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Exact Kohn-Sham exchange kernel for insulators and its long-wavelength behavior

Yong-Hoon Kint and Andreas Gting
Lehrstuhl fu Theoretische Chemie, Technische Univetsitainchen, D-85748 Garching, Germany
(Received 18 February 2002; published 23 July 2002

We present an exact expression for the frequency-dependent Kohn-Sham exact-exeXat)geernel for
periodic insulators, which can be employed for the calculation of electronic response properties within time-
dependen{TD) density-functional theory. It is shown that the EXX kernel has a long-wavelength divergence
behavior as the exact full exchange-correlation kernel and thus rectifies one serious shortcoming of the adia-
batic local-density approximation and generalized gradient approximations kernels. A comparison between the
TDEXX and the GW approximation Bethe-Salpeter-equation approach is also made.
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[. INTRODUCTION occupied orbital energies are too high and unoccupied orbital
Time-dependent(TD) density-functional theory(DFT)  energies do not exhibit Rydberg series. For solids, the LDA
(Refs. 1 and Ris an attractive first-principles formalism for band gaps are too small and this behavior is again not cor-
the calculation of electronic response properties. Thanks tgected by the GGA. In fact, even the exact KS gap does not
its simplicity, applications to quantum welland atom$  equal the experimental band gap but differs by the disconti-
have appeared long before its formal justificaticand cur-  nuity of the exchange-correlation potentialHowever, re-
rently its use is ubiquitous in a wide rangeaf initio com-  cent theoretical and numerical studies suggested that the KS
putations. A crucial ingredient of successful TDDFT app"ca'equation forN electrons corresponds to the Dyson equation
tions is the approximation to thelynamic exchange- \here the reference ground state is chosen whith 1
correlation kernel, electronst? and accordingly unoccupied orbitals in the KS
calculations should give a good description of excitations of
- Svxe(1;1) (1) the N-electron system with fixed particle number. This is in
sn(r';t)’ accordance with the perturbation theory along the adiabatic
connection which finds that differences of KS eigenvalues
represent the leading term in the expansion of excitation
energies?

In this regard, recent development of the KS exact-
exchange (EXX) method, which treats the exchange-
dvthA[n(r)] correlation energy functional exactly in leading order in the
—, (2 electron-electron interaction, provides an interesting oppor-

dn(r) tunity. Self-interaction-free, nonlocal EXX schemes give not

has been almost exclusively adopted in practical calcula®nly realistic exchange potentials and KS eigenvalue spectra
tions. However, the scope of the LDA kernel has been rathefor molecules*~*® but also band structures of semiconduc-
limited for infinite periodic solids due to its deficiencies, andtors in good agreement with experimeHts’ We have re-
in particular its incorrect nondivergent long-wavelength be-cently shown that the EXX orbitals and eigenvalues at the
havior for insulators has been emphasized as a primary dene-particle level without any previously applied post-DFT
fect in recent year:® This shortcoming of the LDA kernel maodification such as the quasiparticle stifindeed give a
shows up, e.g., in its incapability of describing excitonic ef-very good description of the absorption spectrum of semi-
fects in absorption spectra of solids. The semilocal generalkonductors with the exception of excitonic features resulting
ized gradient approximation€GGA) kernel does not im- from two-particle interactions, and argued that it is another
prove over the LDA one in this case, and the task ofevidence of the above-described picture of *KS
developing a more accurate approximate exchang;;equasiparticles.Bz
correlation kernel remains as a challenging task for the In view of the encouraging performance of the EXX
TDDFT study of solids. method, we present in this work an exact expression of the
Indeed, deficiencies of the LDA and GGA appear alreadyEXX kernel FE** for periodic insulators which can be em-
at the level of thestatic exchange-correlation energy func- ployed for calculations of electronic linear-response proper-
tional E, n] and the exchange-correlation potentgl(r) ties within TDDFT. It will be shown that the EXX kernel,
=J0E,[n]/én(r). For instance, the LDA and GGE,Jn] unlike the LDA and GGA kernels, exhibits a long-
inherently fails to describe the quasi-two-dimensional elecwavelength behavior of the exaEt. which is particularly
tron gas due to theitsemjlocal nature’® For v,. and the important for the study of electronic excitations in infinite
corresponding Kohn-ShartKS) eigenvalues, the LDA and solids. This behavior of the EXX kernel has been previously
GGA v, incorrectly decays exponentially rather than as claimed by Gosheet al. based on a plausibility arguméht,
—1/r for localized systems, and consequently their highesaind here we explicitly prove this using our exact formula.

