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Strain in buried quantum wires: Analytical calculations and x-ray diffraction study
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The displacement field in and around periodically arranged quantum wires embedded in a crystalline matrix
is calculated analytically for an arbitrary finite thickness of the cover layer. A good agreement is obtained
between measured x-ray-diffraction peaks of a wire structure and kinematical calculations with the displace-
ment field derived in the paper. The strain and quantum size effects on the photoluminescence line shift are
found to be comparable, due to small wid85 nm of the wires.
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[. INTRODUCTION phases near a structural phase transition in a heteroepitaxial
film.2! None of these solutions can be directly used for an
Quantum wires are semiconductor structures which conx-ray diffraction study of quantum wires. The cited works
fine electrons in two spatial dimensions. To provide quantunpresent strain, stre&;° or elastic energ$? while the dis-
confinement, the cross-sectional sizes of the wires should b@acement field is required to calculate the x-ray diffraction
comparable with the exciton dimensions, which are typicallyintensity. The displacement field has been calculated in only
a few tens of nanometers. Periodic arrays of uniform quanene study’* which, however, does not correspond to the ge-
tum wires are produced from thin heteroepitaxial layers byometry of either free-standing or buried quantum wires. It is
means of lithography with subsequent epitaxial overgrowthalso worth mentioning the analytical solution of the elastic
An improvement in the performance of semiconductor lasergroblem for a misfitted parallelepiped in a semispZcan
is expected from the introduction of quantum wire structuresnfinitely long parallelepiped is identical to an isolated wire
into their active region. Quantum wire lasers with a low but, as we will show below, an assumption of an isolated
threshold and a high differential quantum efficiency havewire instead of a periodic array of wires introduces a signifi-
been demonstratéed. cant error and, again, only stress components were evaluated
The difference between lattice spacings of the semiconin Ref. 22.
ductor material forming the wire and that of the matrix gives We obtain analytical expressions for the displacement
rise to elastic strain. X-ray diffraction is proven to be a veryfields in periodic arrays of buried quantum wires, and apply
sensitive technique to measure the strain in wiréS. A this solution to an analysis of the x-ray diffraction pattern.
mean strain in the wires can be obtained simply from posi\We consider periodic arrays of wires with a rectangular cross
tions of the corresponding diffraction peaks or their envelopesection. The latter assumption is an appropriate approxima-
functions. The strain distribution, however, cannot be di-tion for trapezoidal wires with steep sides commonly ob-
rectly obtained from the x-ray diffraction pattern, and re-tained by lithography.
quires a solution of the elastic equilibrium problem. Up to We apply x-ray diffractometry to investigate the elastic
now x-ray diffraction studies of wire arrays were either re-stress relaxation in GaJdng 78Sy sd20 quantum wire
stricted with a qualitative analysis and plausible structureS(1% compressively straingavith a wire width of
assumptior’s® or used laborious finite element 35 nm and a thickness of 8 nm, similar to the wires in the
calculations’™* laser device structures already reported in Ref. 1. We have
The problem of elastic equilibrium of a periodic array of performed x-ray diffractometric measurements of the strain
domains misfitted with respect to the surrounding matrix al-and measurements of the photoluminescei®tg line shift
lows an analytical solution by means of Fourier series expanen the same samples. We find that the strain and the quantum
sion. The solutions were obtained for diverse physical applisize effects on the PL line shift are comparable to each other.
cations. The list includes free-standing films with periodicWe note that most of the previous x-ray investigations of
composition modulations studied by transmission electronwvire structure$’19-3 were concerned with wire widths
microscopy:*~18 free-standing quantum wire multilayers, large compared to the quantization dimensions. The smallest
periodic twinning in a film on a substrate and a thin layerwire width still remained as large as 50 nm and the quantum
sandwiched within the bul®® and domains of coexisting confinement effect was shown to remain smdll.
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/ The displacement field can also be represented by Fourier
' series
w
a ) ‘ - ©
< R T h UX,y)= 2 Un(y)sin(2kyx), (4a)
: - 1
Uy(%Y)=Vo(Y)+ 2, Vo(y)cod2kx), (4D

_FIG. 1. Geom(_atry of the w_ires and displacements_ calculateqyhere the functions) ,(y) andV,(y) are the coefficients in
using the expressions derived in the p_resen_t paper. Dlspla_cemerp%urier expansions over We took into account the reflec-
are exaggera‘ed by a factor of 30. Wire width=35 nm, wire i symmetry with respect to the axis and translational
?hee'g:;\t/e_ﬁa;&:pggognffat:g tsht;urcnt;rfi: i%oofm' thickness of j\ariance along the axis. The solution of the elastic equi-

' o librium problem is given in the Appendix. The final expres-
sions for the coefficientd) ,(y) andV,(y) are presented in

Il. DISPLACEMENT FIELDS IN Sec. I B.

