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Collective excitations and confinement in the excitation spectra of the spinless fermion model
on a ladder
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Intrachain and interchain local charge-transfer excitation spectra and the single-particle density of states are
calculated in the spinless fermion model on a ladder with varying intrachain nearest-neighbor repulsion and
interchain transfer integral at and near half filing by using the finite-temperature density-matrix
renormalization-group method. Collective excitations are found to govern the low-energy intrachain spectra,
while only individual local excitations are present in the interchain spectra. For strong intrachain repulsion, the
low-energy motion of fermions is confined within a chain. The interchain motion of fermions is not bandlike
but incoherent. As a consequence, the low-energy intrachain spectra are sensitive at half filling to the interchain
transfer integral that weakens the density-density correlation along the chains. Similarly, the low-energy intra-
chain spectra are sensitive near half filling to the chemical potential that reduces the effect of the umklapp
process. Similarities are pointed out between these findings and the experimentally observed, optical conduc-
tivity spectra in the quasi-one-dimensional organic conductors (TMDSF)
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. INTRODUCTION viewed as a function of enerd§.(TMTSF),CIO, at a low
temperatureT~10 K is located on the “high-pressure”
Electron correlation brings about exotic electronic phasesthus high-dimensionalside of the phase diagram. Around
in quasi-one-dimensional organic conductors (TMTDF) »~100 meV, the optical excitations are confined in the
(TMTTF=tetramethyltetrathiafulvalene (TMTSF),X  axis and show a power-law behavior characteristic of a
(TMTSF=tetramethyltetraselenafulvalene and  many Tomonaga-Luttinger liquid. But there are pseudogap struc-
others'? In addition to the presence of a variety of broken- tures arounds ~ 30 meV (6 meV) in the a- (b-) axis spec-
symmetry ground states, dimensional crossovers observed ifa. At very low energiesp<0.1 meV, the optical conduc-
normal states above the transition temperatures have avity becomes rather isotropic, Drude-like, showing the
tracted much attentiohln general, dimensional crossovers character of a two- or three-dimensional metal. Thus, the

are achieved either through one-particle processes or througitfective dimensionality may be regarded as raised at very
two-particle oned® Without commensurability or an inter- |ow energies in the metallic phase.
nal structure, a one-dimensional Tomonaga-Luttinger liquid |n the simplest renormalization-group theories for one-
is easily destabilized by interchain one-particle hopping prodimensional systems, the logarithmic singularity is cut off by
cesses and replaced by a Fermi ligliHowever, the um-  gither finite temperature or finite eneryThen, varying en-
klapp processor a two-leg-ladder structutesuppresses the ergy scales are often treated by varying temperatures, or vice
interchain or interladder one-particle processes to cause \@rsa. However, even in much more tractable, quantum Ising
transition through two-particle processes often from a nonand rotor models, for instance, the critical properties around
Fermi-liquid state(such as a charge-localized stdter a  the quantum phase transition have shown complex behavior
spin-gap metat! respectively to a long-range-ordered state depending on temperature and on enéfgflere we ap-
(such as an antiferromagn®t® or superconductdf, respec-  proach crossovers in excitation spectra of quasi-one-
tively). Studies of the crossover from the Tomonaga-dimensional systems by a method called the transfer-matrix
Luttinger liquid to the Fermi liquid and related subjects arerenormalization-group (TMRG) or finite-temperature
actively ongoing->~1° density-matrix renormalization-group(finite-T DMRG)

The frequency dependence of the optical conductivity inmethod?>=2° This method has been extended from the
(TMTTF),X and (TMTSF}X has been extensively studied (ground-state DMRG method for Hamiltoniarf§ and ap-
for the electric field polarized along each directi8nFor plied to quantum transfer matrices for periodic one-
polarization perpendicular to the chains, a plasma edge idimensional systems with infinite length and at finite tem-
absent in (TMTTR)X, while it is present in (TMTSR)X,  peratures. Although the information about dynamical
suggesting that electrons are confined into the chains in thgroperties is limited to spatially locéihus containing all the
former and delocalized over the chains in the latter. Thus thevave-number componentsorrelations, we find different
interchain excitation spectra are modified by small changesharacteristics between intrachain and interchain excitations
in the interchain transfer integra}, and/or the degree of around a quantum phase transition.
dimerization, i.e., the strength of the intrachain umklapp pro- As a first step toward quasi-one-dimensional electron sys-
cess. tems, we adopt the spinless fermion model on a two-leg lad-

Dimensional crossovers are observed also in the excitader near half filling. We show that, for strong intrachain re-
tion spectra with fixed pressure and temperature whepulsion, the low-energy motion of fermions is confined

0163-1829/2002/68)/03512110)/$20.00 66 035121-1 ©2002 The American Physical Society



