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Breakdown of the Hellmann-Feynman theorem: Degeneracy is the key
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The Hellmann-Feynman theorem is a powerful and popular method to efficiently calculate forces in a variety
of dynamical processes, but its validity has rarely been addressed. Here a surprising failure of this theorem is
reported. The forces calculated by the theorem can be more than fifty times smaller than the forces calculated
by the finite differential method. Numerical evidence shows that the energy-level degeneracy is the main
reason. An analytical proof reveals that although eigenvalues do not depend on a linear combination of
degenerate wave functions, forces do sensitively depend on it, which leads to ill-defined forces. A scheme is
proposed to overcome this difficulty.
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The Hellmann-Feynman theorénis powerful and has merical examples for & explicitly show that forces calcu-
been widely used in many fields such as dynamicalated by the Hellmann-Feynman theorem can be fifty times
processe%, molecular dynamicé, chemical reactions, and smaller than forces calculated by the finite differential
surface reconstructiods® The beauty of this theorem is that method, though the finite differential method itself also gives
in the adiabatic limit, it requires the diagonalization of inconsistent results. An analytical calculation shows that al-
Hamiltonian matrices only once and enables one to calculatéough any combination of degenerate eigenstates are still
all forces without recalculating wave functions. This saves igenstates of the system, forces become ill defined. There-
tremendous amount of computational power, in particular ifO"e: it is dangerous to use those forces to do simulations. A
those heavy-duty calculations suchaisinitio calculation ~ SCheéme is proposed to overcome this difficulty.

; ; . . - We consider a physical system which is described by the
This appealing feature has motivated extensive investiga- "'~~~ . P
tions for a long timé, but the validity of the Hellmann- a1—|am|lton|an matrixH. Such a system can be a sdlitiquid,

Feynman theorem has been rarely addressed in the Iiteratur%{. mtOIeCl;I?l SySt?;ﬁW'tht'.n thefadtlabatchapg_r OX|ma|t_|o_n, trt‘ﬁ
In this paper, we report a surprising failure of the &'€Ctron T0TOWS the mation ot atoms. by diagonalizing the

Hellmann-Feynman theorem. Forces computed by the theddamiltonian matrix, we obtain both the eigenvectfird )}

rem are inconsistent with those computed by the finite dif-and eigenvalues{E,}, where H|W,)=E[V,), or E,

ferential method, and even the signs of forces are totally= (W n|H|Wn) and (VW )= 3,y. The forceF, z corre-
different. We find that the energy-level degeneracy is thesponding to leveh can be computed by taking the derivative
main reason. In the presence of the degeneracy, the fora# the energyE, with respect to the positiogr 5} of the
given by the Hellmann-Feynman theorem is incorrect. Nu-atoms along the directiop,

> JE, J d JH J
Frng=——==——=(Vp|H|¥)=—| = (¥, |[HIP)—( Vp| =—|P,)—( ¥yHl = |V,
d JH d JH 1%
2_(_-><\I,n|)En|q,n>_<\I,n = \Pn> _<q,n En(_-» ‘Pn>)=_<\l,n e ‘Pn> _En_-»(<“Pn|\Pn>)- ()

Using the normalization conditiof®W ,|¥,)=1, we can not invoked any assumption, so that the scheme is fully ge-

simplify Eq. (1) as neric. The important feature of this theorem is that we can
) JH calculate forces for different directions after we diagonalize
Fng=— < V| — ‘I’n> (2)  the Hamiltonian matrix only once. In real calculations, this is

arg very attractive.

This is the Hellmann-Feynman theorem. Throughout the Here, we take g as an examplé:® Note that our con-
derivation, except for the adiabatic approximation, we haveclusion is independent of such a selecttBitg, has the high-
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TABLE |. Comparison of forces calculated by the finite differential method and the Hellmann-Feynman
theorem. The second and third columns are forces by the finite differential method and the Hellmann-
Feynman theorem, respectively. In the fifth and sixth columns are their average forces computed by the
proposed scheme, where a good agreement can be seen clearly.

