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Effects of surface waves on the behavior of perfect lenses
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Backwards-wave~BW! materials, which have simultaneously negative permittivity and permeability, sup-
port electromagnetic waves with phase propagation in the direction opposite to power flow. At an interface
between BW materials and free space, the normal component of the wave vector changes sign. In the case of
an evanescent wave, this leads to growth of the field amplitude inside the BW material. An infinite slab of an
ideal, homogeneous BW material can simultaneously compensate the phase and the amplitude propagation of
a wave, such that a point source is perfectly reconstructed in the image@J. B. Pendry, Phys. Rev. Lett.85, 3966
~2000!#. However, it is more realistic to consider a thin layer at the surface over which the permeability and
permittivity change from the free-space values to the BW values. Such layers influence the response of the
system through a frequency shift of surface modes and the nonreflecting wave. One finds a lower bound for the
size of resolvable features. It is shown that the transition layer is important even at thicknesses much smaller
than the free-space wavelength of the radiation.

DOI: 10.1103/PhysRevB.66.035113 PACS number~s!: 78.20.Ci, 42.30.Wb, 73.20.Mf, 78.66.2w
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I. INTRODUCTION

Recently, materials that simultaneously have a nega
electric permittivity and a negative magnetic permeabi
have received renewed attention. These materials can su
a backwards-traveling wave where the phase propagatio
antiparallel to the direction of energy flow. For this reas
we identify these materials as backwards wave~BW! mate-
rials. The extraordinary properties of such materials h
been predicted and theoretically studied by Veselago sev
decades ago,1 but experimental realization had not be
achieved until recently.2 This type of material is predicted t
possess unusual electromagnetic properties such as a
verse Doppler shift and a backwards-directed Cherenkov
diation cone. Veselago pointed out that a planar slab of
material would refocus the waves from a point source.1 Re-
cently, Pendry predicted that the BW slab would also amp
the evanescent waves3 and thus under certain conditions r
focus the light to an exact image of the source. In imag
applications, the evanescent waves are crucial to resolve
tures smaller than the free-space wavelength of the elec
magnetic radiation. Pendry’s claim was further studied
Ziolkowski4 who considered the consequences of lossy m
terial and the behavior of fields whose frequencies were
ideal for the given material which is necessarily dispersiv

This paper presents results of calculations, using the m
roscopic Maxwell equations, pertaining to the behavior
evanescent waves in BW materials. First, we briefly disc
an evanescent wave at the interface of free space and
half spaces and an evanescent wave interacting with a sla
BW material. Then the theoretical analysis is described,
finally a more realistic model system where the transit
from free space to BW material is finite in space is presen
~i.e., there is an offset between the discontinuity in perm
tivity and permeability!.

II. SINGLE AND DOUBLE INTERFACE CONSIDERATIONS

It can be shown that BW material, where both the perm
tivity and the permeability are simultaneously negative, c
0163-1829/2002/66~3!/035113~5!/$20.00 66 0351
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only be realized if the material is dispersive1 (« andm will
be used for the relative permittivity and permeability, resp
tively!. Thus the ideal situation of«5m521 is possible
only at a finite number of frequencies. This set of parame
values is identified as ‘‘ideal’’ because it gives the same i
pedance and speed of light as free space.

Consider a monochromatic plane wave with wave vec
k incident on an interface between free space and a BW
space. Let the BW material have«5m521 at the fre-
quency of the plane wave. Due to the impedance match
with free space, there is no reflected wave. The magnitud
all vector components are then unchanged at the inter
because the speed of light has the same magnitude ev
where in the system. The boundary conditions require t
the tangential components ofE andH, as well as the norma
components ofD andB, are continuous across the interfac
From the constitutive relations we then find that the norm
components ofE andH must change sign. Given the beha
ior of the fields at the boundaries, Maxwell’s equations
quire that the tangential components ofk are continuous, and
its normal component changes sign. This result is indep
dent of the fact that the vectors may be real, imaginary,
complex valued and there is no need to invoke causality
was done in Refs. 3 and 4. In the case of a propagating w
the phase velocity changes its direction normal to the in
face, while for an evanescent wave that has the imagin
wave-vector component normal to the interface, the cha
of signs across the interface dictates that a decaying e
nential on one side of the interface becomes a growing
on the other side~and vice versa!.