K. YONEMITSU PHYSICAL REVIEW B 66, 035121 (2002
within_a chain. The Iow.-energy intyachain spectra are theh 2.5 j—e—t =0.1, V=0.0 f———— —
sensitive to the interchain transfer integral and to the chemi- I _E_t"=0 L V20 t=1.0,m=80 = .-
cal potential. We interpret these findings with collective mo- 1 ot o Z-chain, half filling
tion of solitons and antisolitons along the chains, and with 2 [ TR0 V=25 ’
individual motion of fermions across the chains. >t =01, v=3.00 . )
1+ t,=0.1, V=40 .-~ X
1.5 - -~ -
II. SPINLESS FERMIONS ON A LADDER 3 _,«" e “.
. . o < [ -
The spinless fermion model we use is written as I o L ,/’ o
1k )7 > ’/ e i
T ~
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Wherecﬁj (ci,;) createslannihilate$ a spinless fermion on ]/Lx

the ith site of thejth leg, n;;=c/;c;;, and on;;=n; .
—1/2. The intrachain and interchain transfer integrals are FIG- 1. Gap calculated by the ground-state DMRG for finite
denoted byt and t,, respectively, the intrachain nearest- SYSems with chain length,, for differentV andt,=0.1 at half
neighbor repulsion strength By and the chemical potential filing. The other parameters ate-1.0 andm=80.

by . We consider half filling,.=0, unless we explicitly  the two-leg ladder model are also shown for differemtal-
state otherwise. The doping effect is studied at last. ues in Appendix A for comparison. Below we will state so if

The excitation spectra with respect to one- and two-bodyye encounter such artifacts that have not been obtained sys-
correlation functions are obtained by analytic continuation ofematically with differentm andM values.

the corresponding imaginary-time-dependent correlation
functions. For a one-body correlation function, we calculated
the single-particle density of statggw)=—(1/7)ImMG(w
+13), whereG(7)=—(c; j(7)c;(0)) for 0<7< 3 with the
inverse temperatur@. For two-body correlation functions,  Before calculating the excitation spectra, we first use the
we calculated the corresponding dynamical structure faCtOI’Q)rdinary ground-state DMRG method to see the static and
following Ref. 25, Spg(w)=—(1/m)Imxas(w+id)/(1  spatial properties of finite-sized two-leg-ladder systems with
—e A2), wherexag(7)= —(A(7)BT(0)) for 0<7<B. We  chain lengthL, (in the unit of lattice spacingand the open
adoptA=B=],; ;=i(C{;Ci+1j—Ci+1;Ci ;) andA=B=jy; boundary condition. The magnitude of the gap, defined by
=i(c ¢ ,—cl ¢i 1) for the local charge-transfer processesA=E(L,—1)+E(Ly+1)—2E(L,) with E(n) being the
along and across the chains, respectively. For the Trotteground-state energy farfermions, is shown in Figs. 1 and 2
number with which the quantum transfer matrix is decom-as a function of 1/,. Fort,=0, the quantum phase transi-
posed, we takél =30. For the number of states kept in the tion takes place a¥.=2t: the ground state is metallic for
DMRG technique, we taken=26, 28, or 30. The tempera- V<V, and insulating forV>V.. The gap decreases with
ture T we used is 0.25 Numerical errors from these finite  increasingt, for eachL, as shown in Fig. 2, so thaf,
values are found to be larger than those from the Trottewould increase withy, in theL,— oo limit. For t,=0.1, V. is
decomposition. From comparisons between data for thesagbout 2.5 as shown in Fig. 1. The data fg+ 0.1 here with
and smallem values, however, we find that the conclusionsm=120 are hardly distinguishable from those with=60,
are not altered by the numerical errors. 80, and 10G’ With increasingt,,, the truncation error be-
The single-chain model, which correspondstfe=0 in  comes large because the wave function is numerically repre-
the two-leg ladder model, is treated at half filling in Appen- sented on site bases. Then, the data for ldggand small
dix A. It is equivalent to the spin-1/XXZ model, so that its  1/L, may suffer from the problem of getting stuck in meta-
ground-state property is exactly known from the Bethe anstable state€ We can say, at least, the gap fér3.0 be-
satz: it is metallic and uniform fov <V, =2t, while it is  comes substantially small fdg=0.3, while the gap foV
insulating for V>V, because of density alternation. The =4.0 survives fort,<0.4 [note the different origins of the
single-particle densities of states and the dynamical structuregertical axes in Figs. @) and Zb)]. Looking at the density-
factors for the local charge transf@long the chainshown  density correlation functiongnot shown, we find that the
there can be used as the data tge=0. We have also insulator phase has a checkerboard pattern of charge order as
checked the influence of taking differemtandM values in  shown in Fig. 3. As described later, the charge order in the
Appendix A, which shows good convergence. In the preseninsulating phase is reflected by individual modes appearing
two-leg ladder model, the convergence becomes worse da dynamical structure factors.
that one should expect that the presented data show qualita- It was recently claimed, using bosonization with the per-
tive overall tendencies. The dynamical structure factors irturbative renormalization-group method, that the two-leg

Ill. RESULTS

A. Static properties
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2 ———— 77— ference. FolV<2t, the system is gapless and uniformtgt