AND AROUND THE WIRES

A. Fourier series expansion B. Displacements in buried wires

We consider a periodic array of infinitely long crystalline  The displacements in buried wiréSig. 1), can be written
wires coherently embedded into a crystalline matrix, Fig. 1separately in the substraye< —t/2,
The cross section of the wires is rectangular, with a width

and a height, and the period of the structurelisThe buried U,=eq [exp2k,y)sinhk,t) + Ry, (59
wires are covered by the top layer of a finite thicknles§he

x axis is the direction of periodicity, thgaxis is normal to it V=0, (5b)
in the cross-sectional plane, and thaxis is along the wires.

The origin is taken to be at the center of the wire. We assume Vin=en[ —exp(2K,y)sinh(k,t) + Ry,1; (50

that the wires are infinitely long in the direction and the

substrate is infinitely thick, so that the displacemantis in the wire layerfy| <t/2 (both inside the wires and between

identically zero. them),
The misfit(relative difference between lattice parameters _ _ _ i
of the two crystalline materialss assumed to be equal in all Un=en[1—exp(—kpt)cosh2kyy) +Ryn], (68
three spatial directions, which corresponds to a common case _
. ' : ; = +
of cubic crystal symmetry of both the wire and the matrix. Vo=e&oly+1/2), (6b)
We solve the elastic problem for a general case of an arbi- V= e[ exp —knt)sinh( 2K,y) + Ry,: (60

trary periodic functione(x), with the aim of obtaining a
solution if a form applicable to other problems involving and in the top layet/2<y<h+t/2,
periodic elastic domains, for example periodic composition

modulationst*~*8 The functione(x) used to describe the U =en[exp( — 2Kpy)sinh(knt) + Rynl, (73
x-ray diffraction pattern in the present paper is equal to a
constante, inside the wires || <w/2 and|y|<t/2, with the Vo=é€ot, (7b)
periodic repetition along thg axis) and zero outside them.

An even periodic functiors(x) possessing the period V= en[exp( —2k,y)sinh(knt) +Ryq]. (70)

can be expanded in Fourier series, Here we denote

1+v 1+v g,
1—p°0 en_l—v 2k,

l ee]
s(x)=§80+r§l £1,C0% 2K X), 1) eo= (n=1.2,...). (8
wherek.=7n/l. and v is the Poisson ratio, and the finite thicknéssf the cover
" ' layer gives rise to the terms

snzlzfllz s(x)cog2kx)dx  (n=0,12...). (2) Runyn=[3=4vF aky(y +h—1/2)]
e X ex] 2k, (y—t—2h)]sinh(k,t), (9)

In the case of a constant miskt which will be used to

i ) . here th [ dsk d the | i
describe the x-ray diffraction pattern, we have where the Hppst SIgh Corresponcsra, and the ower sign

to Ry,. In the limit of an infinitely thick cover layeh— e,
) the termsR,, andR,, vanish. The displacements in the limit
W € o .
80:260|_: e, = TmOSin(knW) (n=12,..). 3 CF)efe? r;isfltted layer at the surfack;—0, were calculated in
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Figure 1 shows displacements calculated by summation of
series(4) with the Fourier components given by EdS)—
(9). The series quickly converges and does not cause any
numerical problem.

C. Strain in buried wires

In the limit of a thick cover layerh—oo, the analytical
expressions for strain  componentsl,,= du,/dx,Uyy
=duy/dy can be obtained by summation of the Fourier se-
ries for the most important case of a constant misfit, so that
Eq. (3) is applicable. First we obtain a notably simple result
for the sumu,,+uy,. Summation of the series gives

1+v
Uyt Uyyzmé()@, (10

where the wire shape functio® (x,y) is equal to 1 inside
the wire (x| <w/2,y|<t/2) and 0 outside it.

