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Transient tunneling effects of resonance doublets in triple barrier systems

Roberto Romo,1,* Jorge Villavicencio,1,2,† Gastón Garcı´a-Caldero´n2,‡

1Facultad de Ciencias, Universidad Auto´noma de Baja California, Apartado Postal 1880, 22800 Ensenada, Baja California, Me´xico
2Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 20 364, 01000 Me´xico,

Distrito Federal, Mexico
~Received 21 March 2002; published 16 July 2002!

Transient tunneling effects in triple barrier systems are investigated by considering a time-dependent solu-
tion to the Schro¨dinger equation with a cutoff wave initial condition. We derive a two-level formula for
incidence energiesE near the first resonance doublet of the system. Based on that expression we find that the
probability density along the internal region of the potential is governed by three oscillation frequencies: one
of them refers to the well known Bohr frequency, given in terms of the first and second resonance energies of
the doublet, and the two others represent a coupling with the incidence energyE. This allows us to manipulate
the above frequencies to control the tunneling transient behavior of the probability density in the short-time
regime.
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I. INTRODUCTION

In this work we address the issue of time-dependent t
neling phenomena in triple-barrier resonant systems, aim
to study the transient behavior of the probability density n
a resonance doublet. We shall refer to these structure
two-level opensystems, in the sense that their finite-wid
barriers enable the system to interact with incident partic
via a tunneling process. The dynamical properties of trip
barrier structures have not drawn the attention they dese
In this work we wish to emphasize that triple barriers invol
novel dynamical aspects not present in double-barrier st
tures, where the tunneling dynamics near resonance en
are governed by a single resonance.1–4

The purpose of this paper is to demonstrate, based o
exact analytical approach, that the dynamics of the trans
probability density is governed by three relevant frequenc
that involve the resonance energies of the doublet and
incidence energyE. We find that in addition to theBohr
frequency, v215uE22E1u/\, which is an intrinsic property of
the system, there are two additional frequencies,v15uE
2E1u/\ and v25uE2E2u/\, where the resonance energi
E1 and E2 are the real parts of the corresponding comp
resonance energiesEn5En2 iGn/2 (n51,2) of the problem.
This should be contrasted with the well-known5 dynamical
behavior of closed two-level systems, which is governe
only by the Bohr frequency,V125(E22E1)/\, where E1
and E2 are the real energy eigenvalues of the system.
shown below, the above frequencies may be manipulate
produce a significant enhancement of the short-time trans
behavior of the probability density.

The paper is organized as follows: Sec. II presents
overview of the formalism. In Sec. III we discuss the tra
sient behavior of the probability density through several
merical examples. Finally, Sec. IV provides some conclud
remarks.

II. THE FORMALISM

The model used in this work deals with an explicit so
tion to the time-dependent Schro¨dinger equation with cutoff
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initial conditions,2 and it consists of a generalization for tun
neling problems of the free-quantum-shutter setup that p
dicts diffraction in time.6–8 The phenomenon of diffraction
of matter in time has been recently experimenta
verified9,10 and has also stimulated further studies.11 The
setup used in this work may be visualized as a quan
shutter12 placed atx50, just at the left edge of the resona
structure that extends over the interval 0<x<L. Upon open-
ing the shutter13 at t50, the incoming initial wave, repre
sented by a cutoff plane wave,

C~x,k;t50!5H eikx2e2 ikx, x<0

0, x.0,
~1!

interacts with the internal region (0<x<L) of the potential.
The wave solution to the time-dependent problemC(x,k;t)
for x.0 andt.0, is given by2

C5FkM ~yk!2F2kM ~y2k!2 (
n52`

`

rnM ~ykn
!. ~2!