[ =0. The addition of the, term would reduce the total en-

@) ergy by kineti [ i

gy by kinetic energy gain. Then, it seems reasonable to
expect that the fermions tend to be more delocalized and that
the charge order remains destabilized. At least for finite sys-
tems up toL,=60, the gap due to the finite-size effect al-
ways becomes smaller with increasityg It seems to hold
when the data are extrapolatedLip=. It is noted that this
argument based on the kinetic energy gain does not always
applicable: for the infinite number of chains and with spin
I —8—1,=0.1, V=3.0 1/2, the long-range antiferromagnetic order is stabilide,
05} %g.-' Bt =0.2, V=30 the continuous symmetry is brokeonly whent,# 0, so that

I oe - tb=0.3 V=3.0 the fermions are not always delocalizedthy In the present
t=1.0, m=120 b case of spinless fermions, however, the charge order is
2-chain, half filling| present(i.e., the discrete symmetry is brokefor V>2t in
0 002 004 006 008 the ground state even whep=0, so that the situation is

different from the spin-1/2 case.
I/L In the bosonization argument, the scaling dimension of
the umklapp term is essential. Fgy=0, it is 2—4 K with
25 —— the Tomonaga-Luttinger parametlr (K<1 for repulsive

I interaction$. The charge gap is produced ¥ 1/2, i.e., for
sufficiently strong repulsive interactions. The interchgjn
term proportional to—t,cos(/2¢,)cos(/26,), where ¢,
=(p1— P2)/IN2, 0,=(6,— 6,)12, ¢; andd, 0,/ are con-
jugate phase operators for chgis 1,2, is coupled with the
umklapp term proportional to—g,cos(/8¢,)cos(/8¢y),
| where ¢= (1 + ¢,)/\/2. Then a new term proportional to
cos(/8¢.) is generated during the renormalization proce-
——t =0.1, V=40 dure, which has the scaling dimensior 2K and becomes
_E,_tb=0'2’ V4.0 relevant fork <1.2 This argument seems reasonable, but

K the argument for the interchaip term must always be ac-
(=1.0, m=120 et 0.4 Vet 0 companied. The Ie}tter. term has the scaling dimension 2
2-chain, half filling £=0.4, V=4, = (Ka+1/Ky)/2, which is much larger than that of the um-
ey ——— klapp term for weak repulsive interactions. In other words,
0 0.02 0.04 0.06 0.08 the scaling law may break down. In such a case, the tendency
1L toward delocalization usually dominates, so that another re-

x gime controls the low-energy propertits.

Once the scaling argument is assumed to hold, then the
charge gap becomes finite but very smialFor smallt,, it
becomes the infinitely large power ¢f (thus it vanishes
faster than the standard Berezinskii-Kosterlitz-Thouless be-
havior). For smallV and larget,,, it again becomes the infi-
nitely large power ofV, ~V"%¥ |t is then logically pos-

) ; o 29 ) sible that the present numerical approach misses to pick up
!nsulator )‘or arblt_rary weak repulsive .|nteract| sThl_Js, it uch a tiny gap. Numerically, we encounter unstable behav-
is inconsistent with the results described above. Since botjy, when we further increase the Trotter numibdr so that

this analytic work and the present numerical approach havge cannot pick it up. The energy scalediscussed later is
their own drawbacks, we here discuss the origin of the dify,q¢ 5 small, so that the later discussions are not affected at
all even if the tiny gap is present. Then, the results shown
V<V : metal below would correspond to the confinement-deconfinement
- - crossover inside the insulator phase of Ref. 29. Our previous
:I:I:I:I:I:I: finite-T DMRG study suggests that, for sma&l] the density
o - deviates from the half as soon as the chemical potential be-

comes finite® It would be very hard in any case to numeri-
V>V : insulator cally observe the gap for small since its magnitude is very

:_f ‘ ? ‘ ? L: small, if present.

FIG. 3. Schematic ground states in the metallic phaseVfor Hereafter, we show numerical results obtained by the
<V,, and in the insulating phase fof>V,. finite-T DMRG method combined with the analytic continu-

1.5

=== tb=0.4, V=3.0

o= tb=0.3, V=40

05

FIG. 2. Gap calculated by the ground-state DMRG for finite
systems with chain length, , for differentt,, (a) for V=3.0, and
(b) for V=4.0, at half filling. The other parameters d@re1.0 and
m=120.

ladder of spinless fermions at half filling becomes a Mott

B. Intrachain correlation effects
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0.2 ——V=1.0 t=1.0, th=0.l, T=0.25 ——V=1.0
<1 = v=20[" ' m=26, 28,30, M=30 | 0.14 | TV
_2_—- X:Zg 2-chain, half filling 012 -x=-v=40| =10, t,=0.1,1=0.25
il T m=26, 28, 30{M=30
0.15 o1 2-chain, half fflling

0.1

p(w)

