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The spatial variations of the order parameter and the local density of states on the cosneawa or
d,2_2-wave superconductors, as well as in superconductor—insulator—normal metal interfaces, are calculated
self-consistently by exact diagonalization of the Bogoliubov—de Gennes Hamiltonian within the two-
dimensional extended Hubbard model. Due to the suppression of the dordimaavie order parameter, the
extendeds-wave order parameter is induced near the surface, which alternates its sign for the topmost sites at
adjacent edges of the lattice and decays to zero in the bulk. The presence of surface roughness results in the
appearance of a zero-bias conduction peak near the corner surface which is lacking from the predictions of the
quasiclassical theory.
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[. INTRODUCTION time reversal symmetry breaking across twin bound#ties
near surface¥ the effect of disordet® and the effect of
The determination of the order parameter symmetry hasurface roughness. In this paper the BdG equations are
become one of the main aspects in the research on h|g|$O|V€d in a two-dimensional square lattice within the context
temperature Superconducté%]’unne”ng conductance ex- of an extended Hubbard model. The Spatial variation of the

periments report the existence of a zero-bias conduction pegider parameter and the local density of stateBOS),
(ZBCP).37 The origin of the experimental ZBCP is ex- which in the limit of a low-transparency barrier converges to

plained in the context of zero-energy statZ&S's formed the tunneling conductance, are calculated for various types of

near the[110] surfaces ofd-wave superconductofsThese surfaces and interfaces, e.g., a corner surface, th_e int_erface of
ZES'’s do not appear fa-wave superconductors or near the aq-wave orswave superconductpr along the10] d'reCt'(.)n
[100] surface ofd-wave superconductors and are one of theWlth nqrmal ”.‘eta's- The eyolunon of the local density of
features that characterize thewave superconductors states is studied as a funct_lon of the d!stanc'e from the sur-
. . T face. Also a comparison with the quasiclassical theory and
The quasiclassical theory of superconduct_ley has beeq;]e experimental data is made.
used to ca_lculate the tunneling cond_uctance in interfaces o It is seen that the extendeswave order parameter is
unconventional superconductors with normal metals 0k, qiced due to the suppression of the domirdaniave order
ferromagnetS~** In the quasiclassical approximation the parameter which alternates its sign for the topmost sites at
quasiparticles move in classical trajectories with internal deadjacent edges of the lattice and decays to zero in the bulk.
grees of freedom which are the spin and particle-hole deThe LDOS is symmetric whep =0 and it becomes asym-
grees of freedom. The orientation dependence of the spectfaetric whenu deviates from zero due to the breakdown of
as well as theV line shape of the conductance curve arethe electron-hole symmetry. We also investigate the effect of
explained by the formation of bound states close to the inthe surface roughness near the corner. In general surface
terface due to the sign change of the pair potential that theoughness which in real samples is of atomic length scale
transmitted quasiparticles experience. modifies the properties of the quasiparticles since the coher-
Moreover, the concept of a phase shift byof the order  ence length of the cuprates is much smaller than the conven-
parameter in orthogonal directions i space, which is tional swave superconductors. Our model treats the quasi-
equivalent to the sign change of the Josephson critical cumparticle properties on the atomic length scale and goes
rent, can be observed in corner junctions of anisotropic subeyond the quasiclassical approximation. The presence of
perconductors with conventionalwave superconductors as surface roughness results in the appearance of the ZBCP near
a dip of the Fraunhofer pattern at zero magnetic fiéfdtis  the corner surface which is not predicted by the quasiclassi-
an indication ofd-wave symmetry of the order parameter. cal theory.
The spontaneous flux modulation with surface orientation in  The article is organized as follows. In Sec. Il we develop
such junctions has been calculated and can be used to distithe model and discuss the formalism. In Sec. Il we present
guish the subdominant componestsr d,, that are induced the results for the corner of superconductor. In Sec. IV we
at regions where thd-wave order parameter is suppressed. present thesswave superconductor—insulator—normal metal
The Bogoliubov—de Genng8dG) equations have been (s-i-n) andd-wave superconductor—insulator—normal metal
solved in the continuum limit for the case of a singlevave  (d-i-n) interfaces. In Sec. V the effect of the surface rough-
vortex*'* and around an impurit}? The BdG equations ness is considered. In Sec. VI a connection with the experi-
within the extended Hubbard model in a two-dimensionalment is made. Finally, summary and discussions are pre-
lattice have been used to study single-vortex strucfuté, sented in the last section.
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[l. BAG EQUATIONS WITHIN THE HUBBARD MODEL ated. We reinsert these quantities into E@.and (4), and
we proceed in the same way until we achieve selfconsis-
atency, i.e., when the norm of the difference ®§(r;) and
A 4(r;) from their previous values is less than the desired
accuracy. We then compute tlikwave and the extended
H= —t<i§j;, clciot ,ulz ni(,+i2 ,u!ni(,+V0§i: N n; swave gap functions given by the expressi§ns

