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Exact Kohn-Sham exchange kernel for insulators and its long-wavelength behavior
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We present an exact expression for the frequency-dependent Kohn-Sham exact-exchange~EXX! kernel for
periodic insulators, which can be employed for the calculation of electronic response properties within time-
dependent~TD! density-functional theory. It is shown that the EXX kernel has a long-wavelength divergence
behavior as the exact full exchange-correlation kernel and thus rectifies one serious shortcoming of the adia-
batic local-density approximation and generalized gradient approximations kernels. A comparison between the
TDEXX and the GW approximation Bethe-Salpeter-equation approach is also made.
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I. INTRODUCTION
Time-dependent~TD! density-functional theory~DFT!

~Refs. 1 and 2! is an attractive first-principles formalism fo
the calculation of electronic response properties. Thank
its simplicity, applications to quantum wells3 and atoms4

have appeared long before its formal justification,5 and cur-
rently its use is ubiquitous in a wide range ofab initio com-
putations. A crucial ingredient of successful TDDFT applic
tions is the approximation to thedynamic exchange-
correlation kernel,

Fxc~r ,r 8;t2t8![
dvxc~r ;t !

dn~r 8;t8!
, ~1!

which together with the Hartree kernel6 FH(r ,r 8)
5wC(r ,r 8)[1/ur2r 8u completely determines the two
particle interaction effects. ForFxc , the adiabatic local-
density approximation~LDA ! kernel,

Fxc
LDA~r ,r 8;t2t8!5d~ t2t8!d~r2r 8!

dvxc
LDA@n~r !#

dn~r !
, ~2!

has been almost exclusively adopted in practical calc
tions. However, the scope of the LDA kernel has been ra
limited for infinite periodic solids due to its deficiencies, a
in particular its incorrect nondivergent long-wavelength b
havior for insulators has been emphasized as a primary
fect in recent years.7–9 This shortcoming of the LDA kerne
shows up, e.g., in its incapability of describing excitonic
fects in absorption spectra of solids. The semilocal gene
ized gradient approximations~GGA! kernel does not im-
prove over the LDA one in this case, and the task
developing a more accurate approximate exchan
correlation kernel remains as a challenging task for
TDDFT study of solids.

Indeed, deficiencies of the LDA and GGA appear alrea
at the level of thestatic exchange-correlation energy fun
tional Exc@n# and the exchange-correlation potentialvxc(r )
[dExc@n#/dn(r ). For instance, the LDA and GGAExc@n#
inherently fails to describe the quasi-two-dimensional el
tron gas due to their~semi!local nature.10 For vxc and the
corresponding Kohn-Sham~KS! eigenvalues, the LDA and
GGA vxc incorrectly decays exponentially rather than a
21/r for localized systems, and consequently their high
0163-1829/2002/66~3!/035114~6!/$20.00 66 0351
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occupied orbital energies are too high and unoccupied orb
energies do not exhibit Rydberg series. For solids, the L
band gaps are too small and this behavior is again not
rected by the GGA. In fact, even the exact KS gap does
equal the experimental band gap but differs by the disco
nuity of the exchange-correlation potential.11 However, re-
cent theoretical and numerical studies suggested that the
equation forN electrons corresponds to the Dyson equat
where the reference ground state is chosen withN21
electrons,12 and accordingly unoccupied orbitals in the K
calculations should give a good description of excitations
the N-electron system with fixed particle number. This is
accordance with the perturbation theory along the adiab
connection which finds that differences of KS eigenvalu
represent the leading term in the expansion of excitat
energies.13

In this regard, recent development of the KS exa
exchange ~EXX! method, which treats the exchang
correlation energy functional exactly in leading order in t
electron-electron interaction, provides an interesting opp
tunity. Self-interaction-free, nonlocal EXX schemes give n
only realistic exchange potentials and KS eigenvalue spe
for molecules14–18 but also band structures of semicondu
tors in good agreement with experiments.19,20 We have re-
cently shown that the EXX orbitals and eigenvalues at
one-particle level without any previously applied post-DF
modification such as the quasiparticle shift21 indeed give a
very good description of the absorption spectrum of se
conductors with the exception of excitonic features result
from two-particle interactions, and argued that it is anoth
evidence of the above-described picture of ‘‘K
quasiparticles.’’22