0.05

FIG. 6. Dynamical structure factor for the local charge transfer
FIG. 4. Density of states for differe and t,=0.1 at half  across the chains, for differeM andt,=0.1 at half filling. The
filling. The other parameters ate- 1.0, T=0.25,m= 26, 28, or 30,  other parameters are=1.0, T=0.25, m=26, 28, or 30, and
andM =30. The largem is used for the more singular spectrum at = 30.
the smallerv.

particle-hole symmetry and the fact that the energy \6fi@
ation from the imaginary-frequency axis to the real-required in the strong-coupling limit—c, to add a fermion
frequency axis. Figure 4 shows the single-particle density of0 the half-filled system.
statesp(w) for differentV. ForV=0 and at zero temperature The dynamical structure factors for the local charge trans-
(not shown, p(w) is known to have the inverse-square-root fer along the chains &;,(w) are shown in Fig. 5. Their
singularities neaw= * 2t. For smallV and at low tempera- behavior is in sharp contrast to that of the dynamical _struc-
tures, the singularities are rounded, but their remnant clearf{'ré factors for the local charge transfecross the chains
appears neap= = 2t. With increasing/, p(w) at the chemi-  Siyiy(®) shown in Fig. 6 below. Recall that, fog=0.1, the
cal potential =0 at half filling) quickly decreases. For ~ Systém is metallic and gapless MV =2.5, while it is an
—4.0, there is an energy gap of about 0.6 according to FigdPsulator with a finite gap fo/>V, . The intrachain spectra
1 and 2b), but it is not clearly seen even @t=0.25 presum-  Sjxjx(@) are insensitive t&/ for V<V.. Itis similar to the
ably becausen is not large enough. With increasing the single-chain case showp in Appendix A. The Iow-energy side
peak atw>0 is shifted to higher energies, and thatat ©Of the peak is almost independent gf though the high-
<0 to low energies at half filling! For largeV, the peaks €nergy side is gradually extended to further higher energies
are located roughly ab= = V. This is understood from the with increasingV. Meanwhile, in the insulating phase for

>V,, the magnitude of the gap &=0.1 is about 0.1 for

04 V=23.0 and about 0.6 fo¥=4.02" The growth of the gap
) ' ' ' ' with increasingV for V>V, is reflected in the low-energy
035 L i ——V=1.0 part of the spectra. The spectral weight is suppressed further
i =+ V=20 beyond the gap. It may be regarded as a pseudogap. For large
03 >.£ X _j_'_zjg V, the pronounced peak appears at arowrdV. This is due
Pt — ] to the intrachain charge-transfer modes shown in Fig. 7. In
— 025 ] ': t=1.0,,=0.1, T=0.25 7 the strong-coupling limit, the charge-order pattern is as
\3’& o2 b X m=26,28,30, M=30 shown in Fig. 3 foW>V, . Then the energies of these modes
® 2-chain, half filling
2 015 Intra-chain charge transfer
o1 - ~2aV .
LT
0.05

Y an A Ziliox. Inter-chain charge transfer

2V
FIG. 5. Dynamical structure factor for the local charge transfer

along the chains, for differett andt,=0.1 at half filling. The other

FIG. 7. Intrachain and interchain local charge-transfer pro-
parameters are=1.0, T=0.25, m=26, 28, or 30, andvl = 30.

cesses, which approximately castand 2V, respectively.
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Confined soliton pair 025 —————————————1——1——

[ —e—tb=0.1
021l 'El-tb=0.2 ]

[ ==t =0.3

b

[ =t =0.5
-~ 015} ]
S i t=1.0, V=3.0, T=0.25
§ L \ m=28, M=30 1
A o1l A2y ) 2-chain, half filling 1

FIG. 8. Confined and unconfined pairs of solitons, which move 0.05 L

collectively. [ of 5550

are given by because the number of nearest-neighbor pairs
along the chains is increased by 1. These modes are indi- o

vidual and locally excited. FIG. 9. Dynamical structure factor for the local charge transfer
The interchain spectr8y;, () show different behavior 1 "o chains. for differert, and V=3.0 at half filling. The

(Fig. ©). The_low-energy part O_Siyjy(“’) steadily loses the other parameters ate=1.0, T=0.25, m=28, andM = 30.
spectral weight with increasing/, and shows a large
pseudogap structure for>V.. Compared withS;,jx (@),  charge-transfer excitations would be governed by solitons.
Sjyjy(w) are much more sensitive ¥ in the whole energy  Wwith decreasingv, the creation energies of soliton pairs are
range. For largeV, the pronounced peak now appears atreduced.
aroundw=2V. This is due to the interchain charge-transfer ForV<V,, the charge order does not exist statically as a
modes shown in Fig. 7. This time the corresponding energieguly long-ranged order. However, even in this uniform
are given by ¥ in the strong coupling limit because the phase, there exists a short-range charge-order correlation,
number of nearest-neighbor pairs along the chains is inwhich grows withV. Therefore, with increasiny, the mo-
creased by 2. These modes are also individual and localljon of solitons has a more collective character, and becomes
excited. Compared wittSy;x(w), the spectral weight is jmportant at low energies. Note that the solitons can propa-
shifted to higher energies as a whole and the pseudogagate along the chains: they can be excited only within a chain
structure is more extended. so that they are reflected only B);,(w). This makes the