Assume the BW material is a slab with interfaces to fr
space parallel to thex-z plane, and a source of plane wav
is placed to one side of the slab. In general, due to reflect
at the interfaces, both positive and negative values of thy
component of the wave vector are present. However, for
special case where the frequency yields«5m521, the slab
is impedance matched to free space and one of these w
vanishes such that the phase and amplitude propagatio
verse direction normal to the interfaces. For instance, an
©2002 The American Physical Society13-1
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cident decaying evanescent wave grows inside the BW
and upon leaving the slab decays again. In this case the
only a single wave in each region. The magnitude ofky is
identical in all regions~subscripts denote vector comp
nents!, and the slab compensates for the propagation ov
distance in free space equal to the slab thickness, inde
dent of wave vector. This configuration is ideal for constru
tion of a ‘‘perfect lens,’’ where the phase propagation o
propagating wave and the amplitude propagation of an e
nescent wave need to be compensated to achieve perfe
cusing to a point.

In practice, a BW material has been realized as a perio
arrangement of split-ring resonators~SRR! and thin-wire
modules that cause an effective dispersion ofm and« similar
to the permittivity of a plasma. The modules are anisotro
and to achieve better isotropy they are arranged in a pa
with modules facing in different directions,5,6 i.e., one uses a
periodic structure similar to a crystal. Due to the compos
nature of the material there exists a displacement betw
the thin-wire module that causes the dispersion in« and the
SRR module that gives dispersion inm. One might expect
that this thin transition layer can be neglected, but due
multiple reflections at the interfaces and especially the a
plification of evanescent waves in the BW slab, this th
layer can have important implications for the realization o
perfect lens.

III. THEORETICAL ANALYSIS

The following analysis employs the macroscopic Maxw
equations to find the behavior of the electromagnetic field
the example geometry shown in Fig. 1. The same proced
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can be applied to any layered dielectric system. Assume
incident transverse electric~TE! plane wave of the form

E~x,y,t !5 ẑEie
i (kxx1kyy2vt) ~1!

in the region to the left of the slab, whereEi is the incident
wave amplitude andkx and ky are the wave vector compo
nents. Let the media be linear, isotropic, and translation
invariant in thex and z direction. Linearity allows one to
work in frequency space with a monochromatic wave, wh
isotropy lets the wave vectors in the different regions sh
the same plane of incidence. Therefore one can choo
coordinate system such that thex-y plane coincides with the
plane of incidence andkz[0 everywhere. At all interfaces
reflections can occur and one has to allow for waves w
both signs ofky in the analysis. As there is no incident fie
from the right, the region to the right of the slab has only
single wave. The amplitude of the reflected wave to the
of the slab and that of the transmitted wave to the righ
denoted asEr andEt , respectively. The waves in the differ
ent regions of the system are connected through the bo
ary conditions on the electromagnetic fields at the dielec
interfaces, namely the continuity of the tangential comp
nents ofE and H and the normal components ofD and B.
The boundary conditions together with the dispersion re
tion in each region give two equations fewer than the num
of wave-vector and field components. Thus one wave ve
component~e.g.,kx) can be used to parametrize the directi
of incidence; frequency is also used as a parameter. This
leaves an underdetermined system of equations with
equation fewer than unknowns. After a lengthy but straig
forward calculation one can find solutions relating two fie
amplitudes, e.g., for the system of Fig. 1,
Er

Ei
5

~ky
21!2@e2iLky

22
~C1

221 iS2
21!21~ iC1

221S2
21!2#2~ky

11!2@e2iLky
22

~ iS1
221C2

21!21~S1
221 iC2

21!2#

e2idky
11

$e2iLky
22

@~S1
111 iC1

21!ky
222~ iC2

111S2
21!ky

21#22@~S1
111 iC1

21!ky
221~ iC2

111S2
21!ky

21#2%
, ~2!

Et

Ei
5

4eiL (ky
22

2ky
11)ky

11~ky
21!2ky

22m1m2

e2idky
11

$e2iLky
22

@~S1
111 iC1

21!ky
222~ iC2

111S2
21!ky

21#22@~S1
111 iC1

21!ky
221~ iC2

111S2
21!ky

21#2%
, ~3!
all
li-

ac-

t is

ct

t if
se
ny
ide
whereSj
mn5ky

mnm jsin(dky
21), Cj

mn5ky
mnm jcos(dky

21), the dis-
tancesL and d are defined in the figure caption, and th
dependence onv and kx is implicit through ky

mn(v,kx),
which is determined by the dispersion relation (kx is equal in
all regions!

