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Symmetry of the order parameter in superconducting ZrZn2

K. V. Samokhin* and M. B. Walker
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 15 March 2002; published 9 July 2002!

We apply symmetry considerations to study the possible superconducting order parameters in ferromagnetic
ZrZn2. We predict that the presence and the location of the superconducting gap nodes depend on the direction
of magnetizationM. In particular, if M is directed along thez axis, then the order parameter should always
have zeros. We also discuss how to determine the gap symmetry in ZrZn2 using ultrasound attenuation
measurements.

DOI: 10.1103/PhysRevB.66.024512 PACS number~s!: 74.20.Rp, 74.70.Ad
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Recently, superconductivity was found in ZrZn2,1 which
is a weak itinerant ferromagnet. The most surprising fac
that the superconductivity occurs only in the ferromagne
phase. The exchange splitting of Fermi surfaces make
conventional singlet BCS-like pairing strongly suppressed
number of theories have been proposed which show how
exchange by spin fluctuations can lead to a triplet Coo
pairing both in paramagnetic and ferromagnetic phases,2 or
to the enhancement of the superconducting critical temp
ture Tc on the ferromagnetic side.3 Another feature of the
phase diagram is thatTc grows as pressure moves away fro
the ferromagnetic quantum critical point, which can be e
plained by the exchange-type interaction of the magn
moments of the Cooper pairs with the magnetizat
density.4

Symmetry considerations can identify the possible or
parameters, even in the absence of a firmly established
croscopic mechanism of pairing, which is often the case
unconventional superconductors. The presence of ferrom
netism brings about a number of interesting features in
symmetry analysis. In this paper, we give a detailed anal
of the pairing symmetry in ZrZn2, and discuss its conse
quences for the superconducting gap structure. Our work
some overlap with recent theoretical studies5,6 of the gap
symmetry in another ferromagnetic superconductor UG2.7

We find that the presence and location of the gap zeros
pend on the direction of magnetization. We also discuss
some detail the design of ultrasonic attenuation experim
that can be used for experimental probing the order par
eter symmetry.

The symmetry groupG of the system in the normal state
defined as a group of transformations which leave the sys
HamiltonianH0 invariant, i.e.,@G,H0#50 for all elements
GPG. In nonmagnetic superconductors the time-rever
symmetryK is not broken, andG5S3K3U(1), whereS is
the space group of the crystal andU(1) is the gauge group.8

In contrast, in magnetic superconductors the time-reve
symmetry is broken, andG5SM3U(1), where SM is the
magnetic space group which is a group of symmetry ope
tions leaving both the crystal lattice~the microscopic charge
density! and the magnetization densityM invariant.9 For ex-
ample, if there is a crystal point group rotationR which
transformsM to 2M, then the combined operationKR will
be an element ofSM , because the time reversal restores
original M not affecting the lattice symmetry. In the abov
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expressions, it is assumed that the space group element
on the orbital and spin coordinates simultaneously, which
the case when the spin-orbit coupling is present. In the
sence of spin-orbit coupling, the transformations of the
bital and spin spaces are independent, so thatG5Sorb

3Gspin3U(1), where Gspin5SO(2) is the group of spin
rotations about the direction ofM.

The crystal structure of ZrZn2 in the absence of ferromag
netism is described by a face-centered-cubic Bravais latt
with the Zr atoms forming a diamond structure. For cub
ferromagnets, the only two possibilities for the easy direct
of magnetization are a@001# or @111# direction, and these
possibilities are analyzed in this paper. Since a relativ
small magnetic field~0.05 T atT51.75 K) is required to
line up the magnetic moments along a given direction,1 it is
expected that experiments could be carried out forM parallel
to either@001# or @111#. The change in the superconductin
gap structure whenM is rotated by an external magnetic fie
is one of the interesting and unusual properties of ZrZn2 that
could be investigated experimentally.

If M is along @001#, then SM is generated by~i! lattice
translations by the primitive vectors of the fcc lattice,t1
5(a/2)(1,1,0), t25(a/2)(0,1,1), and t35(a/2)(1,0,1),
wherea is the lattice constant;~ii ! the rotationsC4z about the
z axis by an anglep/2 followed by a fractional translation by
a vectort5(a/4)(1,1,1);~iii ! the combined rotationsKC2x
about thex axis by an anglep accompanied by the time
reversal; and~iv! the inversionI. The point symmetry of the
crystal is described by the magnetic groupD4h(C4h)
5D4(C4)3Ci , whereCi5$E,I %. The subgroup in parenthe
ses ~the unitary subgroup! incorporates all symmetry ele
ments which are not multiplied by the antiunitary and an
linear operationKC2x , i.e., D4(C4)5C41KC2x3C4.

