
FQH bar.11 In the case of the nonchiral liquid, a four-termin
measurement analogous to the one in Ref. 11 is difficul
realize, since one cannot easily manufacture electrical c
tacts which are coupled only to one of the chiral eigenmo
of TLL Hamiltonian. In the experiment by Picciottoet al. the
resistance data~Fig. 3 of Ref. 14! shows that the voltage
probes~probeA andB) are coupled almost equally to bot
chiralities. On the other hand, if the conductance is m
sured, under certain circumstances, againstV1

(0)2V2
(0) , then

it givese2/h. We believe that the value taken by the condu
tance, when the bulk sample is connected to the current
ervoirs, is a matter of coupling between the sample and
reservoirs. In the followoing we will formulate this in a mor
systematic way, i.e., in the form of boundary conditions
the endcontacts.
03531
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A. Equilibration with bare electrons — screening
by a metallic gate

Let us first consider the boundary condition discussed
Refs. 5–7 and 29–31. This boundary condition has been
beled a ‘‘radiative’’ boundary condition in Ref. 31. With thi
boundary condition the particles emitted by the left reserv
are then in equilibrium with thebare electrons:

H VS5V1
(0)5@1 0#VVW

VD5V2
(0)5@0 1#VVW ,

~4!

where the matrixV has been defined as in~3!.

Let us first recall that the conductance defined with t
boundary condition is indeede2/h independently ofg. Recall

the relation between bare and dressed voltages:VW 5VVW (0).

The bias voltageVS2VD5@1,21#VW (0) can be written as

VS2VD5@1,21#VVW 5g@1,21#VW , where we have used@1,
21# V5g @1,21#. The total currentI can be expressed
either in terms of the bare bias voltagesI 5(e2/h) @1,

21# VW (0) or in terms of the dressed eigenmode voltages

I 5g(e2/h) @1,21# VW . It then follows that the conductanc
is given byGSD

(2)5e2/h independently ofg.
Another important remark is that this boundary conditi

requires the existence of a metallic gate along the
sample.30,31 When a certain amount of chargeQ is injected
from the reservoir through anend contact, the TLL system
cannot screen this charge completetely because of
boundary condition, insteadQTLL52(12g2)Q is induced
in TLL. In order for the charge conservationQ1QTLL

1Qgate50 to be satisfied there needs to exist a metallic g
providing for a screening chargeQgate52g2Q.30,31 The ex-
istence of a metallic gate also explains a short-range inte
tion in 1D quantum wire which ensures a finite parameteg
of the TLL model. In the experiment by Taruchaet al.9 the
1D sample was indeed screened by the metallic gate.

B. Equilibration with dressed eigenmodes — no screening gate

Knowing that the boundary condition~3! requires the ex-
istence of a metallic gate one naturally asks the ques
what will be the corresponding boundary conditions in t
absence of screening by a metallic gate. TLL with finiteg
~long-range interaction cut off by the finite length of th
sample and the width of the tube! without a screening gate i
indeed realized in a SWNT.21 The boundary condition which
ensuresQ1QTLL50 with no reference to the metallic gat
is, in fact,V15VS , V25VD . The dressed eigenmode vol
ages are equilibrated with those of the reservoirs i.e.,
particles emitted from the left~right! reservoir are moving to
the right ~left! and are in equilibrium with the right~left!-
moving eigenstates of the TLL. If this naive picture is inde
the case, the conductance in terms of the voltage differe
3-4
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between the reservoirs, is obtained immediately from the
lation I 5g (e2/h)@1,21# VW , i.e., GSD

(2)5ge2/h. The con-
ductance is fully renormalized.26

C. Intermediate possibilities

Are there intermediate possibilities, i.e., situations wh
neither bare electrons nor eigenstates are in equilibrium w
the reservoir? In the case of the FQH edge mode, i.e., if
replaces in the above discussion the 1D TLL sample b
FQH bar at bulk filling factorn, it was shown in Ref. 25 tha
depending on the numberNL (NR) of left ~right! strong
pointlike contacts with the left~right! reservoir theSD con-
ductance of a FQH bar GSD varies from GSD5e2/h to
GSD5ne2/h. The first case~boundary conditionA) in which
the 2T conductance is not fractional but integral (GSD

(2)

5e2/h) corresponds to a single tunneling point contact:NL
5NR51. The second case~boundary conditionB) where the
endcontacts are in equilibrium with dressed eigenmodes c
responds to an infinite number of tunneling point conta
between each reservoir and the sample: (NL ,NR)→(`,`).
The third possibility~boundary condition C! arises in be-
tween, when there is a finite number of tunneling quant
point contacts.

Turning to the case of the quantum wire, which of the
three cases is relevant experimentally? A first model is
of the inhomogeneous TLL, in which the reservoirs are m
elized as TLL atg51 ~1D free fermions!.5–7We observe that
this model implicitly describes a transmission of the curr
through a single point contact. Furthermore, it implies
presence of a screening gate. This confirms that a si
contact between the reservoirs is not enough for equilibra
of the 1D sample with the reservoirs as we surmised, yie
ing therefore an unrenormalized conductance. A second
ries of explanations rely on the assumption that the cond
tance measured is the ratioI /Vloc of the current to a so-called
total local field, which sums a contribution from the extern
electrical field plus some response of the TLL, rather th
the ratio of the current to the external potential as usual.34 It
is then shown by a diagrammatical analysis that the lo
field is Eloc5Eext/g.35 The ratioI /Vext being assumed as i
the initial work by Kane and Fisher32 to be equal tog, this
yields an unrenormalized conductanceI /Vloc51. That analy-
sis is doubtful because experimentally the external field
fixed which means that one really measures the ratioI /Vext.
By contrast, in our approach what is measured is indeed
ratio I /Vext51, although we agree on the relationEloc
5Eext/g. Note that this follows from elementary conside
ations on chiral modes~see Sec. II!.

We stress that although the boundary conditionA seems to
be realized in the experiments when a screening gat
present, this does not bar the possibility that, in differ
setups, boundary conditionB or C might apply. In the ex-
periment by Kasumovet al.17 the isolated SWNT sample
ST1 exhibits a resistanceR which saturates at high temper
tures toR;25 kV ~see Fig. 2B of Ref. 17!. This corre-
sponds to the conductanceGSD

(2);e2/h, which is smaller by a
factor 1/4 thanGSD

(2)54e2/h expected from boundary cond
tion ~3!. Note that this experiment was done in the abse
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of screening gate, where boundary conditionB might apply.
Sinceg is typically in the range 0.2–0.3, the observed co
ductanceGSD

(2);e2/h is indeed reminiscent of the renorma
rized conductance:GSD

(2)54ge2/h.
The inhomogeneous TLL model5–7 assumes by construc

tion an injection of current through a single end contact
each reservoir. But the current might be injected throu
bulk contacts in addition to being injected throughendcon-
tacts. In further sections of this paper we address the issu
bulk contacts using the perpurbative RG analysis for b
tunneling.