«m~v!mn~v!v25c0
2kmn

•kmn, ~4!

wherec0 denotes the speed of light in vacuum. The first a
second superscript on the wave vectors correspond to
subscript on the permittivity and permeability in each regio
respectively. In this system the slab proper has superscrip
and the surrounding space has superscript 11. On either
between the two is a transition layer with«2 andm1 giving
d
he
,
22
ide

superscript 21. If desired, one can write such relations for
the field amplitudes in the system. With one of the amp
tudes as a reference parameter~the relations shown useEi),
one can calculate the fields at all points by taking into
count the complex exponential in Eq.~1! and adding the
respective waves at that point. Under certain conditions i
possible for the numerator in Eq.~2! or the denominator in
Eq. ~2! and ~3! to vanish. This means thatEr50 or Ei50,
respectively. WhenEr vanishes, the system does not refle
the particular incident wave, while vanishingEi signifies the
existence of a bound mode. A bound mode can only exis
ky is imaginary in both of the outside regions, otherwi
there would be net energy flow out of the system without a
sources. Thus it is characterized by the electric field outs
3-2
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EFFECTS OF SURFACE WAVES ON THE BEHAVIOR OF . . . PHYSICAL REVIEW B 66, 035113 ~2002!
the system exponentially decaying away from the interfa
Inside the slab the mode can be of propagating or evanes
character. A bound mode that is of evanescent characte
side the slab has its field amplitude exponentially localized
the interfaces and is called a surface mode.

IV. MODEL CALCULATIONS

The previous section outlined the general theoret
analysis of a planar system with the example geometry
Fig. 1. This section characterizes the parameters used in
model system and presents calculations leading to an an
sis of its imaging capabilities.

A. Model parameters

The materials considered here have the commonly-u
relative permittivity

«~v!512
vep

2

v2
, ~5!

where vep is the effective electrical plasma frequenc
Analogously, for the relative permeability we use

m~v!512
vmp

2

v2
, ~6!

wherevmp is the effective magnetic plasma frequency.3,5 As
the electric and magnetic plasma frequencies are availab
design parameters of the BW composite material, we c
sider the special case ofvep5vmp5vp to simplify the
model. We also have neglected damping. Thus the mat
behaves as a BW material forv,vp and hasm5«521 at
v5v05vp /A25c02p/l0.

Because of their importance in achieving a perfect foc
we concentrate our attention on the behavior of evanes
waves. Evanescent waves have a complex wave ve
whose real part is perpendicular to its imaginary part. T
real part determines the wavelengthl t of the wave trans-
verse~perpendicular! to the direction of maximum amplitud
decay. This wavelength determines the image resolution
can be achieved with this wave. For evanescent wavesl t is
always less than the free space wavelength. We assum
embedded source to the left of the slab with frequencyvs . A
schematic of the system is shown in Fig. 1; the system

FIG. 1. Schematic of the infinite slab configuration. The slab
a thicknessL and there is a transition layer of thicknessd to either
side. The system is translationally invariant in thex andz direction.
Free-space quantities are denoted by a subscript 1 and dispe
material quantities by a subscript 2.
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translationally invariant in thex and z direction. The BW
material slab has a lengthL and a transition layer of thick-
nessd with the permittivity of the BW material but the per
meability of free space exists to either side. In all followin
calculationsL50.36l0 andv0 /(2p)515 GHz. Larger val-
ues ofL have been investigated and found to be more rest
tive for imaging purposes. The particular value for the fr
quency has been chosen to be close to the ones use
experiments,5 but is not essential to the findings of this stud

The calculations to follow consider only evanesce
waves that have maximum decay in they direction andl t
tangential to the interface. Thex component of the wave
vector is determined by the transverse wavelength thro
kx52p/l t ; kz is zero. The frequency and the components
the wave vector in each region are related through the
spective dispersion relation.

