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Effects of surface waves on the behavior of perfect lenses
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Backwards-wavéBW) materials, which have simultaneously negative permittivity and permeability, sup-
port electromagnetic waves with phase propagation in the direction opposite to power flow. At an interface
between BW materials and free space, the normal component of the wave vector changes sign. In the case of
an evanescent wave, this leads to growth of the field amplitude inside the BW material. An infinite slab of an
ideal, homogeneous BW material can simultaneously compensate the phase and the amplitude propagation of
a wave, such that a point source is perfectly reconstructed in the i@aBePendry, Phys. Rev. Le&5, 3966
(2000]. However, it is more realistic to consider a thin layer at the surface over which the permeability and
permittivity change from the free-space values to the BW values. Such layers influence the response of the
system through a frequency shift of surface modes and the nonreflecting wave. One finds a lower bound for the
size of resolvable features. It is shown that the transition layer is important even at thicknesses much smaller
than the free-space wavelength of the radiation.
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[. INTRODUCTION only be realized if the material is dispersive: and w will
be used for the relative permittivity and permeability, respec-

Recently, materials that simultaneously have a negativéively). Thus the ideal situation of=u=—1 is possible
electric permittivity and a negative magnetic permeabilityonly at a finite number of frequencies. This set of parameter
have received renewed attention. These materials can supp@#lues is identified as “ideal” because it gives the same im-
a backwards-traveling wave where the phase propagation jSedance and speed of light as free space.
we identify these materials as backwards w&B®/) mate- i jncident on an interface between free space and a BW half
rials. The extraordinary properties of such materials havg,sce et the BW material hawe=u=—1 at the fre-
been predicted and theo_retically stuo!ied_by Veselago Severgiency of the plane wave. Due to the impedance matching
decades agl_),but experimental realization had not been iy free space, there is no reflected wave. The magnitude of
achieved until recentl§.This type of material is predicted to all vector components are then unchanged at the interface
possess unusual electromagnetic properties such as an ¥scause the speed of light has the same magnitude every-
verse Doppler shift and a backwards-directed Cherenkov rgyhere in the system. The boundary conditions require that
diation cone. Veselago pointed out that a planar slab of BWye tangential components BfandH, as well as the normal
material would refocus the waves from a point sourée- components ob andB, are continuous across the interface.

cently, Pendry predi,%ed that the BW slab would also amplifyrrgm the constitutive relations we then find that the normal
the evanescent waveand thus under certain conditions re- components o andH must change sign. Given the behav-

focus the light to an exact image of the source. In imagingy,; of the fields at the boundaries, Maxwell's equations re-

applications, the evanescent waves are crucial to resolve feanre that the tangential componentskadire continuous, and
tures smaller than the free-space wavelength of the electrci)fs normal component changes sign. This result is indepen-

magnetic radiation. Pendry’s claim was further studied byyant of the fact that the vectors may be real, imaginary, or

. .4 .
Ziolkowski® who considered the consequences of 10SSy Mag,mpjex valued and there is no need to invoke causality, as
terial and the behavior of fields whose frequencies were n

) . : D L - as done in Refs. 3 and 4. In the case of a propagating wave,
ideal for the given material which is necessarily dlsperswe.the phase velocity changes its direction normal to the inter-

This paper presents results of calculations, using the magz .o \hile for an evanescent wave that has the imaginary

roscopic Maxwell equations, pertaining to the behavior ofy, o6 yector component normal to the interface, the change

evanescent waves in BW materials. First, we briefly dISCUSEf signs across the interface dictates that a decaying expo-

an evanescent wave at the mterface. of free_ space and BYtential on one side of the interface becomes a growing one
half spaces and an evanescent wave interacting with a slab the other sidéand vice versa

EW”materlal. Thenl'th.e theczjreltlcal analys;]s IS dESCI’Ibed! and Assume the BW material is a slab with interfaces to free
inally a more realistic model system where the transitiong,, ¢ parallel to the-z plane, and a source of plane waves

from free space to BW material is finite in space is presenteg . .o to one side of the slab. In general, due to reflections

(_i.(_a., there is an of_f_set between the discontinuity in permit—at the interfaces, both positive and negative values ofythe
tivity and permeability.