To clarify the origin of the significant difference between significant difference betweeS,x(w) and Sjyj,(w). In
Sixjx(@) and Sy, (w), we consider collective modes that other words, the low-energy part 8, jx(w) does not change
become important at low energies. There are two types ofo much, but the modes contributing to the low-energy part
soliton pairs forV>V,, as shown in Fig. 8. Note that the gradually change their characters from individual to collec-
checkerboard pattern is stabilized by the superexchange pr@ve ones. Meanwhile, the collective modes are missing in
cesses of fermions along the rungs. When the charge-ordgjyjy(w)’ so that they cannot fill the low-energy part. The
configuration of any finite length within a chain is shifted by charge-transfer processes take place incoherently across the
one lattice constant, a pair of a soliton and an antisoliton ighains. A fermion transferred across the chains would then
created. It costs abouf at most because the number of fee| so large change in the local environment that the corre-
nearest-neighbor pairs along the chains is increased by onljhonding interchain spectrum is thus sensitiv&/ten other
1. The quantum fluctuations of the positions of the solitonsyords, the intrachain interactiod, which controls mainly
reduce the energy cost. Because of the mismatch between thig intrachain correlation, modifies the interchain local
neighboring chains, some superexchange processes are tisrrge-transfer excitation spectra much more sensitively than
allowed, so that the energy of the soliton pair increases linthe intrachain spectra.
early with the distance between the soliton and the antisoli-
ton. The soliton and the antisoliton are not freely propagating
but confined at half filling. It is noted that “confinement”
here describes the motion of the solitons that is not free from Now we study how the intrachain spectrusj, ()
the antisolitons. In this paper, “confinement” is mainly used evolves witht,. For V below the critical strengttv., the
for the motion of the fermions that is forced along the chainslow-energy part ofS;,;,(w) is found to be insensitive tg,
When the charge-order configuration is shifted simulta{(not shown. The high-energy part is only slightly extended
neously on both of the chains by one lattice constant, théo further higher energies because the band becomes broad
soliton pair does not suffer from the confinement, but theirwith increasing,,. ForV just above the critical strengii. ,
energy cost reaches aboW 2The kinetic energy gain from the t, dependence of the intrachain spectr@p,(w) is
the fluctuating locations of the solitons is much smaller tharshown in Fig. 9. It is noted that the magnitude of the gap is
that for the confined soliton pair. They would be less impor-about 0.1 at most and smaller than the temperalu®.25.
tant than the confined soliton pairs. In short, the low-energyn contrast to the smaM case, however, the low-energy

C. Interchain overlap effects
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014 ———

V., the confinement behavior of the interchain spectra

t=1.0, V=3.0, T=0.25 Sjyjy() is again observethot shown. Now V is larger, so

012 101 Zm_;ﬁfi’nlﬁa?fﬂlmg 1 that the pseudogap structure ranges wider, and the confine-
-E—tb=02 ment is stronger. Then, a wider range of the low-energy part
0.1 b 1 in Sjyjy(w) is almost independent of,, compared with
©mt,=03 Si,iy(®) just above the critical strength.. The spectra
§ 0.08 [-|=>¢"t,=0.6 Sjyjy(w) are enhanced by, only at high energiesp=4,

which is much larger than the magnitude of the gap of about
0.6 at most.

D. Doping effects

Hereafter we consider the effect of doping by shifting the
chemical potential from zero. At=1.0, t,=0.1, T=0.25,
and foru=0.0, 0.4, 1.0, 1.5, the density per site respectively
becomes 0.500, 0.538, 0.599, 0.660 fd=1.0 (<V,);

Q 0.500, 0.514, 0.538, 0.563 for=3.0 (=V,); and 0.500,

FIG. 10. Dynamical structure factor for the local charge transfer0'505’ 0.518, 0.535 f¥=4.0 (>V,). HereV, denotes the

across the chains, for differemf and V=23.0 at half filling. The .C”tlcal strength at half f|II_|ng. With increasing, the density
other parameters ate=1.0, T=0.25, m=28, andM = 30. increases more slowly witpp. Below we show how the dy-

namical structure factors change wijih Roughly speaking,

spectrum(at w=<2) slightly but steadily grows withy,. For  their dependence on is similar to that ort, especially for
V much above the critical strengtti., the pseudogap in V>V,. Later we will discuss why the similarity appears. At
Sixjx(w) at low energies is filled, and consequently the spechalf filling, solitons are present basically in the excited states
tral weight increases with, (not shown. This indicates that only. Meanwhile, away from half filling, solitons are always
the atomic picture shown in Fig. 7 for the individual modespresent in the ground states. Their translational motion can
does not hold for largey,. The increasing, reduces the be viewed as Goldstone modes, which make the system me-
charge-order correlation and facilitates the collective chargetallic. The charge gap for largé at half filling persists when
transfer excitations. Such evolution withat low energies is t, increases, but it disappears upon doping. Therefore, the
not found inS;;, (w). That is, the interchain transfer integral similarity between the.#0 andt,#0 cases should be un-
t, modifies the intrachain local charge-transfer excitationderstood carefully.
spectra much more sensitively than the interchain spectra at Evolution of the intrachain spectru®,;,(w) with u is
low energies. studied. ForV below the critical strength, the low-energy

