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Strain in buried quantum wires: Analytical calculations and x-ray diffraction study
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The displacement field in and around periodically arranged quantum wires embedded in a crystalline matrix
is calculated analytically for an arbitrary finite thickness of the cover layer. A good agreement is obtained
between measured x-ray-diffraction peaks of a wire structure and kinematical calculations with the displace-
ment field derived in the paper. The strain and quantum size effects on the photoluminescence line shift are
found to be comparable, due to small width~35 nm! of the wires.

DOI: 10.1103/PhysRevB.66.035310 PACS number~s!: 68.65.2k, 61.10.2i, 78.55.2m
on
um
d
ll
an
b
th
e
re
w
v

on
es
ry

s
p
di
e
to
e
le
t

of
a
a
pl
ic

ro

e

axial
an
s

on
nly
e-

t is
tic

re
ted
ifi-
ated

ent
ply
n.
oss
ma-
b-

tic

he
ave
ain

tum
her.
of

llest
um
I. INTRODUCTION

Quantum wires are semiconductor structures which c
fine electrons in two spatial dimensions. To provide quant
confinement, the cross-sectional sizes of the wires shoul
comparable with the exciton dimensions, which are typica
a few tens of nanometers. Periodic arrays of uniform qu
tum wires are produced from thin heteroepitaxial layers
means of lithography with subsequent epitaxial overgrow
An improvement in the performance of semiconductor las
is expected from the introduction of quantum wire structu
into their active region. Quantum wire lasers with a lo
threshold and a high differential quantum efficiency ha
been demonstrated.1

The difference between lattice spacings of the semic
ductor material forming the wire and that of the matrix giv
rise to elastic strain. X-ray diffraction is proven to be a ve
sensitive technique to measure the strain in wires.2–13 A
mean strain in the wires can be obtained simply from po
tions of the corresponding diffraction peaks or their envelo
functions. The strain distribution, however, cannot be
rectly obtained from the x-ray diffraction pattern, and r
quires a solution of the elastic equilibrium problem. Up
now x-ray diffraction studies of wire arrays were either r
stricted with a qualitative analysis and plausib
assumptions2–8 or used laborious finite elemen
calculations.9–13

The problem of elastic equilibrium of a periodic array
domains misfitted with respect to the surrounding matrix
lows an analytical solution by means of Fourier series exp
sion. The solutions were obtained for diverse physical ap
cations. The list includes free-standing films with period
composition modulations studied by transmission elect
microscopy,14–18 free-standing quantum wire multilayers,19

periodic twinning in a film on a substrate and a thin lay
sandwiched within the bulk,20 and domains of coexisting
0163-1829/2002/66~3!/035310~7!/$20.00 66 0353
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phases near a structural phase transition in a heteroepit
film.21 None of these solutions can be directly used for
x-ray diffraction study of quantum wires. The cited work
present strain, stress,14–19 or elastic energy,20 while the dis-
placement field is required to calculate the x-ray diffracti
intensity. The displacement field has been calculated in o
one study,21 which, however, does not correspond to the g
ometry of either free-standing or buried quantum wires. I
also worth mentioning the analytical solution of the elas
problem for a misfitted parallelepiped in a semispace.22 An
infinitely long parallelepiped is identical to an isolated wi
but, as we will show below, an assumption of an isola
wire instead of a periodic array of wires introduces a sign
cant error and, again, only stress components were evalu
in Ref. 22.

We obtain analytical expressions for the displacem
fields in periodic arrays of buried quantum wires, and ap
this solution to an analysis of the x-ray diffraction patter
We consider periodic arrays of wires with a rectangular cr
section. The latter assumption is an appropriate approxi
tion for trapezoidal wires with steep sides commonly o
tained by lithography.