IV. ONE BULK CONTACT IN THE PRESENCE
OF A LARGE BIAS CURRENT

In the following we will consider a model where th
sample is connected to the reservoir not only through theend
contacts but also through somebulk contacts. For theend
contact, depending on the presence or absence of scree
gate, the boundary conditions~A! or ~B! will be applied. We
will mainly focus on the case where the twoend contacts
impose a large stationary currentI bias in the quantum wire. In
this case the additional current injected through thebulk con-
tact can be treated as a small perturbation. We will deve
later a RG analysis which is compatible with fractionaliz
tion scheme, which will tell us the scaling behavior of th
bulk injected current. In order to utilize the results of th
fractional RG analysis, we first have to derive and solve
equations which describe ourchiral electric circuits. We will
see that the existence of a large stationary current as we
different boundary conditions play an important role in fin
ing a new exponent in the conductance formula.

A motivation of our work is based on the findings of Re
1. Following the latter work, an electron injected from
normal lead into a TLL splits into two eigenexcitation
which arefractional ~in fact, for most repulsive interaction
strengths, the correct term would beirrational!. Namely, the
two chiral eigenexcitations have charges (11g)/2, (1
2g)/2, and they propagate in opposite directions with t
corresponding chiral mode velocities.

Various authors have discussed the observability of th
irrational excitationsge.1,32,36–39The obvious suggestion i
based on electric current noise measurements.1 However, the
results of Ref. 25 suggest that the parameterg might also be
measured in a conductance experiment with many con
points, and/or possibly different bias voltages. This is w
we proceed to do below, in various situations.

Let us first consider a singlebulk contact in the middle of
the sample. Thebulk contact has the following two effect
~see Fig. 1!.

~i! Tunneling of Laughlin quasiparticles1 between the two
chiral modes. This is due to the backward scattering betw
1kF and2kF electrons. The total charge is conserved in t
process (N50,J562). When a macroscopic number o
electrons are involved in this process, a currenti back is back-
scattered from (1) chirality to (2) chirality.

~ii ! Tunneling of electrons into or out of the bulk samp
through thebulk contact, i.e., injection or ejection of elec
trons throught thebulk contact. The total charge is increase
3-5
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or decreased by 1:N561,J561, respectively, for the tun
neling of 1kF (2kF) electrons. When a currenti bulk is in-
jected through thebulk contact into the sample, it splits int
two partsi 1 andi 2 corresponding, respectively, to an eige
modes with1(2) chirality: i bulk5 i 11 i 2 .

In order to see how thebulk contacts influence the two
terminal conductance of the system, we develop below
voltage drop equations, i.e., a set of equations which de
mine the chemical potential of the system on each side of
bulk contacts. In the presence of~i! back-scattering, and~ii !
electron injection~ejection!, the voltage drop equation read

H i 12 i back5g
e2

h
~VR

12VL
1!

i 21 i back5g
e2

h
~VL

22VR
2!,

~5!

whereVL
6 andVR

6 are the electrostatic potentials of the eig
modes on each side of thebulk contact. Using the vecto
notation

iWbulk5F i 1

i 2
G , VW L5FVL

1

VL
2G , VW R5FVR

1

VR
2G ,

the voltage drop equations can be rewritten in a simpler fo
and can be treated in a systematic way,

VW R2VW L5
sziWbulk

ge2/h
2

i back

ge2/h
F1

1G , ~6!

where

sz5F1 0

0 21G .
For later convenience we introduce the following decom
sition of iWbulk :

iWbulk5 i 1kF
VF1

0G1 i 2kF
VF0

1G , ~7!

where the matrixV was defined in Eq.~4!. i 1kF
andi 2kF

are,
respectively, the currents injected from thebulk contact
through

C1kF
;eiAp [1 0] VFu1

u2
G,

or through

C2kF
;eiAp [0 1] VFu1

u2
G,

where u65u7f/g defined in terms off5F(x50),u
5Q(x50) are the values of chiral fields at thebulk contact
(x50). Noticing that@1,1# V5@1,1#, one can easily check
that the total bulk injected~ejected! current is indeedi bulk

5@1,1# iWbulk5 i 1kF
1 i 2kF

.

The total currentI L , I R on each side of thebulk contact is
related to VW L , VW R via the equations: I L5(e2/h)@1,
03531
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21# VVW L5g(e2/h)@1,21#VW L , I R5(e2/h)@1,21# VVW R

5g(e2/h)@1,21#VW R . Let us first focus on

I R2I L5g
e2

h
@1,21#S sziWbulk

ge2/h
2

i back

ge2/h
F1

1G D 5 i bulk , ~8!

where we have used Eq.~6!. The physical meaning of this
simplest equation is far from uninteresting.

~i! The total current is conserved on each side of thebulk
contact, i.e.,i back does not appear inI L2I R , reflecting the
fact that the backscattering conserves the total charge.

~ii ! Even though an electron injected from thebulk con-
tact~normal lead! splits into two fractional excitations propa
gating in the opposite directions, leading toi 12 i 25@1,
21# iWbulk5g ( i 1kF

2 i 2kF
) @see Eq.~7!#, the total current

added byiWbulk is i bulk independently ofg.
Now we connect both ends of the sample to the reserv

through either of the two boundary conditions discussed
Sec. III.

A. One bulk contact with end contacts in equilibrium
with bare electrons

Let us first consider the case where the sample is c
nected to the reservoirs via the boundary condition~3!. Us-
ing the voltage drop equation~6!, the boundary condition~3!
at theendcontacts can be written as

VS5@1 0#VVW L5@1 0#VS VW R2
sziWbulk

ge2/h
1

i back

ge2/h F1

1G D ,

VD5@0 1#VVW R5@0 1#VS VW L1
sziWbulk

ge2/h
2

i back

ge2/h F1

1G D .

~9!

Hence

VS2VD5VW R
TVF 1

21G1
i back

ge2/h
2@1 0#

VsziWbulk

ge2/h
~10!

5VW L
TVF 1

21G1
i back

ge2/h
2@0 1#

VsziWbulk

ge2/h
. ~11!

