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Transient tunneling effects of resonance doublets in triple barrier systems
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Transient tunneling effects in triple barrier systems are investigated by considering a time-dependent solu-
tion to the Schrdinger equation with a cutoff wave initial condition. We derive a two-level formula for
incidence energiek near the first resonance doublet of the system. Based on that expression we find that the
probability density along the internal region of the potential is governed by three oscillation frequencies: one
of them refers to the well known Bohr frequency, given in terms of the first and second resonance energies of
the doublet, and the two others represent a coupling with the incidence dnergis allows us to manipulate
the above frequencies to control the tunneling transient behavior of the probability density in the short-time
regime.
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[. INTRODUCTION initial conditions? and it consists of a generalization for tun-
neling problems of the free-quantum-shutter setup that pre-
In this work we address the issue of time-dependent tundicts diffraction in time®~8 The phenomenon of diffraction
neling phenomena in triple-barrier resonant systems, aimedf matter in time has been recently experimentally
to study the transient behavior of the probability density neakerified®° and has also stimulated further studt&sThe
a resonance doublet. We shall refer to these structures &gtup used in this work may be visualized as a quantum
two-level opensystems, in the sense that their finite-width shuttet? placed atx=0, just at the left edge of the resonant
barriers enable the system to interact with incident particlegyrycture that extends over the intervat®<L. Upon open-

via a tunneling process. The dynamical properties of triple~mg| the shutté® at t=0, the incoming initial wave, repre-
barrier structures have not drawn the attention they deservggnieq by a cutoff plane wave

In this work we wish to emphasize that triple barriers involve
novel dynamical aspects not present in double-barrier struc- glkx— g ikx  ¥<(
tures, where the tunneling dynamics near resonance energy W(x,kt=0)= 0 -0 (1)
are governed by a single resonancé. : x>0

The purpose of this paper is to demonstrate, based on anteracts with the internal region €x<L) of the potential.
exact analytical approach, that the dynamics of the transienthe wave solution to the time-dependent probhér(x,k;t)
probability density is governed by three relevant frequenciegor x>0 andt>0, is given by
that involve the resonance energies of the doublet and the
incidence energye. We find that in addition to thdé3ohr -
frequency w,,=|&,— &|/#, which is an intrinsic property of ‘I’:‘Dkl\ﬂ()’k)—<1>4<|\/|()’4<)—n:20c paM(yk ). (2)
the system, there are two additional frequencies=|E
—&|lh and w,=|E—&,|/%, where the resonance energies The quantitiesb . ,=®(x, = k) refer to the stationary wave
& and &, are the real parts of the corresponding complexsolution, and the factors
resonance energids,=&,—il" /2 (n=1,2) of the problem. . -
This should be contrasted with the well-kncynamical pn(X,K)=2ikuy(0)un(x)/(k*=kp), ()
behavior of closed two-level systems, which is governed ..o given in terms of the resonant stafes(x)} and the
only by the Bohr frequencyﬂllf(Ez—El)/h, where E, complex energy eigenvalueﬁzﬁzkﬁIZm of the problem.
and E, are the real energy e|genvalues of the system. AShe complex energy eigenvalues may be written in terms of
shown below, the above frequencies may be manipulated e complex wave numbetls,=a,—ib,, and they corre-
produge a significant enhancemgnt of the short-time tranSier';‘tpond to theS-matrix poles of the r;1)roblr<1a’r‘n. They are distrib-
behavior of the probability density. uted in the third and fourth quadrants on the com{@ane

The paper is organized as follows: Sec. Il presents ag, 5 \yell-known manner. Thil functions are defined as
overview of the formalism. In Sec. Il we discuss the tran-

sien_t behavior of the_ probability density through several nu- M(ys) = 2w(iyy), (4)

merical examples. Finally, Sec. IV provides some concluding ) i

remarks. where the functionsw(iyg) stand for the complex error
function**

Il. THE FORMALISM

2
i = yS f
The model used in this work deals with an explicit solu- wiiys)=e’serfys), ©
tion to the time-dependent Schilinger equation with cutoff the argumeny reads