Foo(r,r';t—t")

which together with the Hartree kerfiel Fy(r,r’)
=wc(r,r')=1/[r—r'| completely determines the two-
particle interaction effects. FoF,., the adiabatic local-
density approximatioflLDA) kernel,

Fla (rr st —t)=a(t—t")a(r—r")
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II. LONG-WAVELENGTH BEHAVIOR OF THE
EXCHANGE-CORRELATION KERNEL FOR INSULATORS

We first establish the definitions and notations of various®
guantities of interest and derive the long-wavelength behav-
ior of the exacfF,..% The full linear density response matrix

x describes the response of the first-or@rmbej density
changeén for the given bare dynamic perturbatidn ey,

(G, q;w)=2, x(G,G',0,0)8ve G, qiw). (3
<
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x are known to have the following similarg—0
behaviof>?4 (assuming that both the KS system and the real
ystem are insulatiriy

00 01 ~ ~
9’xo’ Axo| ~ [ax* ax™ w
Xo= 10 1| XT| ~ ~ )
dxo  Xo ax® X%

where we used the notation th&t®, ¢°Y1° and ¢! denote
the head of a matri¥ divided byq?, its wings divided byg,
and its body, respectively. The quantitigd’, x3°, x5, and

xat as well asy®, ¥1% %°% andy*! all consist of a leading

We chose to work in the reciprocal space and the frequenc§-independenterm and contributions of higher order @

domain, e.g.,x(G,G’,q;w) is a matrix in the reciprocal-
space lattice vector& andG' for the given wave vectoq
and frequencyw. Analysis of theq—O0 behavior of the
“head” (G=G’'=0), “wing” ( G=0 andG’'#0 or vice
versg, and “body” (G#0 andG’'#0) elements ofy and

other related matrices appearing below is an important dis- _
cussion point throughout the paper. From now on, we will
adopt the matrix notation ar@ dependence will be assumed

unless explicitly stated otherwise. Within TDDFah is ex-
pressed in terms of the dynamic linear response matgix
and the first-order change of the effective KS poterdials,
on(g; ) = xo(d; ) Suks(a; ), 4
where dvgg is composed of the external perturbatiéng,,
and the resulting change in the Hartree potentig} and the
exchange-correlation potentiéb .,
OUks(0; @)= 8V exi( Qs @) + SU (0 ) + 60 xe(0; @)
= 0vex( ;@) +[Fiu(a) + Fy(q; @) ]6n(0; w),
©)
with F4(G,G’,q) = 8¢ o 4m/|q+ G|?. Then, from Egs(3),
(4), and(5), one obtains
Xo H(Gw)=x " Ndiw) +Fu(@) +Fyldiw),  (6)

which shows thaly is completely determined oncg, and
F,c are given.
For further consideration of thg— 0 behavior off,., it

is convenient to introduce the “proper” part f 'y, defined
througt¥23

an(q; @) = x(0; ) Svrc(Q; ), (7)
where dv ¢ is the change of the test-charge potential,

OvTc(0; @)= 0V exi(Q; @) + F(a) on(Q; @), ®

and thus relates with the full response maiyibas

X Hdw)=x"Hg;0)+Fu(a), ©)
or with the KS response matrix, as

Xo HGw)=x"Hq;0)+Fy(q0). (10

The linear response matrix of tlmninteractingKS system
Xo and the proper part of that of theal interactingsystem

which vanish in the limitq—0. Then, from Egs(10) and
(11), one can deduce that the head and wingg gfave the
following divergentq— 0 behaviof (assuming that there ex-

ists no fortuitous cancellation betweqfta’1 andy ™),
Feda® Fidd
Fxld  Fyg
In Eq.(12), FR, FL, F%, andF1! again contain a leading
g-independenterm and contributions of higher order m

which vanish forq—0. The head and wings of adiabatic

LDA and GGA kernels, on the other hand, are independent
of q and thus are incorrectly non divergent fpr0:

LDA/GGA,00
XC

FLDA/GGA,lO FLDA/GGA,ll '
XC Xc

(12

XcT

FLDA/GGAOl
XC

FLDA/GGA (13)

This defect is a serious problem not only from a theoretical
viewpoint but also for practical purposes because the head
and wings of the exchange-correlation kernel can affect the
the macroscopic dielectric function in leading oréi&or ex-
ample, it has been recently shown that they play a crucial
role for the proper treatment of excitonic effects in the cal-
culation of optical spectra.

Ill. EXACT-EXCHANGE KERNEL AND ITS LONG-
WAVELENGTH BEHAVIOR FOR INSULATORS

Deficiencies of the LDA and GGA kernels discussed
above represent a major problem from the theoretical and
calculational point of view which have not been overcome so
far. To ameliorate the situation we propose to adopt the EXX
kernel. An exact expression of the EXX kernel has been
previously derived by one of us for localized systems for the
case of real-valued orbitafs.For periodic solids, we need to
generalize this expression to complex orbitals and
have to consider the dependence on wave vedtaasad g.
This leads to

FEXG,G \qw)= 2, x0X(G,G1,q )
G1,G;,

XH(G1,G2,G;0) xo (G2,G',q;w),
(14)

where the EXX kernel “core’H, is composed of the follow-
ing contributions[we assume thatve(q;w) and other
quantities have the time dependenee'“'e®, where &

— 07 is a convergence factbr
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(ak|e™1a+0) 1| sk + g)(sk+ q; bk’ |Wc|tk’ +q;ak)(tk’ +q|e' @ C") T|bk’)

(fak_ €sk+q+ w+i5)(€bkr_ Etk’+q+ w+i5)

HYG,G',qw)=— = E >

ask pk’

. (sk|e '@+ 8 T ak+q)(ak+q;tk’|wc|bk’ +qg;sk)(bk’ +q|ei(q+G')'r|tk’>1 15

(€ak— €sk+q— @ 16)(€pkr — €pxr+q— @ —10)

(ak|e (9 C) 1| sk + q)(sk+q;tk’|Wc|bk' +q;ak)(bk’ +q|e' @) T|tk’)

(€ak— Esk+qt @ +i16)(€pkr — €4 g~ @—10)

2
H3G,G',qw)=— ~
(66 0= 3 3

. (sk|e 1@+ 8T ak +q)(ak+q;bk’|wc|tk’ +q;sk)(tk’ +q|ei(q+G')"|bk’>] 16

(€ak— Esk+q— @ —16)(€pkr — € 4 g T @+ 6)

(ak|e™ 1@+ 0) 7| sk+ q)(bk|S,— v,/ ak)(sk+q|e'@F ) T|bk)
(€ak— Esk+qT @ +16)(€pk— €skrqT @ +10)

2
HA(G.G qw)=-¢5 >

(skle"(Q+G) "lak+q)(ak+q|S, —vxlbk+q><bk+q|e'(q+G ) r|sk>}

(€ak— €sk1q— @ —16)(€pk— €y q— @~ 0)

17

2 (ak|e (@8 T sk + q)(sk+q| S, — 04|tk + q)(tk+q|e' (@) T ak)
' . .
O sk (€ak— Eskrqt @ T16)(€ak— €tk qt 0 +16)

<sk|e—'<q+G> ’|ak+q><tk|2 5X|sk><ak+q|ei(‘*+G')‘r|tk)}

(€ak— €sk+q— —i6)(eax 6tk+q_w_i5)
and

(bk|e™ (a8 1| sk + q)(sk+q| S, — vy|ak +q)(ak +qg|e' (@) 7| bk)