Let us first look at Eq.~11!. Recall the decomposition~7!.
Noticing thatV sz V5gsz is a diagonal matrix, one can
rewrite the bias voltageVS2VD as

VS2VD5
h

e2 S I R1
1

g
i back2 i 1kFD , ~12!

i.e.,

i 2kF
VF0

1G
in iWbulk does not contribute to Eq.~12!. In order to see the
consequence of Eq.~12! let us first consider the case:i bulk
50, i.e., electrons are neither injected nor ejected thro
3-6
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the bulk contact. In this case the total current in the prese
of the backscattered currenti back is given by I 5I L5I R
5(e2/h)(VS2VD)2(1/g) i back. It is very interesting to
compare it with the current in the absence ofbulk contact:
I max5(e2/h)(VS2VD). The result is obviously

I max2I 5
1

g
i back, ~13!

which is different from the naive expectationI max2I
5 i back, by a factor 1/g. In the derivation of Eq.~13! the
boundary condition~9! has been treated carefully withVS
andVD being fixed. Our result, Eq.~13!, which differs from
the analysis in Ref. 38, leads to an important remark on
shot-noise experiment in TLL.26

In order to see how the two-terminal conductance is
fected by thebulk contact, we connect thebulk contact to the
source~S! through an Ohmic resistancer S . In this case the
total current circulating in the system isI 5I R5@1,
21# V VW R . Therefore Eq.~12! means

I 5
e2

h
~VS2VD!2

1

g
i back1 i 1kF

. ~14!

Another remark is that in the physically interesting case
small i bulk5 i 11 i 25 i 1kF

1 i 2kF
.0, V5VS2r Si bulk where

r S is a resistance between the source andbulk contact. This
meansVD!V,VS .

When thebulk contact is connected to the drain (D), one
should use Eq.~11!. Thus the total currentI 5I L5@1,
21# V VW L can be written as

I 5
e2

h
~VS2VD!2

1

g
i back2 i 2kF

. ~15!

We will be interested in the case of smalli bulk,0, i.e., VD
,V5VD2r Di bulk!VS .

We will see in the next section that Eqs.~14! and ~15!
give rise to a nontrivial physical consequence, where we
ply to them the results of our fractional scaling analysis. T
is not only due to the specific boundary condition which
have chosen for the moment but also related to the existe
of a large stationary current. In the absence of station
currentI bias, i.e., whenVS5VD5V0, which actually implies
V15V25V1

(0)5V2
(0)5V0, the scaling behavior ofi 6kF

is

trivial: i 1kF
5 i 2kF

;6uV2V0u2D, depending on the sign o

V2V0, whereV is the electrostatic potential of thebulk con-
tact andD is the anomalous scaling dimension of a TL
electron. In the case of finite SD voltageVSÞVD , where
V1 , V2 , V1

(0) andV2
(0) are all different, we have to look into

the details of fractional decomposition and find out the sc
ing law as a function ofI bias. This is done in Sec. V below

B. One bulk contact with end contacts in equilibrium
with dressed eigenmodes

Before turning to the RG analysis ofbulk contacts, let us
briefly look at the second boundary condition discussed
Sec. III B, i.e., the case where the dressed eigenmode
03531
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ages are equilibrated with those of the reservoirs:VL
15VS ,

VR
25VD . The particles emitted from the left~right! reservoir

are moving to the right~left! and are in equilibrium with the
right ~left!-moving eigenstates of the TLL. This situatio
may be achieved in the SWNT in the absence of screen
gate. The two-terminal conductance in the present case in
absenceof bulk contacts is quantized atGSD

(2)5ge2/h. In the
case of onebulk contact connected to the source (S), the
voltage drop equation~6! implies instead of Eq.~14!

I 5g
e2

h
~VS2VD!2 i back1 i 1 , ~16!

where the total currentI is given asI 5I R5g @1,21# VW R .
When thebulk contact is connected to the drain (D), one
finds instead

I 5g
e2

h
~VS2VD!2 i back2 i 2 . ~17!

Note that in Eqs.~16! and~17! the correction due to thebulk
contact enters as eitheri 1 or i 2 in contrast to Eqs.~14! and
~15!. As a result, we will see that the leading scaling exp
nents which appear in Eqs.~16! and ~17! are different from
the ones in Eqs.~14! and ~15! and that they are simply re
lated to the anomalous scaling dimensionD of the TLL elec-
tron operator. All these issues concerning the scaling beh
ior of Eqs. ~14!–~17! will be discussed in detail in the nex
section. However the reader who is more interested in
physical consequences of the analysis in this section tha
detailed deriviation of RG equations can skip to Eqs.~26!
and ~27! and Sec. V C.

V. RG ANALYSIS FOR THE 3T CONDUCTANCE
MEASUREMENT

We are mostly interested in the leading-order correctio
to the conductance in the presence ofbulk contact under two
different boundary conditions discussed in Secs. III A a
III B. It is not difficult to realize using the standard scalin
analysis that the backscattered current is IR-relevant whe
the bulk-injected current is UV-relevant for repulsive inte
action (0,g,1), i.e., i back/(VS2VD) @ i bulk /(VS2VD)#
scales to smaller~larger! values as the SD voltageVS2VD is
increased. However, as we will see later in this section, m
precise understanding of the scaling will become neces
in the analysis of Eqs.~14!–~17!. In particular, it turns out
less trivial in a chirally separated system but essential in
discussion of conductance to identify the cutoff energy sc
L which defines the upper limit ofphysically meaningful
energy scales.

In the case of standard backscattering problem with
i bulk ,32 there are two fixed points on the RG flow diagram
usually drawn in terms of the conductanceGSD

(2) (y axis! as a
function of L (x axis!. The two fixed points are atGSD

(2)

50 (L50) and either atGSD
(2)5e2/h or at GSD

(2)5ge2/h
(L→`). Here we are interested in the latter UV~Ohmic!
limit in the presence ofi bulk . We will see that the 3T SD
conductanceGSD

(3) shows an UV-relevant deviation and inte
3-7
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polates between the standard 2T values:GSD
(2)5e2/h and

GSD
(2)5ge2/h.
We start with the Euclidian Lagrangian density for no

chiral TLL,

LTLL5
u

2F1

gS ]F

]x D 2

1gS ]Q

]x D 2G1 i
]F

]t

]Q

]x
. ~18!

We do not consider for the time being the effects ofend
contacts. On the other hand we take into account the e
tence of a stationary currentI bias. In the absence ofbulk
contact, the TLL has two chiral eigenmodes, respectively
voltagesV1 andV2 . These voltagesV1 andV2 are related
to the stationary currentI bias via I 5g (e2/h) @1,21# VW .

The bulk contact is atx50. All the Bosonic fields in-
volved in backscattering or tunneling should be underst
as those atx50. Therefore it is convenient to integrate o
the continuum degrees of freedom in Eq.~18! to obtain the
effective action atx50,

S05
1

b (
v

uvuS 1

g
uf~v!u21guu~v!u2D ~19!