The expressions for strain can be presented in a compact
form by denoting, after Ref. 22, the wire boundaries by

U

>

strain

U

0.020
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— 1,6y =0)
u, 6y =0)

e

Xi,Yi(i=1,2):X; )= FW/2)y; ;= Ft/2. Summation of the se- -0.005 \\, l’/
ries with the use of Eq(A8) gives, in the wire layer -0.010+ . ! .
(ly|<tr2), 60 40 -20 20 40 60
x (nm)
1+v
Uxx=7, €0 60— |_+| 212( 1) FIG. 2. Strain in the buried wire and around it for an infinite
! cover layer(thick lineg and a cover layer of thickness=20 nm
. (thin lines. All other parameters are the same as in Fig. 1. Vertical
XO[x—x;,(—1)(y— Yj)]] ) (11) and horizontal sections through the wire center are shown in the top

and bottom plots, respectively.

and out of it (y|>1/2),

If the wire width w is small compared to the peridd the

1+V

eoE — 1) —x, — (ly|—y)],

latter expression further simplifies to

hi=1 1+v 2¢pt
(12 - <
N Uy(0,00= Ep— (t,w<l), (16
where it is denoted
so that the strain depends on the wire aspect tatioonly.
1 e?™sin(2mx/1) The strain component,, can always be obtained from Eqg.
d(x,y)= z—arctan T . (13 (10).
2m 1—e*™cog2mwx/1) - , , :
Figure 2 shows the strains,, anduy, in the sections
In the limit of a large separation between the wirgsy<I, =~ =0 andy=0 through the wire center. The sumy,+u,,

the argument of the arctangent in the last equation Xy satisfies conditiori10) at each pointX,y). The strain calcu-
and the stress calculated from E¢E0)—(12) reduces to Egs. lated for a cover layer of thickne$s=2.5 (thin lines only

(21) and(22) of Ref. 22.

period |, while the wire height is small compared to the
period, t<<l. A simple expression for the strain inside the
wire can be obtained under this assumption.

1+ v eot sin(mww/l)

Uyx=

slightly differs from that calculated for an infinitely thick
However, the wire widthw is usually comparable with the cover layer(thick lines.

Ill. EXPERIMENTAL RESULTS

The wire geometry of the investigated structure is
sketched in Fig. 3. The preparation of the samples was de-
1=v 1 coS2mxil)—cos awil) (t<l). (14)  scribed in detail in the earlier works There are no graded

layers in the present structures and all the layers except the
In this approximation, the strain does not depengdaqua-  quantum well(wire) show nearly perfect matching to the InP
tion (14) is valid in all points inside the wire except the substrate. In particular, the nominally 100-nm-thick cover
vicinity of the boundariegx|=w/2. In particular, in the wire layer above the wire gratings shows negligible lattice mis-
center k=0,y=0), match. The wires under investigation are sufficiently small to

show quantum effects.
High intensity synchrotron radiation is inevitable to detect
the diffracted radiation from the strained wires. The x-ray

1 +v et wwW
—cot— (t=<l). (15
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FIG. 3. Schematic view of the quantum wire geometry.

measurements were performed at the European Synchrotro
Radiation Facility in Grenoble at the Tka Il undulator
beamline(wavelength 0.156 nmAX/A=6Xx10"°). Recip-
rocal space maps near tt24) reflection(grazing exii were
recorded. Figure 4 demonstrates a map of the wire structur
overgrown at 600 °C. The position of the intensity maximum
of the wire structure is marked by a cross. The scans throug!
the wire intensity maximum, indicated by arrows in Fig. 4,
are shown in Fig. 5 together with the calculated intensity 2
distributions. Calculations were performed by using the ki-
nematic scattering formula

pu)

intensity

2
I(qxvqy):‘feXF[iQ'U(X:y)+i(QXX+qyy)]dXd4 )
(17)

whereq, andq, are the deviations of the scattering vector
from the reciprocal-lattice vecto@ and the integration is 0.40 0.41 0.42 043 0.44 0.45
performed over the half-space occupied by the wire structure q (nm'l)

and the substrate. The displacement figlg,y) is calculated y

by Egs.(4) with the coefficentdJ Vv iven in Sec.
”yB_ as.(4) n(¥):Vn(y) 9 FIG. 5. Intensities in the sections through the wire maximum,

indicated by arrows in Fig. 4.

fuse intensity between the peaks is due to imperfections in
1 wire periodicity?® The diffuse intensity is two orders of mag-
i nitude lower than the peak intensities, and we do not con-
1 sider it in the present paper. The peaks are rather broad in the
. qy, direction [Fig. 5b)] due to a small thicknest of the
1 wires. The strain in the wires manifests itself in the intensi-
ties of the peaks in Fig.(8) and in positions of the peaks in
, 1 Fig. 5b). Qualitatively, the maximum of an envelope of the
WIT | AR © - - A satellite peaks is shifted with respect to the substrate peak by
0.298 0300 0302 0.304 0.306 0.308 Agy=—Q,uy, and each satellite is shifted byq,
g. ('l =—Qyu,,, whereQ is the diffraction vector. However, the
* strainsu,, anduy, are nonuniform in the wire, and a quan-
FIG. 4. Reciprocal space map near the asymmégs) Inp  titative determination of the intensities requires a knowledge
reflection(grazing exi} of the sample with wires buried with nomi- Of the distribution of displacements,(x,y) and uy(x,y).
nally 100-nm lattice-matched InGaAsP at a growth temperature off he thin line in Fig. %a) is the envelope of the satellite peak
600 °C. The cross marks the position of the wire intensity maxi-intensities calculated in the kinematical theory of x-ray dif-
mum. fraction with the use of the analytical expressions derived