0163-1829/2002/68)/0331084)/$20.00 66 033108-1 ©2002 The American Physical Society



BRIEF REPORTS

1/2
S t1/2’

(6)

ys=¢€

i3mwl4| "
2m

2
ands stands for+k or k..,. As shown elsewherethe time-
dependent solution given by E(®) goes into the stationary
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¢n(Evt):|pn|2Xn(Eyt) (13

and

¢mn(Evt)=2 qumpz gmn(Evt)}v (14)

solution®, at asymptotically long times. whereE=72k?/2m is the incidence energy, and the functions

For triple-barrier systems, the resonance spectra typicall/y( and &,,, have the following closed analytic expressions,
corresponds to a succession of resonance doublets, forme

by the coupling of the single resonances associgted with egch xn(E,t)=1—2 cog w,t)e Tt/ g~ Tnl/h: (15)
of the two wells of the system. We shall be interested in
systems where the first doublet is isolated. The approxima- ot e t-T . t/2%
ti)én of Eq. (2) then reads i Emn( E, D) =[1—elont " TnlZ— g Tent =Tl
+ e—i&mnt—(rmwn)t/zﬁ]_ (16)

2
~ — * —_— ~ ~ ~
V=PM Uy = LMy z‘l {PaM(yi,) In the above expressionsy;, w,, and w;, are defined by

w,=(E— &) and wy=(E,— &) /h.

The formula given by Eq(12) is an important analytical
result since it explicitly reveals novel aspects of the quantum
dynamics of tunneling structures with resonance doublets.
':According to Eq.(12), the time-dependent probability den-
sity is the superposition of the three oscillating contributions,
#1(E,b), ¢2(E,t), and ¢»4(E,t), which have in general dif-

()

where we have used® ,=®; . For a resonance doublet the
stationary function may also be written as the sum over th
first two resonance ternmis,namely,

+anM(Yk7 )},

n

Puxl)=pa(x k) +po(x.K), ® ferent amplitudes and frequencies. The three characteristic
and consequently frequencies that govern the time evolution during the tran-
sient regime ar@,, w,, andw,q, Which are respectively the
|~ [pal?+[p2l*+ p12, ©  absolute values ab,, w,, andw,,. Note that at asymptoti-

cally long times, it is easily seen from Eqd5) and (16),
respectively, thaly,—1 andé¢,,,—1, and hence the prob-
ability density for the two-level formula, given by E¢L2),
goes into the stationary solution given by E§).

where p,,=2 Rep,p3 }. Although the time dependence of
Eq. (7) is contained in theM functions, a considerable sim-
plification of this two-level formula can be derived, in which
the time dependence is explicitly given in terms of simple
functions. Such a derivation is discussed in detail
elsewheré?® but we will recount it here briefly. Th# func-
tionsM(yy) andM(yy ) contained in Eq(7), can be related

to functions of the formM(y_,) andM(ykfn) by means of
the symmetry relatioh

Ill. EXAMPLES

We shall be interested in analyzing the transient tunneling
effects of the probability density at the right-hand edge of the
systemx=L, because that is where the largest transient ef-
fects along the transmitted region appear. We consider as a

M(ys)zeyg—M(—ys). (10) first example, a periodic triple barrier system with param-
) ) eters given as in Ref. 18, namely: barrier heightg
Using Eq.(10) we can rewrite Eq(7) as =0.12 eV, barrier widthsby=3.0 nm, well widthsw,
) =16.0 nm; and effective mass of the electrom
Wy E pn(x)[eyi—eyin]JrA(x,t), (11) =0.06"M,. The corresponding resonance parameters of the
" 0.3
whereA(x,t) accounts for all the terms containimg func-
tions of the formM (y_,) andM(yy_ ), which behave as an
inverse power oft as follows from its series expansfon L 02r
M (ys)~ U (7Y ys) — U(mY?y3)+ - ... Thus except for E NP
extremely short or very long times compared with the life- o1l
times of the resonance levels of the doublet, the t&iix,t) ’
gives a negligible contribution to the solution and can be
neglected. By doing this, we can obtain a simple expression 0.0 , ,
for the probability density, valid for the internal region and 0.0 10.0 20.0 30.0
an energ)E close to the doublet, namely t (ps)