Evolution of the interchain spectruy;,(») with t, is part of S, jx(w) is found to be insensitive ta. (not shown.
then studied. FoW below the critical strengtV., the low- As u deviates from zero, higher-energy excitations become
energy part of5;;,(w) is insensitive tay, (not shown. For possible, so that the high-energy part is slightly shifted to
V just above the critical strengt¥., the interchain spectra further higher energies. Fof just above the critical strength
Sjyjy(w) are shown in Fig. 10. The low-energy spectral Ve, the growth of the low-energy spectral weight withis
weight remains suppressed whigrincreases. This behavior clearly seen in Fig. 11. The peak is shifted to higher energies
is reminiscent of confinement in the context of coupledwith increasingu. For V much above the critical strength
Tomonaga-Luttinger liquids. It has been argued on the basi¥., the filling in the low-energy pseudogap and the conse-
of the perturbative renormalization-group theory that thequent growth of the low-energy spectral weight quickly take
Mott gap prohibits coherent interchain one-particle hoppingplace with increasinge (not shown. Somewhat similar be-
in (TMTTF),X.3? A confinement-deconfinement transition havior is found inS;,;, () also, but its dependence @nis
with increasingt,, is also studied by applying the bosoniza- much weaker than that i8;,js(w). For V>V, the low-
tion technique to the half-filled, two coupled chains with aenergy excitations are attributed to the motion of solitons.
misfit parameter due to the interchain one-particle hopping. Away from half filling, they are always present in the ground
Ground-state DMRG studies for three coupled extendedtates. With increasing, the density of solitons increases,
Hubbard chains show results consistent with this Vibt  so that the charge-order correlation is weakened, facilitating
low energies, fermions are confined in the chains, so thahe collective charge-transfer excitations. Because solitons
they cannot be freely transferred by the interchain locaimove along the chains, the growth of the low-energy spectral
charge-transfer operator. Thus, the low-energy part ofveight appears mainly iy ().
Sjyjy(®) is almost independent of . Since the fermions are Evolution of the interchain spectru®y;,(w) with u is
more strongly confined for smalley,, the difference be- finally studied. ForV below the critical strength/., the
tween S;y;,(w) and the single-chain spectrum appears alow-energy part ofS;;,(w) slowly increases withu (not
higher energies. With increasing,, the confinement be- shown. The high-energy part is shifted to further higher en-
comes weak, so tha;,;,(») starts to deviate from the ergies as inS;(w). ForV just above the critical strength
single-chain spectrum from the lower ener@fjpus in the V., the growth of the low-energy spectral weight wijghis
wider energy range For V much above the critical strength clearly seen in Fig. 12. It is not so strongly suppressed as in
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0.25 . . . . . with t,, when compared with the behavior §f;;«(w). The
similarities between theu#0 andt,#0 cases may look

——p=0.0 strange at first sight. A given finite is constant and does not
02} b o p=04| 7 spatially fluctuate. It changes only the averaged total number
% Xx _2_'_”1(5’ of fermions. Meanwhile, the interchain transfer integrgl
0.15L il assists the interchain motion of fermions, so that the number
) t=1.0,¢=0.1, V=3.0 of fermions in one chain fluctuates quantum mechanically,
”.5 Y T=0.25, m=28, M=30 but the corresponding operator conserves the total number of
“v o1k 2-chain fermions. The umklapp process due to the commensurability

Nt ] at half filling disfavors the quantum fluctuation of the fer-

mion number in one chain. This is easily understood for large
V from the energy cost required to transfer a fermion to the
other chain at half filling. Upon doping, the commensurabil-

0.05

ity is quickly lost. Then the umklapp process is so weakened
12 that it becomes ineffective at low-energy scales. Doping does

not only change the averaged total number of fermions, but
(0 also enhances the quantum fluctuation of the fermion number

FIG. 11. Dynamical structure factor for the local charge transfer"? one chain. That is why the doping effects are somewhat

along the chains, for different at and near half filling withv similar to the inter(_:hain overlap effects. The similarities are
=3.0 andt,=0.1. The other parameters are 1.0, T=0.25, m rather_ close _espeCIaIIy fo_r _Iargébec_ause th_e umklapp pro-
=28, andM = 30. cess is dominan® In addition, the interchain transfer pro-
cesses do not take place coherently owing to the gap. This
situation has already been studied by the perturbative
renormalization-group theor§, by the bosonization
technique®™ and by the ground-state DMRG methdOnce

e quantum coherence in the interchain charge-transfer pro-
cesses is lost, the occurrence of these processes would look
as if they are statistic. Thus, this may be approximately re-
produced by a thermodynamic effect of shifting the chemical

potential. A similar situation is found in the optical conduc-

much Wgaker than that o.bservedSp(,-X(w) for the samev. tivity spectra for the TMTSF famil§® The observed optical
WhenV is large, the fermions tend to be strongly confined inte 4t res are close to those that have been calculated for a

the chains. Nonetheless, the low-energy spectral Weigrﬁoped one-dimensional Mott insulaf§r”
slightly increases withw because of the presence of solitons. '