Level index  Finie (€V/A)  Fe (VIA)  Fine/Fue  Froe (eVIA)  Fiue (eVIA)  Energy(eV)

1 0.0403870 0.0403871 1.00 0.0403871 0.0403870 -6.6675130
2 -0.1244360 -0.1244359 1.00 -0.1244359 -0.1244360  -6.6573438
3 -0.0808800 -0.0808799 1.00 -0.0808799 -0.0808800  -6.1291991
4 -0.1408974 0.0528522 -2.67 -6.1095001
5 -0.1409309 -0.3346804 0.42 -0.1409141 -0.1409141  -6.1095001
6 -0.0798105 -0.3211777 0.25 -5.1194132
7 -0.0796447 0.1617228 -0.49 -0.0797275 -0.0797276  -5.1194132
8 -0.0457316 -0.0457315 1.00 -0.0457315 -0.0457316  -5.1099250
9 -0.1971248 -0.2476372 0.80 -5.0878820
10 -0.1973077 -0.1467953 1.34 -0.1972162 -0.1972163  -5.0878820
11 0.0656571 0.0656579 1.00 0.0656579 0.0656571 -4.0030869
12 -0.3895717 -0.7615671 0.51 -3.9876889
13 -0.3897314 -0.0177367 21.97 -0.3896519 -0.3896516  -3.9876889
14 0.2610102 0.0513534 5.08 3.5868688
15 0.1162016 0.3542612 0.33 3.5868688
16 0.1162017 0.3301816 0.35 3.5868688
17 0.1162016 -0.0022564 -51.50 3.5868688
18 0.2610740 0.1371496 1.90 0.1741379 0.1741378 3.5868688

est point symmetry off,, with 60 carbon atoms situated at the For level 2, we also see extremely good agreement, and the
vertices of the ball. There are a total of GOelectrons on the signs of the forces are the same. The same is true for level 3.
ball.** The Hamiltonian for the whole system can be written Such a high accuracy is numerical proof of the validity of the

as’® Hellmann-Feynman theorem.
K However, when we compare the results for level 4, there
H=— 2 t (CiT,on,a+ H.c)+ 5 2 (lFi _ F,- |—dg)2. is a surprise. We notice thét;,,. andF - do not agree with
,j,o0 1)

each other, wheré i is almost three times larger than
3 Fue, and even their signs are different. If we were to use this
force to do numerical simulations, we would make a serious
N . o mistake. For level 5, we see the inconsistency again, though
tij=to—a(|ri—rj|—do) is the hopping integral between thjs time the signs of forces are same. For levels 6 and 7, the
nearest-neighbor atoms igtandr; , wheret, is the average forces by these two schemes are also different. But, for level
hopping constanty is the electron-lattice coupling constant, 8, we see the good agreement again. Such agreements and
andd,=1.54 A; andK is the spring constant. The second disagreements are puzzling. More puzzling is that such a
term in Eq.(3) is the lattice elastic energy. By fitting the trend persists for other levels from 9 to 18. The biggest dis-
optical energy gap and two different bond lengths, we haverepancy is for level 17, where one sees that the force calcu-
determined the above parameters &$=1.8 eV, « lated by the Hellmann-Feynman theorem is more than 50
=3.5 eV/A andk=30.0 eVv/R 13716 times smaller than the force calculated by the finite differen-
We use both the regular finite differential method and thetial method. The ratio betwedfy,i, andF g is listed in the

Hellmann-Feynman theorem to calculate the force. In thdourth column of Table I. To resolve such a puzzle, we have
finite differential method, we choose a small deviatibn carefully checked all numerical steps and can exclude any

Here,cit, creates ar electron at sité with spin projections;

=10"* A to compute the force, numerical errors. On the other hand, from the above deriva-
tion of the Hellmann-Feynman theorem, we know our

B, En(r g+ 8) —En(rz—9) scheme is purely generic, and there is no hidden assumption

Fn. g finite= — 25 . (4) at all. This raises a serious question as to why the Hellmann-

