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We discuss the conductance of quantum wires in terms of the Tomonaga-LuttingerTiguigdtheory. We
use explicitly the charge fractionalization scheme which results from the chiral symmetry of the model. We
suggest that results of the standard two-termi2dl) conductance measurement depend on the coupling of
TLL with the reservoirs and can be interpreted as different boundary conditions at the interfaces. We propose
a three-terminal3T) geometry in which the third contact is connected weakly to the bulk of TLL subjected to
a large bias current. We develop a renormalization-gri@@) analysis for this problem by taking explicitly
into account the splitting of the injected electronic charge into two chiral irrational charges. We study in the
presence obulk contact the leading-order corrections to the conductance for two different boundary condi-
tions, which reproduce in the absencebafk contact, respectively, the standard 2T source-di@») conduc-
tanceG&)=e?/h andG&=ge?/h, whereg is the TLL charge interaction parameter. We find that under these
two boundary conditions for thend contacts the 3T SD conductan@) shows an UV-relevant deviation
from the above two values, suggesting new fixed points in the Ohmic limit. Nontrivial scaling exponents are
predicted as a result of electron fractionalization.
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[. INTRODUCTION numbers associated, respectively, with the total charge and
the persistent current of the systém.is the so-called TLL
Interacting electrons in one spatial dimension are one oparameter, which contains all the relevant information of the
the best examples of strongly correlated fermionic systemsglectron-electron interactio. takes the value, €g<1 for
They are usually discussed in terms of the Tomonagaa Standard repulsive interaction, whergas1 for noninter-
Luttinger liquid (hereafter TLL. The latter has allowed us to acting 1D fermions.
discuss in a precise fashion the breakdown of the Fermi- The main question to be asked is whether or not these
liquid picture which is a good description of interacting elec-irrational charge excitations are observable. Consider an
trons in broad band metallic three-dimensio(®D) systems. electron incident in the middle of TLL either of infinite
In one dimension, there are no quasiparticles correspondirigngth or sufficiently far away from the boundaries so that
to a free electron with charge e and spin 1/2: the electron the chiral symmetry is preserved. The injected electron splits
Green’s function exhibits no quasiparticle pole, the densityinto two eigenexcitations which have irrational charggs
of states at the Fermi level vanishes at the Fermi level, ang (1+9)/2, Q_=(1—g)/2 (or vice versg and propagate in
behaves as a power law with noninteger exponents as a funopposite directions. This picture is quite reminiscent of a
tion of energy; last but not least, spin degrees of freedom artree-terminal conductance measurement in which the third
dynamically split from charge degrees of freedom. Bothterminal is attached to the middle of quantum wi(€@\'s)
propagate at different velocities. connected to the sourd®) and drain(D) (see Fig. 1 The
The TLL is usually understood in terms of the density main findings of this paper are that the standard conductance
fluctuations at finite wave vector, and zero wave vector “zeromeasurement done in this geometry does provide some in-
modes.” Recently, however, taking advantage of the chiraformation on the charge fractionalization. More precisely, we
symmetry, a different approach of the TLL Hamiltonian suc-
ceeded in formulating its physics in terms of generaitg-

I
tional excitationsi.e., excitations which may have dynami- W
i+

cally independent irrational charges or spifhis constitutes
a generalization of the Laughlimactional charge excitations Vi Vi
which have been observed in fractional quantum ieQH) i- Q iback Vi
3 . . . . . VS D
sample$® More precisely, the irrational excitations have _
been shown to be eigenstates of the TLL Hamiltonian in the D W AATATA)

chiral representation. Their wave functions are formally iso-
morphic to Laughlin wave functions for FQH states. We con- FIG. 1. A bulk contact in the presence of a large stationary
sider hereafter a spinless TLL for simplicity. The irrational o\, rent|, . The chiral symmetry of the TLL isot destroyed by
charges carried by the irrational excitations are created ifhe bk contact. At thebulk contact a curreni,,. is backscattered
chiral pairs with one excitation moving to the left and the from (+) chirality to (~) chirality due to the tunneling of Laughlin
other to the right; the charges carried by each possible pair Qfuasiparticle. A net currenify is injected through theulk contact
states form a 2D manyfoldQ. ,Q_), where Q. =3(N into the sample. As soon as it is injected into the TLL sample, it
+gJ) with N and J being integers having the same parity: splits into two part$, andi_ corresponding, respectively, to one of
(—=1)N=(—-1)’. N andJ are standard zero-mode quantum the TLL eigenmodes with-(—) chirality.
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consider a source-draifSD) conductanceG(sgg, under a rates at low temperaturén the presence of a sufficiently
large bias currentt,;,s circulating through the QW's between intense magnetic fiejdto a factor of about 0.25 times the
SandD, and in thepresenceof bulk-injected current,,,.  €xPected unrenormalized value. In our route to suggesting
The third terminal, or a bulk contact, at voltayeis then  €xperimental ways of observing irrational excitations, we

connected by an Ohmic wire either to tBer to theD. We  had to spend some time trying to understand this variety of
consider the case of small,, i.e., the case in which results. Our understanding, as explained in the body of this

—eVis close to the chemical potential of the reservoir frompPaper, is that two terminal conductance measurements should
which i, is provided. We find under these circumstancegndeed display this variety of results, which may be under-
G is subjected to a change characterized by unusual sca$tood as expressing a variety of boundary conditions at the
ing exponents which take different values dependingsgg  endcontacts.

in the absenceof iy,,. In Sec. Ill we will explain at length The main effort of this paper is devoted to studying more
that different values 063 can be interpreted as different involved experimental geometries than two terminal ones. To
boundary conditions at thend contacts toS andD. In this ~ our knowledge the only way to describe injection of elec-

paper, we highlight two specific boundary conditions whichtrons in a QW through a wedulk contact is to resort to the

Correspond tG(SZD): e2/h ((_> boundary Conditiom) and irrational excitation piCtUre, which should be taken into ac-

