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Breakdown of the Hellmann-Feynman theorem: Degeneracy is the key
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The Hellmann-Feynman theorem is a powerful and popular method to efficiently calculate forces in a variety
of dynamical processes, but its validity has rarely been addressed. Here a surprising failure of this theorem is
reported. The forces calculated by the theorem can be more than fifty times smaller than the forces calculated
by the finite differential method. Numerical evidence shows that the energy-level degeneracy is the main
reason. An analytical proof reveals that although eigenvalues do not depend on a linear combination of
degenerate wave functions, forces do sensitively depend on it, which leads to ill-defined forces. A scheme is
proposed to overcome this difficulty.
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The Hellmann-Feynman theorem1 is powerful and has
been widely used in many fields such as dynami
processes,2 molecular dynamics,3 chemical reactions, and
surface reconstructions.4–6 The beauty of this theorem is tha
in the adiabatic limit, it requires the diagonalization
Hamiltonian matrices only once and enables one to calcu
all forces without recalculating wave functions. This save
tremendous amount of computational power, in particula
those heavy-duty calculations such asab initio calculations.2

This appealing feature has motivated extensive invest
tions for a long time,5 but the validity of the Hellmann-
Feynman theorem has been rarely addressed in the litera

In this paper, we report a surprising failure of th
Hellmann-Feynman theorem. Forces computed by the th
rem are inconsistent with those computed by the finite
ferential method, and even the signs of forces are tot
different. We find that the energy-level degeneracy is
main reason. In the presence of the degeneracy, the f
given by the Hellmann-Feynman theorem is incorrect. N
th
v
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merical examples for C60 explicitly show that forces calcu
lated by the Hellmann-Feynman theorem can be fifty tim
smaller than forces calculated by the finite different
method, though the finite differential method itself also giv
inconsistent results. An analytical calculation shows that
though any combination of degenerate eigenstates are
eigenstates of the system, forces become ill defined. Th
fore, it is dangerous to use those forces to do simulation
scheme is proposed to overcome this difficulty.

We consider a physical system which is described by
Hamiltonian matrixH. Such a system can be a solid,2 liquid,3

or molecule system.1 Within the adiabatic approximation, th
electron follows the motion of atoms. By diagonalizing th
Hamiltonian matrix, we obtain both the eigenvectors$uCn&%
and eigenvalues$En%, where HuCn&5EnuCn&, or En

5^CnuHuCn& and ^CnuCm&5dnm . The forceFW n,b corre-
sponding to leveln can be computed by taking the derivativ
of the energyEn with respect to the position$rWb% of the
atoms along the directionb,
FW n,b52
]En

]rWb

52
]

]rWb

^CnuHuCn&52S ]

]rWb

^Cnu DHuCn&2K CnU ]H

]rWb
UCnL 2K CnUHS ]

]rWb
UCnL D

52S ]

]rWb

^Cnu DEnuCn&2K CnU ]H

]rWb
UCnL 2K CnUEnS ]

]rWb
UCnL D 52K CnU ]H

]rWb
UCnL 2En

]

]rWb

~^CnuCn&!. ~1!
ge-
an

ize
is
Using the normalization condition̂CnuCn&51, we can
simplify Eq. ~1! as

FW n,b52K CnU ]H

]rWb
UCnL . ~2!

This is the Hellmann-Feynman theorem. Throughout
derivation, except for the adiabatic approximation, we ha
e
e

not invoked any assumption, so that the scheme is fully
neric. The important feature of this theorem is that we c
calculate forces for different directions after we diagonal
the Hamiltonian matrix only once. In real calculations, this
very attractive.

Here, we take C60 as an example.7–9 Note that our con-
clusion is independent of such a selection.10 C60 has the high-
©2002 The American Physical Society10-1
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TABLE I. Comparison of forces calculated by the finite differential method and the Hellmann-Feyn
theorem. The second and third columns are forces by the finite differential method and the Hell
Feynman theorem, respectively. In the fifth and sixth columns are their average forces computed
proposed scheme, where a good agreement can be seen clearly.

Level index Ffinite (eV/Å) FHF (eV/Å) Ffinite /FHF F̄finite (eV/Å) F̄HF (eV/Å) Energy~eV!