We thus find some similarities between the spectral evo-
lution with t,, and that withu. For V>V, the evolution of
the low-energy part of5;;,(w) with w is faster than that

the case of increasing, at half filling. The difference be-
tween theu# 0 andt,# 0 cases would be due to the fact that
solitons are present in the ground states in the former, whil
they are absent in the latter. Fgrmuch above the critical
strengthV., the slight growth of the low-energy spectral
weight with w is seen(not shown. However, it is weaker
than the case just above the critical strength and it is

IV. CONCLUSION AND DISCUSSION

So far, the dimensional crossover problem has been stud-

0.14 T T T T T ] ied to clarify how the three-dimensional character of inter-
[ t=1.0,4=0.1, V=30 ] acting fermions is achieved by increasing interchain transfer

012t ——1=0.0 T=0.25, m=28, M=30 integrals: either the single-particle motion becomes coherent
[ | B u=04 2-chain ] and the Fermi-liquid picture becomes valid, or some long-

O.LF | ==p=1. ] range order is developed by the interaction. Experimentally,
[ ] the dimensionality is controlled not only by the physical or

chemical pressure, which changes the ratios of the interchain
transfer integrals to the intrachain ones, but also by the en-
ergy scale used in the measurement. In this paper, to study
the correlation-driven, energy-scale-dependent “dimensional
crossover,” we calculate dynamical structure factors for the
local charge transfer processes along the chains and across
the chains in the spinless-fermion model on a ladder at and
near half filling. The finiteF DMRG method is employed to
treat the excitation spectra around the quantum critical point.
The characters of the intrachain and interchain spectra are
found very different.

FIG. 12. Dynamical structure factor for the local charge transfer Below the critical strengttV. for charge ordering, the
across the chains, for differept at and near half filling withv intrachain spectra are insensitive to the intrachain repulsion,
=3.0 andt,=0.1. The other parameters are 1.0, T=0.25, m  While, for any strength, the interchain spectra are sensitively
=28, andM = 30. affected. AboveV/,, in contrast to the repulsion-strength de-
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pendence, the intrachain spectra are sensitive to the intemion model on a single chaifwhich is equivalent to thé,
chain transfer integral, while the interchain spectra remain=0 case of the model used in the tezt half filling. The
suppressed at low energies. These results are due to the faihgle-chain model is much easier to treat and has smaller
that the collective motion of fermions is allowed only along errors. The dynamical structure factor for the local charge
the chains even if the long-range charge order is absent. Inransfer Sjj,(w) is calculated fort=1.0 andV=3.0 and
terchain coherent band motion is suppressed by electron cowith differentm, M, andT values. AtT=0.25, which is used
relation, which is analytically studied at commensuratein the text also, the data witm=14 and withm=18 are
fillings.2 The interchain transfer integral weakens the chargeéndistinguishable from each other k=24, and those with
order and facilitates the collective motion of fermions alongM =24 and withM=36 are also indistinguishable ah
the chains. The effect of the interchain transfer integral is=14. Thus, they converge well already @mi=14 and M
somewhat similar to that of doping, when the intrachain cor-=24. At a lower temperatureT=0.167, the low-energy
relation is so strong that the interchain motion of fermions isspectra are slightly shifted downward due to smaller thermal
incoherent. fluctuations, and the difference from thoseTat 0.25 is well
Similarities between the optical conductivity spectra fordeveloped and much larger than the numerical error.
the TMTSF family and those calculated for a doped one- As the interaction becomes weak, the accuracy of the
dimensional Mott insulator have been pointed Buln the  present method generally becomes worse because the eigen-
present model calculations, however, the mechanism for th@ector of the quantum transfer matrix is numerically repre-
insulating ground state is not spin-density-wave formationsented basically on site bases, more precisely speaking, on
but charge ordering. Furthermore, the truly two- or threedlock bases since the unit block is diagonalized with respect
dimensional motion of fermions observed in the TMTSFto the block Hamiltonian. In order to check the accuracy of
family at very low energies is beyond the scope of thethe spectra, we calculate them in the worst cas&/sf0,
present paper for coupled one-dimensional systems, and leffhere the exact spectra are analytically obtained. Note that
to the future problem. Technically, the present numericathe Bethe ansatz for the single-chain spinless-fermion model
method cannot deal with the optical conductivity spectraand the equivalent spin-152XZ model tells the ground-state
which are zero-momentum properties, but can treat the locgdroperties including the quantum critical point, but it does
spectra, in which all the momentum components are summegbt tell the excitation spectra for general value\bfin any
up. case, the worst case can be exactly calculated, so that it
Though the present results are obtained in the limited casgould be enough to confirm the accuracy of the present
of the two-leg ladder, we expect similar difference betweemnmethod.
the intrachain and interchain spectra in quasi-one- The single-particle density of statpéw) in the noninter-
dimensional electron systems with strong intrachain electroractmg case has the inverse-square-root singularityat
correlation in general. It is because, both in the present study 2t, but it is rounded in the numerical spectrum. The non-
and in the TMTSF family, the umklapp process is essential tGjngular part is very well reproduced. The sum rule is also
the crossover. When a gap is produced by the umklapp prayel| satisfied. As the interaction strength increases, quantum
cesswithin a chain, interchain one-particle hopping pro- flyctuations round the singular part, so that the present
cesses are strongly suppressed, as discussed in the phase giathod would give more accurate results. Figure 13 shows
gram of quasi-one-dimensional organic conductors. ,() for different V. With increasingV, the singularity is