G@=ge?/h (< boundary conditiorB). In these terms we count in the theoretical description of this process. Thus ex-
found a nontrivial scaling exponent 42— 1 [see Eq(28)]  amining electron injection, from onévarious weak bulk
under a specific boundary conditigh whereas a standard contacts) in a QW connected to reservoirs at its ends, should
scaling exponent 2—1 [see Eq.(29)] for boundary condi- lead to specific experimental predictions, as we argue in the
tion B, which is simply related to the anomalous scalingbody of this work. We were stimulated in that direction by
dimensionA of the TLL electron operator. This result is a the work of Chamon and Fradkffi.That work deals with the
remarkable consequence of electron fractionalization under BQH effect and examines the conductance of a FQH d&e
stationary bias current,,s. Sec. II1Q. In the case of the nonchiral liquid, one cannot
A motivation of this paper is therefore closely related toeasily manufacture electrical contacts which inject electrons
the so-called “conductance puzzle” of the QW: an apparenbnly in one chiral eigenmode of the TLL Hamiltonian den-
contradiction among different theoretical and experimentakity, so that one cannot use the results of Ref. 25. One must
results for the two-terminal2T) conductanceGY) in the  actually solve the problem of the nonchiral TLL with many
Ohmic regime~’ In spite of the theoretical prediction that |eads.
the interaction should renormalize the conductanc@% We derive new scaling exponents associated with the cur-
=ge?/h,® one of the first conductance measurements on gents injected fronbulk contacts. More generally we discuss
QW by Tarucheet al® has found a nonrenormalized univer- effects which are derived using the irrational excitation pic-
sal conductanc&$)= e?/h for an interacting system. On the ture, allowing measurements gthrough multiterminal con-
contrary, in the case of the fractional quantum H&QH) ductance measurements. Deviations from the unrenormalized
edge mode, an example of a chiral TELthe Hall conduc- perfect conductance value are predicted in the Ohmic limit.
tance, usually measured in a four-terminal geometry, is maxim the renormalization-grou(RG) picture this naturally sug-
mally renormalized at a topological numb&y,=ve?/h.**  gests a possibility of new intermediate fixed points. We have
It turns out that a rapidly growing number of experimentalnot been able, though, to prove that our results warigue
results is now available, on the conductance of Q#®$!  predictions of the irrational excitation scheme, so that experi-
and of carbon nanotubé¥:'’ Carbon nanotubé%'® have  mental observation of, say, the new scaling exponent men-
been expected since their discov@rp be ideal 1D quantum tioned above would be at best a plausibility argument in
wires. The single-walled nanotub€SWNT) have four con- favor of this scheme. The discussion of shot-noise experi-
ducting channels indicating an expected quantized conduanents is also left for a future publicatidh.
tance:Ggp=4e?/h.?! The ballistic transport in carbon nano-  This paper is organized as follows: Sec. Il describes the
tubes was observed in only one channel of multiwalledmodel we are studying. That section is an attempt to clarify
nanotubeSMWNT’s) with Ggp~2e?/h.?? The temperature the notion of the chemical potential féinteracting eigen-
and bias voltage dependence of the conductance reported imodes, as opposed to the chemical potential for bare elec-
Ref. 15 do suggest that this system is a strongly correlatettons. Section 1l discusses equilibration of 1D conductors
1D electronic liquid. The TLL theory for carbon nanotubes with the 3D reservoirs: in actual experiments, which are the
has suggested an interaction parametén the range 0.2— particles which equilibrate with the reservoirs: the bare elec-
0.3. trons, or the eigenmodes of the TLL? This analysis allows a
Recent data on the conductance of QW and carbon nanghysical interpretation of our boundary conditions. In Sec.
tubes display a variety of results. In Refs. 12 and 13, signifilV we solve ourchiral electric circuit equations using the
cant deviations from the quantized val@d/h were ob- technology developed in Sec. lIl. Section V is devoted to the
served. In Ref. 16, the observed conductance exhibitRG analysis of éulk contact. Using oufractional scaling
fluctuations versus Fermi energy approaching the unrenoanalysis, we demonstrate that a nontrivial scaling exponent
malized theoretical valuee#/h as the temperature is low- appears as a result of a specific boundary conditmund-
ered. On the other hand, in the experiment by Kasumowary conditionA). Section VI is a generalization to many bulk
et all’ the isolated SWNT exhibits a resistance which satucontacts. Some remarks on the application to SWNT and
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MWNT will be found in Sec. VII. Our conclusions are dis- is related to the bare density

cussed in Sec. VIII.

II. MODEL, NOTATIONS, AND CHIRAL DENSITIES

Of importance to us in this paper is the distinction to be,
made between bare chiral electron densities and eigenmoﬂfé
chiral densities of the TLL. The bare chiral electron densities
p(f)(x,t) correspond to the densities of electrons created ei-

ther at the left or right Fermi points of @oninteractingsys-

tem. The total electronic densip(x,t) and the current den-

sity j(x,t) are related tOp(rO)(x,t) as p(x,t)=p(f)+p(_0),
j(x,t)=vF(p(+°)—p(_°)). In the noninteracting system the

bare chiral electron densities are indeed two independerﬁ\j

eigenmodes of the systemi?(x,t)=pO(xFvet). It is,

however, no longer true in the TLL. In the interacting system

o [0
p( )= 0)
pe

the matrix equation ag=Q p©, where the matrix

1
T2

1+g 1-g
1-g 1+g

()

characterizes the fractionalization of electronic charge

In the absence of applied external voltage—Vp the
erage current=(j(x,t)) is zero. In order to drive a net
rrent through the sample, let us allow for independent

variations of the left and right bare chemical potentials. The

possibility to adjust them independently expresses the chiral

the left- and right-moving electrons of the noninteractingSeparaﬁOrl of TLL. This is accomplished by adding a chemi-

system are strongly coupled together; accordingly, the bar

Eal potential to the Hamiltonian. But once again a distinction

electronic densities are no longer chiral. In order to clarifyshould be made betwedrare chemical potentials

this point we consider the harmonic Hamiltonian density of

the spinless TLL,

2

u
+oll(x,1)?

TLLZE

, D

1/ 0D (x,t)
gl ox
where we have introduced the standard phase felélated

to the electron density by(x,t) = (1/\/7)[ 3P (x,t)/dx], and
its conjugate canonical momenturh(x,t). u=vg/g is the

dressed velocity. Note also that the continuity equation

shows that the current density is simpjy(x,t)= — (1/\/m)
X[dd(x,t)/dt]. The stationary components pfx,t) and
j(x,t) are the zero modedi=""2,,p(x,t), I=""2,j(x.1),
which obey the Fermionic selection rule-@)N=(—1)"4
Using Hamilton equationsyg TI(x,t)=d®(x,t)/at, (u/g)
X[ 92D (x,t)/9x%]=[ oIl (x,t)/at], one finds immediately

( g 1 a)[acb(x,t)

P +gll(x,t)|=0. (2

ax uat
This shows thap.. (x,t) = (1/2\7)[ dD(x,t)/dx = gII(x,t)]
are indeed chiral eigenmodes of the system:(x,t)
=p.(xFut). Observing that p(x,t)=p,+p_, j(Xt)
=ul(p,—p_r), one concludes thai, andp_ correspond

|~

M(O):
(0)

m

corresponding to a variation of the bare electron densities
and eigenmodechemical potentials

Mo
7.

>

n=

corresponding to the eigenmode chiral densities. More pre-
cisely, #(® and . are defined, respectively, by minimizing

um.

Mo — n@p©@ = 1,0 30 OO OO,
um. . .-
Hiu =P —p-p-= 5P P 1P
g
Completing the square densities, one findg(®

=(umlg)Q%p?),  pu=(umlg)(p)=(uml/g)Q(p®).>?*
Comparing the two expressions, the relation between bare

to a different decomposition of the total density into chiraland dressed chemical potential is found tozbe Q..
densities from the noninteracting case. These eigenmode chi- It would be worth mentioning here that in the four-
ral densities mix both left- and right-moving electrons, sinceterminal conductance measurement by Picciettal. the re-

the bare chiral densitieobtained wheng=1) are: p{®

sistance datdFig. 3 of Ref. 14 shows that the chemical

= (12ym) [ oD (x,t)/ax=TI(x,t)]. In terms of these eigen- potentialu coupled to additional probgprobeA andB) is
mode chiral densities obeying the anomalous Kac-Mood)Peither bare nor dressed chiral chemical potentials. Instead

commutation relations, the Hamiltonian density splits into

two commuting chiral partsiH=(wu/g)p> + (wulg)p>

=H, +H_ . The stationary component pf, (x,t) are noth-

ing but the chiral charge®.. = [“"2,p-(x,t).?" It is conve-

nient to introduce a vector notation for the chiral densities

The dressed eigenmode density

P+
p—

-

p:

the additional probes seem to be coupled almost equally to
both chiralities;u is coupled to the total density: we should
rather minimize the Hamiltonian density; , —up to find
pu=(u.+u_)2. If the electronic transport through the
conductor is perfectly ballistic, this chemical potentialis
uniform throughout the conductor, which explains the data of
Picciottoet al.

In the presence of an electric field the chemical potential
becomes an electrochemical potential and one may introduce
the following chiral voltages:
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_ e\/(f) A. Equilibration with bare electrons — screening
20 = _ a\f0)— .
M eV RVOLE by a metallic gate
Let us first consider the boundary condition discussed in
_ev Refs. 5-7 and 29-31. This boundary condition has been la-
u=—eV= "l beled a “radiative” boundary condition in Ref. 31. With this
—eV_ boundary condition the particles emitted by the left reservoir

are then in equilibrium with théare electrons:

They are related, of course, via the relatir QV(®. Thus
the total current = —e(j(x,t)) can be expressed either in

terms of the bare voltages=—eu [1,—1]p=(e¥h)[1, Ve=VP=[1 0]QV
—1] VO or in terms of the dressed eigenmode voltages as Vp=V@=[0 1]QV,
l=—eve [1,-1]p@=g (e¥h) [1,—1] V, where we
have usedll,—1] Q=g [1,—1]. Note that we are working
in the unit wherei=1. These relations together Wit
=0V play a central role in later sections when the sampld-€t us first recall that the conductance defined with this
is connected to the reservoirs through various boundary corboundary condition is indeeef/h independently ofl. Recall

ditions. the relation between bare and dressed voltagesQV(®).