The quantitiesF6k[F(x,6k) refer to the stationary wave
solution, and the factors

rn~x,k![2ikun~0!un~x!/~k22kn
2!, ~3!

are given in terms of the resonant states$un(x)% and the
complex energy eigenvaluesEn5\2kn

2/2m of the problem.
The complex energy eigenvalues may be written in terms
the complex wave numberskn5an2 ibn , and they corre-
spond to theS-matrix poles of the problem. They are distrib
uted in the third and fourth quadrants on the complexk plane
in a well-known manner. TheM functions are defined as2

M ~ys!5 1
2 w~ iys!, ~4!

where the functionsw( iys) stand for the complex erro
function14

w~ iys!5eys
2
erfc~ys!, ~5!

the argumentys reads
©2002 The American Physical Society08-1
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ys[ei3p/4S \

2mD 1/2

st1/2, ~6!

ands stands for6k or k6n . As shown elsewhere,2 the time-
dependent solution given by Eq.~2! goes into the stationary
solutionFk at asymptotically long times.

For triple-barrier systems, the resonance spectra typic
corresponds to a succession of resonance doublets, fo
by the coupling of the single resonances associated with e
of the two wells of the system. We shall be interested
systems where the first doublet is isolated. The approxi
tion of Eq. ~2! then reads

C'FkM ~yk!2Fk* M ~y2k!2 (
n51

2

$rnM ~ykn
!

1r2nM ~yk2n
!%, ~7!

where we have usedF2k5Fk* . For a resonance doublet th
stationary function may also be written as the sum over
first two resonance terms,15 namely,

Fk~x,k!'r1~x,k!1r2~x,k!, ~8!

and consequently

uFku2'ur1u21ur2u21r12, ~9!

where r1252 Re$r1r2* %. Although the time dependence o
Eq. ~7! is contained in theM functions, a considerable sim
plification of this two-level formula can be derived, in whic
the time dependence is explicitly given in terms of simp
functions. Such a derivation is discussed in de
elsewhere,16 but we will recount it here briefly. TheM func-
tions M (yk) andM (ykn

) contained in Eq.~7!, can be related

to functions of the formM (y2k) andM (yk2n
) by means of

the symmetry relation2

M ~ys!5eys
2
2M ~2ys!. ~10!

Using Eq.~10! we can rewrite Eq.~7! as

C5 (
n51

2

rn~x!@eyk
2
2eykn

2
#1D~x,t !, ~11!

whereD(x,t) accounts for all the terms containingM func-
tions of the formM (y2k) andM (yk2n

), which behave as an
inverse power oft as follows from its series expansion2

M (ys);1/2@1/(p1/2ys)21/(p1/2ys
3)1•••#. Thus except for

extremely short or very long times compared with the li
times of the resonance levels of the doublet, the termD(x,t)
gives a negligible contribution to the solution and can
neglected. By doing this, we can obtain a simple express
for the probability density, valid for the internal region an
an energyE close to the doublet, namely

uC~E,t !u25f1~E,t !1f2~E,t !1f12~E,t !, ~12!

where fn(E,t) and the interference termsfmn(E,t) (n
51,2) are given respectively by
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fn~E,t !5urnu2xn~E,t ! ~13!

and

fmn~E,t !52 Re$rmrn* jmn~E,t !%, ~14!

whereE5\2k2/2m is the incidence energy, and the functio
xn andjmn have the following closed analytic expression

xn~E,t !5122 cos~v̂nt !e2Gnt/2\1e2Gnt/\; ~15!

jmn~E,t !5@12ei v̂mt2Gmt/2\2e2 i v̂nt2Gnt/2\

1e2 i v̂mnt2(Gm1Gn)t/2\#. ~16!

In the above expressions,v̂1 , v̂2, and v̂12 are defined by
v̂n[(E2En)/\ and v̂21[(E22E1)/\.

