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Ab initio calculation of KLV Auger spectra in Si
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We present anab initio Green’s-function formalism for predictingCCV Auger spectra for solids. The
formalism takes into account core-hole screening, final-state interaction effects, and angular momentum de-
pendence. It is applied to calculate theKL1V and KL2,3V Auger spectra for bulk silicon. We achieve fair
agreement with high-resolution Auger experiments recently performed on silicon and gain a more quantitative
understanding of the role of the final-state hole-hole interaction in Auger processes.
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I. INTRODUCTION

In recent years, high-resolution measurements ofKLV
Auger spectra for bulk silicon have been performed.1 This
experimental study revealed detailed features in the Au
spectra that had not been observed before in previous wo2

Various theoretical analyses1,3,4 have been used to explai
the observed spectra. These include computation of the
tial density of states~PDOS! in the presence of a core ho
and weighting the various angular momentum contributio
by parameters fitted to experiment; and the use of the C
Sawatsky model,5 a Green’s function approach with a mod
Hamiltonian and empirically determined parameters. Th
models have provided useful qualitative explanations of
observed spectra. A useful summary of these models is g
in Ref. 6. These studies have left the field open to tim
theoretical developments, includingab initio calculations of
the angular-momentum-dependent matrix elements, scr
ing of the core hole, and the Coulomb repulsion between
two final-state holes.Ab initio calculations, using configura
tion interaction7 and many-body perturbation theor
~MBPT!,8 have been performed on atoms, but to our kno
edgeab initio calculations have yet to be performed for so
ids. In this work, we address these issues by developing
appropriateab initio formalism for the calculation of the
KL1V andKL2,3V Si Auger spectra. The calculation involve
the following steps. First, the matrix elements forKLV Au-
ger decay in the Si atom are computed within the Hartr
Fock approximation using standard formulas. Next, we c
struct the matrix elements forKLV Auger decay in the solid
where the final valence state is an extended Bloch state.
solid-state matrix elements are reconstructed from the ato
matrix elements. From a calculation of the band energ
wave functions, and the screened potential produced by
final-state core hole, we construct a two-particle Gree
function that describes the dynamics of the two final-st
holes, including their mutual repulsive interaction. The A
ger intensity is directly related to this two-particle Green
function and the solid-state matrix elements. The charac
istic features of our method consists of theab initio calcula-
tion of final-state effects and the unified way in which t
matrix-element and final-state effects are treated.
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II. FORMALISM

We make use of Wentzel’s rule9 for the transition rates of
nonradiative processes. According to Wentzel, the proba
ity amplitude of the Auger transition (nl)
→(n1l 1,n2l 2)eAl A , is given by the matrix element

P i→ f5 K C f~nl,eAl A ;r1r2!U 1

ur12r2u UC i~n1l 1 ,n2l 2 ;r1r2!L .

~1!

Here nl, n1l 1, n2l 2, andeAl A are the quantum numbers o
the initial core hole, the two final-state holes, and the Au
electron. Because we are interested in developing a Gre
function, many-body formalism, we rewrite Wentzel’s rule
second-quantized notation. To this end, we consider ma
elements of the interaction Hamiltonian,

Hint5
1

2 (
n1n2n3n4s1s2

Mn3n4 ,n1n2
ĉn4s2

† ĉn3s1

† ĉn1s1
ĉn2s2

.

~2!

Here n1 ,n2 ,n3 , andn4 are indices that label orbital state
and s1 and s2 are spin indices. Likewise,ĉns

† and ĉns are
fermion creation and annihilation operators satisfying the
ticommutation relations

$ĉn1s1

† ,ĉn2s2
%5dn1n2

ds1s2
,

$ĉn1s1
,ĉn2s2

%50,

$ĉn1s1

† ,ĉn2s2

† %50.

Mn3n4 ,n1n2
is given by the integral

Mn3n4 ,n1n2
5E d3r 1d3r 2fn3

* ~r1!fn4
* ~r2!