)0 o o

The Hamiltonian for the extended Hubbard model on
two-dimensional square lattice is

1
A s i Ad(r)= LA +AS(r) = Ay(r) —A_5(r)], (9
(ijyoo’

wherei,j are sites indices and the angular brackets indicate exty Lo A A i
that the hopping is only to nearest neighbars;=c/ c;,, is AT = Z[AKr)+ A (r) +Ay(ri) + A_y(ri)].
the electron number operator in site u is the chemical (10
potential, andv,,V, are on-site and nearest-neighbor inter-
action strengths. Negative values\¢f andV,; mean attrac-
tive interaction and positive values mean repulsive interac-
tion. When V,<0 the pairing interaction gives rise to n=nj+n; = > {|lun(r)|f(en) +|va(r 21— F(e)1},
d-wave superconductivity in a restricted parameter redime. " 11
To simulate the effect of the depletion of the carrier density (1)
at the surface or impurities the site-dependent impurity poand the LDOS at théth site is given by
tential u'(r;) is set to a sufficiently large value at the surface
sites. This prohibits the electron tunneling over these sites. , ,
Within the Pnean-field approximation Eajl)g is reduced to pi(E)=—2§n: [lun(r)[#F(E = €n) +[on(ri) [*f (E+ €)1,

The number density at thieh site is given by

the BdG equatiorfé (12)
g A un(ry) Un(r;) where the factor of 2 comes from the twofold spin degen-
~ A ( ) = n( ) (20 eracy andf’ is the derivative of the Fermi function,
A* ¢ vn(ri) vn(ri)

such that f(e)= (13

expe/kgT)+1"

Eun(r)=—t> un(ri+ &)+ (r)+ulus(r)), (3
Eun(r 253 lfit O+ L (r)+ wlun(ra). (3 ll. CORNER OF SUPERCONDUCTOR
R R In this section the results for the order parameter and the
Aup(r)=Ao(rpun(r)+ 2 As(rpun(ri+8), (4  LDOS close to the corner surface of a two-dimensional

a square lattice are presented for different order parameter

where the gap functions are defined by symmetries, i.e.swave andd-wave symmetries. The differ-
ent symmetries are introduced by varying the strength of the
Ao(ri)=Vo(ci(rie (ri)), (5 local and nonlocal pairing interaction constalts and V;.
We consider a two-dimensional system ofX380 sites and
A&(ri)EV1<CT(ri+:S)Ci(ri»' (6)  we suppose fixed boundary conditions by setting the impu-
o rity potential u'=10Q at the surface. The parametevg
where 6=x,-X,y,—y. Equation(2) is subject to the self- =0.0 andv,=—2.% are such that-wave superconductivity
consistency requirements is stable. Thed-wave order parametek, is enhanced near
the surface from its bulk value and goes to zero at the surface
Ao(r)) =V02 un(ri)o¥ (ri)tan)‘( Ben), 7) atoms because the hopping to these sites is suppressed due to
n 2 the impurity barrier(see Fig. L The induced extended

s-wave order parametefg’“, seen in Fig. £a) oscillates near

A% A % the surface at an atomic scale and vanishes in the bulk region
Aslri)= 2 ; [un(ri+d)vn (ri) at a distance of few lattice sites. It reverses its sign on either
side of the lattice edge and it is exactly zero in the diagonal
* ~ Ben direction. Next to the corner we see an enhancement from
+Un(rug (ri+ d)Jtan 2 ) ®  the edge value. It appears to havd-aave-like structure just