The formula given by Eq.~12! is an important analytica
result since it explicitly reveals novel aspects of the quant
dynamics of tunneling structures with resonance doubl
According to Eq.~12!, the time-dependent probability den
sity is the superposition of the three oscillating contributio
f1(E,t), f2(E,t), andf21(E,t), which have in general dif-
ferent amplitudes and frequencies. The three character
frequencies that govern the time evolution during the tr
sient regime arev1 , v2, andv21, which are respectively the
absolute values ofv̂1 , v̂2, andv̂21. Note that at asymptoti-
cally long times, it is easily seen from Eqs.~15! and ~16!,
respectively, thatxn→1 and jmn→1, and hence the prob
ability density for the two-level formula, given by Eq.~12!,
goes into the stationary solution given by Eq.~9!.

III. EXAMPLES

We shall be interested in analyzing the transient tunne
effects of the probability density at the right-hand edge of
system,x5L, because that is where the largest transient
fects along the transmitted region appear. We consider
first example, a periodic triple barrier system with para
eters given as in Ref. 18, namely: barrier heightsV0
50.12 eV, barrier widthsb053.0 nm, well widths w0
516.0 nm; and effective mass of the electronm
50.067me . The corresponding resonance parameters of

FIG. 1. Time evolution ofuC(L,k;t)u2 for a triple-barrier sys-
tem at off-incidence energyE5E112.0G1, using the exact solution
Eq. ~2! with N54 ~solid line!, and the two level formula, Eq.~12!
~dashed line!. The systems parameters are given in the text.
8-2
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first doublet are: energy positions,E1511.512 meV andE2
514.387 meV; and resonance widths,G150.4089 meV
andG250.6365 meV.

Let us first illustrate the reliability of our approximat
formula derived above for a single doublet. In Fig. 1 w
compare the behavior of the probability density using b
the formal solution, Eq.~2! ~solid line!, and Eq.~12! ~dashed
line!, for an incidence energy near the first resonanceE
5E112.0G1512.33 meV. As can be appreciated, the tw
level approximation of Eq.~2! given by Eq.~12! gives an
excellent description of the probability density. In this pa
ticular example, we have included in Eq.~2! the first four
resonances of the systems, i.e.,N54, in order to illustrate
that the contribution of far-away resonances is negligib
The irregular behavior ofuCu2 observed in Fig. 1 arises from
the interplay betweenf1 , f2, and f12 of Eq. ~12!. This
situation contrasts with the regular behavior observed
double barrier structures. As shown in a recent work,2 in the
case of a double-barrier system, the probability den
grows exponentially for incidence at resonance and exhi
regular oscillations with a single frequency if the inciden
occurs near resonance.3 This is due to the fact that in th
double barrier case, the one-level approximation stands,
hence only the termf1(E,t) is important. An interesting
feature of triple-barrier systems not present in double-bar
structures, is that the frequencies can be tuned by a pr
choice of the incidence energyE. This allows us to manipu-

FIG. 2. Time evolution ofuC(L,k;t)u2 for the same triple-
barrier system of the previous figure, for two special situations:~a!

for incidence at the first resonance,E5E1, where v̂150 and v̂2

52v̂21; and ~b! for incidence atE5Ē[(E11E2)/2, where v̂1

52v̂251/2v̂21. For comparison, the calculations in~a! were
made by Eq.~7! ~solid line! and the exponential formula given b
Eq. ~17! ~dashed line!; and the calculations in~b!, by Eq.~2! ~solid
line! and Eq.~12! ~dashed line!.
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late the frequencies in such a way that the irregularities
served in Fig. 1 disappear. This occurs at two special si
tions that depend onE. The first situation is when the
incidence energy coincides with one of the two resonanc
and the second one occurs when the incidence energy c
cides with the middle point between the two resonances
the doublet. In the first case, only one of the three terms
Eq. ~12! dominates over the remaining two, for example
E5E1, thenf2(E,t) andf21(E,t) are negligible in compari-
son withf1(E,t). Since in this casev̂150, the probability
density is governed by the following simple expression,

uC~E5E1!u2'T~E1!~12e2t/t1!2, ~17!