We have summarized the Bosonized formulation of TL,LThe bias voltageVs—Vp=[1,— 1]\7(0) can be written as

as well as its response to external electric field by emphasiz- 2 -
ing the difference between bare and eigenmode chiral dens¥s~ Vo =[1,~1]1€2V=g[1,~1]V, where we have used,

ties. Let us now turn to a discussion of its implications on the~ 1] =g [1,—1]. The total current can be gxpressed
transport through TLL. either in terms of the bare bias voltagés-(e“/h) [1,
—1] V© or in terms of the dressed eigenmode voltages as

I=g(e¥h) [1,—1] V. It then follows that the conductance
is given byG{&)=e?/h independently of.
Another important remark is that this boundary condition
In the approach developed by Landauer andtiBer for ~ requires the existence of a metallic gate along the 1D
noninteracting electrons, the chiral chemical potentialsample®®®! When a certain amount of char@is injected
—eV,, —eV_ of the bulk sample are equilibrated with that from the reservoir through aend contact, the TLL system
of the reservoir from which the electrons are injecté¥s  cannot screen this charge completetely because of this
=V, Vp=V_, whereas in the bulk the total currehis  houndary condition, instea@+,, = —(1—g?)Q is induced
related toV ., , V_ asl=(e?h)(V,—V_). Thus the above in TLL. In order for the charge conservatio@+Qr,,
boundary co(r;gjltlon ensures the 2T SD conductance, usually Qqat=0 to be satisfied there needs to exist a metallic gate
defined asGgp=1/(Vs—Vp), to be given by the standard providing for a screening charg@ga = —0%Q.3%31 The ex-
unit conductanceG{3=e?/h. istence of a metallic gate also explains a short-range interac-
Let us now switch on the interaction. As we have seen injon in 1D quantum wire which ensures a finite parameter
the last section, the conductance of the system as measurglthe TLL model. In the experiment by Taruckaal?® the

against either the bare or eigenmode voltage yields thereforep sample was indeed screened by the metallic gate.
different values, e.g., if the conductance is measured against

V,—V_, this gives the conductancge?’’h in the bulk,

which is reminiscent of the four-terminal measurement ing. Equilibration with dressed eigenmodes — no screening gate
FQH bar*! In the case of the nonchiral liquid, a four-terminal

measurement analogous to the one in Ref. 11 is difficult to Knowing that the boundary conditiai3) requires the ex-
realize, since one cannot easily manufacture electrical constence of a metallic gate one naturally asks the question
tacts which are coupled only to one of the chiral eigenmodesvhat will be the corresponding boundary conditions in the
of TLL Hamiltonian. In the experiment by Picciotit al.the  absence of screening by a metallic gate. TLL with firgte
resistance datéFig. 3 of Ref. 14 shows that the voltage (long-range interaction cut off by the finite length of the
probes(probeA andB) are coupled almost equally to both sample and the width of the tupwithout a screening gate is
chiralities. On the other hand, if the conductance is meaindeed realized in a SWN& The boundary condition which
sured, under certain circumstances, agaiffSt—V(®  then  ensuresQ+ Q=0 with no reference to the metallic gate

it givese?/h. We believe that the value taken by the conduc-is, in fact,V, =Vs, V_=Vp. The dressed eigenmode volt-
tance, when the bulk sample is connected to the current regges are equilibrated with those of the reservoirs i.e., the
ervoirs, is a matter of coupling between the sample and thparticles emitted from the leftight) reservoir are moving to
reservoirs. In the followoing we will formulate this in a more the right (left) and are in equilibrium with the rightieft)-
systematic way, i.e., in the form of boundary conditions atmoving eigenstates of the TLL. If this naive picture is indeed
the end contacts. the case, the conductance in terms of the voltage difference

4

where the matrix2 has been defined as {8).

IIl. BOUNDARY CONDITIONS AT THE END
CONTACTS — SCREENING AND EQUILIBRATION
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between the reservoirs, is obtained immediately from the reef screening gate, where boundary condit®might apply.
lation 1=g (e?/h)[1,—1] V, i.e., G&=ge*h. The con- Sincegis typically in the range 0.2—0.3, the observed con-

ductance is fully renormalize®d. ductanceG@~e?/h is indeed reminiscent of the renorma-
rized conductances)=4ge?/h.
C. Intermediate possibilities The inhomogeneous TLL model assumes by construc-

. , S L tion an injection of current through a single end contact for
Are there intermediate possibilities, i.e., situations wherg,5cn reservoir. But the current might be injected through

neither bare electrons nor eigenstates are in equilibrium with ;i contacts in addition to being injected throughd con-
the reservoir? In the case of the FQH edge mode, i.e., if ONgycts. |n further sections of this paper we address the issue of

replaces in the above discussion the 1D TLL sample by &k contacts using the perpurbative RG analysis for bulk
FQH bar at bulk filling factow, it was shown in Ref. 25 that tunneling.

depending on the numbed; (Ng) of left (right) strong
pointlike contacts with the leftright) reservoir theSD con-

ductance of a FQH bar G, varies from Ggp=€%/h to IV. ONE BULK CONTACT IN THE PRESENCE
Ggp=re?/h. The first caséboundary conditiorA) in which OF A LARGE BIAS CURRENT
the 2T conductance is not fractional but integrab{} In the following we will consider a model where the

=e?/h) corresponds to a single tunneling point cont&tt:  sample is connected to the reservoir not only througretit
=Ngr=1. The second cageoundary conditioi) where the  contacts but also through sonbellk contacts. For thend
endcontacts are in equilibrium with dressed eigenmodes Corcontact, depending on the presence or absence of Screening
responds to an infinite number of tunneling point contactsyate, the boundary conditiori8) or (B) will be applied. We
between each reservoir and the samphé; (Ng) —(,%).  will mainly focus on the case where the tvemd contacts
The third possibility (boundary condition Carises in be-  impose a large stationary currdnf,sin the quantum wire. In
tween, when there is a finite number of tunneling quantunthis case the additional current injected throughtiti con-
point contacts. tact can be treated as a small perturbation. We will develop
Turning to the case of the quantum wire, which of thesejater a RG analysis which is compatible with fractionaliza-
three cases is relevant experimentally? A first model is thafion scheme, which will tell us the scaling behavior of this
of the inhomogeneous TLL, in which the reservoirs are modyylk injected current. In order to utilize the results of this
elized as TLL ag=1 (1D free fermions>~"We observe that  fractional RG analysis, we first have to derive and solve the
this model implicitly describes a transmission of the currentequations which describe oahiral electric circuits. We will
through a single point contact. Furthermore, it implies thesee that the existence of a large stationary current as well as
presence of a screening gate. This confirms that a singlgifferent boundary conditions play an important role in find-
contact between the reservoirs is not enough for equilibratiofhg a new exponent in the conductance formula.
of the 1D sample with the reservoirs as we surmised, yield- A motivation of our work is based on the findings of Ref.
ing therefore an unrenormalized conductance. A second s&- Following the latter work, an electron injected from a
ries of explanations rely on the assumption that the conduciormal lead into a TLL splits into two eigenexcitations
tance measured is the ratib/, of the current to a so-called which arefractional (in fact, for most repulsive interaction
total local field, which sums a contribution from the externalstrengths, the correct term would etional). Namely, the
electrical field plus some response of the TLL, rather thanwo chiral eigenexcitations have charges+Hd)/2, (1
the ratio of the current to the external potential as ug‘hﬂl _g)/z, and they propagate in Opposite directions with the
is then shown by a diagrammatical analysis that the loca¢orresponding chiral mode velocities.
field is Ejoc=Eex/9.% The ratiol /V,, being assumed as in  various authors have discussed the observability of those
the initial work by Kane and Fish&rto be equal tag, this jrrational excitationsgge.l*2%-%The obvious suggestion is
yields an unrenormalized conductan¢¥,.= 1. That analy-  pased on electric current noise measuremehtswever, the
sis is doubtful because experimentally the external field isesults of Ref. 25 suggest that the paramgtetight also be
fixed which means that one really measures the 1d#Q,;. ~ measured in a conductance experiment with many contact
By contrast, in our approach what is measured is indeed thgoints, and/or possibly different bias voltages. This is what
ratio 1/Veq=1, although we agree on the relatidf,.  we proceed to do below, in various situations.
=Eex/g. Note that this follows from elementary consider- et us first consider a singleulk contact in the middle of
ations on chiral modetsee Sec. )l the sample. Théulk contact has the following two effects
We stress that although the boundary condiisseems to  (see Fig. 1
be realized in the experiments when a screening gate is (i) Tunneling of Laughlin quasiparticlebetween the two
present, this does not bar the possibility that, in differentchiral modes. This is due to the backward scattering between
setups, boundary conditioB or C might apply. In the ex-  + k. and—k electrons. The total charge is conserved in this
periment by Kasumoet all’ the isolated SWNT sample process K=0,J=+2). When a macroscopic number of
ST, exhibits a resistancB which saturates at high tempera- electrons are involved in this process, a curiigggis back-
tures toR~25 Kk (see Fig. 2B of Ref. 17 This corre-  scattered from ) chirality to (—) chirality.
sponds to the conductan@g~e?/h, which is smallerby a (i) Tunneling of electrons into or out of the bulk sample
factor 1/4 tharG(S2D’=4e2/h expected from boundary condi- through thebulk contact, i.e., injection or ejection of elec-
tion (3). Note that this experiment was done in the absencérons throught thdulk contact. The total charge is increased
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or decreased by N=*+1J=*1, respectively, for the tun- _ 1] Q\7L:g(e2/h)[1 _ 1]\7L ln=(e%/h)[1,—1] 9\7R
neling of + ke (—kg) electrons. When a curreigy is in- (@/h)[1—1]V L’et Us fir,st focUS on '
jected through théulk contact into the sample, it splits into 9 ' R