We apply x-ray diffractometry to investigate the elas
stress relaxation in Ga0.22In0.78As0.80P0.20 quantum wire
structures~1% compressively strained! with a wire width of
35 nm and a thickness of 8 nm, similar to the wires in t
laser device structures already reported in Ref. 1. We h
performed x-ray diffractometric measurements of the str
and measurements of the photoluminescence~PL! line shift
on the same samples. We find that the strain and the quan
size effects on the PL line shift are comparable to each ot
We note that most of the previous x-ray investigations
wire structures2–7,10–13 were concerned with wire widths
large compared to the quantization dimensions. The sma
wire width still remained as large as 50 nm and the quant
confinement effect was shown to remain small.3,4
©2002 The American Physical Society10-1



e
1

.
m

r
ll
a

ix
rb

g
io

rier

-
l
i-
s-

n

it

te
e

V. M. KAGANER et al. PHYSICAL REVIEW B 66, 035310 ~2002!
II. DISPLACEMENT FIELDS IN
AND AROUND THE WIRES

A. Fourier series expansion

We consider a periodic array of infinitely long crystallin
wires coherently embedded into a crystalline matrix, Fig.
The cross section of the wires is rectangular, with a widthw
and a heightt, and the period of the structure isl. The buried
wires are covered by the top layer of a finite thicknessh. The
x axis is the direction of periodicity, they axis is normal to it
in the cross-sectional plane, and thez axis is along the wires
The origin is taken to be at the center of the wire. We assu
that the wires are infinitely long in thez direction and the
substrate is infinitely thick, so that the displacementuz is
identically zero.

The misfit ~relative difference between lattice paramete
of the two crystalline materials! is assumed to be equal in a
three spatial directions, which corresponds to a common c
of cubic crystal symmetry of both the wire and the matr
We solve the elastic problem for a general case of an a
trary periodic function«(x), with the aim of obtaining a
solution if a form applicable to other problems involvin
periodic elastic domains, for example periodic composit
modulations.14–18 The function «(x) used to describe the
x-ray diffraction pattern in the present paper is equal to
constante0 inside the wires (uxu,w/2 anduyu,t/2, with the
periodic repetition along thex axis! and zero outside them.

An even periodic function«(x) possessing the periodl
can be expanded in Fourier series,

«~x!5
1

2
«01 (

n51

`

«ncos~2knx!, ~1!

wherekn5pn/ l , and

«n5
2

l E2 l /2

l /2

«~x!cos~2knx!dx ~n50,1,2, . . . !. ~2!

In the case of a constant misfite0 which will be used to
describe the x-ray diffraction pattern, we have

«052e0

w

l
, «n5

2e0

pn
sin~knw! ~n51,2, . . .!. ~3!

FIG. 1. Geometry of the wires and displacements calcula
using the expressions derived in the present paper. Displacem
are exaggerated by a factor of 30. Wire widthw535 nm, wire
height t58 nm, period of the structurel 5120 nm, thickness of
the cover layerh520 nm, and the misfite050.01.
03531
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The displacement field can also be represented by Fou
series

ux~x,y!5 (
n51

`

Un~y!sin~2knx!, ~4a!

uy~x,y!5V0~y!1 (
n51

`

Vn~y!cos~2knx!, ~4b!

where the functionsUn(y) andVn(y) are the coefficients in
Fourier expansions overx. We took into account the reflec
tion symmetry with respect to they axis and translationa
invariance along thez axis. The solution of the elastic equ
librium problem is given in the Appendix. The final expre
sions for the coefficientsUn(y) andVn(y) are presented in
Sec. II B.

B. Displacements in buried wires

The displacements in buried wires~Fig. 1!, can be written
separately in the substratey,2t/2,

Un5en@exp~2kny!sinh~knt !1Rxn#, ~5a!

V050, ~5b!

Vn5en@2exp~2kny!sinh~knt !1Ryn#; ~5c!

in the wire layeruyu,t/2 ~both inside the wires and betwee
them!,

Un5en@12exp~2knt !cosh~2kny!1Rxn#, ~6a!

V05e0~y1t/2!, ~6b!

Vn5en@exp~2knt !sinh~2kny!1Ryn#; ~6c!

and in the top layert/2,y,h1t/2,

Un5en@exp~22kny!sinh~knt !1Rxn#, ~7a!

V05e0t, ~7b!

Vn5en@exp~22kny!sinh~knt !1Ryn#. ~7c!