Feynman theorem fails.
In Table I, we compare the forces calculated by these two After an extensive and careful examination, we find a
methods, wheré ;. as calculated by the finite differential systematic pattern in those energy levels whose forces are
method are listed in the second column, whige by the  not consistent. In the last column of Table I, we list their
Hellmann-Feynman theorem are in the third column. It iseigenvalues. We found that those energy levels with incon-
very impressive that for energy level 1, these two forcessistent forces have at least twofold degeneracies. For in-
agree up to the seventh digit with an error of 10eV/A. stance, since levels 4 and 5 are degenerate, none of their
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forces calculated by the Hellmann-Feynman theorem are |W,)=a|p;)+b|py), (5)

consistent with those by the finite differential method. The

same also holds true for levels 6 and 7. For level 8, there is

no degeneracy, and we find the two forces are consistent, but |W,)=c|pq)+d| ), (6)

for levels 9 and 10, we have the degeneracy and lose the

good agreement again. Levels 14 to 18 have fivefold degen- . )

eracies, andF;,.. andF e are not consistent with respect to Where| 1) and|¢,) are two basis functions, aralb, ¢, and

each other. d are real coefficients, to be consistent with our numerical
Those numerical results suggest a possible breakdown &@lculations. From the orthornormalization, we QH\?GL b?

the Hellmann-Feynman theorem due to the level degeneracy: 1, c>+d?=1, ac+bd=0. Therefore, the forc€ () for

Next, we prove this analytically. Assume two degenerate lev{¥,)) can be calculated from the Hellmann-Feynman theo-

els of energyE with wave functions as rem,

R gH ./ | ./ | oH JH JH

Fi=— (Wi —=|V1)=—a ¢1| —=|P1) — b ¢2| —=|d2) —ab( 1| —=|d2) —ab( ¢2| —=|b1), (7)

or ar ar ar
- dH 5 oH ) oH oH
Fo=—{ ¥, e Vy)=—c ¢ e ¢1) =A% b —=| b2 ) —cd( 1| —=|d2) —Cd{ d2| —= |1 ). 8
|
Since the statelsV,) and|¥,) are degenerate, any linear . oH oH

combination of these two states are still the eigenstates of —(F1+F2)=( ¢1 7 ¢d1) +( &2 7 ¢2), (10

HamiltonianH. In other words, we can form a new pair of

wave functions like [Wi)=a’|Wy)+b'|W2) and [W3)  \here there is no more free parameter. This method works
=c'[W;)+d’|¥;). Such a combination has no effect on the yery well in reality. In particular, in the above numerical
eigenvalue, but has a strong effect on the force. From Edsxample, we find that for levels 4 and 5, the average force is
(7) and (8), one sees that the force sensitively depends o.140914 15 eV/A, which is fully consistent with the aver-
those coefficients. Therefore, for degenerate levels, thgge force from the Hellmann-Feynman theorem. In fact, us-
forces are ill defined. This explains why the forces calculatedng this method, all the forces in Table | computed by the
by different schemes may be different. In fact, even withinfinite differential method and the Hellmann-Feynman theo-
the same finite differential scheme, the forces are also differrem are consistent with each otheompare columns 5 and
ent (see, for instance, levels 4 and. 3-or nondegenerate 6). Therefore, we have provided a viable method to over-
levels, since there is no such combination, the force is weltome the above difficulty.
defined, and results from the finite differential scheme and In conclusion, we have found that the Hellmann-Feynman
the Hellmann-Feynman scheme are consistent. theorem breaks down in presence of the energy-level degen-
The next question is how to solve this problem. A simple€racies. We have presented a numerical example showing

way is to sum over all the forces which belong to the samdhat the failure is directly connected with the level degen-
degenerate levels. In the above example, we have eracy. The forces calculated by the Hellmann-Feynman theo-

rem can be more than 50 times smaller than the forces cal-
culated by the finite differential method, though the forces
given by the finite differential method themselves are not
— consistent. Our analytic calculation proves that in the pres-
¢1) +(b"+d?) ence of energy-level degeneracies, any linear combination of
the eigenstates are still eigenstates of the original system and
have no effect on the eigenenergy, but they do affect the
¢1>

- - JH
—(F+ FZ):(a2+C2)< b1 ?

d

forces since the forces sensitively depend on such a combi-
nation, which leads to them being ill defined. A scheme to
overcome this difficulty has been outlined, which works ex-
¢2> , 9) tremely well in reality. Our resul_ts ha\_/e sub_stantigl impa}ct on
the present state-of-art numerical simulations, in particular,
as the Hellmann-Feynman theorem has been so popularly
used. We caution that those numerical forces may be errone-
which can be simplified to ous.

JH
r

> < JH
¢, ) +(ab+cd){ ¢s| —
ar

><<¢2

oH
ar

+(ab+cd)< b1
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