component of the wave vector are present. However, for the

special case where the frequency yieddsu= —1, the slab

is impedance matched to free space and one of these waves
It can be shown that BW material, where both the permit-vanishes such that the phase and amplitude propagation re-

tivity and the permeability are simultaneously negative, carverse direction normal to the interfaces. For instance, an in-

II. SINGLE AND DOUBLE INTERFACE CONSIDERATIONS
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cident decaying evanescent wave grows inside the BW slaban be applied to any layered dielectric system. Assume an
and upon leaving the slab decays again. In this case there iiscident transverse electrifE) plane wave of the form
only a single wave in each region. The magnitudekpfis Se itk koy— ot)
identical in all regions(subscripts denote vector compo- E(x,y,t)=zE; ™% @
nents, and the slab compensates for the propagation over @ the region to the left of the slab, wheEg is the incident
distance in free space equal to the slab thickness, indepensave amplitude and, and k, are the wave vector compo-
dent of wave vector. This configuration is ideal for construc-nents. Let the media be linear, isotropic, and translationally
tion of a “perfect lens,” where the phase propagation of ainvariant in thex and z direction. Linearity allows one to
propagating wave and the amplitude propagation of an evawork in frequency space with a monochromatic wave, while
nescent wave need to be compensated to achieve perfect fisotropy lets the wave vectors in the different regions share
cusing to a point. the same plane of incidence. Therefore one can choose a
In practice, a BW material has been realized as a periodigoordinate system such that tkey plane coincides with the
arrangement of split-ring resonatofSRR and thin-wire  Pplane of incidence an#,=0 everywhere. At all interfaces
modules that cause an effective dispersiopande similar ~ reflections can occur and one has to allow for waves with
to the permittivity of a plasma. The modules are anisotropid?0th signs ok, in the analysis. As there is no incident field
and to achieve better isotropy they are arranged in a pattefifom the right, the region to the right of the slab has only a
with modules facing in different directio$i.e., one uses a Single wave. The amplitude of the reflected wave to the left
periodic structure similar to a crystal. Due to the compositedf the slab and that of the transmitted wave to the right is
nature of the material there exists a displacement betweeenoted as&, andE;, respectively. The waves in the differ-
the thin-wire module that causes the dispersior iand the ~ €nt regions of the system are connected through the bound-
SRR module that gives dispersion jn One might expect ary conditions on the electro_ma}gnetlc fields at th_e dielectric
that this thin transition layer can be neglected, but due tdnterfaces, namely the continuity of the tangential compo-
multiple reflections at the interfaces and especially the ampents ofE andH and the normal components bf and B.
plification of evanescent waves in the BW slab, this thinThe boundary conditions together with the dispersion rela-
layer can have important implications for the realization of ation in each region give two equations fewer than the number
perfect lens. of wave-vector and field components. Thus one wave vector
componente.g.,ky) can be used to parametrize the direction
IIl. THEORETICAL ANALYSIS of incidence; frequency is also used as a parameter. This still
leaves an underdetermined system of equations with one
The following analysis employs the macroscopic Maxwellequation fewer than unknowns. After a lengthy but straight-
equations to find the behavior of the electromagnetic fields iforward calculation one can find solutions relating two field
the example geometry shown in Fig. 1. The same proceduramplitudes, e.g., for the system of Fig. 1,

S22 . . iLKk22,. .
E, (KDL (CP*+iS3)2+ (ICT+ S50 — (kg2 €2 (iS7%+ C3) 4 (S7+iC5H?)

Ei g2k {2k T(SIiC2 kP (ICE+ SEHKZ2— [(SH+ICTYKZ+ (iCE+ SSHKZT?)

)

E 4eiL(k§2—k)1/1)k>l/1( kil)zkizﬂlﬂz “
Ei 202l (SH+iCF)KZ2— (iCT+ SPHKZ 2~ [(SI+iCTHKP+ (ICE+ SPHKZY2