If M is along@111#, thenSM is generated by~i! primitive
lattice translations,~ii ! rotationsC3xyz about the@111# direc-
tion by an angle 2p/3, ~iii ! combined rotationsKC2x̄y about
the @ 1̄10# direction by an anglep accompanied by the time
reversal, and~iv! the inversionI. The point symmetry is de-
scribed by the magnetic groupD3d(C3i)5D3(C3)3Ci ,
whereD3(C3)5C31KC2x̄y3C3.

Using the standard notation for the space group ope
tions, which combine rotationsR and translations t,
r→(Rut)r5Rr1t, the transformation rules for the spino
wave functions can be written as
©2002 The American Physical Society12-1
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~Rut!cs~r!5@D (1/2)~R!#ss8cs8@R21~r2t!#. ~1!

Heres5↑,↓ is the spin projection on the direction ofM, and
D (1/2)(R) is the spinor representation of rotations: for a ro
tion by an angleu around some axisn, D (1/2)(R)5Un

(s)(u)
5exp@2i(u/2)(s•n)#. We will also need the transformatio
rules under the time reversal operation

Kcs~r!5~ is2!ss8cs8
* ~r!, ~2!

and the inversion

Ics~r!5cs~2r!. ~3!

In the presence of the exchange field and spin-orbit c
pling, the single-particle wavefunctions are linear combin
tions of the eigenstates of the spin operatorsz : ^ruc&
5u(r)u↑&1v(r)u↓&. Because the normal-state Hamiltonia
H0 is invariant with respect to the crystal-lattice translatio
the eigenfunctions are Bloch wavesck(r) corresponding to
wave vectorsk in the Brillouin zone. If the energy spectrum
consists of a single band which is doubly degenerate i
zero exchange field due to the Kramers theorem, then dia
nalization of the Hamiltonian in the presence of the excha
field results in two nondegenerate energy bandse6(k). The
corresponding single-particle wave functions have the fo

^ruk,6&5uk
(6)~r!u↑&1vk

(6)~r!u↓&. ~4!

These states are referred to as pseudospin states. The o
tions from the groupG conserve the pseudospin in the fo
lowing sense: Guk,6&5exp@if6(k,G)#uGorbk,6&, with
Gorb describing the ‘‘orbital’’ part of the symmetry opera
tion, e.g., rotations or reflections, and the undetermin
phase factorsf6 coming from the freedom in choosing th
overall phases ofuk,6& at every point of the Brillouin zone
Here we adopt a convention introduced in Ref. 10, accord
to which the pseudospin states@Eq. ~4!# transform similar to
the spin eigenstatesuk,↑& and uk,↓&.

Let us first consider the caseMi@001#. From Eqs.~1!–~3!,
the transformation rules for the creation operators of e
trons in states~4! are

~C4zut!:ck,6
† →e2 i (C4zk)•te7 ip/4cC4zk,6

† ,

~KC2xu0!:lck,6
† →6 il* c2C2xk,6

† , ~5!

I :ck,6
† →c2k,6

† .

Herel is an arbitraryc number.
The pseudospin states can be used as a basis for cons

ing the Hamiltonian which takes into account the Coop
pairing between electrons with opposite momentak and
2k. Treating the Cooper interaction in the mean-field a
proximation we obtainH5H01Hsc , with the noninteract-
ing part

H05(
k

@e1~k!ck1
† ck11e2~k!ck2

† ck2# ~6!
02451
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describing two separate sheets of the Fermi surface co
sponding to different pseudospin indices, and

Hsc5(
k

(
a,b56

@Dab~k!cka
† c2k,b

† 1H.c.#. ~7!

HereD11(k) andD22(k) represent the superconducting o
der parameters at the ‘‘1 ’’ and ‘‘ 2 ’’ sheets of the Fermi
surface respectively, andD12(k)52D21(2k) is the order
parameter composed of quasiparticles on different she
From the Pauli exclusion principle,D11(k) andD22(k) are
odd functions ofk, but D12(k) does not have a definite
parity. Separating the odd and the even parts, the order
rameter matrix can also be cast in a more familiar fo
D(k)5( i ss2)d(k)1( is2)c(k), where d and c are the
pseudospin-triplet and the pseudospin-singlet compone
respectively.8 The fact that the Fermi surface of ZrZn2 con-
sists of several sheets of different topology11 does not change
our results.

From Eqs.~5!, the band spectrae6(k) are invariant under
the operations from the point groupD4h . Also, we obtain the
transformation rules for the order parameters under rotat
C4z :

D11~k!→2 iD11~C4z
21k!,

D22~k!→1 iD22~C4z
21k! ~8!

D12~k!→D12~C4z
21k!

~note the cancellation of thet-dependent phase factors on th
right-hand side of these equations!, and under the combined
time reversal and rotationsKC2x :

D11~k!→D11* ~C2x
21k!,

D22~k!→D22* ~C2x
21k!, ~9!