two partsi , andi _ corresponding, respectively, to an eigen- o2 of i 1
modes with+ (—) chirality: iy =i, +i_. =l =g—[1,— 1]( z bulk bZCk D =ipuks (8
In order to see how thbulk contacts influence the two- h ge’/h  ge?/h|l

e S e v g ere e hve used E65. The physical meaing of i
9 P €q P d simplest equation is far from uninteresting.

mine the chemical potential of the system on e_ach S|de of the (i) The total current is conserved on each side oftthti

bulk contacts. In the presence @j back-scattering, andi) L . .

electron injection(ejectior), the voltage drop equation reads contact, 1€ pacy does not appear i — g, reflecting the
' fact that the backscattering conserves the total charge.

e2 (ii) Even though an electron injected from thelk con-
iy —ipack= gF(Vg —Vf) tact(normal leadl splits into two fractional excitations propa-
) (5) gating in the opposite directions, leading ito—i_=[1,

i7+iback:9%(V[—V§), —1]ibu|k:ag (i+kp_i—kp) [see Eq.(7)], the total current
added byi i IS ipuk independently ofy.

whereV| andVy are the electrostatic potentials of the eigen  Now we connect both ends of the sample to the reservoirs

modes on each side of tHaulk contact. Using the vector through either of the two boundary conditions discussed in

notation Sec. Il
v
Vi

it

> V. — Vo A. One bulk contact with end contacts in equilibrium
! buik= R rYRT with bare electrons

the voltage drop equations can be rewritten in a simpler form L€t us first consider the case where the sample is con-
and can be treated in a systematic way nected to the reservoirs via the boundary conditi®n Us-

ing the voltage drop equatiq), the boundary conditio(B)

r i 1 at theendcontacts can be written as
Vo Vo — Ozlbulk  'back } ©)
R VL™ — 5, T 5, ’ >
gefih geinit Ve=[1 0]QV, =[1 on(\7 Ol buk - Toack | 4
Whel’e S_[ ] L_[ ] R gezlh ge2/h 1 ’
1 0 b ; 1
— - > Ozlpuk  back
g,— . = = —
For later convenience we introduce the following decompo- ©
sition of i p: Hence
) 1 0 1 o)
: . . oT back z! bulk
I puk=1 +kFQ 0 +1 —kFQ[ 1} ’ (7) VS_ VD = VRQ{ -1 + m - [ 1 OJW (10)
where the matrix} was defined in Eq4). i, _andi__are, ) Qo
. . i oyl
respectively, the currents injected from tieilk contact =\T _back ~77z bulk
through iy |* ge?/h [0 1] ge?/h (11)

Let us first look at Eq(11). Recall the decompositiof¥).
Noticing thatQ o, Q=go, is a diagonal matrix, one can
rewrite the bias voltag¥s—Vp as

04
0_

\P+kFNeN? [10] @

or through
O+ V—V—h(l+li — i ) (12
v, ~ g7 [0 1] Q{GJ’ ST VDT 2| 'R g back™ I +kg |+
F

where 0.= 0% ¢/g defined in terms of¢p=d(x=0),6 €.

=0 (x=0) are the values of chiral fields at thelk contact 0

(x=0). Noticing thatf 1,1] ©=[1,1], one can easily check i Q }

that the total bulk injectedejected current is indeed 1

= (12 =Tk i _ ~in i py does not contribute to Eq12). In order to see the
The total current, , I on each side of theulkcontactis  consequence of Eq12) let us first consider the casis,x
related to V,, Vg via the equations:l =(e*/h)[1, =0, i.e., electrons are neither injected nor ejected through
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the bulk contact. In this case the total current in the presencages are equilibrated with those of the reservoits=Vs,

of the backscattered currenp,y is given by =1 =lg V5 =V,. The particles emitted from the leftight) reservoir
=(e*/h)(Vs—Vp)—(1/9) ipack. It is very interesting to are moving to the rightleft) and are in equilibrium with the
compare it with the current in the absenceboflk contact:  right (left)-moving eigenstates of the TLL. This situation

I max= (€°/h)(Vs—Vp). The result is obviously may be achieved in the SWNT in the absence of screening
gate. The two-terminal conductance in the present case in the
oL absenceof bulk contacts is quantized &2=ge?/h. In the
Imax I I'back: (13) sD

case of onebulk contact connected to the sourc8) ( the

which is different from the naive expectatioha,—| voltage drop equatiof6) implies instead of Eq(14)
2

=ipack, DY a factor 1g. In the derivation of Eq(13) the e
boundary condition9) has been treated carefully witig |=gF(VS—VD)—iback+i+, (16)
andVp being fixed. Our result, Eq13), which differs from

the analysis in Ref. 38, leads to an important remark on the . .o the total curreritis given asl =lg=g [1,~1] V.

shot-noise experiment in TLE . . When thebulk contact is connected to the draiD), one
In order to see how the two-terminal conductance is af-

fected by thebulk contact, we connect thaulk contact to the finds instead

source(S) through an Ohmic resistaneg. In this case the e?

total current circulating in the system i$=Ig=[1, I=gF(V5— Vp) —ipack—1— - a7
—1] Q Vg. Therefore Eq(12) means

Note that in Eqs(16) and(17) the correction due to thieulk
contact enters as either ori_ in contrast to Eqs(14) and
(15). As a result, we will see that the leading scaling expo-

) ) ) ) i nents which appear in Eq6l6) and(17) are different from
Another remark is that in the physically interesting case ofihe ones in Eqs(14) and (15) and that they are simply re-

e? 1 _
|:F(VS_VD)_§'back+'+kF- (14

small ipy=i4+i-=iy i >0, V=Vs=Trgpuc Where  |ateq to the anomalous scaling dimensibrof the TLL elec-
rsis a resistance between the source batk contact. This  tron operator. All these issues concerning the scaling behav-
meansVp<V<Vg. ior of Egs.(14)—(17) will be discussed in detail in the next