5
g

2b (
v

uvu~ uu1~v!u21uu2~v!u2!, ~20!

wheref5F(x50),u5Q(x50), andu65u7f/g. In the
backscattering problem,32 u is free and eventually can b
integrated out from the effective action, but let us for t
moment keepu. We need both fields in order to treat~i!
backscattered currenti back and ~ii ! electron injection~ejec-
tion! iWbulk , on the same footing. We will see that Eq.~20! is
the suitable way of writingS0 for the latter problem.

A. Backward scattering

We first consider the backscattering problem.32 The scat-
tering potential due to the tunneling of quasiparticle read

Lback;Gback@C1kF

† C2kF
1C1kF

C2kF

† #x50

;d~x!Gbackcos~2Apf!, ~21!

i.e., u is free and can be integrated out from the effect
action. By throwing away theu part in Eq.~19!; the effective
action atx50 reduces to

Sback~L!5
1

bg (
uvu,L

uvuufL~v!u2

1Gback~L!E
0

b

dt cos~2ApfL!. ~22!

This effective theory is meaningless unless we find a suita
high-frequency cutoffL, i.e., starting from bare cutoffL0,
we integrate out the high-frequency unphysical degrees
freedom down toL. By decomposing the Bosonic fieldf in
Fourier space into fast (L2dL,v,L) and slow (0,v
,L2dL) parts and then integrating out the high-frequen
modes L2dL,v,L, one obtains the RG equation fo
03531
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Gback(L) as Gback(L)5Gback(L0)(L/L0)g21. The scaling
behavior of backscattered currenti back is deduced from the
RG equation by identifying the physicalL to be Lback
5g e(V12V2)5VS2VD so that i back;(VS2VD)2g21,
where we have chosen by conventionVS.VD . Notice that
in the high-frequency~Ohmic! limit ( VS2VD→`) the cor-
rection to the two-terminal conductance vanish
diback/d(VS2VD);(VS2VD)2(g21)→0 as long as 0,g
,1.

B. Electron injection „ejection…

For the tunneling of electron into or out of the bu
sample, we basically follow the same spirit. Through t
bulk contact atx50 electrons can tunnel into the bul
sample which has two chirally separated eigenmodes, res
tively, at voltagesV1 andV2 from the electron reservoir a
chemical potentialeV. An electron incident from this elec
tron reservoir at chemical potentialeV must be decompose
into two fractionally charged quasiparticles in order to
absorbed in the bulk sample. The incident Fermi liquid el
tron ends up in the final state with one of the two possi
electronic excitations of TLL, i.e., either

C1kF
;eiAp [1 0] VFu1

u2
G

or

C2kF
;eiAp [0 1] VFu1

u2
G,

whereV has been defined as

V5
1

2 F11g 12g

12g 11gG .
The scattering potential due to an injection or ejection
electrons atx50 is given, respectively, for the1kF and
2kF channel as

L1kF
5G1kF

@C1kF

† Cg511C1kF
Cg51

† #

;G1kF
@Cg51

† eiAp S 11g
2 u11

12g
2 u2 D1~H.c.!#, ~23!

L2kF
5G2kF

@C2kF

† Cg511C2kF
Cg51

† #

;G2kF
@Cg51

† eiAp S 12g
2 u11

11g
2 u2 D1~H.c.!#. ~24!

The total effective action is

Sbulk5
g

2bF (
uvu,L1

uvuuu1~v!u21 (
uvu,L2

uvuuu2~v!u2G
1E

0

b

dtL1kF
@u1 ,u2#1E

0

b

dtL2kF
@u1 ,u2#,

~25!

where we have introduced two frequency cutoffsL1 and
L2 , respectively, foru1 andu2 . Notice that in Eq.~25! S0
3-8
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is represented as Eq.~20!. Now we derive the RG equatio
for G1kF

(L1 ,L2) and G2kF
(L1 ,L2), using the standard

perturbative RG analysis. At leading order the two RG eq
tions are decoupled and can be treated independently.
thermore, the cutoff frequenciesL1 andL2 can be different
for the two RG equations, since available energy shells inS0
for Eqs. ~23! and ~24! can be differernt. The crucial step
therefore to find these cutoff frequencies, i.e.,L1kF

1 , L1kF

2

for G1kF
, andL2kF

1 , L2kF

2 for G2kF
. In the Appendix these

cutoffs are derived based on a microscopic analysis wh
the fractionalization of an incident electron is explicit. B
simply observing the physical processes in Eq.~23!, it is,
however, not difficult to convince ourselves that the natu
cutoffs for Eq. ~23! are L1kF

1 5L1kF

2 5e(V2V1
(0)), where

V1
(0)5@(11g)/2#eV11@(12g)/2#eV2 is the chemical po-

tential of a 1kF electron incident from two chiral eigen
modes of TLL. Thus the RG equation forG1kF

reduces to

that of a single scaling parameterL, i.e., following the same
procedure as the backscattering problem, one can find
RG equation for G1kF

(L) as G1kF
(L)5G1kF

(L0)

3(L/L0)D11/221, whereD5 1
4 (g11/g) is nothing but the

anomalous scaling dimension of a TLL electron opera
The scaling behavior of bulk injected currenti 1kF

is deduced

from the RG equation by identifying the physicalL to be
L5L1kF

1 5L1kF

2 5e(V2V1
(0)) as

i 1kF
;H ~V2V1

(0)!2D for V.V1
(0)

2~V1
(0)2V!2D for V,V1

(0) .
~26!

Note that the energy dependence of Eq.~26! is not a simple
product of two chiral components such as (V2V1)D(V
2V2)D as might be naively expected. The same argum
applies for the RG equation forG2kF

. The scaling behavior

of bulk injected currenti 2kF
is obtained as

i 2kF
;H ~V2V2

(0)!2D for V.V2
(0)

2~V2
(0)2V!2D for V,V2

(0) ,
~27!

where eV2
(0)5@(12g)/2#eV11@(11g)/2#eV2 is the

chemical potential of2kF electron. In the absence of statio
ary currentI bias, both Eqs.~26! and~27! reduce to the trivial
scaling law: i 1kF

5 i 2kF
;6uV2V0u2D, depending on the

sign of V2V0.

C. Conductances

We now turn to the discussion of the physical con
quences of Eqs.~14! and~15! and Eqs.~16! and~17!, which
correspond, respectively, to the boundary conditions
cussed in Secs. III A and III B. In Secs. V A and V B,
particular, in Eqs.~26! and ~27! we were able to relate th
bulk injected currentsi 6kF

to local energy scales in the v

cinity of the bulk contact such asV2V1
(0) or V2V2

(0) . In
order to compare this term with other contributions one
to rewrite them in terms of the source-drain voltageVS
2VD . We focus on the case where the twoend contacts
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impose a large stationary currentI bias in the quantum wire so
that ~i! the chiral symmetry of the system should be p
served;~ii ! the additional current injected through thebulk
contact can be treated as a small perturbation.