HY(G.G',q;w)=— -
3 g (ebk_esk+q+w+|5)(€ak_€sk+q)

abk
(bk|e"(q+G) "lak+q)(ak+q|S,— 0, sk+q)(sk+q|e' (@) " bk)
(€ak— €sk+q)(€pk— Esk gt @ +16)
<sk|e—'<q+G> "|bk+ q)(ak|S,— 0,/ sk)(bk+g|e!(@C") T ak)
(€pk— €sk+q— @ —16)(€ax— €sk4 )
<ak|e—'<q+G> "|bk+ q)(sk| S, — 0] ak)(bk +q|e' @ C") | sk)

(€ak— €sk+q) (€pk— Esk g™ @ —10)

(18)
_2 (ak|e @€ T|tk+ g)(sk| S, —v,Jak)(tk+qle'@ ) 7|sk)

Q sk (Eak_ftk+q+w+i5)(Eak_€sk+q)

(sk|e"(q+G) "Itk +q)(ak|S,— v, sk)(tk+q|e'@*C) T|ak)
(€ak— Esk+q)(5ak Etk+q+w+|5)
(tk|e 1@+ 8) | ak + q)(ak + g2 — vy|sk+q)(sk+q|e' @) "|tk)
(€ak— €tk+q— @ —16)(€ak— €sc4 )
(tk|e 1(@+C)-1 sk +q)(sk+q| 24 vx|ak+q><ak+q|e'(q+G ): r|tk)

(€ak— €sk+q)(€ak— €ty q— @—10)

In Egs.(15—(18), 2 is the spin factor() is the crystal volume{a,b} are valence bandg$s,t} are conduction bandgjk
+0;jk’ |wg|lk’ +g;mk) are four-index integrals defined as
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(ik+q;jk’|we|lk’ +g;mk)

Jdrj dr,Cbi*k+q(r)¢>fkr(r’)¢|k/+q(r)¢mk(r’)

r=r]

2 (ik+q|e'CTR=K) Tk +q)(jk'|e”!
0

19
G |G+k—k'|? (19

3., is a nonlocal orbital-dependent exchange operator of the form of the Hartree-Fock exchange operator but constructed with
the KS orbitalsg,,

¢ak’(r)¢ak/(r )

ak’ [r—r’|

(ikcralS,dikray=— | ar [ ar'giqn S

———— bjkrq(r")

=—> (ik+q;ak’|wc|ak’;jk+q)=

ak’

T E <ik+q|ei(G+kfk’+q)-r|akr><akr|efi(G+k7k’+q)~r’|jk+q>

- : (20
QO 476 |G+k—k'+q|?

ando, is generated by the local multiplicative EXX KS po- In Hy, matrix elements(ik|e”'(@*®) |ik+q) and (ik
tential v, (r). +qle~"@+C8)1]ik) are present, for which a leading-order

Compared with the LDA(or GGA) kernel which is  term independent af occurs forG=0 or G’ =0. However,
(semjlocal in real space and frequency-independgid.  contributions of such type in the first sumldf are canceled
(2)], which results in a reciprocal-representation independertyy corresponding contributions in the second sum.

of q and w, FPYCAG,G,q;0)=FPVCCAG-G"), Due to the cancellations of singularitigs, itself is well
FE*Xis fully nonlocal in real space and depends explicitly defined, and thej—0 behavior ofH, is, according to the
on the frequency. We now show thﬁfxx has theq—0 discussion in the proceeding paragraphs, given as
behavior of the exack,.. By expanding orbitalsp;  in 20,00 o1
. . . 24 q Hx qu
terms of the orbitalsp;, employing perturbation theofy;
qH10 H;I('l
q-(iklpljk) h H®, H10 Hot dHL s leading-ord
bik+q= ¢Jk+2 ¢|k— (2)  wit , , , an containing a leading-order
€jk term mdependent or[] Consequently, using Eqtll), (14),
EXX :
we express various matrix elements of E¢E5)—(18) in  @nd(23), we conclude thaF,"" has theq—0 behavior of
power series ing and keep only the leading nonvanishing the exact,c,
terms. Then, one can first observe tKik;jk’|Wc|k’;mk)
and (ik|2,—0,/jk) are the leading order terms iof (ik FEXX=
+0q;jk’ Wk’ +qg;mk) and(ik+q|2,—v,|jk+q) and that
consequently the dependence can be ignored fpr~0 in with F2°, F1° F¥ and FI', again containing a
the inner matrix elements of Eq&l5)—(18). One might no- g-independent leading-order term.
tice that the inner matrix element&-+ q;j0|Wc|0+q;j0) in
H! contain a singular contribution, the term wi@=0 in IV. DISCUSSION AND CONCLUSIONS
Eq. (19). However, the same singularities with the opposite  now we analyze the physical meaningtéf and relate it
sign arise in the matrix elementsk+q|2,|jk+q) of the  with the GW approximatioiGWA)-Bethe-Salpeter equation