When thebulk contact is connected to the draiD), one  section. However the reader who is more interested in the
should use Eq.(11). Thus the total current =1 =[1, physical consequences of the analysis in this section than a
—1] Q V, can be written as detailed deriviation of RG equations can skip to E@)

and(27) and Sec. VC.
e? 1 _
=1 Vs~ Vo)~ g 'back ke (19 V. RG ANALYSIS FOR THE 3T CONDUCTANCE

. . . . . MEASUREMENT
We will be interested in the case of smal],,<0, i.e.,Vp

<V=Vp—rpipu<Vs. We are mostly interested in the leading-order corrections
We will see in the next section that Eq44) and (15  to the conductance in the presencéufk contact under two
give rise to a nontrivial physical consequence, where we apdifferent boundary conditions discussed in Secs. IllA and
ply to them the results of our fractional scaling analysis. Thiglll B. It is not difficult to realize using the standard scaling
is not only due to the specific boundary condition which weanalysis that the backscattered current is IR-relevant whereas
have chosen for the moment but also related to the existendbe bulk-injected current is UV-relevant for repulsive inter-
of a large stationary current. In the absence of stationarpction (0<g<1), i.e., ipaer/(Vs—Vp) [ipuk/(Vs—Vp)]
currentl s, i.€., whenVg=Vp=V,, which actually implies  scales to smalleflargen values as the SD voltagés— Vp, is
V,=V_=VO=v®=y, the scaling behavior of.,_is  increased. However, as we will see later in this section, more
~i|V_VO|2A’ depending on the sign of precise understandlng of the scaling WI|| becc_)me necessary
in the analysis of Eqs(14)—(17). In particular, it turns out
less trivial in a chirally separated system but essential in the
discussion of conductance to identify the cutoff energy scale

trivial; i +kF: i —Ke
V—V,, whereV is the electrostatic potential of theilk con-
tact andA is the anomalous scaling dimension of a TLL

electron. Irgo;[he caf,oe): of f|n|te_ SD voltaghs# Vo, Whe_re A which defines the upper limit gphysically meaningful
V., V_, VvV’ andVY’ are all different, we have to look into energy scales.

the details of fractional decomposition and find out the scal- |, the case of standard backscattering problem without
ing law as a function of ;. This is done in Sec. V below. i, 22 there are two fixed points on the RG flow diagram,
. . o usually drawn in terms of the conductar@ézD) (y axis) as a
B. One bulk czx:::c;r\év;tshezn;gc;nn;a;;sésm equilibrium TBCti&n_(g)Aargg i’i‘tf)érT:tg(tz")"f ef;)/(ﬁdofc’;?té(%rf fz(szD)
= = sp= so=9e7/h
Before turning to the RG analysis bfilk contacts, let us (A —®). Here we are interested in the latter U®hmio
briefly look at the second boundary condition discussed idimit in the presence of,,,. We will see that the 3T SD
Sec. Il B, i.e., the case where the dressed eigenmode voltonductanc&s) shows an UV-relevant deviation and inter-
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polates between the standard 2T valu 23=e2/h and  TpalA) as Tpaad A) =T pacd Ag) (A/Ag)9 L. The scaling

G(Szgzgez/h. behavior of backscattered currant, is deduced from the
We start with the Euclidian Lagrangian density for non-RG equation by identifying the physical to be A pa
chiral TLL, =g eV.—V_)=Vg—Vp so0 that ip,a(Vs—Vp)?
where we have chosen by conventidg>Vp . Notice that
Cu[1fo®\?  [00)2] oD 90 in the high-frequencyOhmid limit (Vs—Vp— ) the cor-
T2 gl ax 9o 1197 o 18 rection to the two-terminal conductance vanishes:

. . . dipac/d(Vs— Vp)~(Vs—Vp)?©@ Y—-0 as long as &
We do not consider for the time being the effectsepid - 22 (Vs=Vp)~(Vs~Vp) - 9 9

contacts. On the other hand we take into account the exis-
tence of a stationary current;,s. In the absence obulk
contact, the TLL has two chiral eigenmodes, respectively, at
voltagesV, andV_ . These voltage¥, andV _ are related For the tunneling of electron into or out of the bulk
to the stationary curren;,cvial=g (e%h) [1,—1] V. sample, we basically follow the same spirit. Through the

The bulk contact is atx=0. All the Bosonic fields in- bulk contact atx=0 electrons can tunnel into the bulk
volved in backscattering or tunneling should be understoogample which has two chirally separated eigenmodes, respec-
as those ak=0. Therefore it is convenient to integrate out tively, at voltagesv.. andV_ from the electron reservoir at

the continuum degrees of freedom in Eg8) to obtain the ~chemical potentiabV. An electron incident from this elec-
effective action ak=0, tron reservoir at chemical potentiaV must be decomposed

into two fractionally charged quasiparticles in order to be

1 1 ) ) absorbed in the bulk sample. The incident Fermi liquid elec-

SOZE % | §|¢(“’)| +9/0(w)] 19 tron ends up in the final state with one of the two possible
electronic excitations of TLL, i.e., either

B. Electron injection (ejection)

:% S Jol(16:(0) 46 ()], (20 Va7 00 ol |

where =P (x=0),0=0(x=0), and .= 0+ ¢/g. In the  or
backscattering problerit, 6 is free and eventually can be ,
integrated out from the effective action, but let us for the W~V [0 1] Q{ 0*}
moment keepd. We need both fields in order to trefi) ke m
backscattered currerp,q, and (i) electron injection(ejec-  \yhereQ has been defined as

tion) Tbu|k, on the same footing. We will see that EQ0) is

the suitable way of writinds, for the latter problem. 1

1+g 1-g
@=3

1-g 1+g

A. Backward scattering ) ) L o
, ) ) - The scattering potential due to an injection or ejection of
We first consider the backscattering problénThe scat-  gjactrons atx=0 is given, respectively, for the-kg and

tering potential due to the tunneling of quasiparticle reads — ke channel as

t T
~ + _
Loack Toacd Wik ¥ -t Wi ¥ — k=0 £+kF:F+kF[‘PT+kF‘I’g:1+‘I'+kF‘I’;:1]
~ 8(X)T pacic0g 2\ ), (21) _1+g. | 1-g
- paal®” _ ~To [V €T 0 (He)), (29)
i.e., 0 is free and can be integrated out from the effective
action. By throwing away thé part in Eq.(19); the effective _ + +
action atx=0 reduces to L e e N

. —(1—g 1+9
_t 2 ~F-kF[‘P$:1e'“”(T”+*T”fH(H.c.)]. (24)
Soacl M)=55 2 |olloa(o)

The total effective action is

2 lollow(@)?+ 2 oll6-(w)f?
|w|<A lw[<A_

This effective theory is meaningless unless we find a suitable p p

high-frequency cutoffA, i.e., starting from bare cutoff\,

we integrate out the high-frequency unphysical degrees of " fo 7Lkl 6+.6-1% fo 7Lyl 0+.6-]
freedom down to\. By decomposing the Bosonic fielfl in 25
Fourier space into fastA—dA<w<A) and slow (Kw

<A —dA) parts and then integrating out the high-frequencywhere we have introduced two frequency cutoffs and
modes A —dA<w<A, one obtains the RG equation for A _, respectively, ford, and6_. Notice that in Eq(25) S,

B
T A) fo drcog2ymdy). (22

Sbulkz%
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is represented as E¢R0). Now we derive the RG equation
for I'yy (A, A_) andT'_ (A, ,A_), using the standard

PHYSICAL REVIEW B56, 035313 (2002

impose a large stationary currdgt,sin the quantum wire so
that (i) the chiral symmetry of the system should be pre-

perturbative RG analysis. At leading order the two RG equaserved;(ii) the additional current injected through thelk
tions are decoupled and can be treated independently. Fugontact can be treated as a small perturbation.

thermore, the cutoff frequencies, andA _ can be different
for the two RG equations, since available energy shel&)in
for Egs.(23) and (24) can be differernt. The crucial step is
therefore to find these cutoff frequencies, iAikF, Ay

for F+kp’ andAko, A:kF for F,kF. In the Appendix these

We will see that under the two boundary conditions dis-
cussed in Secs. Il A and Ill B, the 3T SD conductarzg)
interpolates between the twiixed points Ggp=e?/h and
Gsp=g€?/h in the Ohmic limit. We found nontrivial scaling
exponents as a result of specific boundary condition and
electron fractionalization.