1 0.0403870 0.0403871 1.00 0.0403871 0.0403870 -6.66751
2 -0.1244360 -0.1244359 1.00 -0.1244359 -0.1244360 -6.65734
3 -0.0808800 -0.0808799 1.00 -0.0808799 -0.0808800 -6.12919
4 -0.1408974 0.0528522 -2.67 -6.109500
5 -0.1409309 -0.3346804 0.42 -0.1409141 -0.1409141 -6.10950
6 -0.0798105 -0.3211777 0.25 -5.1194132
7 -0.0796447 0.1617228 -0.49 -0.0797275 -0.0797276 -5.11941
8 -0.0457316 -0.0457315 1.00 -0.0457315 -0.0457316 -5.10992
9 -0.1971248 -0.2476372 0.80 -5.087882
10 -0.1973077 -0.1467953 1.34 -0.1972162 -0.1972163 -5.08788
11 0.0656571 0.0656579 1.00 0.0656579 0.0656571 -4.00308
12 -0.3895717 -0.7615671 0.51 -3.987688
13 -0.3897314 -0.0177367 21.97 -0.3896519 -0.3896516 -3.98768
14 0.2610102 0.0513534 5.08 3.5868688
15 0.1162016 0.3542612 0.33 3.5868688
16 0.1162017 0.3301816 0.35 3.5868688
17 0.1162016 -0.0022564 -51.50 3.5868688
18 0.2610740 0.1371496 1.90 0.1741379 0.1741378 3.58686
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est point symmetry ofI h with 60 carbon atoms situated at th
vertices of the ball. There are a total of 60p electrons on the
ball.11 The Hamiltonian for the whole system can be writt
as12

H52 (
i , j ,s

t i j ~ci ,s
† cj ,s1H.c.!1

K

2 (
i , j

~ urW i2rW j u2d0!2.

~3!

Here,cis
† creates ap electron at sitei with spin projections;

t i j 5t02a(urW i2rW j u2d0) is the hopping integral betwee
nearest-neighbor atoms atrW i andrW j , wheret0 is the average
hopping constant,a is the electron-lattice coupling constan
and d051.54 Å; andK is the spring constant. The secon
term in Eq. ~3! is the lattice elastic energy. By fitting th
optical energy gap and two different bond lengths, we h
determined the above parameters ast051.8 eV, a
53.5 eV/Å andK530.0 eV/Å2.13–16

We use both the regular finite differential method and
Hellmann-Feynman theorem to calculate the force. In
finite differential method, we choose a small deviationd
51024 Å to compute the force,

FW n,b,finite52
En~rWb1dW !2En~rWb2dW !

2d
. ~4!

In Table I, we compare the forces calculated by these
methods, whereFfinite as calculated by the finite differentia
method are listed in the second column, whileFHF by the
Hellmann-Feynman theorem are in the third column. It
very impressive that for energy level 1, these two forc
agree up to the seventh digit with an error of 1027 eV/Å.
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For level 2, we also see extremely good agreement, and
signs of the forces are the same. The same is true for lev
Such a high accuracy is numerical proof of the validity of t
Hellmann-Feynman theorem.

However, when we compare the results for level 4, th
is a surprise. We notice thatFfinite andFHF do not agree with
each other, whereFfinite is almost three times larger tha
FHF, and even their signs are different. If we were to use t
force to do numerical simulations, we would make a serio
mistake. For level 5, we see the inconsistency again, tho
this time the signs of forces are same. For levels 6 and 7,
forces by these two schemes are also different. But, for le
8, we see the good agreement again. Such agreements
disagreements are puzzling. More puzzling is that suc
trend persists for other levels from 9 to 18. The biggest d
crepancy is for level 17, where one sees that the force ca
lated by the Hellmann-Feynman theorem is more than
times smaller than the force calculated by the finite differe
tial method. The ratio betweenFfinite andFHF is listed in the
fourth column of Table I. To resolve such a puzzle, we ha
carefully checked all numerical steps and can exclude
numerical errors. On the other hand, from the above der
tion of the Hellmann-Feynman theorem, we know o
scheme is purely generic, and there is no hidden assump
at all. This raises a serious question as to why the Hellma
Feynman theorem fails.