430 F ' ' The x-ray diffraction pattern of periodic wires is well
B understood:* The long-range periodicity in the wire posi-

0485 a E tions gives rise to narrovresolution limited periodic peaks

0.430 r in the q, direction, Fig. %a), with the period 2r/l. The dif-

-1
9, (nm™")
[=e0)
~
[\*]

Wi
T

0.420 F

0.415
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TABLE I. Photoluminescence line shiftsA between patterned
and unpatterned regions of the sample. The band-gap chiBge
and the strain and size contributions are presented.

AEgrain= — % buyy, (20)

where the straim,, is given by Eq.(15).
The strain effectAEg, =8 meV thus obtained is less

gﬁgrxﬁe AN AE AE. . AE. than g_half of the band-gap chang&=21+1 meV. .The
(°C) (nm) (mev) (m:{;‘)'” (m;{z/)e remaining part of the band-gap change can be attributed to
the quantum size effeddEg,e=13 meV, which is the dif-
600 ~33.0 20 ference between the energy of lateral quantizaié, and
) 13 the increase of the exciton binding energy due to lateral con-
650 —375 22 finementAE,,,AEg,e= AEjq— AEc. We estimateAEg,=2

+1 meV?? The shift of the lowest energy level due to
lateral quantization in the effective-mass approximation,
above. The position of the envelope maximum, the decay ofEq=7%?7?/2m*w?, gives the effective electron mass*
the peak intensities, and the asymmetry of the intensity dis=(0.043+0.007)m,, wherem, is the electron mass. This
tribution is adequately described. The remaining disagreevalue has to be compared with the interpolation between
ment in intensities may originate from the trapezoidal crossthose for GaAs, InP, GaP, and InAs crystat§’which yields
sectional shape of the wirdapproximated by a rectangle 0.06m,.
and some variation in the wire width along the wire, due to
an imperfection of the etching. The intensity distribution IV. CONCLUSIONS
along the verticalj, direction through the most intense sat- _ _ . .
ellite [Fig. 5b)] is in a good agreement with the calculations ~We have derived analytical expressions for the displace-
performed with the same displacement field. ment field in and around quantum wires of a periodic wire
Photoluminescence measurements were carried out withrray buried in a crystalline matrix. Particularly simple ex-
an excitation power of 10 mW on a spot of about 1@6n in  pressions|Egs. (10) and (15)] describe strain in the wire
diameter 86 K with a germanium detector using a SPEXS center. This result provides a useful tool to estimate the con-
1681 grating monochromator. The measurements were peftibution of strain on the photoluminescence line shift. The
formed on the patterned and neighboring unpatterned are@$alytical solution, restricted with the rectangular cross sec-
in order to detect the quantum wire and quantum-well lumi-tion of the wires and the elastic isotropy, can be used instead
nescence near the wavelength of 1450 nm, respectively. 16f the laborious finite element calculations, if the geometric
this way, the PL signals of the wires and the neighboringfactors and elastic anisotropy are not of primary importance.
unstructured epitaxial layer stack were compared directlyWWe have calculated the x-ray diffraction from the wires using
and the influence of lateral inhomogeneities was kept miniour analytical solution and found a good agreement with the
mal. A distinct blueshift of the PL lines of the wires with experimental results. We have measured the photolumines-
respect to those of the wells was observed. Table | presenggnce line shift and found that the contributions of the strain
the results of the PL measurements performed on tw@&nd quantum size effects for the wires under investigation