D12~k!→D12* ~2C2x
21k!.

In the presence of the exchange band splittingEex , the
low-frequency part of the spectrum of excitations~e.g., spin
fluctuations! responsible for the interband Cooper pairing
cut out.2 SinceEex is by far the largest energy scale in th
system: Eex.5 mRy.800 K,12 the pairing interactions
ck1

† c2k,2
† ck82c2k8,1 , which are responsible forD12 , are

negligibly small13 ~some of the consequences of taking the
interactions into account will be discussed below!. On the
other hand, the interband pairing termsck1

† c2k,1
† ck82c2k8,2

can induce order parameters of the same symmetry on
sheets of the Fermi surface. We expect the effect of th
terms to be small at small spin-orbit coupling, because t
are absent at zero spin-orbit coupling due to the spin con
vation.

The superconducting order parameter which emerge
Tc transforms according to one of the irreducible represen
tions G of the normal state symmetry groupG. It can be
represented as the expansionDG(k)5( ihG,i f i(k), where i
labels the orbital basis functions, andhG,i are the order pa-
rameter components which enter, e.g., the Ginzburg-Lan
2-2
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SYMMETRY OF THE ORDER PARAMETER IN . . . PHYSICAL REVIEW B66, 024512 ~2002!
free energy. In our case,G contains the antiunitary and ant
linear operationKC2x , and, instead of usual representation
one should usecorepresentationsof the magnetic point
group D4(C4), which can be derived from one-dimension
representations of the unitary subgroupC4.14 The results for
odd corepresentations are listed in Table I. Note that the
tion of the unitary and antiunitary orbital symmetry eleme
on scalar functionsf (k) is defined asR f(k)5 f (R21k), and
KR f(k)5 f * (2R21k).

If the superconductivity appears on the ‘‘1 ’’ sheet, then
the order parameter isD11(k) „in terms of the vector orde
parameter d(k)5dz(k) ẑ1@d1(k)( x̂2 i ŷ)1d2(k)( x̂
1 i ŷ)#/2, it corresponds tod25dx2 idy…. Using Eqs.~8! and
Table I, we obtain the following expressions:

D11,A~k!5 ihAf 1E
~k!,

D11,B~k!5 ihBf 2E
~k!, ~10!

D11,1E~k!5 ih1E
f B~k!,

D11,2E~k!5 ih2E
f A~k!.

The appearance of different representations on the left
right-hand sides of these expressions can be easily un
stood if we look at Eqs.~8!. The transformed order paramet
D11 has an extra factor2 i which comes from the rotation
of spin coordinates. In terms ofd(k), this factor is the result
of the rotation of the basis spin vectorx̂1 i ŷ , which trans-
forms according to the2E representation. Thus, for instanc
the first of Eqs.~10! follows from the fact thatA5 2E3 1E.
So far, we have discussed the transformation propertie
order parameters~10! under the rotations from the unitar
subgroupC4. Because of our choice of the overall phase
the basis functions~see the caption to Table I! and the factors
i on the right-hand sides of Eqs.~10!, the effect of the anti-
unitary operationKC2x on hG is equivalent to complex con
jugation:KC2xhG5hG* .

As seen from Eqs.~10! and Table I, the order paramete
DA andDB vanish at the poles of the Fermi surfacekx5ky
50, while the order parametersD1Eand D2Evanish at the
equatorkz50. One can prove that these gap zeros are
artifacts of our choice of the basis functions but are impo
by symmetry. Indeed, one of the elements of the unit
componentC4h of the magnetic point group is the bas
plane reflectionsh5C2z3I . Therefore,

TABLE I. The character table and the examples of the odd b
functions for the irreducible co-representations of the magn
point groupD4(C4). The overall phases of the basis functions a
chosen so thatKC2xf G(k)5 f G(k). l1,2 are arbitrary real constants

G E C4z f G(k)

A 1 1 kz

B 1 21 kz@l1(ky1 ikx)
21l2(ky2 ikx)

2#
1E 1 i ky1 ikx
2E 1 2 i ky2 ikx
02451
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shf A,B~k!5 f A,B~kx ,ky ,2kz!52 f A,B~k!, ~11!

so that f A,B(kx ,ky,0)50, andD1E
(kx ,ky,0)5D2E

(kx ,ky,0)

50. Similarly, under a fourfold rotation around thez axis,

C4zf 1E,2E
~k!5 f 1E,2E

~ky ,2kx ,kz!56 i f 1E,2E
~k!,

hencef 1E,2 E(0,0,kz)50, andDA(0,0,kz)5DB(0,0,kz)50. It
also follows from Eq.~11! that f A(k) and f B(k) go to zero at
kz56p/a, i.e., at the surface of the Brillouin zone, becau
(kx ,ky ,p/a) and (kx ,ky ,2p/a) are equivalent points. In
order to take into account the crystal periodicity leading
the presence of these additional gap zeros, one has to re
sent the basis functions as the lattice Fourier seriesf (k)
5(nf neik•Rn, where summation goes over the sitesRn of the
Bravais lattice of the crystal. The expansion appropriate
an odd order parameter has the form

f ~k!5(
n

cnsin k•Rn , ~12!