1

ur12r2u

3fn1
~r1!fn2

~r2!,

where thefn(r ) are quasiparticle wave functions. We a
interested in computing matrix elements of the Hamilton
given in Eq. ~2! between an initial state,u i (↑)&, and final
states,$u f (alm)&%, given by
©2002 The American Physical Society06-1
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u i ~↑ !&5 ĉK↑u0&,

u f ~alm!&5 ĉAa
† ĉLlĉVmu0&.

Here A, L, and V label the orbitals for the Auger,L, and
valence states, anda, l, andm are the respective spins.K
refers to theK hole, which is assumed to be spin-up witho
loss of generality. The portion of the interaction Hamiltoni
relevant toKLV Auger processes is

HKLV5 (
n1n2a

MAK,n1n2
ĉK↑

† ĉAa
† ĉn1aĉn2↑

with

MAK,n1n2
5E d3r 1d3r 2fA* ~r1!fK* ~r2!

1

ur12r2u

3fn1
~r1!fn2

~r2!.

The Auger amplitude is given by

P~alm![^ f ~alm!uHKLVu i ~↑ !&,

which reduces to

P~alm!5 (
n1n2

MAK,n1n2
@dn2Vdn1Ldm↑dla

2dn2Ldn1Vdmadl↑#

5MAK,LVdladm↑2MAK,VLdmadl↑ .

Squaring this result and summing over final-state spins,
obtain

(
alm

uP~alm!u25uMAK,LV2MAK,VLu21uMAK,LVu2

1uMAK,VLu2. ~3!

MAK,LV andMAK,VL are the direct and exchange matrix e
ments, later denoted byD andG in the atom andD andG in
the solid. The result given in Eq.~3! is consistent with pas
works.10,11

Having shown how to handle the exchange symme
properly as in Eq.~3!, we now develop the formalism fo
calculating the atomic matrix elements, i.e., the excha
and direct terms given byMAK,VL and MAK,LV , where the
four states involved, including the final valence-hole sta
are atomic or atomiclike continuum states. It is necessar
compute the atomic matrix elements before writing down
matrix elements for the solid, in which the final valence-ho
state is, without loss of generality, a linear combination
extended Bloch states. For purposes of computing Au
transition matrix elements, it is more convenient to descr
the states in an atomic picture. For purposes of treating
final states, it is more convenient to describe the valen
hole state in a Bloch picture,viz. as a linear combination o
Bloch states. To treat the entire problem in a unified fash
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we relate the two pictures by expressing each Bloch stat
the vicinity of an atom as a linear combination of atomic-li
states.

The radial part of the atomic wave functions correspon
ing to theK hole, L hole, valence hole, and Auger electro
are designated byK(r ), L(r ), Vn l 2

(r ), andAl a
(r ). The total

and azimuthal angular momentum quantum numbers
these states are designated asl cmc , l 1m1 , l 2m2, and l ama .
The subscriptc stands for ‘‘core hole,’’ anda stands for
‘‘Auger electron,’’ whereasn is like the principal quantum
number of the valence state. We define

Kl c ,mc
~r ![K~r !Yl c ,mc

~ r̂ !

Ll 1 ,m1
~r ![L~r !Yl 1 ,m1

~ r̂ !

Vl 2 ,m2
~r ![Vn l 2

~r !Yl 2 ,m2
~ r̂ !

and

Al a ,ma
~r ![Al a

~r !Yl a ,ma
~ r̂ !.

The orbitals are computed within the Hartree-Fock appro
mation. Those for the Auger electron andK hole are calcu-
lated in the final-state configuration, and those for the t
final-state holes, i.e., the valence andL holes, are computed
in the initial-state configuration. This choice of configur
tions is consistent with the MBPT calculation of Ref. 8.