In view of the encouraging performance of the EX
method, we present in this work an exact expression of
EXX kernel Fx

EXX for periodic insulators which can be em
ployed for calculations of electronic linear-response prop
ties within TDDFT. It will be shown that the EXX kernel
unlike the LDA and GGA kernels, exhibits a long
wavelength behavior of the exactFxc which is particularly
important for the study of electronic excitations in infini
solids. This behavior of the EXX kernel has been previou
claimed by Goshezet al. based on a plausibility argument8

and here we explicitly prove this using our exact formula
©2002 The American Physical Society14-1
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II. LONG-WAVELENGTH BEHAVIOR OF THE
EXCHANGE-CORRELATION KERNEL FOR INSULATORS

We first establish the definitions and notations of vario
quantities of interest and derive the long-wavelength beh
ior of the exactFxc .8 The full linear density response matr
x describes the response of the first-order~number! density
changedn for the given bare dynamic perturbationdvext,

dn~G,q;v!5(
G8

x~G,G8,q,v!dvext~G8,q;v!. ~3!

We chose to work in the reciprocal space and the freque
domain, e.g.,x(G,G8,q;v) is a matrix in the reciprocal-
space lattice vectorsG andG8 for the given wave vectorq
and frequencyv. Analysis of theq→0 behavior of the
‘‘head’’ ( G5G850), ‘‘wing’’ ( G50 and G8Þ0 or vice
versa!, and ‘‘body’’ (GÞ0 andG8Þ0) elements ofx and
other related matrices appearing below is an important
cussion point throughout the paper. From now on, we w
adopt the matrix notation andG dependence will be assume
unless explicitly stated otherwise. Within TDDFT,dn is ex-
pressed in terms of the dynamic linear response matrixx0
and the first-order change of the effective KS potentialdvKS,

dn~q;v!5x0~q;v!dvKS~q;v!, ~4!

wheredvKS is composed of the external perturbationdvext
and the resulting change in the Hartree potentialdvH and the
exchange-correlation potentialdvxc ,

dvKS~q;v!5dvext~q;v!1dvH~q;v!1dvxc~q;v!

5dvext~q;v!1@FH~q!1Fxc~q;v!#dn~q;v!,

~5!

with FH(G,G8,q)5dG,G84p/uq1Gu2. Then, from Eqs.~3!,
~4!, and~5!, one obtains

x0
21~q;v!5x21~q;v!1FH~q!1Fxc~q;v!, ~6!

which shows thatx is completely determined oncex0 and
Fxc are given.

For further consideration of theq→0 behavior ofFxc , it
is convenient to introduce the ‘‘proper’’ part ofx, x̃, defined
through8,23

dn~q;v!5x̃~q;v!dvTC~q;v!, ~7!

wheredvTC is the change of the test-charge potential,

dvTC~q;v![dvext~q;v!1FH~q!dn~q;v!, ~8!

and thus relates with the full response matrixx as

x̃21~q;v!5x21~q;v!1FH~q!, ~9!

or with the KS response matrixx0 as

x0
21~q;v!5x̃21~q;v!1Fxc~q;v!. ~10!

The linear response matrix of thenoninteractingKS system
x0 and the proper part of that of thereal interactingsystem
03511
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x̃ are known to have the following similarq→0
behavior23,24 ~assuming that both the KS system and the r
system are insulating8!:

x05Fq2x0
00 qx0

01

qx0
10 x0

11 G ; x̃5Fq2x̃00 qx̃01

qx̃10 x̃11 G , ~11!

where we used the notation thatj00, j01/10, and j11 denote
the head of a matrixj divided byq2, its wings divided byq,
and its body, respectively. The quantitiesx0

00, x0
10, x0

01, and
x0

11 as well asx̃00, x̃10, x̃01, andx̃11 all consist of a leading
q-independentterm and contributions of higher order inq
which vanish in the limitq→0. Then, from Eqs.~10! and
~11!, one can deduce that the head and wings ofFxc have the
following divergentq→0 behavior8 ~assuming that there ex
ists no fortuitous cancellation betweenx0

21 and x̃21),

Fxc5FFxc
00/q2 Fxc

01/q

Fxc
10/q Fxc

11 G . ~12!

In Eq. ~12!, Fxc
00, Fxc

10, Fxc
01, andFxc

11 again contain a leading
q-independentterm and contributions of higher order inq
which vanish forq→0. The head and wings of adiabat
LDA and GGA kernels, on the other hand, are independ
of q and thus are incorrectly non divergent forq→0:

Fxc
LDA/GGA5FFxc

LDA/GGA,00 Fxc
LDA/GGA,01

Fxc
LDA/GGA,10 Fxc

LDA/GGA,11G . ~13!