B. Results and discussion

For the case of vanishing transition-layer thicknessd50
and design frequencyv05vp /A2, the slab is impedance
matched with free space such that a decaying expone
becomes a growing exponential inside the BW slab a
changes back into a decaying exponential on the other
of the slab as shown in Fig. 2. We will refer to such a wa
form with vanishing reflected wave in the source region a
nonreflecting wave. The magnitude of the wave-vector co
ponents is spatially invariant because«m51 in all three re-
gions. Consequently, the wave aty52a, (a,L) in front of
the slab is reproduced aty52L2a beyond the slab, inde
pendent ofk; the BW slab compensates for the amplitu
decay of the wave.3 The slab also compensates for the pha
propagation of a plane wave.1 The combination of these two
effects allows the perfect reconstruction of a point source
an image through a slab of BW material at frequencyv0.3

As will be shown later, there are surface modes7 whose
frequencies are close to that of the nonreflecting wave@i.e.,
frequencies which cause the denominator of Eqs.~2! and~3!
to be zero#. The change in permeability at they50 andy
5L interfaces allows them to support transverse-electric s

s

ive

FIG. 2. Electric field amplitude of the nonreflecting evanesc
wave in the system shown in Fig. 1 with vanishing transition-lay
thickness d50 at the design frequencyvs5v0 and with l t

50.44ls . The dashed lines indicate the location of the slab s
faces. The plane-wave source is at an arbitrary location left of
slab (y,0).
3-3
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FEISE, BEVELACQUA, AND SCHNEIDER PHYSICAL REVIEW B66, 035113 ~2002!
face waves. Surface waves in a single interface system d
exponentially away from the interface. The presence of ot
interfaces gives rise to coupling of the surface waves at e
of the interfaces. This leads to the emergence of nor
modes with slightly different frequencies. In the examp
system there are two such surfaces, and there exists a
metric and an antisymmetric mode where the amplitude
one interface is equal to, or the negative of, the amplitud
the other interface, respectively. The modes do not coupl
propagating waves but can be excited by evanescent wa
Due to their bound nature, they have a long decay time
can degrade the quality of the image of the source. Thus
structure is more suitable for steady-state rather than t
sient or time resolved operation.

It is more realistic to assume that the permittivity and t
permeability change over a small transition layer from th
free space values to the values in the BW material. When
thickness of this transition layer is finite the behavior of t
fields becomes more complex. The finite transition la
shifts the frequency of the nonreflecting wave and of
surface modes. These shifts are dependent on the layer t
ness and the normal component of the wave vector. The
face mode and nonreflecting wave frequencies are show
Fig. 3 as a function of transition-layer thickness with tran
verse wavelengthsl t50.2l0 and l t50.8l0 . The nonre-
flecting wave frequency is bracketed by the two surfa
mode frequencies. As the transition-layer thickne
increases, all three frequencies shift upwards with the no
flecting wave moving closer to the symmetric mode. T
frequency shift is greater than the difference between th
even though the layer thickness is much less than the
space wavelength. Comparing the two cases depicted in
3, one finds that for the wave with the higher resoluti
(l t50.2l0) the frequencies of the surface modes and
nonreflecting wave are much closer to one another tha
the case of the lesser resolution (l t50.8l0), so much so that
the curves forl t50.2l0 are not distinguishable in the grap

In Fig. 4 we show the frequencies of the two surfa
modes and the nonreflecting wave as a function of the tra
verse wavelength. In all cases, the symmetric surface m
has the highest frequency, while the antisymmetric one
the lowest frequency. The frequency of the nonreflect
wave lies between that of the two surface modes. At van
ing transition-layer thickness, the nonreflecting wave occ
at the design frequencyv0, independent of the wave vecto
while the surface mode frequencies change with the nor
component of the wave vector. With a finite transition lay
the nonreflecting wave frequency also becomes depende
the wave vector, as is shown in Fig. 4 with layer thickne
d50.005l0 . This wave vector dependence poses difficult
for the realization of a perfect lens.