Here we denote

e05
11n

12n
«0 , en5

11n

12n

«n

2kn
~n51,2, . . .!. ~8!

n is the Poisson ratio, and the finite thicknessh of the cover
layer gives rise to the terms

Rxn,yn5@324n74kn~y1h2t/2!#

3exp@2kn~y2t22h!#sinh~knt !, ~9!

where the upper sign corresponds toRxn and the lower sign
to Ryn . In the limit of an infinitely thick cover layer,h→`,
the termsRxn andRyn vanish. The displacements in the lim
of a misfitted layer at the surface,h→0, were calculated in
Ref. 21.
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Figure 1 shows displacements calculated by summatio
series~4! with the Fourier components given by Eqs.~5!–
~9!. The series quickly converges and does not cause
numerical problem.

C. Strain in buried wires

In the limit of a thick cover layer,h→`, the analytical
expressions for strain componentsuxx5]ux /]x,uyy
5]uy /]y can be obtained by summation of the Fourier
ries for the most important case of a constant misfit, so
Eq. ~3! is applicable. First we obtain a notably simple res
for the sumuxx1uyy . Summation of the series gives

uxx1uyy5
11n

12n
e0Q, ~10!

where the wire shape functionQ(x,y) is equal to 1 inside
the wire (uxu,w/2,uyu,t/2) and 0 outside it.

The expressions for strain can be presented in a com
form by denoting, after Ref. 22, the wire boundaries
xi ,yi( i 51,2):x1,257w/2,y1,257t/2. Summation of the se
ries with the use of Eq.~A8! gives, in the wire layer
(uyu,t/2),

uxx5
11n

12n
e0H Q2

w

l
1 (

i , j 51,2
~21! i

3F@x2xi ,~21! j~y2yj !#J , ~11!

and out of it (uyu.t/2),

uxx5
11n

12n
e0 (

i , j 51,2
~21! i 1 j 11F@x2xi ,2~ uyu2yj !#,

~12!

where it is denoted

F~x,y!5
1

2p
arctan

e2py/ lsin~2px/ l !

12e2py/ lcos~2px/ l !
. ~13!

In the limit of a large separation between the wires,t,w! l ,
the argument of the arctangent in the last equation is2x/y
and the stress calculated from Eqs.~10!–~12! reduces to Eqs
~21! and ~22! of Ref. 22.

However, the wire widthw is usually comparable with the
period l, while the wire heightt is small compared to the
period, t! l . A simple expression for the strain inside th
wire can be obtained under this assumption.

uxx5
11n

12n

e0t

l

sin~pw/ l !

cos~2px/ l !2cos~pw/ l !
~ t! l !. ~14!

In this approximation, the strain does not depend ony. Equa-
tion ~14! is valid in all points inside the wire except th
vicinity of the boundaries,uxu5w/2. In particular, in the wire
center (x50,y50),

uxx~0,0!5
11n

12n

e0t

l
cot

pw

2l
~ t! l !. ~15!
03531
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If the wire width w is small compared to the periodl, the
latter expression further simplifies to

uxx~0,0!5
11n

12n

2e0t

pw
~ t,w! l !, ~16!

so that the strain depends on the wire aspect ratiot/w only.
The strain componentuyy can always be obtained from Eq
~10!.

Figure 2 shows the strainsuxx and uyy in the sectionsx
50 and y50 through the wire center. The sumuxx1uyy
satisfies condition~10! at each point (x,y). The strain calcu-
lated for a cover layer of thicknessh52.5t ~thin lines! only
slightly differs from that calculated for an infinitely thic
cover layer~thick lines!.

III. EXPERIMENTAL RESULTS

The wire geometry of the investigated structure
sketched in Fig. 3. The preparation of the samples was
scribed in detail in the earlier works.8,9 There are no graded
layers in the present structures and all the layers except
quantum well~wire! show nearly perfect matching to the In
substrate. In particular, the nominally 100-nm-thick cov
layer above the wire gratings shows negligible lattice m
match. The wires under investigation are sufficiently smal
show quantum effects.