at the corner of the square lattice. This behavior is also seen
We start with the approximate initial conditions for the near impuritie®® and across twin boundari€susing BdG
gap functiong7) and(8). After exact diagonalization of Eq. equations within the extended Hubbard model in a two-
(2) we obtain theu(r;) andv(r;) and the eigenenergies, . dimensional orthorhombic lattice. The explanation is the sign
The quasiparticle amplitudes are then inserted into EQs. change of thed-wave order parameter across fHel0] di-
and(8) and new gap functiondy(r;) andA(r;) are evalu- rection close to the corner. To understand the effect of the
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FIG. 1. Spatial dependence of tHevave order parameter close
to the corner of a two-dimensional square lattice, for chemical po-
tential x=0. The temperature isgT=0.1t.

Fermi surface line shape and also the depletion of the charge
density for highT. superconductors we consider also the
case wherew deviates from zero. Thag’“, seen in Fig. i)

for u=t, is more enhanced for larger values of the chemical
potential. In summary thd-wave and the induced extended
s-wave order parameter show atomic size oscillations that do

LDOS

LDOS
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not appear in the quasiclassical approximation.
The local density of states plotted in FigaBfor u=0 is

symmetric with respect tB=0 due to electron-hole symme-
try. The LDOS is site dependent and shows a complicated
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FIG. 2. Spatial dependence of the extendeslave AS** order

FIG. 3. The local density of states at sitesB,C,D along the
diagonal of the two-dimensional square lattice shown in the inset.
(@ w=0, (b) w=t. The chemical potential is set j¢ =10Q at the
shaded surface sites.

gap structure. Also no ZBCP has been observed, in agree-
ment with the results of the quasiclassical thebAs we
move to the interior of the lattice the LDOS converges to the
bulk density of states in a two-dimensional square lattice.
For u=t the LDOS becomes asymmetric as seen in Fig.
3(b). This feature reflects the breakdown of the electron hole
symmetry. However, no ZBCP is formed. The LDOS close
the the[ 100] lattice surfacgsee Fig. 4a)]| has thev-like line
shape due to the presence of line nodes of the pair potential
on the Fermi surface, is symmetric with respecEte 0 due

to the electron-hole symmetry, and has the minimunt at
=0. These features are compatible with thevave symme-

try of the order parameter. The symmetric form of the LDOS
line shape is lost when the chemical potential deviates from
zero, as seen in Fig.(d) for u=t.

To understand the effect of the different symmetry we
study thes-wave order parameter by setting the local pairing
interaction to the valu®¥,=— 2.5 and the nonlocal interac-
tion to the valuev/,=0. Thes-wave order parameter evolves
nonmonotonically to the bulk value as seen in Fig. 5. For
pn=t the order parameter shows small amplitude oscillations
relative to the bulk value. The LDOS close to the corjrsere
Fig. 6(a)] for wu=0 shows gap structure withl-like line
shape due to the absence of nodes of the pair potential on the

parameter close to the corner of a two dimensional square latticd=ermi surface. Furthermore, the LDOS is insensitive to the

(@ u=0, (b) u=t.

orientation of the surface and is site independent. The LDOS
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FIG. 4. The local density of states at the sites of distaxce
=1,2,3 form the[100] surface of the two-dimensional square lat-
tice and the bulk density of state®) u=0, (b) u=t.

near the[100] surface is similar as seen in Fig(bg. The
LDOS line shape for the-wave case is different to what we

see for thed-wave case. However, the nonmonotonous in
crease with atomic size oscillations of the order parameter

occurs both in the-wave andd-wave corner geometry inter-

PHYSICAL REVIEW B66, 024514 (2002

LDOS

LDOS

FIG. 6. (a) The local density of states at sitdsB,C,D along
the diagonal of the two-dimensional square lattice shown in the
inset. The pairing symmetry i «=0. The chemical potential is
set tou'=100 at the shaded surface sitéb) The local density of
states at sites of distance=1,2,3 from the[ 100] surface of the
two-dimensional square lattice and the bulk density of states. The
pairing symmetry issand u=0.

d-wave corner geometry interfaces. The condition for the

faces since the reflected quasiparticles do not experience afgrmation of ZBCP’s is the change of sign of the quasiparti-

sign change of the pair potential.

cles in the scattering from the surface of the superconductor.