This defect is a serious problem not only from a theoreti
viewpoint but also for practical purposes because the h
and wings of the exchange-correlation kernel can affect
the macroscopic dielectric function in leading order.8 For ex-
ample, it has been recently shown that they play a cru
role for the proper treatment of excitonic effects in the c
culation of optical spectra.9

III. EXACT-EXCHANGE KERNEL AND ITS LONG-
WAVELENGTH BEHAVIOR FOR INSULATORS

Deficiencies of the LDA and GGA kernels discuss
above represent a major problem from the theoretical
calculational point of view which have not been overcome
far. To ameliorate the situation we propose to adopt the E
kernel. An exact expression of the EXX kernel has be
previously derived by one of us for localized systems for
case of real-valued orbitals.25 For periodic solids, we need to
generalize this expression to complex orbitals a
have to consider the dependence on wave vectorsk and q.
This leads to

Fx
EXX~G,G8,q;v!5 (

G1 ,G2

x0
21~G,G1 ,q;v!

3Hx~G1 ,G2 ,q;v!x0
21~G2 ,G8,q;v!,

~14!

where the EXX kernel ‘‘core’’Hx is composed of the follow-
ing contributions @we assume thatdvext(q;v) and other
quantities have the time dependencee2 ivtedt, where d
→01 is a convergence factor#:
4-2
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Hx
1~G,G8,q;v![2

2

V (
ask

(
btk8

F ^akue2 i (q1G)•rusk1q&^sk1q;bk8uŵCutk81q;ak&^tk81quei (q1G8)•rubk8&

~eak2esk1q1v1 id!~ebk82e tk81q1v1 id!

1
^skue2 i (q1G)•ruak1q&^ak1q;tk8uŵCubk81q;sk&^bk81quei (q1G8)•rutk8&

~eak2esk1q2v2 id!~ebk82e tk81q2v2 id!
G , ~15!

Hx
2~G,G8,q;v![2

2

V (
ask

(
btk8

F ^akue2 i (q1G)•rusk1q&^sk1q;tk8uŵCubk81q;ak&^bk81quei (q1G8)•rutk8&

~eak2esk1q1v1 id!~ebk82e tk81q2v2 id!

1
^skue2 i (q1G)•ruak1q&^ak1q;bk8uŵCutk81q;sk&^tk81quei (q1G8)•rubk8&

~eak2esk1q2v2 id!~ebk82e tk81q1v1 id!
G , ~16!

Hx
3~G,G8,q;v![2

2

V (
absk

F ^akue2 i (q1G)•rusk1q&^bkuŜx2 v̂xuak&^sk1quei (q1G8)•rubk&
~eak2esk1q1v1 id!~ebk2esk1q1v1 id!

1
^skue2 i (q1G)•ruak1q&^ak1quŜx2 v̂xubk1q&^bk1quei (q1G8)•rusk&

~eak2esk1q2v2 id!~ebk2esk1q2v2 id!
G

~17!

1
2

V (
astk

F ^akue2 i (q1G)•rusk1q&^sk1quŜx2 v̂xutk1q&^tk1quei (q1G8)•ruak&
~eak2esk1q1v1 id!~eak2e tk1q1v1 id!

1
^skue2 i (q1G)•ruak1q&^tkuŜx2 v̂xusk&^ak1quei (q1G8)•rutk&

~eak2esk1q2v2 id!~eak2e tk1q2v2 id!
G ,

and

Hx
4~G,G8,q;v![2

2

V (
absk

F ^bkue2 i (q1G)•rusk1q&^sk1quŜx2 v̂xuak1q&^ak1quei (q1G8)•rubk&
~ebk2esk1q1v1 id!~eak2esk1q!