For fixed l c , mc , l 1, and m1, the exchange and direc
matrix elements are functions ofn, l 2, andm2, the quantum
numbers for the valence hole, andl a and ma , the quantum
numbers for the Auger electron. They are given by

Dn,l 2m2

l ama 5E d3rd3r 8Kl cmc
* ~r !Ll 1m1

~r !
1

ur2r 8u

3Vn l 2m2
~r 8!Al ama

* ~r 8! ~4!

and

Gn,l 2m2

l ama 5E d3rd3r 8Kl cmc
* ~r !Vn l 2m2

~r !
1

ur2r 8u

3Ll 1m1
~r 8!Al ama

* ~r 8!. ~5!

Here l ama andn l 2m2 are taken to vary, andl 1m1 and l cmc
are constants depending on the spectrum studied~in the case
of KL1V Auger spectroscopy, they arel 150,m150 and l c
50,mc50). D andG are related by an exchange of the rol
of the valence andL holes. They can be calculated explicit
using the following formulas:

Dn,l 2m2

l ama 5(
lm

4p

2l 11
Rl@K,L,Vn l 2

,A#g~ l cmc ; l 1m1lm!

3g* ~ l 2m2 ; l amalm! ~6!

and
6-2



an

oc
th

n

A
e
n

in
e

m
u
5
d
u

the

w
nd
tron
ole
u-

f the

a,

ter-
ns.
n
-

e

ith
he

t

the
less

and

de

ther
ul-

ling
ates

r
ing
he
an-
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Gn,l 2m2

l ama 5(
lm

4p

2l 11
Rl@K,Vn l 2

,L,A#g~ l cmc ; l 2m2lm!

3g* ~ l 1m1 ; l amalm! ~7!

with

Rl@a,b,c,d#[E
0

`

drE
0

`

dr8
r ,

l

r .
l 11 ~rr 8!2

3a* ~r !b~r !c~r 8!d* ~r 8!

and

g~ lm; l 1m1l 2m2!5E dVYlm* ~ r̂ !Yl 1m1
~ r̂ !Yl 2m2

~ r̂ !.

The solid-state ~crystal! matrix elements,Dnk
l ama and

Gnk
l ama , are like the atomic exchange matrix elementsDn,l 2m2

l ama ,

and Gn,l 2m2

l ama , except that the final valence hole is not

atomic state described by the quantum numbersn, l 2 and
m2, but a Bloch state with indexnk, wheren andk denote
the band index and crystal momentum. We compute Bl
wave functions and their corresponding band energies wi
the local-density approximation~LDA !,12,13 which is ad-
equate for Si. Because Auger processes involve only vale
bands~and no conduction bands!, and the LDA gives satis-
factory results for Si, self-energy corrections to the LD
band energies are small.14 The relationship between th
solid-state matrix elements and the atomic matrix eleme
can be expressed as

Dnk
l ama5 (

n l 2m2

cn l 2m2

nk Dn,l 2m2

l ama , ~8!

and

Gnk
l ama5 (

n l 2m2

cn l 2m2

nk Gn,l 2m2

l ama . ~9!

The transformation coefficients$cn lm
nk % are given by

cn lm
nk 54p(

G
i lYlm~Q̂!cnk~G!Ṽn l~Q!

with Q5G1k,

Ṽn l~Q!5E
0

`

drr 2 j l~Qr !Vn l~r !,

andcnk(G) being a Fourier component of the Bloch statenk.
We compute the LDA wave functions and energies us
pseudopotentials and a plane-wave basis set up to an en
cutoff of 16 Ry and with ak point sampling consisting of 10
k points in the irreducible Brillouin zone. Because we co
pute the wave functions using pseudopotentials, we make
of the wave function reconstruction method in Ref. 1
which relates pseudo and all-electron wave functions, an
used to reconstruct the latter. We estimate the standard
03510
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certainty in the peak heights of the final spectrum from
reconstruction process to be less than 5%.