We will see that under the two boundary conditions d
cussed in Secs. III A and III B, the 3T SD conductanceGSD

(3)

interpolates between the twofixed points: GSD5e2/h and
GSD5ge2/h in the Ohmic limit. We found nontrivial scaling
exponents as a result of specific boundary condition
electron fractionalization.

1. One bulk contact with end contacts in equilibrium
with bare electrons

In the case of equilibration with bare electrons at theend
contacts~see Sec. III A!, i.e., in the case of Eqs.~14! and
~15!, due to the boundary condition~9!, V1

(0) in Eq. ~26! and
V2

(0) in Eq. ~27! can be replaced, at leading order, byV1
(0)

5VS and V2
(0)5VD , respectively. Now let us consider th

case of Eq.~14!, in which thebulk contact is connected to
the source~S! through an Ohmic resistancer S . We are
mainly interested in the caseVD!V5VS2r Si bulk,VS , i.e.,
in the case of smalli bulk.0, since this gives the first correc
tion to the ‘‘end-contact model.’’ Substituting Eq.~26! into
Eq. ~14!, one can immediately see that the contribution to
total currentI of the bulk injected current obeys a power la
with an exponent 2D. The important result of our RG analy
sis, which is carefully derived in Secs. V A and V B as we
as in the Appendix, is that this exponent appears as a po
of the voltage differenceVS2V and not of the source-drain
voltageVS2VD .

Now we have to rewrite this energy scaleVS2V in terms
of VS2VD . Let us notice thati 1kF

;2(VS2V)2D is nega-

tive and very small whenVD!V,VS since 2D5 1
2 (g

11/g)>1. On the other hand,i 2kF
;(V2VD)2D;(VS

2VD)2D gives a positive dominant contribution toi bulk com-
pensating for the negativei 1kF

to ensure a positivei bulk

5 i 1kF
1 i 2kF

. Thus the small voltage differenceVS2V

which appears in the scaling ofi 1kF
can be rewitten as a

function of the bias voltageVS2VD as VS2V; i bulk; i 2kF

;(VS2VD)2D. In other words,VS2V itself scales with the
exponent 2D in terms of the source-drain voltageVS2VD .
The combination of these two 2D ’s leads to an unusual sca
ing behavior of the conductance measured in terms of
bias voltageVS2VD :

GSD
(3)5

e2

h
2c1~VS2VD!2(g21)2c2~VS2VD!(2D)221,

~28!

wherec1 andc2 are scale-invariant positive constants. Equ
tion ~28! constitutes one of the main results of the pap
since it not only contains a new type of scaling behav
(VS2VD)(2D)221 but also justifies our model as a possib
way to interpolate between the two boundary conditions. N
tice that (2D)221>0 for 0,g<1. Equation~28! means
that even in the Ohmic regime where the backscattering
rent i back scales to zero, the two-terminal conductance in
3-9
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presence of thebulk contact can be decreased due to
bulk-injected currenti bulk and interaction (0,g,1).

In the case of thebulk contact connected to the drain (D),
i.e., Eq.~15!, one finds, of course, the same universal beh
ior as Eq.~28! as long as one focuses on the caseVD,V
!VS , i.e., the leading-order correction to the boundary c
dition ~3!.

2. One bulk contact with end contacts in equilibrium
with dressed eigenmodes

Let us now consider the second boundary condition
the end contacts:VS5VR

1 , VD5VL
2 , i.e., we discuss the

scaling behavior of Eqs.~16! and~17!. In this case, depend
ing on whether thebulk contact is connected to the source~S!
or to the drain~D! all the V’s in Eqs.~A1! and ~A2! can be
replaced either byV5V1 or by V5V2 . Then one can, of
course, replaceV1 andV2 , respectively, byVS and byVD .
SubstitutingV5V15VS , V25VD into Eqs.~A1! and~A2!,
one finds L1kF

1 5L1kF

2 5@(12g)/2#(VS2VD) as well as

L2kF

1 5L2kF

2 5@(11g)/2#(VS2VD). Equations ~26! and

~27! may also be rewritten accordingly. Taking into accou
that i 15@(11g)/2# i 1kF

1@(12g)/2# i 2kF
.0 in contrast to

the previous case,i 1kF
,0, the leading scaling behavior o

Eq. ~16! is found to be

GSD
(3)5g

e2

h
2c1~VS2VD!2(g21)1c3~VS2VD!2D21,

~29!

wherec1 andc3 are scale-invariant positive constants. Co
paring with Eq.~28!, one can observe that in Eq.~29!:

~i! The existence of the bulk current increasesGSD
(3) , indi-

cating that the correction indeed interpolates between
two limiting cases, i.e., fromGSD5ge2/h to GSD5e2/h.

~ii ! The correction due to the bulk current does not sc
in the same way. Note that the exponent of Eq.~29! is simply
related to the anomalous scaling dimension of a TLL elect
operator.

3. Remarks on energy scales

Before ending this section, we would like to make som
remarks on the energy scales where Eqs.~28! and ~29! are
valid.

~i! We have neglected the backscattering at the interf
between the 1D sample and the reservoirs. This is justi
when e(VS2VD)@Lend, whereLend is a crossover energ
associated with the quasiparticle↔electron tunneling duality
model at effective filling factorneff .

25,33

~ii ! In order for Eqs.~28! and ~29! to be valid it is also
required that backscatterings in the bulk~at thebulk contact
or due to some impurities in the bulk! can be treated pertur
batively. This situation is achieved whene(VS2VD)
@Lback, where Lback is another crossover energy sca
Lback}Gback(L0)1/(12g).32

~iii ! Finally VS2VD must be sufficiently large so that th
perturbative analysis for the electron injection~ejection! can
be justified, i.e., e(VS2VD)@Lbulk , where Lbulk
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4 (g11/g).
We have also assumed that~i! the temperatureT is suffi-

ciently low, ~ii ! the typical sizeL of the system is large
enough, so thate(VS2VD)@T,u/L should be satisfied
whereu5vF /g is the velocity of the chiral eigenmodes.

We studied the effects of onebulk contact as a leading
order correction to the two limiting cases ofend contact
model: (A) GSD5e2/h and (B)GSD5ge2/h, corresponding,
respectively, to the~A! the presence and~B! the absence of
screening by a metallic gate discussed in Sec. III. We fou

~i! In both casesGSD
(3) is not quantized even in the Ohmi

limit VS2VD→`, interpolating between the two limiting
cases: (A)GSD5e2/h and (B)GSD5ge2/h.