samples, overgrown at 600 and 650 °C. (width 35 nm, height 8 nmare comparable.
The additional strain effect on the bandgap of a wire
structure with respect to the strained layguantum well is ACKNOWLEDGMENTS
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for the nominal composition of the wirgsells): a
=_6.68 evand=-1.86 eVv. . APPENDIX: SOLUTION OF THE ELASTIC PROBLEM
The quantum well possesses the strains
Our aim is to find the displacement field which is the
well wel 1tV solution of the elastic equilibrium problem shown in Fig. 1.
U =0, Uy =7 €o- (19 This displacement field describes a plane strain state with
u,=0, while equal misfits are present in all three spatial
We can assume that the recombination takes place only in thdirections,s ,= (X) 9,4. Here we introduce integer indices
central part of the wire, where the energy gap reaches itp and g running the values 1,2, and 3, and use the coordi-
minimum? Then the strain in the wires can be calculatednates &;,x,,X3) and (x,y,z) interchangeably. The nonzero
directly from Egs.(10) and (15). Using Eqg.(10), we find  misfit e(x) in the layer|y|<t/2 containing the wires gives
Au,+Auy,=0, and obtain the relative PL line shift rise to the elastic straim,,—&,4 and hence to the stress
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0pq=Cpqpq'(Uprq —&prqr), WhereCyq g are the compo-

nents of the elastic moduli tensor ang,,=(du,/dxq

+ dug/9xp)/2. We restrict ourselves with the elastic isotropy,

and write the stress as
E v
Tpa= 155 | Ypa~ Epat 75, (Uprp = &pp1) Spqls
(A1)

whereE is the Young modulusy is the Poisson ratio, and a

summation over repeated indicgs & 1,2,3) is implied. We
note thate,,= ¢(x), while u,,=0.

The elastic equilibrium equationgoy/dxq=0, ex-
pressed through the displacements are

_— u,  9°uy azux+ azuy_z 1.
(1=2%) ax2  gy? | ox2 axay ()5
(A2a)
du, Ju d%u, du
1-2v A Y X-0. (A2Db)
( )( ax? ayz) gy IXdy

The expansion of the displacements,u, and the misfit
e(x) in Fourier seriedEgs. (1) and (4)] gives rise to the
equations

(1-2v)Ul—8(1— v)k2U,— 2k, V)= —4(1+ v)knen,

(A3a)
(1-v)Vi—2(1-2v)k2V,+k,U.=0,  (A3b)
V=0, (A30)
where the primes denote differentiation oyer
The general solution of Eq$A3) is
1+v e
Un:(Uln+ U2ny)e2kny+ (U3n+ U4nY)e_2k"y+ 1—p z_knn.
(Ada)
Vozvl-i-vzy, (A4b)

Vo=(Vint V2ny)e2kny+ (VantVany)e™ Zk"y, (Adc)

where Uyn,Vun (M=1,2,3,4), andv,,v, are constants.

Substituting Eq(A4) into Eq. (A3), one finds

PHYSICAL REVIEW B 66, 035310(2002

4y—3
Vip=—Up= — —Uan, Von=—Uz, (A58

n

4y—3
Van=+Ugn= — —Uan, Van=+Us. (ASD)

n

The solutions of the elastic equilibrium equations in the sub-
strate <—t/2) and in the cover layery(>t/2) are also
given by Eqs(A4) and(A5), whereg,, is taken equal to zero
and the constanttly,, Vun, v1, anduv, are different in
each layer.

These constants can be found by the requirement of ab-
sence of tractions at the free boundaries and on the interfaces
between the layersy& = t/2) and the continuity of the dis-
placements at the interfaces. That is, the requirement that the
normal stressr,, is zero at the free surface and continuous
on the interfaces reduces to the same requirement for each
Fourier component: the quantity

(1-v»)V,+2vkU,— (1+v)e, (AB)

is zero at the free surface and continuous at the interfaces.
The last term in Eq(A6), containinge,,, is present only in

the wire layer [y|<t/2). A similar condition for the shear
stressa,, requires zeroing, or a continuity of

U} —2k,V,,. (A7)

The continuity of the displacements, andu, at the inter-
faces is equivalent to continuity &f , andV,,.

The buried wireqFig. 1) are described by Fourier com-
ponents of displacementé4) written separately in the sub-
strate (/< —t/2), in the wire layer [y|<t/2), and in the top
layer (t/2<y<h). From the 12 unknown coefficients thus
introduced, two coefficients describing growing exponents in
the substrate are equal to zero, since in the lymit—o the
displacements are absent. The remaining ten coefficients are
related by the requirements of the absence of stresggs
andoyy on the top surface and the continuity of stresses and
displacementso, 0y, ,Uy,Uy at two interfacesy=*t/2.
The solution of ten linear equations with ten unknowns is
given by Eqs(5)—(7). The summation of series for the strain
components is performed by using the fornffila

o

r" r sinx
E Fsmnx= arctan———. (A8)

n=1 1—r cosx
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