FIG. 1. Time evolution of ¥'(L,k;t)|? for a triple-barrier sys-
tem at off-incidence enerdgy=&; + 2.0I" 1, using the exact solution,

|\P(E!t)|2:¢1(E!t)+¢2(E1t)+d)lZ(Evt)v (12)

where ¢,(E,t) and the interference term&.,(E,t) (n
=1,2) are given respectively by

Eq. (2) with N=4 (solid line), and the two level formula, Eq12)
(dashed ling The systems parameters are given in the text.
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FIG. 2. Time evolution of| ¥ (L,k;t)|? for the same triple- o .

barrier system of the previous figure, for two special situatiéas: FIG. 3. (8 Enhancement of¥ (L, k;t)|? (solid-line) in a triple-

for incidence at the first resonande=&,, Where&)1:0 and (:)2 barrier systems for incidence at the center of the resonance doublet,

o~ - i - compared with the results of a double-barrier systdashed-ling

=~ wz; and (b) for |nC|denc§ atE—E—(51+52.)/2, Wherewl (b) Enhancement as a function of the central barrier wiith
=~ wp=1/20. For comparison, the calculations i@ were  _3 o nm (solid ling), b=4.0 nm (dashed-ling and b=5.0 nm
made by Eq(7) (solid line) and the exponential formula given by jqtteq.jing. The arrows indicate for each case the values of the
Eq. (17) (dashed ling and the calculations ifb), by Eq.(2) (solid 4 rashonding transmission coefficient. See text.

line) and Eq.(12) (dashed ling

late the frequencies in such a way that the irregularities ob-

first doublet are: energy position§;=11.512 meV and,  served in Fig. 1 disappear. This occurs at two special situa-
=14.387 meV; and resonance widthE;=0.4089 meV tions that depend orE. The first situation is when the
andI’';=0.6365 meV. incidence energy coincides with one of the two resonances,

Let us first illustrate the reliability of our approximate and the second one occurs when the incidence energy coin-
formula derived above for a single doublet. In Fig. 1 wecides with the middle point between the two resonances of
compare the behavior of the probability density using boththe doublet. In the first case, only one of the three terms of
the formal solution, Eq(2) (solid line), and Eq.(12) (dashed  Eq. (12) dominates over the remaining two, for example if
line), for an incidence energy near the first resonariee, E=¢;, theng,(E,t) and,y(E,t) are negligible in compari-
=& +2.00,=12.33 meV. As can be appreciated, the two-son with ¢, (E,t). Since in this casé; =0, the probability

level approximation of Eq(2) given by Eq.(12) gives an  gensity is governed by the following simple expression,
excellent description of the probability density. In this par-

ticular example, we have included in E@®) the first four _ —t/r

resonances ré))f the systems, i=4, in o%er to illustrate [W(E=£&)[P=T(&)(1-e )2, 17
that the contribution of far-away resonances is negligiblewhereT —#/T is the lifetime of the resonance=1 and
The irregular behavior df¥’|2 observed in Fig. 1 arises from T(E,) isl the peak value of the transmission coefficient,
the iqterplay betwee@l, ¢z, and ¢, of Eq' (12). This . which is unity for this symmetrical system. The results of
situation contrasts with the regular_ behavior ob_served Nhis resonant case are depicted in Fitg)2where we show
double barrier structures. As shown in a recent wairkthe _the calculations using Eq€7) (solid line) and (17) (dashed

case of a double-barrier system, the probability densityj,q) The curves almost coincide, except for the very small