The absence of ZBCP’s in the LDOS is in agreement within swave superconductors this sign change does not occur at

the results of the quasiclassical theory both $avave and
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FIG. 5. Spatial dependence of thevave order parameter along
the diagonal of the latticex(), for two different values of the
chemical potentiau=0,u=t.

surfaces or interfaces due to the isotropy of the pair potential.
In anisotropic superconductors this sign change is possible
for certain orientation of the surface. However, for the corner
surface, at the direction where the lobes of th@ave order
parameter are at right angles to the surface, a typical trajec-
tory of a quasiparticle would consist of two subsequent re-
flections from the lattices edges, in none of which does a
sign change of the order parameter occur. Therefore the qua-
siparticle does not feel the sign change of the order param-
eter and no ZBCP is formed. For a corner where the lobes are
not exactly at right angles to the surface the condition for the
formation of Andreev bound states at the surface can occur
and also the ZBCP.

IV. s-i-n, d-i-n INTERFACES ALONG THE [110]
DIRECTION

We now discuss the effect of the orientation of the inter-
face on the order parameter and the local density of states for
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FIG. 8. (a) LDOS at the site\,B,C,D for the s-i-n interface
shown in the inset, fop=0. The spatial distribution of impurities
is indicated by solid circlegb) The same as iffa) but for u=t.

FIG. 7. (8) The magnitude of the-wave componeni of the
superconducting order parameter as a functiowx,dbr the s-i-n
interface along th¢110] direction shown in the inset, fou=0.

The spatial distribution of impurities is indicated by solid circles, ) )
and also the labeling of the sites along thelirections is shown. The bulk order parameter is suppressed whemleviates

The order parameter is calculated along the thick dashed line in th0m 0 and also the spatial oscillations close to the interface

direction x shown in the inset(b) The number density, as a  are of reduced amplitude as seen in Fi@).7To demonstrate

function of x shown in(a), for as-i-n interface foru=0,t. the charge density depletion near the interface and also the
sensitivity of the charge density on the we present in Fig.

different symmetries. For110] interface the reflected qua- 7(b) the number density; for the electrons for two different
siparticles ford-wave superconductors are subject to the sigrivalues of the chemical potential, i.q,=0 andx=t. For
change of the order parameter. This affects both the orde¢=0 the number density is unitfone electron per siten
parameter and the LDOS. The interface is modeled by a linéhe bulk and decays to zero at the interface. However, for
of sites along the diagonal of the lattiog, direction, where ~finite x the number density is reduced.
the chemical potential is set to a value in accordance with the The LDOS seen in Fig. (&) is symmetric forn=0 and
strength of the barrier we want to model. The value of theshows the gap structure witbtlike line shape. Comparing to
interaction strength in each part of the interface determine§ase of thd 100] interface we see that the LDOS is insensi-
the particular system that we are considering. tive to the direction of the interface. For finige=t seen in

To understand the effect of the symmetry of the pair po-Fig. 8(b) the LDOS keeps ité)-like line shape. However, it
tential we consider first the-i-n interface shown in the inset becomes asymmetric due to the breakdown of the electron-
of Fig. 7(a). The local interaction in the region whes¢  hole symmetry.
<0 (x’ is the direction perpendicular to the interfaie V, To understand the effect of the different symmetry and
= — 2.5, and the strength of the barrier js'’°=10a. The  also the orientation of the interface we consider then the
swave order parametek, presented in Fig. (@) is sup- d-i-n interface, shown in the inset of Fig. 9, whewg
pressed near the interface and increases nonmonotonically fo— 2.5 and x**°=10@. We present in Fig. 9 the spatial
the bulk value at a few lattice sites. The enhancement at theariation of thed-wave componenty and the extended
topmost sites close to the interface is similar to the spatia$-wave componenA¢*' of the order parameter. It is seen that
variation of thed-wave order parameter close to th&00]  for u=0, AZ*'is not modified by the presence of the inter-
surface seen in Fig. 1 since in both cases the reflected quéace. In contrast\y drops to zero at the interface and in-
siparticles do not feel any sign change of the pair potentialcreases monotonically into a few lattice sites to the bulk
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FIG. 9. The magnitude of th&4 andAS" as a function ok, for
the d-i-n interface shown in the inset, fat=0t. The spatial dis-
tribution of impurities is indicated by solid circles, and also the
labeling of the sites along the directions is shown. The order
parameter is calculated along the thick dashed line in the dirextion
shown in the inset.

value. Foru=t the A4 is much more suppressed close to the
interface while the induced &*-wave component is more
enhanced. This monotonic increase is consistent with the
quasiclassical results. The reflected quasiparticles from the
[110] oriented interface are subject to the sign change of the

LDOS

LDOS
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(b)

LDOS

LDOS

FIG. 10. (a) LDOS at sitesA,B,C,D for the d-i-n interface
shown in the inset, fop=0. The spatial distribution of impurities
is indicated by solid circlegb) The same as i@ but for u=t.