After an extensive and careful examination, we find
systematic pattern in those energy levels whose forces
not consistent. In the last column of Table I, we list the
eigenvalues. We found that those energy levels with inc
sistent forces have at least twofold degeneracies. For
stance, since levels 4 and 5 are degenerate, none of
0-2
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forces calculated by the Hellmann-Feynman theorem
consistent with those by the finite differential method. T
same also holds true for levels 6 and 7. For level 8, ther
no degeneracy, and we find the two forces are consistent
for levels 9 and 10, we have the degeneracy and lose
good agreement again. Levels 14 to 18 have fivefold deg
eracies, andFfinite andFHF are not consistent with respect
each other.

Those numerical results suggest a possible breakdow
the Hellmann-Feynman theorem due to the level degener
Next, we prove this analytically. Assume two degenerate l
els of energyE with wave functions as
r
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uC1&5auf1&1buf2&, ~5!

uC2&5cuf1&1duf2&, ~6!

whereuf1& anduf2& are two basis functions, anda, b, c, and
d are real coefficients, to be consistent with our numeri
calculations. From the orthornormalization, we havea21b2

51, c21d251, ac1bd50. Therefore, the forceFW 1(2) for
uC1(2)& can be calculated from the Hellmann-Feynman th
rem,
FW 152K C1U ]H

]rW
UC1L 52a2K f1U ]H

]rW
Uf1L 2b2K f2U ]H

]rW
Uf2L 2abK f1U ]H

]rW
Uf2L 2abK f2U ]H

]rW
Uf1L , ~7!

FW 252K C2U ]H

]rW
UC2L 52c2K f1U ]H

]rW
Uf1L 2d2K f2U ]H

]rW
Uf2L 2cdK f1U ]H

]rW
Uf2L 2cdK f2U ]H

]rW
Uf1L . ~8!
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Since the statesuC1& anduC2& are degenerate, any linea
combination of these two states are still the eigenstate
HamiltonianH. In other words, we can form a new pair o
wave functions like uC18&5a8uC1&1b8uC2& and uC28&
5c8uC1&1d8uC2&. Such a combination has no effect on t
eigenvalue, but has a strong effect on the force. From E
~7! and ~8!, one sees that the force sensitively depends
those coefficients. Therefore, for degenerate levels,
forces are ill defined. This explains why the forces calcula
by different schemes may be different. In fact, even with
the same finite differential scheme, the forces are also dif
ent ~see, for instance, levels 4 and 5!. For nondegenerate
levels, since there is no such combination, the force is w
defined, and results from the finite differential scheme a
the Hellmann-Feynman scheme are consistent.

The next question is how to solve this problem. A simp
way is to sum over all the forces which belong to the sa
degenerate levels. In the above example, we have

2~FW 11FW 2!5~a21c2!K f1U ]H

]rW
Uf1L 1~b21d2!

3K f2U ]H

]rW
Uf2L 1~ab1cd!K f2U ]H

]rW
Uf1L

1~ab1cd!K f1U ]H

]rW
Uf2L , ~9!

which can be simplified to
of

s.
n
e
d

r-
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e

2~FW 11FW 2!5K f1U ]H

]rW
Uf1L 1K f2U ]H

]rW
Uf2L , ~10!

where there is no more free parameter. This method wo
very well in reality. In particular, in the above numeric
example, we find that for levels 4 and 5, the average forc
0.140 914 15 eV/Å, which is fully consistent with the ave
age force from the Hellmann-Feynman theorem. In fact,
ing this method, all the forces in Table I computed by t
finite differential method and the Hellmann-Feynman the
rem are consistent with each other~compare columns 5 and
6!. Therefore, we have provided a viable method to ov
come the above difficulty.

In conclusion, we have found that the Hellmann-Feynm
theorem breaks down in presence of the energy-level de
eracies. We have presented a numerical example show
that the failure is directly connected with the level dege
eracy. The forces calculated by the Hellmann-Feynman th
rem can be more than 50 times smaller than the forces
culated by the finite differential method, though the forc
given by the finite differential method themselves are n
consistent. Our analytic calculation proves that in the pr
ence of energy-level degeneracies, any linear combinatio
the eigenstates are still eigenstates of the original system
have no effect on the eigenenergy, but they do affect
forces since the forces sensitively depend on such a com
nation, which leads to them being ill defined. A scheme
overcome this difficulty has been outlined, which works e
tremely well in reality. Our results have substantial impact
the present state-of-art numerical simulations, in particu
as the Hellmann-Feynman theorem has been so popu
used. We caution that those numerical forces may be erro
ous.
0-3
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