1
^bkue2 i (q1G)•ruak1q&^ak1quŜx2 v̂xusk1q&^sk1quei (q1G8)•rubk&

~eak2esk1q!~ebk2esk1q1v1 id!

1
^skue2 i (q1G)•rubk1q&^akuŜx2 v̂xusk&^bk1quei (q1G8)•ruak&

~ebk2esk1q2v2 id!~eak2esk1q!

1
^akue2 i (q1G)•rubk1q&^skuŜx2 v̂xuak&^bk1quei (q1G8)•rusk&

~eak2esk1q!~ebk2esk1q2v2 id!
G

~18!

1
2

V (
astk

F ^akue2 i (q1G)•rutk1q&^skuŜx2 v̂xuak&^tk1quei (q1G8)•rusk&
~eak2e tk1q1v1 id!~eak2esk1q!

1
^skue2 i (q1G)•rutk1q&^akuŜx2 v̂xusk&^tk1quei (q1G8)•ruak&

~eak2esk1q!~eak2e tk1q1v1 id!

1
^tkue2 i (q1G)•ruak1q&^ak1quŜx2 v̂xusk1q&^sk1quei (q1G8)•rutk&

~eak2e tk1q2v2 id!~eak2esk1q!

1
^tkue2 i (q1G)•rusk1q&^sk1quŜx2 v̂xuak1q&^ak1quei (q1G8)•rutk&

~eak2esk1q!~eak2e tk1q2v2 id!
G .

In Eqs. ~15!–~18!, 2 is the spin factor,V is the crystal volume,$a,b% are valence bands,$s,t% are conduction bands,^ ik
1q; j k8uŵCu lk81q;mk& are four-index integrals defined as
035114-3
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^ ik1q; j k8uŵCu lk81q;mk&[E drE dr 8
f ik1q* ~r !f j k8

* ~r 8!f lk81q~r !fmk~r 8!

ur2r 8u

5
4p

V (
G

^ ik1quei (G1k2k8)•ru lk81q&^ j k8ue2 i (G1k2k8)•r8umk&

uG1k2k8u2
, ~19!

Ŝx is a nonlocal orbital-dependent exchange operator of the form of the Hartree-Fock exchange operator but constru
the KS orbitalsfa ,

^ ik1quŜxu j k1q&[2E drE dr 8f ik1q* ~r !(
ak8

fak8~r !fak8
* ~r 8!

ur2r 8u
f j k1q~r 8!

52(
ak8

^ ik1q;ak8uŵCuak8; j k1q&5

2
4p

V (
ak8G

^ ik1quei (G1k2k81q)•ruak8&^ak8ue2 i (G1k2k81q)•r8u j k1q&

uG1k2k81qu2
, ~20!
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and v̂x is generated by the local multiplicative EXX KS po
tential vx(r ).

Compared with the LDA~or GGA! kernel which is
~semi!local in real space and frequency-independent@Eq.
~2!#, which results in a reciprocal-representation independ
of q and v, Fxc

LDA/GGA(G,G8,q;v)5Fxc
LDA/GGA(G2G8),

Fx
EXX is fully nonlocal in real space and depends explici

on the frequency. We now show thatFx
EXX has theq→0

behavior of the exactFxc . By expanding orbitalsf j k1q in
terms of the orbitalsf ik employing perturbation theory,23,24

f j k1q5f j k1(
iÞ i

f ik

q•^ ikupu j k&
e ik2e j k

, ~21!

we express various matrix elements of Eqs.~15!–~18! in
power series inq and keep only the leading nonvanishin
terms. Then, one can first observe that^ ik; j k8uŵCuk8;mk&
and ^ ikuŜx2 v̂xu j k& are the leading order terms inq of ^ ik
1q; j k8uŵCuk81q;mk& and^ ik1quŜx2 v̂xu j k1q& and that
consequently theq dependence can be ignored forq→0 in
the inner matrix elements of Eqs.~15!–~18!. One might no-
tice that the inner matrix elements^ i01q; j 0uŵCu01q; j 0& in
Hx

1 contain a singular contribution, the term withG50 in
Eq. ~19!. However, the same singularities with the oppos
sign arise in the matrix elements^ ik1quŜxu j k1q& of the
first two contributions ofHx

3 , the terms withG50 andk8
5k1q in Eq. ~20!. So the Coulomb singularities in the inne
matrix elements ofHx

1 andHx
3 exactly cancel.