FIG. 11. (a) The local density of states at the specified sites
A,B,C,D for the corner surface, with aX1 step structure shown
in the inset, foru=0. The chemical potential is set fd =100 at
the shaded surface sitéb) The same as ifa) but for wu=t. Due to
the symmetry of the structure, the LDOS is identical for shesmnd
B.

order parameter. This makes the interface pair breaking and
results into a monotonic variation in tldewave order param-
eter near the surface. This is different to the-n case and
also to thg 100] surface of thed-wave superconductor seen

in Fig. 1 where this increase is honmonotonous since the
reflected quasiparticles do not feel any sign change of the
pair potential. In the latter case the interface is not pair
breaking. However, the spatial oscillations of the order pa-
rameter at atomic scale are completely neglected in the qua-
siclassical approximation. The number density is similar to
the case of the-i-n interface.

The main difference between the two symmetries appears
in the LDOS as we can see in Fig. (&) for ©u=0. As
expected the LDOS line shape is symmetric sipee0. The
ZBCP is formed and its height decreases exponentially as we
move to the interior of the lattice along the direction perpen-
dicular to the interface. However, at si2 no ZBCP is
formed. The disappearance of the ZBCP®atenotes that the
ZES'’s wave functions have a spatial variation close to the
interface with nodes at specific sites. In this case theBite
corresponds to a node and therefore the ZBCP disappears.
The ZBCP is explained in the context of zero-energy states
formed near thg 110] surfaces ofd-wave superconductors
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FIG. 13. (a) The local density of states at the specified sites
FIG. 12. Spatial dependence of tft® d-wave and(b) the ex- A B C D for the corner surface, with a12 step structure shown

tendeds-wave order parameter for the specified geometry of Fig.ij the inset forw=0. The chemical potential is set jo = 100 at
11(a. the shaded surface sitdb) The local density of states at the speci-

fied sitesA,B,C,D for the corner surface, with p110] structure
due to the sign change that the quasiparticles experience &hown in the inset fou=0. The chemical potential is set o'
different directions ink space. However, the absence of =10Q at the shaded surface sites.
ZBCP's for the[ 110] at specific sites is not predicted by the

quasiclassical theory. For finite=t seen in Fig. 1M) the  anq also the disappearance of ZBCP from specific sites are
LDOS keeps itsV-like line shape. However, it becomes explained by the spatial variation of the ZES's. It is seen that
asymmetric due to the breakdown of the electron-hole symie wave functions of the ZES's form standing waves that
metry. Also the ZBCP is reduced. We conclude that thedecay in the bulk. The site& and B, which show ZBCP’s,
d-wave order parameter as well as the local density of stategorrespond to an antinode while for the rest of the lattice
is influenced by the orientation of the interface. sites the amplitude of the ZES’s is zero. For finiethe
ZBCP disappears from sites and B due to the destructive
interference of the ZES'’s as shown in Fig.(l) In addition
the overall line shape of the conductance curve is asymmet-
In the following we describe the effect of the surface ric due to the breaking of the electron-hole symmetry. In Fig.
roughness near the corner of the latticedewave supercon- 12 the spatial variation of thd-wave and extendegwave
ductors. The quasiparticle properties near the corner are ewrder parameter is plotted far=0 at sites close to the lat-
pected to be influenced by the atomic size roughness, sind&ee corner. It is seen that thé-wave order parameter is
the coherence length of tllewave superconductors is small suppressed at the impurity site while the extendetdave
nearly at atomic size. For the case of one step structure, farder parameter is not much influenced.
n=0, shown in the inset of Fig. 14) the LDOS shows For the 1X2 step structure shown in the inset of Fig.
ZBCP’s at pointsA,B but not inC as presented in Fig. 8.  13(a) the LDOS, presented in Fig. (8 for ©=0, at points
Moreover, the ZBCP is suppressed compared to the case &fB,C,D shows no ZBCP. The quasiclassical theory predicts
flat [ 110] surface seen in Fig. 10. The quasiclassical theorna ZBCP since this geometry corresponds to a surface tilted
predicts that for that direction the ZBCP is maximusince  from a=0 or a=x/2. The absence of ZBCP’s is explained
the one step structure corresponds todken/4 (whereais by the destructive interference of the standing waves and
the orientation of the surfageThe suppression of the ZBCP also by the asymmetricity of the structure. For=t some