~ii ! The correction due to the bulk current, however, do
not scale in the same way@see Eqs.~28! and ~29!#. In the
presence of screening metallic gate, i.e., in the case of
~28!, it exhibits a pronounced scaling behavior, (VS

2VD)(2D)221, where 2D5 1
2 (g11/g).1 (2D51) for

~non!interacting case.
In terms of the RG picture introduced at the beginning

this section, UV-relevant deviation from the standard tw
fixed points, (A) GSD5e2/h and (B)GSD5ge2/h, may sug-
gest a possibility of new continuous fixed points between
above two values.

VI. GENERALIZATION TO MANY BULK CONTACTS

In this section we continue the analysis of thebulk con-
tacts. Some of the electrons are injected into the nanot
through NL bulk contacts in the left reservoir~others are
through theendcontact!. Both of them contribute to the tota
current I which flows through the sample. Similarly in th
right reservoir some electrons are ejected from the nano
not only at both ends but also through one of theNR bulk
contacts. In brief we generalize the analysis ofone bulkcon-
tact tomany bulkcontacts~see Fig. 2!.

This model is clearly inspired by the work of Chamon a
Fradkin. The curious result derived in Ref. 25 is that t
conductance is not monotonous as a function ofNR andNL
~see Sec. III C!, and has a sort of damped oscillatory beha
ior which depends on the parities ofNR and NL .40 So we
were curious to determine if such a nonmonotonous beha
would also be predicted in the case of the nonchiral TLL, a
if the renormalized conductance could be experimenta
measured in the case of many contacts, as opposed to
situation found in Refs. 5–7. As will appear below, our a
swer is that the nonchiral TLL does not behave like a ch
one as far as the number of contacts is concerned, altho
the conductance results are affected when weak contact

FIG. 2. Many bulk contacts.
3-10
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applied in the bulk of the sample strongly connected to r
ervoir through its end points.

Another motivation behind this type of model is the e
periment by Kasumovet al.,17 where they found a clear sig
nature of superconduting behavior in isolated SWN
samples as well as nanotube ropes. In this experiment
isolated SWNT sampleST1 exhibits a resistanceR which
saturates at high temperatures toR;25 kV ~see Fig. 2B of
Ref. 17!. As has been already mentioned, this correspond
the conductanceGSD;e2/h, which is smaller by a factor 1/4
thanGSD54e2/h expected from the boundary condition~3!.
In this experiment the nanotubes are embedded~melt! into
the reservoirs at both ends. Given the finite radius of
nanotube (;1.5 nm) and possible roughness of the ele
trode surface from which the nanotube emerges, it is leg
mate to question the validity of single point contact mod
What is hoped here is that our model with a weak bulk c
tact is a first step towards a proper description of this exp
mental situation.

A. Many bulk contacts with end contacts in equilibrium
with bare electrons

ConsiderNR1NL independentbulk contactsNL of which
are connected to the source~S! and the rest of which to the
drain (D). The boundary condition~9! is generalized to

H VS5V2NL

1(0)5@1 0# VVW 2NR

VD5VNR

2(0)5@0 1# VVW NL
.

~30!

Let us focus on thenth bulk contact (n51, . . . ,NR),
which is, by definition, connected to the drain (D). The volt-
age equations atnth bulk contact can be written asi n

1

2 i n
back5g(e2/h)(Vn21

1 2Vn
1), i n

21 i n
back5g(e2/h)(Vn

2

2Vn21
2 ). i n

1 ( i n
2) is a currentinjected into the TLL eigen-

mode with 1(2) chirality. The definition of eigenmode
voltagesVn

6 are given in the figure. Using the vector notatio

iWn5F i n
1

i n
2G , VW n5FVn

1

Vn
2G ,

one may rewrite the voltage drop equation as

VW n212VW n5
sziWn

bulk

ge2/h
2

i n
back

ge2/h
F1

1G .
The total current circulating in the system is defined aI

5I 05@1,21#VVW 0. Using recursively the voltage equatio
one finds

VNR
5VW 01 (

n51

NR S sziWn
bulk

ge2/h
2

i n
back

ge2/h
F1

1G D .

Following the same procedure, one will find a similar re
tion for the left contact:

V2NL
5VW 02 (

n51

NL S sziW2n
bulk

ge2/h
2

i 2n
back

ge2/h
F1

1G D .
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Using recursively these voltage drop equations, one fi

VS5@1 0#VFVW 02 (
n51

NL S sziW2n
bulk

ge2/h
2

i 2n
back

ge2/h
F1

1G D G ,

VD5@0 1#VFVW 01 (
n51

NR S sziWn
bulk

ge2/h
2

i n
back

ge2/h
F1

1G D G .

Thus the bias voltageVS2VD can be expressed in terms o
VW 0 , i 6n

back and iW6n as

VS2VD5@1,21#VVW 01 (
n51

NL i 2n
back

ge2/h
1 (

n51

NR i n
back

ge2/h

2@1 0#Vsz(
n51

NL iW2n
bulk

ge2/h
2@0 1#Vsz(

n51

NR iWn
bulk

ge2/h
.

~31!

Recall thatVszV5gsz . Using the decomposition analo
gous to Eq.~7!, one can see thati

2n
2kF (n51, . . . ,NL) and

i n
1kF (n51, . . . ,NR) do not contribute to Eq.~31!. The total

current circulating in the system isI 5I 05@1,21#VVW 0.
Since we are interested in the first correction to Eq.~3!, we
consider the case where all thebulk contacts connected to th
source~S! are at voltagesVD,V!VS and all thebulk con-
tacts connected to the drain~D! are at voltagesVD!V
,VS . If this is the case, the leading scaling behavior of t
conductance in terms of the bias voltageVS2VD obtained
from Eq. ~31! reduces to Eq.~28! independently ofNR and
NL . Equation~28!, and therefore the nonchiral version o
Ref. 40, does not exhibit an oscillatory behavior as a fu
tion of (NR ,NL). Nevertheless, Eq.~28! indeed interpolates
between the two boundary conditions discussed in Sec.
which was also the case in Ref. 40.

B. Many bulk contacts with end contacts in equilibrium
with dressed eigenmodes

In the case of equilibration with dressed eigenmodes
boundary condition~30! should be replaced byVS5V2NR

1 ,

VD5VNL

2 . Using the same voltage drop equations, one

easily see, using the decomposition analogous to Eq.~7!, that
i 2n

2 (n51, . . . ,NR) andi n
1 (n51, . . . ,NL) do not contrib-

ute to the total currentI 5I 05g(e2/h)@1,21#VW 0. Then the
leading scaling behavior of the conductance in terms of
bias voltage reduces to Eq.~29! independently ofNR and
NL .