To treat the interaction of the final-state holes, we follo
the method of Ref. 16, in which inelastic x-ray scattering a
absorption are studied. There, an attractive core hole-elec
interaction was considered, while here a repulsive hole-h
interaction is considered. This method, when applied to A
ger spectroscopy, retains the same qualitative features o
Cini-Sawatsky model5 and is itsab initio counterpart. It is
also consistent with the final-state rule for Auger spectr3

according to which the initial state determines thes-, p-, and
d-wave Auger electron intensities, and the final state de
mines the individual shapes of each of these contributio
The key ingredient in this two-particle Green’s-functio
method is the following effective Hamiltonian, which de
scribes the dynamics of the two final-state holes~i.e., theL
hole and the valence hole!:

Hnk,n8k852dnn8dkk8~eL
QP1enk

QP!1Knk,n8k8
d

6Knk,n8k8
x

~10!

with

Knk,n8k8
d

5E d3rWL~r !fn8k8
* ~r !fnk~r !

and

Knk,n8k8
x

5E d3r 8d3rfn8k8
* ~r 8!Ll 1 ,m1

~r 8!
1

ur 82r u

3fnk~r !Ll 1 ,m1
* ~r !.

The ‘‘1’’ sign in Eq. ~10! is for spin singlet states and th
‘‘ 2 ’’ sign is for spin triplet states.21 WL is the repulsive
screened potential produced by theL core hole~2s or 2p!. It
is computed using the random-phase approximation w
local-field effects, including self-consistent screening in t
solid-state environment by core and valence electrons.16,22

The Kd term in Eq. ~10! captures the effects of the direc
interaction between the valence hole andL core hole.Kx is
the exchange interaction between valence hole andL core
hole, which has been found to be small and to change
spectra by only a few percent in the peak heights and
than 0.1 eV in the peak positions.

The final two-hole state can be represented in a b
structure picture by a hole in thenth band atk with energy
enk

QP , and an empty core level with energyeL . If the two
holes did not interact, then the Hamiltonian would inclu
only the first, energy-difference term in Eq.~10!. However,
because the two holes interact and may scatter into ano
two-hole pair state because of their mutual Coulomb rep
sion, additional terms are required to describe the coup
between different two-hole pair states, i.e., between st
labeled bynk,L, andn8k8,L. The coupling is given by the
sum or difference of the last two terms in Eq.~10!.

Equation~10! is formally derived using an infinite ladde
expansion of Feynman diagrams involving a pair of outgo
and a pair of incoming fermion lines, representing, in t
case of this work, the two final-state holes. From this exp
6-3
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sion, an eigenvalue equation called the Bethe-Salpeter e
tion is derived, which is simply the eigenvalue problem a
sociated with the Hamiltonian in Eq.~10!. A complete and
rigorous derivation of Eq.~10! is given in Ref. 23. An equa
tion analogous to Eq.~10! has been applied to treat final-sta
interaction effects in inelastic x-ray spectra.16

The relevant two-particle Green’s function is

Gnk,n8k8~v!5~H2v1 ig!nk,n8k8
21 ,

whereg is related to the total inverse lifetime. We use

g5gK1gL1gV ,

with gK50.38 eV, gL1
52.0 eV, andgL2,3

50.02 eV, ac-
cording to Refs. 17–19. For the inverse lifetime of the v
lence hole,gV , we use the results of self-energy calculatio
in Ref. 20.

Recalling Eq.~3!, we can write down the final Auger in
tensity with the correct combination of direct and exchan
matrix elements. If we define

Snk
l ama5Dnk

l ama2Gnk
l ama ,

then the Auger intensityI (v) is

I ~v!}2Im (
l ama

(
nk,n8k8

$@Snk
l ama#* Gnk,n8k8~v!S

n8k8

l ama

1@Dnk
l ama#* Gnk,n8k8~v!D

n8k8

l ama

1@Gnk
l ama#* Gnk,n8k8~v!G

n8k8

l ama%.

In the numerical calculation ofI (v), we sum over a k-point
mesh consisting of 512k points in the full Brillouin zone.