For the other outer matrix elements^ ikue2 i (q1G)•ru j k
1q& or ^ ik1que2 i (q1G8)•ru j k& with iÞ j , unlike in the case
of inner matrix elements,q-dependent contributions appe
in leading order inq for G50 or G850,24 e.g.,

lim
q→0

^ ikue2 iq•ru j k1q&5q•
^ ikupu j k&
e ik2e j k

. ~22!
03511
nt

In Hx
4 , matrix elements^ ikue2 i (q1G)•ru ik1q& and ^ ik

1que2 i (q1G8)•ru ik& are present, for which a leading-orde
term independent ofq occurs forG50 or G850. However,
contributions of such type in the first sum ofHx

4 are canceled
by corresponding contributions in the second sum.

Due to the cancellations of singularities,Hx itself is well
defined, and theq→0 behavior ofHx is, according to the
discussion in the proceeding paragraphs, given as

Hx5Fq2Hx
00 qHx

01

qHx
10 Hx

11 G ~23!

with Hx
00, Hx

10, Hx
01, and Hx

11 containing a leading-orde
term independent ofq. Consequently, using Eqs.~11!, ~14!,
and ~23!, we conclude thatFx

EXX has theq→0 behavior of
the exactFxc ,

Fx
EXX5FFx

EXX,00/q2 Fx
EXX,01/q

Fx
EXX,10/q Fx

EXX,11 G ~24!

with Fx
00, Fx

10, Fx
01, and Fx

11, again containing a
q-independent leading-order term.

IV. DISCUSSION AND CONCLUSIONS

Now we analyze the physical meaning ofHx and relate it
with the GW approximation~GWA!-Bethe-Salpeter equatio
~BSE! approach,26 which represents at the moment the mo
successful first-principles computational scheme of el
tronic excitations in solids. We start by rewriting Eq.~10! as
x̃5(12x0Fxc)

21x0. By first expanding (12x0Fxc)
21 in a

power series into 11x0Fxc1x0Fxcx0Fxc1•••, next taking
only the first two leading terms of this expansion, and fina
neglecting correlation contributions, (12x0Fxc)

21'1
1x0Fx

EXX , we obtain x̃'x01x0Fx
EXXx0. Identifying

x0Fx
EXXx0 asHx @See Eq.~14!#, we can thus interpretHx as

the first order correction tox0 in x̃,
4-4
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x̃~q;v!'x0~q;v!1Hx~q;v!. ~25!

Indeed,Hx has been recently shown in the many-body d
grammatic language as the first-order self-energy and ve
corrections to the irreducible polarizabilityx̃.27

The expression of the fullHx is admittedly quite compli-
cated. However, we point out that a simplified picture of t
important underlying physical processes within TDEXX c
be extracted by noting that only the first term ofHx

1 (Hx
12r)

and the first and third terms ofHx
3 (Hx

32r) are dominant
contributions at resonantv. This is schematically depicted in
Fig. 1.

Note that the above situation is similar to the one th
occurs in the solution of the BSE where the Tamm-Danc
approximation is invoked.26 In fact, with the EXX kernel, we
can easily make a connection between the TDDFT and
GWA-BSE approach. Consider calculation of the full r
sponse function9 or excitation energies27,28with TDEXX and

FIG. 1. Schematic description of the resonant contributions
Hx (Hx

12r and Hx
32r). Arrows 1 and 2 represent̂ sk

1quei (q1G)•ruak& and ^akue2 i (q1G)•rusk1q&. They involve the
time-sequentialcoupling of an electron excitation from valenc
$a,b% to conduction$s,t% bands~hole → electron pair! and a re-
laxation from conduction to valence bands~electron→ hole pair!.
5

ry

s

tt

d
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GWA-BSE. Replacing the bare Coulomb interaction with t
screened Coulomb interaction, the resonant terms ofHx

3 ef-
fectively shift the EXX eigenvalue spectrum toward that
the GWA, while the resonant terms inHx

1 are the counter-
parts of those occurring in the BSE in the Tamm-Danc
approximation.