where S""=kI"u;sin@KY), C""=k{"w;cos@K?), the dis-  superscript 21. If desired, one can write such relations for all
tancesL and d are defined in the figure caption, and the the field amplitudes in the system. With one of the ampli-
dependence omw and k, is implicit through kg‘”(w,kx), tudes as a reference parametée relations shown ugg;),
which is determined by the dispersion relatidg {s equal in  one can calculate the fields at all points by taking into ac-
all regions count the complex exponential in E¢l) and adding the
respective waves at that point. Under certain conditions it is
gm(w),un(w)wZ:Cgkmn. Kmn (4) possible for the numerator in E¢R) or the denominator in
Eqg. (2) and (3) to vanish. This means th&, =0 or E;=0,
wherec, denotes the speed of light in vacuum. The first andrespectively. Wherk, vanishes, the system does not reflect
second superscript on the wave vectors correspond to thBe particular incident wave, while vanishiig signifies the
subscript on the permittivity and permeability in each region,existence of a bound mode. A bound mode can only exist if
respectively. In this system the slab proper has superscript 22, is imaginary in both of the outside regions, otherwise
and the surrounding space has superscript 11. On either sideere would be net energy flow out of the system without any
between the two is a transition layer wigh and w4 giving sources. Thus it is characterized by the electric field outside
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FIG. 1. Schematic of the infinite slab configuration. The slab has
a thicknesd. and there is a transition layer of thickneb$o either 01t . L . ) . L
side. The system is translationally invariant in shandz direction. -0.1 0 0.1 0.2 0.3 0.4 0.5

Free-space quantities are denoted by a subscript 1 and dispersiv. Position (Ao)

material quantities by a subscript 2. FIG. 2. Electric field amplitude of the nonreflecting evanescent

the system exponentially decaying away from the interfacevave in the system shown in Fig. 1 with vanishing transition-layer

Inside the slab the mode can be of propagating or evanescelicknessd=0 at the design frequencyps=wo and with X,
character. A bound mode that is of evanescent character in: > +%s- The dashed lines indicate the location of the slab sur-
side the slab has its field amplitude exponentially localized aaces. The plane-wave source is at an arbitrary location left of the

. : iivg
the interfaces and is called a surface mode. slab (/< 0)

translationally invariant in thex and z direction. The BW
IV. MODEL CALCULATIONS material slab has a length and a transition layer of thick-

The previous section outlined the general theoretica’€Ssd with the permittivity of the BW material but the per-
analysis of a planar system with the example geometry O\meablht_y of free space exists to either side. In all following
Fig. 1. This section characterizes the parameters used in tif@lculationst =0.36\o andwo/(27) =15 GHz. Larger val-

model system and presents calculations leading to an anal{/€s ofL. have been investigated and found to be more restric-
sis of its imaging capabilities. ive for imaging purposes. The particular value for the fre-

quency has been chosen to be close to the ones used in
experiments,but is not essential to the findings of this study.
The calculations to follow consider only evanescent
The mater.ialls. considered here have the commonly-use@aves that have maximum decay in thalirection and\,
relative permittivity tangential to the interface. The component of the wave
) vector is determined by the transverse wavelength through
e(w)=1— Wep 5) ky=2m/\¢; Ky IS zero. The frequency and the components of
2’ the wave vector in each region are related through the re-

] ] ] spective dispersion relation.
where wg, is the effective electrical plasma frequency.

Analogously, for the relative permeability we use

A. Model parameters

B. Results and discussion

wzmp For the case of vanishing transition-layer thickndssO

pmlw)=1-—73-, (6) and design frequency)o:wp/\/ﬁ, the slab is impedance

@ matched with free space such that a decaying exponential
wherew,, is the effective magnetic plasma frequeridAs  becomes a growing exponential inside the BW slab and
the electric and magnetic plasma frequencies are available abanges back into a decaying exponential on the other side
design parameters of the BW composite material, we conef the slab as shown in Fig. 2. We will refer to such a wave
sider the special case abep=wmp=w, to simplify the  form with vanishing reflected wave in the source region as a
model. We also have neglected damping. Thus the materiaonreflecting wave. The magnitude of the wave-vector com-
behaves as a BW material far<w, and hasu=e=—1 at  ponents is spatially invariant becausg =1 in all three re-