High intensity synchrotron radiation is inevitable to dete
the diffracted radiation from the strained wires. The x-r

FIG. 2. Strain in the buried wire and around it for an infini
cover layer~thick lines! and a cover layer of thicknessh520 nm
~thin lines!. All other parameters are the same as in Fig. 1. Verti
and horizontal sections through the wire center are shown in the
and bottom plots, respectively.
0-3
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V. M. KAGANER et al. PHYSICAL REVIEW B 66, 035310 ~2002!
measurements were performed at the European Synchro
Radiation Facility in Grenoble at the Troı¨ka II undulator
beamline~wavelength 0.156 nm,Dl/l5631025). Recip-
rocal space maps near the~224! reflection~grazing exit! were
recorded. Figure 4 demonstrates a map of the wire struc
overgrown at 600 °C. The position of the intensity maximu
of the wire structure is marked by a cross. The scans thro
the wire intensity maximum, indicated by arrows in Fig.
are shown in Fig. 5 together with the calculated intens
distributions. Calculations were performed by using the
nematic scattering formula

I ~qx ,qy!5U E exp@ iQ•u~x,y!1 i ~qxx1qyy!#dxdyU2

,

~17!

whereqx and qy are the deviations of the scattering vect
from the reciprocal-lattice vectorQ and the integration is
performed over the half-space occupied by the wire struc
and the substrate. The displacement fieldu(x,y) is calculated
by Eqs.~4! with the coefficentsUn(y),Vn(y) given in Sec.
II B.

FIG. 3. Schematic view of the quantum wire geometry.

FIG. 4. Reciprocal space map near the asymmetric~224! InP
reflection~grazing exit! of the sample with wires buried with nomi
nally 100-nm lattice-matched InGaAsP at a growth temperatur
600 °C. The cross marks the position of the wire intensity ma
mum.
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The x-ray diffraction pattern of periodic wires is we
understood.3,4 The long-range periodicity in the wire pos
tions gives rise to narrow~resolution limited! periodic peaks
in the qx direction, Fig. 5~a!, with the period 2p/ l . The dif-
fuse intensity between the peaks is due to imperfection
wire periodicity.23 The diffuse intensity is two orders of mag
nitude lower than the peak intensities, and we do not c
sider it in the present paper. The peaks are rather broad in
qy direction @Fig. 5~b!# due to a small thicknesst of the
wires. The strain in the wires manifests itself in the inten
ties of the peaks in Fig. 5~a! and in positions of the peaks i
Fig. 5~b!. Qualitatively, the maximum of an envelope of th
satellite peaks is shifted with respect to the substrate pea
Dqx52Qxuxx and each satellite is shifted byDqy
52Qyuyy , whereQ is the diffraction vector. However, the
strainsuxx anduyy are nonuniform in the wire, and a quan
titative determination of the intensities requires a knowled
of the distribution of displacementsux(x,y) and uy(x,y).
The thin line in Fig. 5~a! is the envelope of the satellite pea
intensities calculated in the kinematical theory of x-ray d
fraction with the use of the analytical expressions deriv

of
-

FIG. 5. Intensities in the sections through the wire maximu
indicated by arrows in Fig. 4.
0-4



y
di
e
ss

to
n
t-

ns

w

S
p
re
i

.
in
tl
in
h
en
tw

ire

e-
h

In
s

t

ed

s

d to

on-

o
n,

s
en

ce-
ire
x-

on-
he
ec-
ead
ric
ce.
ng
the
nes-
ain
ion

D.
in

for
rant
ch
he
er

e
1.
ith

ial
s
rdi-
o

s

STRAIN IN BURIED QUANTUM WIRES: ANALYTICAL . . . PHYSICAL REVIEW B 66, 035310 ~2002!
above. The position of the envelope maximum, the deca
the peak intensities, and the asymmetry of the intensity
tribution is adequately described. The remaining disagr
ment in intensities may originate from the trapezoidal cro
sectional shape of the wires~approximated by a rectangle!
and some variation in the wire width along the wire, due
an imperfection of the etching. The intensity distributio
along the verticalqy direction through the most intense sa
ellite @Fig. 5~b!# is in a good agreement with the calculatio
performed with the same displacement field.