In the above comparison, it is interesting to observe t
while the GWA and BSE have a clear hierarchy as the the
of independent quasiparticle excitations29 and electron-hole
excitations, terms related to both excitation effects app
within the DFT formulation at the time-dependent level a
the distinction between one- and two-particle excitations
accordingly rather arbitrary. We should also mention that
mapping between TDEXX and GWA-BSE is not exact b
cause theHx

4 terms do not have counterparts in the GW
BSE. These differences may indicate the inherently differ
nature of TDDFT and the GWA-BSE approach.

In summary, we derived the expression of the EXX ker
for insulators and showed that it has a long-wavelength
havior as the exactFxc unlike the LDA and GGA kernels
The common conception that DFT is not suitable for t
study of electronic excitations of solids was mainly deriv
by adoptingqualitatively incorrect LDA and GGA potentials
and kernels and the difficulty of going beyond the
Coupled with the already available EXX potential, we exp
the numerical realization of the EXX kernel will open up
new window of opportunity for the first-principles study o
electronic excitations in solids.30

ACKNOWLEDGMENTS

We thank E. K. U. Gross for motivating us to write th
paper, and W. Domcke for providing research facilities. Y.-
Kim also acknowledges X. Gonze for the discussion rega
ing Ref. 8 at Electronic Structure Workshop 1997. This wo
was supported by the Humboldt Foundation~Y.-H.K.! and
the Deutsche Forschungsgemeinschaft and the Fonds
Chemischen Industrie~A.G.!.

o

*Present address: Materials and Process Simulation Center~139-
74!, California Institute of Technology, Pasadena, CA 9112
7400.

1E. K. U. Gross, J. F. Dobson, and M. Petersilka, inDensity Func-
tional Theory II, Springer Series in Topics in Current Chemist
Vol. 181, edited by R. F. Nalewajski~Springer, Heidelberg,
1996!.

2M. E. Casida, inRecent Advances in Density Functional Method,
Part I, edited by D.P. Chong~World Scientific, Singapore, 1995!.

3T. Ando, Z. Phys. B26, 263 ~1977!.
4A. Zangwill and P. Soven, Phys. Rev. Lett.45, 204 ~1980!.
5E. Runge and E. K. U. Gross, Phys. Rev. Lett.52, 997 ~1984!.
6We use Hartree atomic units,\5e5me54pe051, throughout.
7W. G. Aulbur, L. Jönsson, and J. W. Wilkins, Phys. Rev. B54,

8540 ~1996!.
8Ph. Ghosez, X. Gonze, and R. W. Godby, Phys. Rev. B56, 12 811

~1997!.
9L. Reining, V. Olevano, A. Rubio, and G. Onida, Phys. Rev. Le

88, 066404~2002!.
10Y.-H. Kim, I.-H. Lee, S. Nagaraga, J. P. Leburton, R. Q. Hoo
-

.

,

and R. M. Martin, Phys. Rev. B61, 5202~2000!; L. Pollack and
J. P. Perdew, J. Chem. Phys.12, 1239 ~2000!; P. Garcia-
Gonzalez, Phys. Rev. B62, 2321 ~2000!; P. Garcia-Gonzalez
and R. W. Godby, Phys. Rev. Lett.88, 056406~2002!.

11J. P. Perdew and M. Levy, Phys. Rev. Lett.51, 1884~1983!; L. J.
Sham and M. Schlu¨ter, ibid. 51, 1888~1983!.

12C. J. Umrigar, A. Savin, and X. Gonze, inElectronic Density
Functional Theory: Recent Progress and New Directions, edited
by J. F. Dobson, G. Vignale, and M. P. Das~Plenum, New York,
1998!; A. I. Al-Sharif, R. Resta, and C. J. Umrigar, Phys. Rev. A
57, 2466~1998!.

13A. Görling, Phys. Rev. A54, 3912~1996!; C. Filippi, C. J. Um-
rigar, and X. Gonze, J. Chem. Phys.107, 9994~1997!.

14T. Grabo and E. K. U. Gross, Int. J. Quantum Chem.64, 95
~1997!.
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Lett. 79, 2089~1997!; M. Städele, M. Moukara, J. A. Majewski
P. Vogl, and A. Go¨rling, Phys. Rev. B59, 10 031~1999!.

21Z. H. Levine and D. C. Allan, Phys. Rev. Lett.63, 1719~1989!;
Phys. Rev. B43, 4187~1991!.
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