VII. TLL WITH INTERNAL DEGREES OF FREEDOM —
APPLICATION TO SWNT AND MWNT

Up to now we have considered for simplicity spinle
TLL model, where 2D5 1

2 (g11/g). In order to apply the
above results, in particular, Eqs.~28! and~29!, for nanotubes
let us recall the following properties of SWNT and MWNT
The SWNT have four conducting channels: two subbands3
3-11
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~charge, spin! at room temperature, indicating an expect
quantized conductance:GSD54e2/h.

The experimental data for conductance measuremen
SWNT and MWNT display a variety of results. The ballist
transport in carbon nanotubes was observed in MW
showing the conductanceGSD;2e2/h.22 This implies that in
MWNT only one of the two subbands contributes to the el
tronic transport. In the case of SWNT, the observed cond
tance exhibits fluctuations versus Fermi energy approac
to the theoretically expected value:GSD54e2/h as the tem-
perature is lowered.16

Let us now focus on the case of SWNT. The spinless T
theory studied in earlier sections should be generalized
acquire 23254 flavorsf 5c1,c2,s1,s2. The four chan-
nels are obtained from combining charge~c! and spin~s!
degrees of freedom as well as symmetric (1) and antisym-
metric (2) linear combinations of the two Fermi point
Correspondingly we must introduce four TLL paramete
gc1 ,gc2 ,gs1 ,gs2 . The scaling dimensionD of TLL elec-
tron operator can be written, for example, in terms of th
TLL parameters asDSWNT5

1
16 ( f(gf11/gf). Whereas the

charge conductanceGSD is determined only bygc1 , i.e.,
GSD54gc1e2/h, as was the case for TLL with spin.41 In any
case one can verify by carefully investigating the effect
Coulomb interaction in SWNT~Ref. 21! that the interaction
gives rise to a significant renormalization only forgc1 ,
whereasgf;1 for f 5c2,s1,s2 ~neutral modes!. Thus the
TLL parameterg for SWNT is defined asg5gc1 , which is
estimated to be typically in the range 0.2–0.3.

To summarize, one has to make the following repla
ments in order to apply Eqs.~28! and~29! for SWNT: ~i! The
anomalous scaling dimensionD of TLL electron operator
should be replaced byDSWNT5

1
16 (g11/g)1 3

8 . ~ii ! The
Ohmic conductance in equilibrium either with bare electro
(GSD

(2)5e2/h) or with dressed eigenmodes (GSD
(2)5ge2/h)

should be multiplied by 4, in order to account for the numb
of conducting channels. Apart from these changes, howe
the main claims of the preceding sections remain unchan

VIII. DISCUSSION AND CONCLUSIONS

In the first half of this paper we argued that in the case
standard end-contact geometry, the two-terminal cond
tanceGSD

(2) in the Ohmic limit can be eitherGSD
(2)5e2/h or

GSD
(2)5ge2/h depending on the boundary conditions. In o

point of view, different boundary conditions apply in th
presence or absence of a metallic gate close to the
sample.

It is plausible that the boundary conditions studied
Refs. 5–7 and 29–31 are realized when a gate is pre
close enough to the wire. This is suggested by the agreem
between the result of Ref. 9 and the theoretical analysis u
boundary conditions such that bare reservoir electrons
not in equilibrium with dressed eigenmode of the TLL, b
with bare particles inside the TLL.

On the other hand, more recent experiments suggest t
variety of other boundary conditions are realiz
experimentally.12–14,17It is tempting to interpret the result o
Kasumovet al.17 as a consequence of boundary conditio
03531
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such that bare reservoir electrons are in equilibrium w
dressed TLL eigenmodes.

The absence of a gate in this experiment suggests
long-range interactions inside the carbon nanotube are ins
mental in bringing about this different boundary condition.
our analysis is correct, a check would be to measure
nanotube conductance in the presence of a metallic gate
ficiently close to the nanotube compared with the sam
length for the interactions to be screened. Then we wo
expectGSD

(2)54e2/h. It is striking that the result of Kasumov
et al., if interpreted asGSD54ge2/h, whereg would be the
TLL interaction parameter, yields a valueg;0.25 in very
good agreement with the theoretical value calculated in R
21. Other experiments12–14 clearly suggest other boundar
conditions.26

Now the nature of two fixed points was understood
different boundary conditions at theendcontacts by making
clear distinction between thebare and dressed eigenmod
densities in the Bosonized formulation. In the second hal
the paper we proposed a system of 1D sample couple
bulk contacts as well asendcontacts where we found qual
tatively different behaviors of the conductance, e.g., differ
scaling dimensions, as a consequence of a large statio
current. As a result, we found that the addition ofbulk con-
tacts interpolates between the two fixed points. The
analysis for this problem has been developed by taking
account explicitly thefractionalizationof electronic charge.

We studied in particular the leading scaling behavior
the corrections to the two-terminal conductanceGSD

(3) in the
presence of bulk-injected current in~A! the presence and~B!
the absence of screening by a metallic gate. We found in b
casesGSD

(3) is not quantized even in the ohmic limitVS2VD

→`, interpolating between the two limiting cases: (A)GSD
5e2/h and (B)GSD5ge2/h. The correction due to the bulk
current, however, does not scale in the same way@see Eqs.
~28! and ~29!#. In the case of Eq.~28!, corresponding to the
equilibration withbareelectrons~Sec. III A!, it exhibits, as a
consequence of this particular boundary condition~3! or
more precisely Eq.~9!, a pronounced scaling behavior: (VS

2VD)(2D)221, where 2D5 1
2 (g11/g). The understanding o

strong-coupling limit for thebulk contact was left for future
study. The discussion on the shot-noise spectrum und
variety of boundary conditions discussed in this paper is
viously of interest. This will be discussed in a forthcomin
publication.26
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APPENDIX: RG ANALYSIS FOR FRACTIONAL
PARTICLES

We derive the RG equation forG1kF
(L1 ,L2) and

G2kF
(L1 ,L2) starting from the effective action~25! with

Eqs. ~23! and ~24!. At leading order the two RG equation
3-12
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are decoupled and can be treated independently. The c
frequenciesL1 and L2 can be different for the two RG
equations, since available energy shells inS0 for Eqs. ~23!
and ~24! can be different. The crucial step was therefore
find these cutoff frequencies, i.e.,L1kF

1 , L1kF

2 for G1kF
, and

L2kF

1 , L2kF

2 for G2kF
.