grows exponentially for incidence at resonance and exmbitﬁscillations of the exact two-level formula, i.e., Ed) (solid

regular oscillations with a si_ngle frequency if the inc_;idence"ne), which are due to the effect of the second resonance of
occurs near resonantelhis is due to the_ fac'g that in the e goublet. In the second case, when the incidence energy is
double barrier case, the one-level approximation stands, angL . . —

hence only the termp,(E,t) is important. An interesting chosen just at the m|ngeA of theA twoAresonancgs, EeE
feature of triple-barrier systems not present in double-barrie™ (€11 £2)/2, we havew=w;= — w,= w,y/2, that is, the dy-
structures, is that the frequencies can be tuned by a propeamics is governed by a single frequeney,and the behav-

choice of the incidence enerdy This allows us to manipu- ior of |W(L,k;t)|? vs t is similar to a diffraction in time
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pattern® see Fig. ). Here the numerical value o the o_scillations of the transient probability density. Here we

=12.949 me\= &, +3.519,. conglderecb2=4.0 _nm(dashed ling andb,=5.0 n_m(dot— '
Compared to the double-barrier case, this constructivet€d lin®; the solid line corresponds to the same triple-barrier

interference effect produces an important enhancement of tHyStém of Fig. &) (b,=3.0 nm), which is also included

transient probability density. The comparison is shown in€re for comparison. Also in this figure, the values of the

Fig. 3@), in which we used the same triple-barrier structuretransmission coefficient at the energiesor each system are

parameters of the previous figures, and the double-barrigndicated by arrows to illustrate how the time-dependent

system with potential parameters: barrier heighig probability density tends to the correct asymptotic behavior

=0.23 eV, barrier widthsb,=5.0 nm, well width w, ast—o.

=5.0 nm. The first resonant state of the system has energy

position, £=80.11 meV, and resonance widthl'; IV. CONCLUDING REMARKS

=1.033 meV. The incidence energy was also chosen with

the same deviation from resonance, in units of the resonange In conclusion, the dynamics of the probability density for
width, that is, E= & +3.513, whose numerical value is iple barrier resonant structures, which is a typical example

83.740 meV. Note that the scale in the time axis was normal9f an open two-level system, has been explored. We have

ized to the lifetime of the first resonance of each systemCcved & Simple analytic expression for the probability den-
which for the triple barrier has the valug—1.61 ps gnd ity that provides an accurate description for energies near
for the double barrierr;= 6.37 ps. Both curves tend to their the resonance doublet of the system. The two-level formula

Lol o . - allows us to identify three relevant frequencies that govern
correct asymptotic limit, the transmission coefficient, which fy q g

the transient behavior as a function of time. The derived

for the double-barrier system has the vallge)=0.0229, f ; ; ;
. . ormula goes into the stationary two-level solution at asymp-
and for the triple-barrier systerii(E)=0.119. These values 9 y ymp

indicated by th i i Fi totically long times, and thus establishes a link with the usual
areAln .;C‘."‘e ”yk € sma; arrc:yvs n d'gaBd t studies i stationary approach. Our results suggest that the transient
As LS we no‘év?g rom time-independent SWAIES IN offects that we have discussed are of relevance at short times
triple barrier system&’*8for incidence energies at the center

; o N and distances from the interaction region. Hopefully our re-
of an isolated doublet, the transmission coefficient increase,

to unity as we increase the widt of the central barrier to Slits may stimulate experimental work on this subject.
about twice the value of the width of the external barriers. In
view of the fact that the transmission coefficient is the
asymptotic value of the time-dependent probability density at The authors acknowledge financial support from Conacyt,
x=L, it is expected that the latter can also be enhanced in th®léxico, through Contract No. 431100-5-32082E. One of the
same fashion. In Fig.(B) we illustrate how we can manipu- authorsG.G.C) acknowledges financial support of DGAPA-
late this extra degree of freedom to enhance the amplitude &JNAM under Grant No. IN101301.
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