where t15\/G is the lifetime of the resonancen51 and
T(E1) is the peak value of the transmission coefficie
which is unity for this symmetrical system. The results
this resonant case are depicted in Fig. 2~a!, where we show
the calculations using Eqs.~7! ~solid line! and ~17! ~dashed
line!. The curves almost coincide, except for the very sm
oscillations of the exact two-level formula, i.e., Eq.~7! ~solid
line!, which are due to the effect of the second resonanc
the doublet. In the second case, when the incidence ener
chosen just at the middle of the two resonances, i.e.,E5Ē

[(E11E2)/2, we havev̄[v̂152v̂25v̂21/2, that is, the dy-
namics is governed by a single frequency,v̄, and the behav-
ior of uC(L,k;t)u2 vs t is similar to a diffraction in time

FIG. 3. ~a! Enhancement ofuC(L,k;t)u2 ~solid-line! in a triple-
barrier systems for incidence at the center of the resonance dou
compared with the results of a double-barrier system~dashed-line!.
~b! Enhancement as a function of the central barrier widthb
53.0 nm ~solid line!, b54.0 nm ~dashed-line!, and b55.0 nm
~dotted-line!. The arrows indicate for each case the values of
corresponding transmission coefficient. See text.
8-3
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pattern,6 see Fig. 2~b!. Here the numerical value ofĒ
512.949 meV5E113.515G1.

Compared to the double-barrier case, this construct
interference effect produces an important enhancement o
transient probability density. The comparison is shown
Fig. 3~a!, in which we used the same triple-barrier structu
parameters of the previous figures, and the double-ba
system with potential parameters: barrier heightsV0
50.23 eV, barrier widthsb055.0 nm, well width w0
55.0 nm. The first resonant state of the system has en
position, E1580.11 meV, and resonance width,G1
51.033 meV. The incidence energy was also chosen w
the same deviation from resonance, in units of the resona
width, that is, E5E113.515G1 whose numerical value is
83.740 meV. Note that the scale in the time axis was norm
ized to the lifetime of the first resonance of each syste
which for the triple barrier has the valuet151.61 ps, and
for the double barrier,t156.37 ps. Both curves tend to the
correct asymptotic limit, the transmission coefficient, whi
for the double-barrier system has the valueT(E)50.0229,
and for the triple-barrier system,T(E)50.119. These values
are indicated by the small arrows in Fig. 3~a!.

As it is well known from time-independent studies
triple barrier systems,17,18for incidence energies at the cent
of an isolated doublet, the transmission coefficient increa
to unity as we increase the widthb2 of the central barrier to
about twice the value of the width of the external barriers.
view of the fact that the transmission coefficient is t
asymptotic value of the time-dependent probability density
x5L, it is expected that the latter can also be enhanced in
same fashion. In Fig. 3~b! we illustrate how we can manipu
late this extra degree of freedom to enhance the amplitud
.
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the oscillations of the transient probability density. Here
consideredb254.0 nm~dashed line!, andb255.0 nm~dot-
ted line!; the solid line corresponds to the same triple-bar
system of Fig. 3~a! (b253.0 nm), which is also include
here for comparison. Also in this figure, the values of
transmission coefficient at the energiesĒ for each system ar
indicated by arrows to illustrate how the time-depend
probability density tends to the correct asymptotic beha
as t→`.

IV. CONCLUDING REMARKS

In conclusion, the dynamics of the probability density
triple barrier resonant structures, which is a typical exam
of an open two-level system, has been explored. We h
derived a simple analytic expression for the probability d
sity that provides an accurate description for energies
the resonance doublet of the system. The two-level form
allows us to identify three relevant frequencies that gov
the transient behavior as a function of time. The deri
formula goes into the stationary two-level solution at asym
totically long times, and thus establishes a link with the us
stationary approach. Our results suggest that the tran
effects that we have discussed are of relevance at short
and distances from the interaction region. Hopefully our
sults may stimulate experimental work on this subject.
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