Interchain motion of electrons is thus easily frozen, and 3ndeed more rounded, ane(w) at w=0 decreases. The
long-range order is formed once the corresponding particle-

hole processes become coherent. Meanwhile, intrachain mo- 03 . . . — —e—v=0.0
tion of electrons is collective at low energies, inhibiting the ::1'108 Me36. T20.25 = V=0.5

_ . . _ _ =16, V=00, 1=U. %= V=1.
one-body band picture. With _WeII developed but short range 025 [ 1-chain, half filling ‘1: --><--¥=i(5)
order, the low-energy collective modes are regarded as soli- Ant :

. st eV=2.0
tons and antisolitons. .
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APPENDIX A: SINGLE-CHAIN CASE ) ) ) ) )
FIG. 13. Density of states in the single-chain model, for differ-

In order to show the influence of the truncation procedureent V at half filling. The other parameters are: 1.0, T=0.25, m
in the present method, here we mainly use the spinless fer 18, andM = 36.
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FIG. 14. Dynamical structure factor for the local charge transfer 0.1F m=30 T=025 7
in the single-chain model, for differe at half filling. The other 3 o008} M=30 ]
p—

parameters are=1.0, T=0.25, m=18, andM = 36.

2-chain

f% 0.06 half filling
ground state at half filling is known to have a finite gap for “
V>2t. ForV=2.5, the magnitude of the gap is estimated to 0.04
be much smaller than 0.1 from the extrapolation of the 0.02
ground-state DMRG results. The present calculation is per-
formed at a finite temperature d=0.25, which is much 0 it

larger than the gap. That is why the gap structure is com-
pletely smeared out by thermal fluctuations. Ro#3.0,
there exists a gap of magnitude about 0.1, wh{le) clearly FIG. 15. Dynamical structure factor for the local charge transfer
shows a pseudogap structure at a wider energy range. Thi& along the chains ang) across the chains, for differemtat half
gap is still smaller than the temperature, so @) is still  filling. The other parameters ate=1.0, t,=0.1, V=3.0, T=0.25,
finite. With increasingV, the peaks irp(w) are shifted fur- andM=30.

ther, and located around= £V for largeV.

f TShe dyna}m|tcr:1al strupttLJre f?ctor for tr;le Ioca(tj:'charge t.rtanstﬁnite t,. Because the degrees of freedom per unit are much
er_ i?jxt()wt) 'Itn's ?onﬁggdersiéggncaézr'gz ;i(t:ro%lm,: yaa more than those in the single-chain model, the numerical
@=4l, but it undea 1 umerical spectrum. Aw Yaccuracy becomes much worse if we use the same values for
from this point, especially at low energies, the spectrum is . :

. iy -~ m and M. Although the accuracy is still worse than that
well reproduced. The sum rule is well satisfied again. Figure

14 showsS,; (w) for differentV. The spectréS,y,(w) are shown here in the single-chain model, we find that the values

insensitive toVv for V< 2t. Especially, the low-energy side of mh=26, Z?II or 30 almc:]\/l =30 sehmiqualrllt?tatir\]/ely reﬁ)rodluce
the peak is almost independent \6f and the high-energy the overall spectral shapes rather well in the two-leg ladder

side is steadily and slowly shifted to further higher energiedn©del. Because the value ofis more crucial to the accu-
with increasingV. For V>2t, however, the low-energy part acy, we show the dynamical structure factors with different
is steadily suppressed and shows a pseudogap structure ifsin Fig. 15a) for the intrachain process, and in Fig.(bb
wider energy range than the gap. These featurgg @} and for the interchain process. The overall structures are not so
of Sj,jx(w) are observed also in the two-chain case for smalmuch affected bym. Especially the spectral weight at low
t,. Thus the one- and two-chain results are consistent witnergies and the position of the peak converge well. How-
each other. ever, the spectral weight and shape at high energies are gen-
Finally, we come back to the two-leg ladder model with erally less accurate.
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