cutoffs are derived based on a microscopic analysis where

the fractionalization of an incident electron is explicit. By
simply observing the physical processes in E2f), it is,

1. One bulk contact with end contacts in equilibrium
with bare electrons

however, not difficult to convince ourselves that the natural

cutoffs for Eq. (23 are AiszA;sz e(V—V®), where

v=[(1+g)/2]eV, +[(1—g)/2]eV_ is the chemical po-
tential of a +kg electron incident from two chiral eigen-
modes of TLL. Thus the RG equation fﬂ,kF reduces to

that of a single scaling parametér, i.e., following the same

In the case of equilibration with bare electrons at ¢nel
contacts(see Sec. Il A, i.e., in the case of Eqg14) and
(15), due to the boundary conditia®), V(¥ in Eq. (26) and
V(@ in Eq. (27) can be replaced, at leading order, W
=Vs and V9=V, respectively. Now let us consider the
case of Eq(14), in which thebulk contact is connected to

procedure as the backscattering problem, one can find th[ﬁe source(S) through an Ohmic resistances. We are

RG equation for F+kF(A) as F+kF(A)=F+kF(AO)
X(AIA)2 Y271 where A= %(g+1/g) is nothing but the

mainly interested in the casé,<V=Vg—rg,u<Vs, i.e.,
in the case of small,,; >0, since this gives the first correc-

anomalous scaling dimension of a TLL electron operatoriion to the “end-contact model.” Substituting E¢6) into

The scaling behavior of bulk injected curreimi;(F is deduced

from the RG equation by identifying the physical to be
A=AL =A% =e(V-VD) as

V-V
—(VP-v)2

for V>V(+°)

(26)
for V<V,

k™

Note that the energy dependence of E2f) is not a simple
product of two chiral components such a¥ V. )*(V

Eq. (14), one can immediately see that the contribution to the
total currentl of the bulk injected current obeys a power law
with an exponent &. The important result of our RG analy-
sis, which is carefully derived in Secs. VA and VB as well
as in the Appendix, is that this exponent appears as a power
of the voltage differenc&s—V and not of the source-drain
voltageVg—Vp .

Now we have to rewrite this energy scAlg—V in terms
of Vs—Vp. Let us notice that,, ~—(Vs—V)** is nega-

—V_)* as might be naively expected. The same argumerfive and very small whenVp<V<Vs since 24=3(g

applies for the RG equation fd?_kF. The scaling behavior
of bulk injected Current,kF is obtained as

(V=V©O)22  for v>v©
iy~ 2
kT (VO for vav©) @7
where eV9=[(1—-g)/2]eV, +[(1+g)/2]leV_ is the

chemical potential of- kg electron. In the absence of station-
ary currentl ,;,s, both Eqs(26) and(27) reduce to the trivial
scaling law: i, =i, ~*[V—Vq|**, depending on the
sign of V—V,,.

C. Conductances

We now turn to the discussion of the physical conse-

guences of Eq914) and(15) and Eqs(16) and(17), which

+1/g)=1. On the other handj . ~(V—Vp)**~(Vs
—Vp)?4 gives a positive dominant contribution itg,, com-
pensating for the negativia+kF to ensure a positivey
=i+kF+i,kF. Thus the small voltage differenc¥/s—V
which appears in the scaling d)ﬁ'kF can be rewitten as a
function of the bias voltag®s—Vp as VS—V~ibu,k~i,kF
~(Vs—Vp)?2. In other wordsVs—V itself scales with the
exponent A in terms of the source-drain voltadg—Vy .
The combination of these twoA?s leads to an unusual scal-
ing behavior of the conductance measured in terms of the
bias voltageVs—Vp:

e2

3)_
6@~ -

_ 2
h C1(Vs—Vp)20™ D —cy(Vg—Vp) A1

(28)

correspond, respectively, to the boundary conditions diswherec, andc, are scale-invariant positive constants. Equa-
cussed in Secs. IllIA and IlIB. In Secs. VA and VB, in tion (28) constitutes one of the main results of the paper,
particular, in Egs(26) and (27) we were able to relate the since it not only contains a new type of scaling behavior

bulk injected current:i;tkF to local energy scales in the vi- (Vs— VD)(zA)Z,l but also justifies our model as a possible

cinity of the bulk contact such a¥—Vv® or V—Vv@  In

way to interpolate between the two boundary conditions. No-

order to compare this term with other contributions one hasice that (2)2—1=0 for 0<g<1. Equation(28) means

to rewrite them in terms of the source-drain voltage
—Vp. We focus on the case where the twad contacts

that even in the Ohmic regime where the backscattering cur-
rentip,c Scales to zero, the two-terminal conductance in the
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presence of théoulk contact can be decreased due to the 1=l Vi v, Vil
bulk-injected current,,,,c and interaction (&2g<<1). - i

In the case of théulk contact connected to the draiD], Vo /\3 ol M vy M
i.e., Eq.(15), one finds, of course, the same universal behav- / > g!_/Qi'mk /Q v
ior as Eq.(28) as long as one focuses on the cage<V n v
<Vg, i.e., the leading-order correction to the boundary con- Vi oo Vili Vo
dition (3).

FIG. 2. Many bulk contacts.

2. One bulk contact with end contacts in equilibrium
with dressed eigenmodes xrikF(AO)zl(lsz), A=1(g+1/g).

Let us now consider the second boundary condition for We have also assumed th@at the temperaturd is suffi-
the end contacts:Vs=Vg, Vo=V, i.e., we discuss the ciently low, (ii) the typical sizeL of the system is large
scaling behavior of Eqg16) and(17). In this case, depend- enough, so thate(Vs—Vp)>T,u/L should be satisfied,
ing on whether théulk contact is connected to the sout&  whereu=uvg/g is the velocity of the chiral eigenmodes.
or to the drain(D) all the V’s in Egs.(A1) and(A2) can be We studied the effects of orsulk contact as a leading-
replaced either b=V, or by V=V_. Then one can, of order correction to the two limiting cases ehd contact
course, replac¥, andV_ , respectively, b}/s and byVy.  model (A) Ggp=e€?/h and B)Gsp=ge?/h, corresponding,
SubstitutingV=V, =Vg, V_=Vjp into Egs.(A1) and(A2),  respectively, to th¢A) the presence an@) the absence of
one finds AikF:AlkF:[(l_g)/z](Vs— Vp) as well as screening by a meta(léi)c gate discussed in Sec. Ill. We found,
AT =A", =[(1+9)/2](Vs—Vp). Equations (26) and {l) In both case«_GSD is not quantized even in the.Oh_mlc
F F ] . o limit Vg—Vp—oo, interpolating between the two limiting
(27) may also be rewritten accordingly. Taking into account. qas- A)Gep=e?/h and B)Gep=geh.
thati, =[(1+9)/2]i+y +[(1—9)/2]i >0 in contrast to (i) The correction due to the bulk current, however, does
the previous casd#kF<O, the leading scaling behavior of not scale in the same wdgee Eqs(28) and (29)]. In the
Eq. (16) is found to be presence of screening metallic gate, i.e., in the case of Eq.
(28), it exhibits a pronounced scaling behaviorVg(
—Vp)@? 1 where A=1(g+1lg)>1 (2A=1) for
(nonjinteracting case.
(29 In terms of the RG picture introduced at the beginning of
this section, UV-relevant deviation from the standard two
wherec, andc; are scale-invariant positive constants. Com-fixed points, &) Ggp=e?/h and B)Gsp=ge*/h, may sug-
paring with Eq.(28), one can observe that in EQ9): gest a possibility of new continuous fixed points between the
(i) The existence of the bulk current increaéés%, indi-  above two values.
cating that the correction indeed interpolates between the
two limiting cases, i.e., fronGsp=ge?/h to Ggp=e?/h.
(ii) The correction due to the bulk current does not scale VI. GENERALIZATION TO MANY BULK CONTACTS
in the same way. Note that the exponent of &%) is simply
related to the anomalous scaling dimension of a TLL eIectror,E
operator.