When an electron incident from the electron reservoir
chemical potentialeV tunnels into the TLL, it must be de
composed into two fractionally charged quasiparticles in
der to be absorbed in the bulk sample. This final state T
electron has either of the following energies:

eV1
(0)5@1 0#VFeV1

eV2
G , eV2

(0)5@0 1#VFeV1

eV2
G ,

respectively, forG1kF
and for G2kF

. In contrast, the energy
decomposition of the incident Fermi-liquid electron is qu
arbitrary, i.e.,

eV5@1 0#VFeV18

eV28
G

for G1kF
and

eV5@0 1#VFeV18

eV28
G

for G2kF
, whereV18 (V28 ) is a part of the electrostatic po

tential attributed to the1(2) chirality. The only constraint
is that bothV18 2V1 and V28 2V2 should have the sam
sign, i.e., they are positive~negative! when the current is
injected ~ejected!. Taking into account this constraint, on
can count the available energy shells for tunneling. Th
procedures are schematically explained in Fig. 3.

In Fig. 3 we first focus on the RG equation forG1kF
, i.e.,

for the tunneling of1kF electron. On the left it is shown tha
the final state TLL electron has either of the following en
gies:

eV1
(0)5@1 0#VFV1

V2
G , eV2

(0)5@0 1#VFV1

V2
G ,

respectively, forG1kF
and forG2kF

. On the right we focus on

the tunneling of1kF electron incident from thebulk contact

FIG. 3. Available energy shells for the tunneling into TLL.
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at chemical potentialeV. We consider the caseV1
(0),V

,V1 . The energy of the incident elecron is decompos
into each chirality as

eV5@1 0#VFeV18

eV28
G .

In order for a current to be injected,V18 >V1 must be satis-
fied. When V18 5V1 , V2V28 5@(11g)/(12g)#(V12V).
Starting from this value,V28 can take values down toV2 .
When V28 reaches this limit, where we redefine the ener
decomposition of the incident electron as

eV5@1 0#VFeV19

eV29
G ,

therefore, V29 5V2 , the other V19 satisfies V19 2V5@(1
2g)/(11g)#(V2V2). The cutoff energy scales which ap
pear in the RG equation forG1kF

are determined asL1kF

1

5@(11g)/2#e(V19 2V1), L1kF

2 5@(12g)/2#e(V28 2V2).

Thus we were able to derive on microscopic grounds
energy cutoffs which we have used to find Eq.~26!,

L1kF

1 5
11g

2
eF12g

11g
~V2V2!2~V12V!G5e~V2V1

(0)!,

L1kF

2 5
12g

2
eF ~V2V2!2

11g

12g
~V12V!G5e~V2V1

(0)!,

~A1!

i.e., L1kF

1 5L1kF

2 . Once these energy scales are determin

one can employ the RG analysis forG1kF
.

The same argument applies for the RG equation forG2kF
.

The cutoff frequencies for the tunneling of2kF electron are
obtained as

L2kF

1 5
12g

2
eF11g

12g
~V2V2!2~V12V!G5e~V2V2

(0)!,

L2kF

2 5
11g

2
eF ~V2V2!2

12g

11g
~V12V!G5e~V2V2

(0)!.

~A2!

Hence the RG equation forG2kF
takes the same form as tha

of G1kF
except that one should identifyL to be L5L2kF

1

5L2kF

2 5V2V2
(0) .
3-13
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1K.-V. Pham, M. Gabay, and P. Lederer, Phys. Rev. B61, 16 397
~2000!.

2V.J. Goldman and B. Su, Science267, 1010 ~1995!; V.J. Gold-
man, I. Karakurt, Jun Liu, and A. Zaslavsky, Phys. Rev. B64,
085319~2001!.

3L. Saminadayar, D.C. Glattli, Y. Jin, and B. Etienne, Phys. R
Lett. 79, 2526~1997!; R. de-Piccitio, M. Reznikov, M. Heiblum
V. Umansky, G. Bunin, and D. Mahalu, Nature~London! 389,
162 ~1997!.

4F.D.M. Haldane, Phys. Rev. Lett.45, 1358~1980!; J. Phys. C14,
2585 ~1981!.

5I. Safi and H.J. Shulz, Phys. Rev. B52, R17 040~1995!; see also
I. Safi and H.J. Shulz, inQuantum Transport in Semiconducto
Submicron Structures, edited by B. Kramer~Kluwer Academic
Press, Dordrecht, 1995!.

6D.L. Maslov and M. Stone, Phys. Rev. B52, R5539~1995!.
7V.V. Ponomarenko, Phys. Rev. B52, R8666~1995!.
8W. Apel and T.M. Rice, Phys. Rev. B26, 7063~1982!.
9S. Tarucha, T. Honda, and T. Saku, Solid State Commun.94, 413

~1995!.
10X.G. Wen, Phys. Rev. B41, 12 838~1990!; Adv. Phys.44, 405

~1995!.
11D.C. Tsui, H.L. Stormer, and A.C. Gossard, Phys. Rev. Lett.48,

1559 ~1982!.
12A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W

Baldwin, and K.W. West, Phys. Rev. Lett.77, 4612~1996!.
13R. de Picciotto, H.L. Stormer, A. Yacoby, L.N. Pfeiffer, K.W

Baldwin, and K.W. West, Phys. Rev. Lett.85, 1730~2000!.
14R. de Picciotto, H.L. Stormer, L.N. Pfeiffer, K.W. Baldwin, an

K.W. West, Nature~London! 411, 51 ~2001!.
15M. Bockrath, D.H. Cobden, J. Lu, A.R. Rinzler, R.E. Smalley,

Balents, and P.L. McEuen, Nature~London! 397, 598 ~1999!.
16J. Kong, E.Y. Yenilmez, T.W. Tombler, W. Kim, H. Dai, R.B

Laughlin, L. Liu, C.S. Jayanthi, and S.Y. Wu, Phys. Rev. Le
87, 106801~2000!.

17A.Yu. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Boucia
I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, C. Journet, and M
Burghard, Science284, 1508~1999!.

18R. Saito, G. Dresselhaus, and M.S. Dresselhaus,Physical Prop-
erties of Carbon Nanotubes~Imperial College Press, London
1998!.

19C. Dekker, Phys. Today52~5!, 22 ~1999!.
20S. Iijima, Nature~London! 354, 56 ~1991!.
21R. Egger, A. Bachtold, M.S. Fuhrer, M. Bockrath, D.H. Cobde

and P.L. McEuen, inInteracting Electrons in Nanostructures,
edited by R. Haug and H. Schoeller~Springer-Verlag, Berlin,
2002!.

22S. Frank, P. Poncharal, and W.A. de Heer, Science280, 1744
~1998!.

23R. Egger and A.O. Gogolin, Phys. Rev. Lett.79, 5082 ~1997!;
C.L. Kane, L. Balents, and M.P.A. Fisher,ibid. 79, 5086~1997!.

24R. Landauer, Philos. Mag.21, 863 ~1970!; M. Büttiker, Phys.
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