III. RESULTS

To understand the final results better, we first resolve
total Auger intensity into contributions froms, p, andd Au-
ger electrons for both theKL1V and KL2,3V spectra. An
elementary calculation of the angular momentum coupl
reveals that, in the case of theKL1V Auger process, ans
Auger electron leaves behind ans valence hole, ap Auger
electron leaves behind ap valence hole, while higher value
of angular momentum are less important. For theKL2,3V
Auger process,s andd Auger electrons can leave behind ap
valence hole, andp Auger electrons can leave behind ans
valence hole, while higher values of angular momentum
less important.

In Fig. 1, we show theKL1V Auger spectrum resolved
into its Augers andp contributions. They resemble thes and
p PDOS ~Ref. 1! for Si in the presence of a core hole,
expected. The sum of these two components, shown in
2, has a three-peak structure. The middle peak is the e
mum of the sum of the two components and does not ap
as a local maximum in either component.

In Fig. 3, we show theKL2,3V Auger spectrum resolved
into its Augers, p, andd contributions. The valencep portion
of the spectrum is significantly more intense than the vale
s portion, and most of the intensity is associated with
03510
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d-wave Auger electron. The sum of the two contributions
given in Fig. 4. The Augers andd contributions resemble the
p PDOS and the Augerp contribution resembles thes PDOS,
as expected.

It is interesting to superpose the Auger spectrum co
puted with the final-state hole-hole interaction over the sp
trum computed without such an interaction. In theKL1V
spectrum~Fig. 2!, the hole-hole interaction has the effect
deepening the valley between the two main peaks and ca

FIG. 1. KL1V Auger intensity resolved intos ~solid line! andp
~dotted line! Auger electron contributions.

FIG. 2. Comparison ofKL1V theory with ~bold line! and with-
out ~light line! hole-hole interaction to experiment@1# ~points!. The
theoretical spectra are vertically offset for clarity.
6-4
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a marked improvement in the agreement with experiment
theKL2,3V spectrum~Fig. 4!, the hole-hole interaction give
rise to the characteristic small peak to the left of the m
peak. This feature is absent in the noninteracting theory.
nally, for both theKL1V andKL2,3V spectra, the final-state
hole-hole interaction shifts the peaks towards the same e
gies of the experimentally observed peaks. To our kno
edge, this is the first fullyab initio calculation of the Auger
Si KLV intensity that includes energy-dependent, solid-st
matrix elements and the final-state interaction together
unified picture.

IV. CONCLUSION

We have presented a first-principles method for calcu
ing theCCVAuger profile, which takes into account matrix
element and final-state effects. We have applied this met
to the calculation ofKL1V and KL2,3V Auger spectra for
bulk Si and achieved fair agreement with experiment.
reproduce approximately the peak shapes, relative heig

FIG. 3. KL2,3V Auger intensity resolved intos ~solid line! andp
~dotted-dashed line! and d ~dotted line! Auger electron contribu-
tions.
a

ys

om
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and positions as well as the fine features observed exp
mentally. In agreement with previous, more empirical wo
we confirm that final-state effects are crucial in the calcu
tion of Auger spectra, and our spectra were obtained with
adjustable parameters. We have also found thatKL2,3V Au-
ger decay in Si appears to produce predominantlyd Auger
electrons. It remains to note that we have neglected the c
pling between electrons and plasmons. Such coupling g
rise to processes in which Auger electrons lose ene
through the creation of plasmons. A complete qualitative d
cussion of this effect is found in section~3! of Ref. 6, where
it has been shown that the electron-plasmon coupling m
fies the Auger spectrum by the addition of a plasmon ba
ground. That is, the spectrum has an additional compon
that accounts for Auger electrons that have lost energy,
troducing spectral weight at seemingly higher binding en
gies. Anab initio calculation of these plasmon effects wou
be an important development in future work. We note, ho
ever, that the present treatment still accounts for most of
observed spectral features.

FIG. 4. Comparison ofKL2,3V theory with~bold line! and with-
out ~light line! hole-hole interaction to experiment@1# ~points!. The
theoretical spectra are vertically offset for clarity.
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