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One-dimensional ring in the presence of Rashba spin-orbit interaction:
Derivation of the correct Hamiltonian
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We describe in detail the procedure for obtaining the correct one-dimensional Hamiltonian of electrons
moving on a ring in the presence of Rashba spin-orbit interaction. The subtlety of this seemingly trivial
problem has not been fully appreciated so far and it has led to some ambiguities in the existing literature. Our
work illustrates the origin of these ambiguities and solves them.
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The effect of Rashba spin-orbit~SO! interaction1 on elec-
trons moving in a mesoscopic ring has been studied in s
eral contexts, such as magnetoconductance oscillation2,3

Peierls transition,4,5 and persistent current.6,7 Essentially all
these theoretical studies have employed one-dimensi
~1D! model Hamiltonians. Since different Hamiltonians ha
been used by different authors some ambiguity currently
ists with regard to the correct form of the 1D Hamiltonia
For instance, Aronov and Lyanda-Geller, who studied
effect of Rashba SO interaction on the Aharonov-Bohm c
ductance oscillations,2 used a non-Hermitean operator
Hamiltonian.8 Zhou, Li, and Xue9 noticed this fact and de
rived a different ~Hermitean! Hamiltonian operator. How-
ever, in their Hamiltonian the Rashba SO term origina
from an electric field pointing in the radial direction and n
in the direction perpendicular to the plane of the ring. This
physically not correct. Subsequently others3,5,7,10 have em-
ployed a now commonly used 1D Hamiltonian for electro
on a ring, without explicitly discussing its derivation.

The purpose of this short paper is to identify the origin
the existing ambiguity and to discuss in detail the proced
to obtain the correct 1D Hamiltonian operator for electro
moving on a ring in the presence of Rashba SO interact
We will show that the subtlety of this seemingly trivial pro
lem has not been fully appreciated so far.

The ‘‘conventional’’ way to obtain the Hamiltonian for
1D ring from the Hamiltonian in two dimensions consists
two steps. First the Hamiltonian operator is transformed i
cylindrical coordinatesr and f. Then r is set to a constan
and all terms proportional to derivatives with respect tor are
discarded~i.e., set to 0!. This procedure works correctly in
simple cases, such as free electrons or electrons in the
ence of a~uniform or textured11! magnetic field. However, it
does not work in the presence of Rashba SO interaction
we will illustrate below.

The ~2D! Hamiltonian for a~single! electron in the pres-
ence of Rashba spin-orbit interaction and a magnetic fiel
given by

Ĥ5
1

2m
~p2eA!21aŝ•E3~p2eA!1mŝ•B, ~1!
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whereA is the vector potential,a is the SO constant,E and
B are pointing in theẑ direction~perpendicular to the plane!.
In cylindrical coordinates, withx5r cosf and y5r sinf,
this operator reads

Ĥ~r ,f!52
\2

2m F ]2

]r 2 1
1

r

]

]r
2

1

r 2 S i
]

]f
1

F

F0
D 2G

2
a

r
~cosfsx1sinfsy!S i

]

]f
1

F

F0
D

1 ia~cosfsy2sinfsx!
]

]r
1

\vB

2
sz ~2!

with F is the magnetic flux through the ring,F05h/e, and
ŝx,y,z are the usual Pauli spin matrices. Notice also that
have redefineda (a→\Eza). If we now setr to a constant
value (r 5a) and neglect the derivative terms, we obtain

Ĥ~f!52
\2

2ma2 S i
]

]f
1

F

F0
D 2

1
\vB

2
sz

2
a

a
~cosfsx1sinfsy!S i

]

]f
1

F

F0
D . ~3!

This operator, used by Aronov and Lyanda Geller,2 is not
Hermitean, as can be easily shown by calculating its ma
elements in any complete basis~i.e., the ‘‘conventional’’ pro-
cedure fails!.

In order to find the correct form for the 1D Hamiltonia
we go back to the full~2D! Hamiltonian @Eq. ~2!#. To this
Hamiltonian we add a potentialV(r ), which forces the elec-
tron wave functions to be localized on the ring in the rad
direction. SpecificallyV(r ) is small in a narrow region
aroundr 5a and large outside this region. For a narrow rin
~steep confining potential! the confining energy in the radia
direction is much larger than the SO energy, the Zeem
energy, and the kinetic energy in the azimuthal directi
This allows us to solve the Hamiltonian for the radial wa
function first and treatĤSO, ĤZeeman, andĤkin(f) as a per-
turbation. Specifically we writeĤ5Ĥ01Ĥ1 , where
©2002 The American Physical Society07-1
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Ĥ052
\2

2m F ]2

]r 2 1
1

r

]

]r G1V~r ! ~4!

and the perturbation HamiltonianĤ1 is given by

Ĥ15
\2

2mr2 S i
]

]f
1

F

F0
D 2

1
\vB

2
sz2

a

r
~cosfsx

1sinfsy!S i
]

]f
1

F

F0
D1 ia~cosfsy2sinfsx!