Photoluminescence measurements were carried out
an excitation power of 10 mW on a spot of about 100mm in
diameter at 6 K with a germanium detector using a SPEX
1681 grating monochromator. The measurements were
formed on the patterned and neighboring unpatterned a
in order to detect the quantum wire and quantum-well lum
nescence near the wavelength of 1450 nm, respectively
this way, the PL signals of the wires and the neighbor
unstructured epitaxial layer stack were compared direc
and the influence of lateral inhomogeneities was kept m
mal. A distinct blueshift of the PL lines of the wires wit
respect to those of the wells was observed. Table I pres
the results of the PL measurements performed on
samples, overgrown at 600 and 650 °C.

The additional strain effect on the bandgap of a w
structure with respect to the strained layer~quantum well! is
given by the formula3

DEstrain5a~Duxx1Duyy!1b~Duyy2Duxx/2!, ~18!

where Duxx and Duyy are the differences between corr
sponding strain components in the wire and in the well. T
coefficientsa andb are the deformation potentials.25 We took
an interpolation between the values of the endmembers
GaAs, InAs, and GaP of the mixed crystal system InGaA
for the nominal composition of the wires~wells!: a
526.68 eV andb521.86 eV.

The quantum well possesses the strains

uxx
well50, uyy

well5
11n

12n
e0 . ~19!

We can assume that the recombination takes place only in
central part of the wire, where the energy gap reaches
minimum.12 Then the strain in the wires can be calculat
directly from Eqs.~10! and ~15!. Using Eq. ~10!, we find
Duxx1Duyy50, and obtain the relative PL line shift

TABLE I. Photoluminescence line shiftsDl between patterned
and unpatterned regions of the sample. The band-gap changeDE
and the strain and size contributions are presented.

Overgrowth
temperature Dl DE DEstrain DEsize

( °C) ~nm! ~meV! ~meV! ~meV!

600 233.0 20
8 13

650 237.5 22
03531
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2 buxx , ~20!

where the strainuxx is given by Eq.~15!.
The strain effectDEstrain58 meV thus obtained is les

than a half of the band-gap changeDE52161 meV. The
remaining part of the band-gap change can be attribute
the quantum size effectDEsize513 meV, which is the dif-
ference between the energy of lateral quantizationDElq and
the increase of the exciton binding energy due to lateral c
finementDEex,DEsize5DElq2DEex. We estimateDEex52
61 meV.24,25 The shift of the lowest energy level due t
lateral quantization in the effective-mass approximatio
DElq5\2p2/2m* w2, gives the effective electron massm*
5(0.04360.007)m0, where m0 is the electron mass. Thi
value has to be compared with the interpolation betwe
those for GaAs, InP, GaP, and InAs crystals,25,26which yields
0.06m0.

IV. CONCLUSIONS

We have derived analytical expressions for the displa
ment field in and around quantum wires of a periodic w
array buried in a crystalline matrix. Particularly simple e
pressions@Eqs. ~10! and ~15!# describe strain in the wire
center. This result provides a useful tool to estimate the c
tribution of strain on the photoluminescence line shift. T
analytical solution, restricted with the rectangular cross s
tion of the wires and the elastic isotropy, can be used inst
of the laborious finite element calculations, if the geomet
factors and elastic anisotropy are not of primary importan
We have calculated the x-ray diffraction from the wires usi
our analytical solution and found a good agreement with
experimental results. We have measured the photolumi
cence line shift and found that the contributions of the str
and quantum size effects for the wires under investigat
~width 35 nm, height 8 nm! are comparable.
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APPENDIX: SOLUTION OF THE ELASTIC PROBLEM

Our aim is to find the displacement field which is th
solution of the elastic equilibrium problem shown in Fig.
This displacement field describes a plane strain state w
uz50, while equal misfits are present in all three spat
directions,«pq5«(x)dpq . Here we introduce integer indice
p and q running the values 1,2, and 3, and use the coo
nates (x1 ,x2 ,x3) and (x,y,z) interchangeably. The nonzer
misfit «(x) in the layeruyu,t/2 containing the wires gives
rise to the elastic strainupq2«pq and hence to the stres
0-5



y

a

ub-

ab-
aces
-
t the
us
each

ces.