(23

X:

= EXX,OO/qZ FEXX,Ol/q:|

FEXX10q  pEXX11 (24
X

first two contributions ofH?2, the terms withG=0 andk’ (BSE) approaclt® which represents at the moment the most
=k+qin Eq.(20). So the Coulomb singularities in the inner successful first-principles computational scheme of elec-
matrix elements oH} andH? exactly cancel. tronic excitations in solids. We start by rewriting E40) as

For the other outer matrix elementsk|e '(a7©) 1| jk ;(:(1_Xo_|:xc)_7l)(0- By first expanding (¥ xoFx) *in a
+q) or (ik+qle '@ CDT|jk) with i #], unlike in the case power series into ¥ xoF yc+ XoF xcXoF xc+ * - -, NeXxt taking
of inner matrix elementsy-dependent contributions appear only the first two leading terms of this expansion, and finally

in leading order ing for G=0 orG'=02*e.g., neglecting correlation contributions, {lyoF,) 1~1
o +xoFE*, we obtain y=xo+ xoFE**xo. Identifying
lim (ik|e~ 9" |jk+ q)=q- (ik[plj k>. 22) xoF £ *xo asH, [See Eq(14)], we can thus interpred as

q—0 €ik™ €jk the first order correction tg, in y,
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GWA-BSE. Replacing the bare Coulomb interaction with the
screened Coulomb interaction, the resonant termid Héf-
fectively shift the EXX eigenvalue spectrum toward that of
the GWA, while the resonant terms k. are the counter-
parts of those occurring in the BSE in the Tamm-Dancoff
approximation.

In the above comparison, it is interesting to observe that
while the GWA and BSE have a clear hierarchy as the theory
of independent quasiparticle excitatiéhsnd electron-hole
excitations, terms related to both excitation effects appear
within the DFT formulation at the time-dependent level and
the distinction between one- and two-particle excitations is

FIG. 1. Schematic description of the resonant contributions tg@ccordingly rather arbitrary. We should also mention that the

Hy (Hi " and H3™"). Arrows 1 and 2 represent(sk
+q|e'@"®Tak) and (ak|e 9% T|sk+q). They involve the
time-sequentialcoupling of an electron excitation from valence
{a,b} to conduction{s,t} bands(hole — electron pair and a re-
laxation from conduction to valence ban@dectron— hole pai.

X% 0) =~ xo(q; ) + Hy(q; ). (25)

mapping between TDEXX and GWA-BSE is not exact be-

cause theH; terms do not have counterparts in the GWA-

BSE. These differences may indicate the inherently different
nature of TDDFT and the GWA-BSE approach.

In summary, we derived the expression of the EXX kernel
for insulators and showed that it has a long-wavelength be-
havior as the exadt,; unlike the LDA and GGA kernels.
The common conception that DFT is not suitable for the

Indeed,H, has been recently shown in the many-body dia-study of electronic excitations of solids was mainly derived
grammatic language as the first-order self-energy and vertelsy adoptingqualitativelyincorrect LDA and GGA potentials

corrections to the irreducible polarizabiligy.?’
The expression of the full, is admittedly quite compli-

and kernels and the difficulty of going beyond them.
Coupled with the already available EXX potential, we expect

cated. However, we point out that a simplified picture of thethe numerical realization of the EXX kernel will open up a

important underlying physical processes within TDEXX can
be extracted by noting that only the first termtdf (H:™ ")
and the first and third terms di (H2™") are dominant
contributions at resonamt. This is schematically depicted in
Fig. 1.

new window of opportunity for the first-principles study of
electronic excitations in solid¥.
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