—¢1(Vs—Vp)2O0 Dt cy(Vg—Vp)24 L,

In this section we continue the analysis of thalk con-
acts. Some of the electrons are injected into the nanotube
through N bulk contacts in the left reservoifothers are
through theendcontacj. Both of them contribute to the total
currentl which flows through the sample. Similarly in the

Before ending this section, we would like to make someright reservoir some electrons are ejected from the nanotube
remarks on the energy scales where H@8) and (29) are  not only at both ends but also through one of tg bulk
valid. contacts. In brief we generalize the analysi®oé bulkcon-

(i) We have neglected the backscattering at the interfaceact tomany bulkcontacts(see Fig. 2
between the 1D sample and the reservoirs. This is justified This model is clearly inspired by the work of Chamon and
whene(Vs—Vp)>Aqng, WhereAq,qis a crossover energy Fradkin. The curious result derived in Ref. 25 is that the
associated with the quasipartieteslectron tunneling duality conductance is not monotonous as a functiomNgfand N
model at effective filling factowg.2>32 (see Sec. Il ¢ and has a sort of damped oscillatory behav-

(i) In order for Egs.(28) and (29) to be valid it is also ior which depends on the parities bf; and N, .*° So we
required that backscatterings in the bk thebulk contact  were curious to determine if such a nonmonotonous behavior
or due to some impurities in the bulkan be treated pertur- would also be predicted in the case of the nonchiral TLL, and
batively. This situation is achieved wher(Vs—Vp) if the renormalized conductance could be experimentally
> Apacke Where Ay, iS another crossover energy scale: measured in the case of many contacts, as opposed to the
Apac T pac( A ) Y~ 9) 32 situation found in Refs. 5—7. As will appear below, our an-

(iii) Finally Vs—Vp must be sufficiently large so that the swer is that the nonchiral TLL does not behave like a chiral
perturbative analysis for the electron injecti@jection can  one as far as the number of contacts is concerned, although
be justified, i.e., e(Vs—Vp)>A,, Where Ay  the conductance results are affected when weak contacts are

3. Remarks on energy scales
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applied in the bulk of the sample strongly connected to res- Using recursively these voltage drop equations, one finds
ervoir through its end points.

Another motivation behind this type of model is the ex- L N[ g, iPulkjback Ty
periment by Kasumoet al,'” where they found a clear sig- Vs=[1 0]Q| Vo~ T 1} :
nature of superconduting behavior in isolated SWNT - n=11gevh geh :
samples as well as nanotube ropes. In this experiment the - Ng sbulk - back ;
isolated SWNT sampl&T, exhibits a resistanc® which Vp=[0 1]Q|V,+ (Uzln ' 1D
saturates at high temperaturesRe- 25 k() (see Fig. 2B of D I S ge’/h  gelh(1]] | '

Ref. 17. As has been already mentioned, this corresponds to

the conductanc&sp~ e?/h, which is smaller by a factor 1/4 Thus the bias voltag¥'s—Vp, can be expressed in terms of
thanGgp=4€?/h expected from the boundary conditié®. Vo, i%%*andi., as

In this experiment the nanotubes are embedghedlt) into

the reservoirs at both ends. Given the finite radius of the . Do jback  Nr o jback

nanotube ¢1.5 nm) and possible roughness of the elec- Vs~ Vo=[1,—1]QVo+ >, 2 + 2

trode surface from which the nanotube emerges, it is legiti- n=1ge’/h n=1ge’/h

mate to question the validity of single point contact model. NL - Pbulk N fbulk
What is hoped here is that our model with a weak bulk con- -1 O]Qg-zz _n —[0 1]9022 _n_
tact is a first step towards a proper description of this experi- n=1ge?h n=1ge?/h
mental situation. (31)

A. Many bulk contacts with end contacts in equilibrium Recall thatQo,Q2=go,. Using tt‘f decomposition analo-
with bare electrons gous to Eq.(7), one can see that " (n=1,... N.) and

.k .
ConsiderNg+ N, independenbulk contactsN, of which ~ in = (N=1,... Ng) do not contribute to Eq31). The tgtal
are connected to the sour€® and the rest of which to the current circulating in the system is=1,=[1,—1]QV,.

drain (D). The boundary conditio®) is generalized to Since we are interested in the first correction to &), we
. consider the case where all thelk contacts connected to the
Ve=VIQ=[1 0] QV source(S) are at voltage®/p<V<Vs and all thebulk con-
~0) - (300  tacts connected to the draifD) are at voltagesvVp<V
Vp=Vy, '=[0 1] QVy,. <Vs. If this is the case, the leading scaling behavior of the
Let us focus on thenth bulk contact o=1,... Ng), conductance in terms of the bias voltage—Vp obtained

which is, by definition, connected to the draid). The volt-  from Eq. (31) reduces to Eq(28) independently oNg and

age equations ahth bulk contact can be written ag’ ~ Nu- Equation(28), and therefore the nonchiral version of
—iﬁa%g(é/h)(v;,l—v;), i;+igack:g(ez/h)(\/; Ref. 40, does not exhibit an oscillatory behavior as a func-

tion of (Ng,N,). Nevertheless, Eq28) indeed interpolates
between the two boundary conditions discussed in Sec. I,
which was also the case in Ref. 40.

—V,_)).i. (i,) is a currentinjectedinto the TLL eigen-
mode with +(—) chirality. The definition of eigenmode
voltagesV,, are given in the figure. Using the vector notation

B. Many bulk contacts with end contacts in equilibrium
with dressed eigenmodes

Va
Vi

' n

) ) In the case of equilibration with dressed eigenmodes the
one may rewrite the voltage drop equation as boundary condition(30) should be replaced byS=VfNR,

“bulk - back Vp=Vy . Using the same voltage drop equations, one can
- -~ Ozlg I'n 1 . L . -
Vyo1—V,= - 1l easily see, using the decomposition analogous td Bgthat
ge’/h  ge/h iZ, (n=1,...Ng) andi} (n=1,...N.) do not contrib-

The total current circulating in the system is definedlas ute to the total current=1,=g(e?h)[1,— 1]\70. Then the
=1,=[1,—1]QV,. Using recursively the voltage equation, leading scaling behavior of the conductance in terms of the

one finds Eias voltage reduces to EQ9) independently ofNg and
L .
Ng i"bulk iback 1
Vi =Vt St [ 72n _“_{
Ngr 0 = geZ/h ge2/h 11/ VII. TLL WITH INTERNAL DEGREES OF FREEDOM —

APPLICATION TO SWNT AND MWNT

Following the same procedure, one will find a similar rela-

tion for the left contact: Up to now we have considered for simplicity spinless

TLL model, where A =3(g+1/g). In order to apply the

N jbulk ;back [ 1 above results, in particular, EqQ28) and(29), for nanotubes
VA :\70_ 2 920-n _ '-n [ } _ let us recall the following properties of SWNT and MWNT.
L n=1\ ge’/h ge*/h(l The SWNT have four conducting channels: two subbaxds
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(charge, spipat room temperature, indicating an expectedsuch that bare reservoir electrons are in equilibrium with
quantized conductanc&gp=4e?/h. dressed TLL eigenmodes.