]

]r
.

~5!

The eigenfunctions ofĤ0 are separable inr and f, i.e.,
C(r ,f)5R(r )F(f), sinceĤ0 does not depend onf. In the
limit of a very narrow~1D! ring all electrons will be in the
lowest radial modeR0(r ). We then have an infinitely degen
erate set of statesCn(r ,f)5R0(r )Fn(f) over which we
have to diagonalizeĤ1 @here, theFn(f) denote a complete
set of spinors in thef direction#.

The matrix elements ofĤ1 are

amn5ŠFm~f!u^R0~r !uĤ1~r ,f!uR0~r !&uFn~f!‹, ~6!

from which we can read the correct 1D HamiltonianĤ(f)
directly

Ĥ1D~f!5^R0~r !uĤ1~r ,f!uR0~r !&. ~7!

In order to obtain the 1D Hamiltonian explicitly, we hav
to calculate the lowest radial mode for a given confini
potential. If we assume without loss of generality~since we
will consider the limit of a truly 1D ring! a harmonic con-
fining potential@V(r )51/2K(r 2a)2#, we have to solve

2
\2

2m F]2R~r !

]r 2 1
1

r

]R~r !

]r G1
1

2
K~r 2a!2R~r !5ER~r !.

~8!

In the limit of a 1D ring we may neglect the (1/r )
3(]/]r ) term in comparison to the]2/]r 2 term and obtain
the harmonic-oscillator equation.12 The lowest energy nor
malized solutions is then given by

R0~r !5S g

aAp
D 1/2

e2~1/2!g2~r 2a!2
, ~9!

whereg45mK/\2 ~the 1D limit is achieved by lettingg go
to infinity!.

From Eqs.~5! and ~7! we can now derive the 1D Hamil
tonian explicitly. SinceĤ1 contains terms dependent orr and
derivatives with respect tor we have to calculate their ex
pectation value. We obtain

^R0~r !u
1

r
uR0~r !&5E

0

`

R0
2~r !dr5

1

a
~10!

and the expectation value of]/]r is given by
03310
^R0~r !u
]

]r
uR0~r !&5E

0

`

R0~r !
]R0~r !

]r
rdr 52

1

2a
.

~11!

From this we conclude that we cannot safely disregard
]/]r term in order to obtain the correct 1D Hamiltonian.

It is worth stressing that it is not essential to choose
harmonic potential, nor to make any approximation as
have done above for simplicity, in order to obtain these
sults. To show this, letur0(r )& be the lowest radial mode fo
an arbitrarily given confining potential. We defin
ur08(r )&5(1/Ar )ur0(r )&. From direct calculations it
follows that ^r0u(1/2r )1(]/]r )ur0&5^r08u(1/r )(]/]r )ur08&
51/2r08

2u0
`51/2rr0

2u0
`50. We then obtain ^r0u]/]r ur0&

52^r0u1/2r ur0&. Therefore for the lowest radial mode i
the 1D limit we always get̂ r0u]/]r ur0&52(1/2a), inde-
pendent of the precise form ofur0(r )& and thus of the precise
shape of the radial confining potential that is used in
calculation.

Having established the generality of our result, we c
now write the 1D Hamiltonian explicitly. From Eqs.~7! and
~10! we get

Ĥ1D~f!5
\2

2ma2 S i
]

]f
1

F

F0
D 2

1
\vB
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sz2
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a
~cosfsx

1sinfsy!S i
]

]f
1

F

F0
D2 i

a

2a
~cosfsy

2sinfsx!. ~12!

This is the correct form of the 1D Hamiltonian for electro
on a ring, in the presence of Rashba SO interaction.

The last term in Eq.~12! is neglected if we follow the
‘‘conventional’’ procedure. It is only recovered by followin
the procedure described above. In the simple cases m
tioned earlier~e.g., free electrons!, there are no terms presen
in the Hamiltonian proportional to both]/]r and some func-
tion of f ~i.e., the two-dimensional Hamiltonian is sep
rable!. In these cases the ‘‘conventional’’ procedure produc
the correct result. In all other cases it is necessary to take
account properly the confinement of the wave function in
radial direction as we have shown in this paper in order
obtain the correct 1D Hamiltonian on a ring.

In short, what we have described in this paper is a f
mally correct procedure to project the original Hamiltoni
@Eq. ~1!# defined on the Hilbert space of spinors in two d
mensions on a restricted Hilbert subspace, spanned by
complete set of spinorsFn(f), which are function of thef
coordinate only.
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