W= wy= wp/\/§= Co27/ \g. gions. Consequently, the waveyat —a, (a<L) in front of
Because of their importance in achieving a perfect focusthe slab is reproduced gt=2L —a beyond the slab, inde-
we concentrate our attention on the behavior of evanescependent ofk; the BW slab compensates for the amplitude
waves. Evanescent waves have a complex wave vectodecay of the waveé The slab also compensates for the phase

whose real part is perpendicular to its imaginary part. Thepropagation of a plane wavelhe combination of these two
real part determines the wavelength of the wave trans- effects allows the perfect reconstruction of a point source as
verse(perpendicularto the direction of maximum amplitude an image through a slab of BW material at frequengy’
decay. This wavelength determines the image resolution that As will be shown later, there are surface mddesose
can be achieved with this wave. For evanescent wayes  frequencies are close to that of the nonreflecting waee,
always less than the free space wavelength. We assume &equencies which cause the denominator of EBsand (3)
embedded source to the left of the slab with frequemgyA  to be zerg. The change in permeability at the=0 andy
schematic of the system is shown in Fig. 1; the system is=L interfaces allows them to support transverse-electric sur-
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face waves. Surface waves in a single interface system deca ' ' ' '

exponentially away from the interface. The presence of other 165 et

interfaces gives rise to coupling of the surface waves at eacl et L

of the interfaces. This leads to the emergence of normal . | et Lt

modes with slightly different frequencies. In the example ¥ . "

system there are two such surfaces, and there exists a syn% ot .t

metric and an antisymmetric mode where the amplitude alg 155 4 " ee*”

one interface is equal to, or the negative of, the amplitude aig " o’

the other interface, respectively. The modes do not couple tt i = :

propagating waves but can be excited by evanescent wave: .

Due to their bound nature, they have a long decay time anc .

can degrade the quality of the image of the source. Thus the 145§ i.°

structure is more suitable for steady-state rather than tran . s . .

sient or time resolved operation. 0 0.02 0.04 0.06 0.08 0.1
It is more realistic to assume that the permittivity and the Transition Layer Thickness (Ao)

permeability change over a small transition layer from their

fre_e space valu_es to the_ values in th_e_BW materlal._When th%etric (@), and the symmetri¢A) surface modes as a function of

thickness of this transition layer is finite the behavior of thetransition-layer thickness for transverse wavelength 0.8\, . The

fields becomes more complex. The finite transition Iayerfrequencies fom,= 0.2\, are shown by lines and have the same

shifts the frequency of the nonreflecting wave and of thgrangs as the symbols but are not distinguishable on the scale of this
surface modes. These shifts are dependent on the layer thick,: The dashed vertical lines indicate the transition layer thick-

ness and the normal component of the wave vector. The SUfesses used in Fig. 4.
face mode and nonreflecting wave frequencies are shown in

Fig. 3 as a function of transition-layer thickness with trans-quency at this image location. The relative amplitude of the
verse wavelengtha,=0.2\o and A(=0.8\,. The nonre- jncident wave at the source locatioBd,c) and the trans-
flecting wave frequency is bracketed by the two surfacemjtted amplitude at the image locatioR;f,,49 at the design
mode frequencies. As the transition-layer thicknessrequencyw, is shown in Fig. 5 as a function of transverse

increases, all three frequencies shift upwards with the nonrgyayelength. The expression for this relative amplitude is
flecting wave moving closer to the symmetric mode. Thegiyen py

frequency shift is greater than the difference between them,

even though the layer thickness is much less than the free Eimace Et o1

space wavelength. Comparing the two cases depicted in Fig. E—g = —e?lky T, (7)
3, one finds that for the wave with the higher resolution source ™l

(A=0.2¢) the frequencies of the surface modes and th§pich is the amplitude ratio of Eq3) adjusted for the loca-
nonreflecting wave are much closer to one another than i, ¢ according to Eq(1). (Note thatik2!is real in this casg.
the case of the lesser resolution £ 0.8\o), S0 much sothat - 5 5ranh shows curves for several transition layer thick-

the curves fon=0.2\, are not distinguishable in the graph. oqqes The relative amplitude exhibits singularities at the
In Fig. 4 we show the frequencies of the two surface

modes and the nonreflecting wave as a function of the trans- . .
verse wavelength. In all cases, the symmetric surface mod:
has the highest frequency, while the antisymmetric one has 154 e
the lowest frequency. The frequency of the nonreflecting ot
wave lies between that of the two surface modes. At vanish-_ st
ing transition-layer thickness, the nonreflecting wave occurs(I'; Cunmampuususttfd
at the design frequenay,, independent of the wave vector, . %0 [*** R
while the surface mode frequencies change with the normag
component of the wave vector. With a finite transition layer, g U
the nonreflecting wave frequency also becomes dependent d* 146 | .. |
the wave vector, as is shown in Fig. 4 with layer thickness Nt
d=0.005\,. This wave vector dependence poses difficulties b
for the realization of a perfect lens.