The phase compensation of propagating waves inside
BW slab is independent of the wave vector only at the des
frequency. In the transition layer,ky is always imaginary for
vs,vp , and phase does not propagate in these lay
Therefore the BW slab compensates for the change in p
due to propagation in free space fromy52a (a,L) at y
52L12d2a. Thus for imaging application one has to loo
at the reconstruction of a source wave at the design
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quency at this image location. The relative amplitude of
incident wave at the source location (Esource) and the trans-
mitted amplitude at the image location (Eimage) at the design
frequencyv0 is shown in Fig. 5 as a function of transvers
wavelength. The expression for this relative amplitude
given by

Eimage

Esource
5

Et

Ei
e2iky

11(L1d), ~7!

which is the amplitude ratio of Eq.~3! adjusted for the loca-
tions according to Eq.~1!. ~Note thatiky

11 is real in this case.!
The graph shows curves for several transition layer thi
nesses. The relative amplitude exhibits singularities at

FIG. 3. Frequency of the nonreflecting wave~j!, the antisym-
metric ~d!, and the symmetric~m! surface modes as a function o
transition-layer thickness for transverse wavelengthl t50.8l0 . The
frequencies forl t50.2l0 are shown by lines and have the sam
trends as the symbols but are not distinguishable on the scale o
plot. The dashed vertical lines indicate the transition layer thi
nesses used in Fig. 4.

FIG. 4. Frequency of the nonreflecting wave~solid, j!, the
antisymmetric~dashed,d!, and symmetric~dash-dot,m! surface
modes as a function of transverse wavelength for transition-la
thicknessd50 ~lines! andd50.005l0 ~symbols!. The dashed ver-
tical lines indicate the transverse wavelengths used in Fig. 3.
3-4
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EFFECTS OF SURFACE WAVES ON THE BEHAVIOR OF . . . PHYSICAL REVIEW B 66, 035113 ~2002!
occurrence of the antisymmetric surface mode, because
incident wave, which is proportional to the denominator
this ratio, vanishes. With larger values ofL the surface mode
shifts to greaterl t . For l t greater than that of the antisym
metric surface mode, one finds a region inl t where the ratio
of image amplitude and source amplitude is close to un
The extent of this region increases with decreas
transition-layer thickness. For smaller transverse wavelen
the relative amplitude vanishes rapidly with decreasingl t .
~In steady state the surface mode has no associated inc
wave. An incident wave whose frequency and wave vec
correspond to that of the surface mode would continuou
pump the mode. This would lead to the surface mode dro
ing out the image of the source.! The surface mode clearl
acts as a lower bound on the feature size of the source
can be resolved with a given system. To illustrate this, Fig
shows the relationship between the transition-layer thickn
and the transverse wavelength at which the antisymme
surface mode occurs. The graph shows that as one red
the transition-layer thickness, the limiting transverse wa
length decreases as well, thus increasing resolution. The
lationship betweend and l t is approximately cubic in the
region of the graph. Thus, a reduction ofd accomplishes a
much smaller reduction ofl t and makes the quest for highe
resolution with this system expensive.

FIG. 5. Relative amplitude of the source electric field (Esource)
amplitude aty52a523L/4 and its image (Eimage) at y52L2a
12d with a transition layer ofd50.02l0 ~solid!, 0.01l0 ~dashed!,
0.005l0 ~dash-dot!, and 0.0025l0 ~dash-dashed! at the design fre-
quencyv0 as a function of transverse wavelengthl t . The singu-
larities are caused by the antisymmetric surface mode,
Esource50.
S
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V. CONCLUSION

We have presented a study of evanescent wave beha
in a BW material and specifically considered the influence
a dielectric transition layer between a BW slab and fr
space. A vanishing transition layer can give the ideal c
with perfect reconstruction of a point source, while transiti
layers much thinner than the free-space wavelength of
radiation give rise to a surface mode at the design freque
This surface mode acts as a lower bound on the corre
imaged transverse wavelength. The influence of the tra
tion layers on propagating waves is less pronounced than
evanescent waves. The significance of transition layers m
smaller than the free space wavelength for evanescent wa
as shown in this study, suggests that the use of a macrosc
« andm may not be appropriate at an interface of forwar
wave and backward-wave materials.8 Nevertheless, this
study gives important insight into the behavior of BW ma
rials and shows promise for imaging beyond the diffracti
limit but also points out difficulties in the structure and th
modeling of these materials.
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FIG. 6. Layer thickness where the antisymmetric surface m
occurs as a function of transverse wavelength.~The curve on this
graph begins atl t50.251l0 with d50.0001l0 . Smaller values of
l t were not accessible due to the finite numerical precision w
evaluating the expression for the surface mode.!
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