V. RESULT FOR THE SURFACE ROUGHNESS
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tiny conductance peak recovers. for the [100] surface€?3 Furthermore we reproduced sev-

The ZBCP at the topmost sites recovers for the geometrgral anomalous features that have been observed in tunneling
shown in the inset of Fig. 1B) for sitesA,C, for u=0 as experiments and cannot be explained within the quasiclassi-
presented in Fig. 18). However, unlike the flaf110] sur-  cal theory. These include the absence of ZBCP's at specific
face no ZBCP is formed in sit® due to the destructive sites close to thg110] surface;* asymmetric structures due
interference of the standing waves. Moreover, when finitgo the depletion of the chemical potential close to the surface,
chemical potential is introduced the spatial distribution of themultiple dips and large dips inside the gap, and residual val-
ZES's is disturbed and for example the ZBCP appears eveues of the conductance at the zero-bias level.

for sites, e.g.D, where normally foru=0 is absent.
VII. CONCLUSIONS

VI. EXPERIMENTAL RELEVANCE We calculated the LDOS and the order parameter of a

In this section a comparison is made with available ex_two-dimensional lattice of-wave superconductor with_in the
perimental data on corner Josephson junctions and also tended Hubbard model, seIf-chS|stentIy. The.domlnant or-
the tunneling effect in higfi-. superconductors. Recent er parameter decays monotonically for ﬂjﬂO] interface .
phase-sensitive measurements on corner junctions showed® dd-wave order _parameter symmetry, while nonmonotoni-
minimum in the critical current versus the magnetic field and“® ly for the[ 100] mte_rface,d-wave ors:wave order param-
provided a strong evidence for thed,_,.-wave eter symmetry. The mducgd extends@vave order param-
symmetry>'?> However, as demonstrated in this paper theSter that 'decays'to Zero in the bul_k, char_lges sign at the
effect of the surface roughness at atomic scale near the co OpMOst sites at e|ther_5|de of the_ lattice S|m|larly_to the case
ner strongly modifies the quasiparticle properties near th@ear Impurities ano! twin boundaries. Th? LDOS is §ymmet-
corner. This may lead to a deviation from the sinusoidal Jol'C when =0 and it becomes asymmetric whendeviates
sephson current phase relation and may influence also tﬁéom ZETO. Th? presence 9f sgrface roughness at the corner
critical currents and the spontaneous magnetic flux. strongly modlf_les fche quasiparticle properties near _the corner.

As regarding the tunneling experiments, the existence c)The ZBCP which is absent for perfect corner, consistent with

ZBCP’s has been so far investigated for various surface orit-he quagclqssycal theory, appears whe.n the roughness at
entations using-i-n thin-film or single-crystal tunnel junc- atomic size is introduced dut_a o the ospﬂlatc_;ry form of .the
tions, or point-contact measurements or a scanning tunnelinlsqOund stateg. Th.e last result IS nqt predicted in thg quasiclas-
microscope(STM) on a single-crystal surfads’ For the cal approximation. The sensitivity of the_ properties on the
[110] surface, almost all groups reported ZBCP's, while for atomic _scale roug_hness has to b_e taken into account for the
[100] surfaces ZBCP’s have also been found. The quasiclasc-orre.Ct interpretation of the experiments on corner Josephson
sical theory as well as the calculations presented in this papéﬁmcuons'
predict that the ZBCP is maximum for th&10] surface and

is absent for th¢100] surface. However, it has been shown

that the introduction of surface roughness in the above theo- The author would like to thank Dr. R. Mg for a careful
retical approaches results in the appearance of a ZBCP eveeading of the manuscript
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