The phase compensation of propagating waves inside the 142 : -
BW slab is independent of the wave vector only at the design 0 0.2 0.4 0.6 0.8
frequency. In the transition layek, is always imaginary for Transverse Wavelength (Ao)

ws<w,, and phase does not propagate in these layers. gig. 4. Frequency of the nonreflecting waysolid, W), the
Therefore the BW slab compensates for the change in phaggtisymmetric(dashed,®), and symmetriodash-dot,A) surface
due to propagation in free space frgw —a (a<L) aty modes as a function of transverse wavelength for transition-layer
=2L+2d—a. Thus for imaging application one has to look thicknessd=0 (lines) andd=0.005\, (symbol3. The dashed ver-

at the reconstruction of a source wave at the design fretical lines indicate the transverse wavelengths used in Fig. 3.

FIG. 3. Frequency of the nonreflecting wailll), the antisym-

U
.
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FIG. 5. Relative amplitude of the source electric fieEL{,cd FIG. 6. Layer thickness where the antisymmetric surface mode

amplitude aty=—a=—3L/4 and its image Einagd aty=2L—a occurs as a function of transverse wavelengiihe curve on this
+2d with a transition layer ofi=0.02, (solid), 0.0\, (dasheg, ~ 9raph begins ak=0.251\, with d=0.0001,. Smaller values of
0.005\, (dash-doY, and 0.0028, (dash-dashedat the design fre- \: were not accessible due to the finite numerical precision when
guencyw, as a function of transverse wavelength The singu- ~ €valuating the expression for the surface mpde.

larities are caused by the antisymmetric surface mode, i.e.,

Esoures 0. V. CONCLUSION

. . We have presented a study of evanescent wave behavior
occurrence of the antisymmetric surface mode, because ﬂ?ﬁ a BW material and specifically considered the influence of
incident wave, which is proportional to the denominator in P y

this ratio, vanishes. With larger valueslothe surface mode a dielectric transition Iay_e_r between a B_W slab_and free
shifts to greaten,. For \, greater than that of the antisym- space. A vanishing transition Iaygr can give th_e ideal case
metric surface mode, one finds a regioninwhere the ratio with perfect reconstruction of a point source, while transition
of image amplitude :':md source amplitude is close to unitylay(.ars. muqh thmner than the free-space wavglength of the
radiation give rise to a surface mode at the design frequency.

The _extent of .th's region increases with decreasmg]_his surface mode acts as a lower bound on the correctly
transition-layer thickness. For smaller transverse wavelength

the relative amplitude vanishes rapidly with decreasing Imaged transverse wavelength. The influence of the transi-
(In steady state the surface mode has no associated tincideti3n layers on propagating waves is less pronounced than on
y anescent waves. The significance of transition layers much

wave. An incident wave wh fr n nd wave v r
ave cident wave whose frequency and wave eCtOsmaller than the free space wavelength for evanescent waves,

correspond to that of the surface mode would continuousl S ;
pump the mode. This would lead to the surface mode drown%s shown in this study, suggests that the use of a macroscopic

ing out the image of the sourgelhe surface mode clearly & and . may not be appropriate at an interface of forward-

acts as a lower bound on the feature size of the source thaf " gnd .backwardfwa.ve .matenﬁlsl.\leve.rtheless, this
can be resolved with a given system. To illustrate this, Fig § udy gives important .|nS|ght Into 'ghe behavior of BW mate-
shows the relationship between the t.ransition-layer th,ickn.e r_|al_s and shows_prom|se fo_r imaging beyond the diffraction
. . Simit but also points out difficulties in the structure and the
and the transverse wavelength at which the ant'symmet”?nodeling of these materials
surface mode occurs. The graph shows that as one reduces '
the transition-layer thickness, the limiting transverse wave-
length decreases as well, thus increasing resolution. The re-
lationship betweerd and \; is approximately cubic in the
region of the graph. Thus, a reduction @faccomplishes a We would like to thank Richard Ziolkowski for useful
much smaller reduction of; and makes the quest for higher discussion. This work was supported by the Office of Naval

resolution with this system expensive. Research code 3210A.
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