The experimental data for conductance measurements in The absence of a gate in this experiment suggests that
SWNT and MWNT display a variety of results. The ballistic long-range interactions inside the carbon nanotube are instru-
transport in carbon nanotubes was observed in MWNTmental in bringing about this different boundary condition. If
showing the conductand®sp~ 2e?/h.?? This implies that in  our analysis is correct, a check would be to measure the
MWNT only one of the two subbands contributes to the elechanotube conductance in the presence of a metallic gate suf-
tronic transport. In the case of SWNT, the observed conducficiently close to the nanotube compared with the sample
tance exhibits fluctuations versus Fermi energy approachinigngth for the interactions to be screened. Then we would
to the theoretically expected valuBsp=4e%/h as the tem- expectG(S2[§=4e2/ h. It is striking that the result of Kasumov
perature is loweredf et al, if interpreted asGgp=4ge€?/h, whereg would be the

Let us now focus on the case of SWNT. The spinless TLLTLL interaction parameter, yields a valug~0.25 in very
theory studied in earlier sections should be generalized tgood agreement with the theoretical value calculated in Ref.
acquire 2<2=4 flavorsf=c+,c—,s+,s—. The four chan-  21. Other experiment§™* clearly suggest other boundary
nels are obtained from combining charg® and spin(s) conditions?®
degrees of freedom as well as symmetrig)(and antisym- Now the nature of two fixed points was understood as
metric (—) linear combinations of the two Fermi points. different boundary conditions at thend contacts by making
Correspondingly we must introduce four TLL parameters:clear distinction between thbare and dressed eigenmode
Oc+ 0c— ,0s+ ,0s— - The scaling dimensioA of TLL elec-  densities in the Bosonized formulation. In the second half of
tron operator can be written, for example, in terms of thesehe paper we proposed a system of 1D sample coupled to
TLL parameters as\gywni=1521(9:+1/9¢). Whereas the bulk contacts as well asnd contacts where we found quali-
charge conductanc&gp is determined only byg.,, i.e., tatively different behaviors of the conductance, e.g., different
Gsp=40..€%h, as was the case for TLL with spfhln any  scaling dimensions, as a consequence of a large stationary
case one can verify by carefully investigating the effectivecurrent. As a result, we found that the additionboilk con-
Coulomb interaction in SWNTRef. 2]) that the interaction tacts interpolates between the two fixed points. The RG

gives rise to a significant renormalization only fgg. , analysis for this problem has been developed by taking into
whereagy;~ 1 for f=c—,s+,s— (neutral modes Thus the account explicitly theractionalizationof electronic charge.
TLL parameterg for SWNT is defined ag=g., , which is We studied in particular the leading scaling behavior of
estimated to be typically in the range 0.2-0.3. the corrections to the two-terminal conductar&‘@g in the

To summarize, one has to make the following replacepresence of bulk-injected current (A) the presence an@)
ments in order to apply Eq&28) and(29) for SWNT: (i) The  the absence of screening by a metallic gate. We found in both
anomalous scaling dimensioh of TLL electron operator casesGS) is not quantized even in the ohmic limits— Vy,
should be replaced bygunt=15(9+1/g)+3. (i) The oo, interpolating between the two limiting case®)Ggp
Ohmic conductance in equilibrium either with bare electrons=e?/h and B)Ggp=ge?/h. The correction due to the bulk
(G@)=e?h) or with dressed eigenmodesz{)=ge?/h) current, however, does not scale in the same {e&¢ Egs.
should be multiplied by 4, in order to account for the number(28) and(29)]. In the case of Eq(28), corresponding to the
of conducting channels. Apart from these changes, howeveequilibration withbare electrongSec. Il A), it exhibits, as a
the main claims of the preceding sections remain unchangedonsequence of this particular boundary conditi@ or

more precisely Eq(9), a pronounced scaling behaviol/

VIIl. DISCUSSION AND CONCLUSIONS —Vp)@*1 \where 2 =%(g+ 1/g). The understanding of

trong-coupling limit for thebulk contact was left for future
In the first half of this paper we argued that in the case oi g Ping

h inal tudy. The discussion on the shot-noise spectrum under a
standardz) end-contact geometry, the two-terminal conducaiety of houndary conditions discussed in this paper is ob-

. . . . . 2 _ 2
ta(nzc):eG(SD in the Ohmic limit can be eltheG(SD).—.e hor  yiously of interest. This will be discussed in a forthcoming
G{J=ge€?/h depending on the boundary conditions. In our puplication?®

point of view, different boundary conditions apply in the

presence or absence of a metallic gate close to the 1D
sample. ACKNOWLEDGMENTS
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between the result of Ref. 9 and the theoretical analysis using
boundary conditions such that bare reservoir electrons are
not in equilibrium with dressed eigenmode of the TLL, but APPENDIX: RG ANALYSIS FOR FRACTIONAL
with bare particles inside the TLL. PARTICLES

On the other hand, more recent experiments suggest that a . .
variety of other boundary con(?itions are g?ealized We derive the _RG equation for%kF(Af’A—) a_nd
experimentally2~*17It is tempting to interpret the result of I'-k(A+ ,A_) starting from the effective actiot25) with
Kasumovet all” as a consequence of boundary conditionsEgs. (23) and (24). At leading order the two RG equations
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| /44 at chemical potentiaeV. We consider the cas¥®<V
I S " <V, . The energy of the incident elecron is decomposed
V. | into each chirality as

eV,

!

eV |

ev=[1 0]Q

In order for a current to be injectet,, =V_ must be satis-
fied. WhenV', =V, , V=-V_=[(1+g)/(1-g)](V,—V).
Starting from this valueV’ can take values down tg_ .
are decoupled and can be treated independently. The cutoffnenV_ reaches this limit, where we redefine the energy
frequenciesA . and A _ can be different for the two RG decomposition of the incident electron as
equations, since available energy shellsSipfor Egs. (23)
and (24) can be different. The crucial step was therefore to
find these cutoff frequencies, i.e\,ﬂ:kF, Ay forI'yy, and

n _
AZg Aoy for Ty

When an electron incident from the electron reservoir at
chemical potentiatV tunnels into the TLL, it must be de- iherefore V' =V_ . the otherV” satisfies V" —v=[(1
composed into two fractionally charged quasiparticles in or-_ g)/(1+’g)]_(V—V'_). The cutoff+energy scalés which ap-
der to be absorbed in the bulk sample. This final state TLLpear in the RG equation de+kF are determined aAikF

electron has either of the following energies: ., B ,
=[(1+0)/2]e(Vi—V,), Ay =[(1-g)/2]le(V_—V_).

Thus we were able to derive on microscopic grounds the
’ energy cutoffs which we have used to find E26),

FIG. 3. Available energy shells for the tunneling into TLL.

eV,

eV=[1 0]Q Y

eV e
eV®=[1 0]Q eV+ . eVO=[0 1j0

respectively, forI‘H<F and forI‘,kF. In contrast, the energy

decomposition of the incident Fermi-liquid electron is quite , + _ 1+g [1-g _ _ | — _\(0)
arbitrary, i.e., M= e_1+g(v V)= (Ve =V =eVoVaD,
eV,
ev=[1 0]Q| _, 1—q | 1+
LeV_] Ay = Tge (v—v_)—%(v;w =e(V-V©),
for ', and ) (A1)
eV, | _ . _ .
evV=[0 1]0Q i.e, Ar =AL, . Once these energy scales are determined,
eV.

one can employ the RG analysis 1ﬁqu.

for I'_,, whereV’, (V') is a part of the electrostatic po- ~ The same argument applies for the RG equatior fog,.

tential attributed to ther (—) chirality. The only constraint The cutoff frequencies for the tunneling efke electron are

is that bothV’, —V, and V' —V_ should have the same Obtained as

sign, i.e., they are positivénegativeé when the current is

injected (ejected. Taking into account this constraint, one 1-g T1+g .

can count the available energy shells for tunneling. These , + _ +— _ _ | — _ (0

procedures are schematically explained in Fig. 3. A="75¢© ﬁ(v Vo= (Vs V)_ =e(vV-V),
In Fig. 3 we first focus on the RG equation fﬁqu, ie.,

for the tunneling of+ kg electron. On the left it is shown that

the final state TLL electron has either of the following ener- . _ 1+g

i g
gies: A= —e_(V—V_)—

1+g

(V,—V)|=e(V-VO).

(A2)
v Vv
eVO=[1 0]Q v+ v+ ,

. eV9=[0 1]9{
Hence the RG equation fadr_ ke takes the same form as that

respectively, fod",,_and forl'_, . On the right we focus on of I, except that one should identify to beA=AfkF
the tunneling of+ ke electron incident from theulk contact ~ =AZ, =V-V.
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