r

-
-

s
in

are

and

is
in

V. M. KAGANER et al. PHYSICAL REVIEW B 66, 035310 ~2002!
spq5Cpqp8q8(up8q82«p8q8), whereCpqp8q8 are the compo-
nents of the elastic moduli tensor andupq5(]up /]xq
1]uq /]xp)/2. We restrict ourselves with the elastic isotrop
and write the stress as

spq5
E

11n Fupq2«pq1
n

122n
~up8p82«p8p8!dpqG ,

~A1!

whereE is the Young modulus,n is the Poisson ratio, and
summation over repeated indices (p851,2,3) is implied. We
note that«zz5«(x), while uzz50.

The elastic equilibrium equations]spq /]xq50, ex-
pressed through the displacementsup , are

~122n!S ]2ux

]x2
1

]2ux

]y2 D 1
]2ux

]x2
1

]2uy

]x]y
52~11n!

]«

]x
,

~A2a!

~122n!S ]2uy

]x2
1

]2uy

]y2 D 1
]2uy

]y2
1

]2ux

]x]y
50. ~A2b!

The expansion of the displacementsux ,uy and the misfit
«(x) in Fourier series@Eqs. ~1! and ~4!# gives rise to the
equations

~122n!Un928~12n!kn
2Un22knVn8524~11n!kn«n ,

~A3a!

~12n!Vn922~122n!kn
2Vn1knUn850, ~A3b!

V0950, ~A3c!

where the primes denote differentiation overy.
The general solution of Eqs.~A3! is

Un5~U1n1U2ny!e2kny1~U3n1U4ny!e22kny1
11n

12n

«n

2kn
,

~A4a!

V05v11v2y, ~A4b!

Vn5~V1n1V2ny!e2kny1~V3n1V4ny!e22kny, ~A4c!

where UMn ,VMn (M51,2,3,4), andv1 ,v2 are constants.
Substituting Eq.~A4! into Eq. ~A3!, one finds
s

S

A

s

J

,

03531
,
V1n52U1n2

4n23

2kn
U2n , V2n52U2n , ~A5a!

V3n51U3n2
4n23

2kn
U4n , V4n51U4n . ~A5b!

The solutions of the elastic equilibrium equations in the s
strate (y,2t/2) and in the cover layer (y.t/2) are also
given by Eqs.~A4! and~A5!, where«n is taken equal to zero
and the constantsUMn , VMn , v1, and v2 are different in
each layer.

These constants can be found by the requirement of
sence of tractions at the free boundaries and on the interf
between the layers (y56t/2) and the continuity of the dis
placements at the interfaces. That is, the requirement tha
normal stresssyy is zero at the free surface and continuo
on the interfaces reduces to the same requirement for
Fourier component: the quantity

~12n!Vn812nknUn2~11n!«n ~A6!

is zero at the free surface and continuous at the interfa
The last term in Eq.~A6!, containing«n , is present only in
the wire layer (uyu,t/2). A similar condition for the shea
stresssxy requires zeroing, or a continuity of

Un822knVn . ~A7!

The continuity of the displacementsux and uy at the inter-
faces is equivalent to continuity ofUn andVn .

The buried wires~Fig. 1! are described by Fourier com
ponents of displacements~A4! written separately in the sub
strate (y,2t/2), in the wire layer (uyu,t/2), and in the top
layer (t/2,y,h). From the 12 unknown coefficients thu
introduced, two coefficients describing growing exponents
the substrate are equal to zero, since in the limity→2` the
displacements are absent. The remaining ten coefficients
related by the requirements of the absence of stressessyy
andsxy on the top surface and the continuity of stresses
displacementssyy ,sxy ,ux ,uy at two interfacesy56t/2.
The solution of ten linear equations with ten unknowns
given by Eqs.~5!–~7!. The summation of series for the stra
components is performed by using the formula27

(
n51

`
r n

n
sinnx5arctan

r sinx

12r cosx
. ~A8!
D.

A.

.

g,

g,
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