whereRn are the sites of a fcc cubic lattice, which cannot
transformed one into another by inversion. In the neare
neighbor approximation, we choose the following set
Rn’s: $Rn%5a/2$(101),(1̄01),(011),(01̄1),(110),(1̄10)%.
Using the representation characters from Table I, we ob
the basis functions which have symmetry-imposed zero
the surface of the Brillouin zone:

f A~k!5sin
kza

2 S cos
kxa

2
1cos

kya

2 D ,

f B~k!5sin
kza

2 S cos
kxa

2
2cos

kya

2 D ,

f 1E
~k!5cos

kza

2 S sin
kya

2
1 isin

kxa

2 D ,

1l1Feip/4sinS kxa

2
1

kya

2 D2e2 ip/4sinS kxa

2
2

kya

2 D G ,
f 2E

~k!5cos
kza

2 S sin
kya

2
2 isin

kxa

2 D ,

1l2Fe2 ip/4sinS kxa

2
1

kya

2 D2eip/4sinS kxa

2
2

kya

2 D G .
Here l1,2 are arbitrary real constants. The polynomial e
pressions for the basis functions from Table I are recove
in the limit of a ‘‘small’’ Fermi surfacek→0 @note thatf B(k)
from Table I can be obtained by including the next-near
neighbors in expansion~12!#. It should be noted that thes
nearest-neighbor results also give gap zeros not require
symmetry, e.g.,f B(k)50 on the planekx5ky . These ‘‘acci-
dental’’ zeros will be removed if higher-neighbor terms a

is
ic
2-3
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K. V. SAMOKHIN AND M. B. WALKER PHYSICAL REVIEW B 66, 024512 ~2002!
included, but if nearest-neighbor terms turn out to be do
nant, experiment could find indications of these acciden
zeros.

The order parameter on the pseudospin-down sheet o
Fermi surface isD22(k) @in terms ofd(k), it corresponds to
d15dx1 idy , and the relevant basis spin vector isx̂2 i ŷ ,
which transforms according to the1E representation#. Its k
dependence is given by the following expressions:

D22,A~k!5 ihAf 2E
~k!,

D22,B~k!5 ihBf 1E
~k!, ~13!

D22,1E~k!5 ih1E
f A~k!,

D22,2E~k!5 ih2E
f B~k!.

If we take into account the interband pairing interaction
the formck1

† c2k,1
† ck82c2k8,2 , then bothD11 andD22 are

nonzero and correspond to the same irreducible corepre
tation of the magnetic point group. Comparing Eqs.~10! and
~13!, we see that, although the orbital symmetries ofD11

and D22 are different, they have symmetry-imposed g
nodes at the same locations on both sheets of the Fermi
face. For example, if the order parameter corresponds to
A corepresentation, then bothD11,A(k); f 1E(k) and
D22,A(k); f 2E(k) have point nodes atkx5ky50.

The gap nodes disappear only if the interband pairing
teractionsck1

† c2k,2
† ck82c2k8,1 are taken into account. Thes

terms induce a nonzero order parameterD12 , whose mo-
mentum dependence in the triplet channel, according to E
~8! and Table I, is given byD12,G(k); f G(k), where G
5A,B, 1E, or 2E. To see explicitly how the structure of th
nodes in the different components of the gap function
translated into zeros of the spectrum of Bogoliubov quasip
ticle excitations, it is necessary to diagonalize the Ham
tonian of Eqs.~6! and~7!. This gives the following condition
for the energyE(k) of a quasiparticle to be zero at somek:

e1
2 e2

2 1e1
2 uD22u21e2

2 uD11u21e1e2~ uD12u21uD21u2!

1udetDu250. ~14!

The condition for zeros in the excitation energy on the ‘‘1’’
sheet of the Fermi surface@i.e., at e1(k)50# is that
D11(k)5D12(k)50, while for zeros in the excitation en
ergy on the ‘‘2 ’’ sheet @i.e., at e2(k)50# we must have
D22(k)5D12(k)50. Thus a nonzeroD12 will remove the
nodes in the spectrum of elementary excitations. For
ample,D12,A(k); f A(k) does not vanish atkx5ky50, so
that these point nodes should be filled. However, as
cussed above, this effect is expected to be negligibly sm

In the absence of a complete understanding of the mi
scopic mechanism of the superconductivity in ZrZn2, one
cannot tell which order parameter from lists~10! and ~13!
corresponds to the highest critical temperature. For exam
if the superconductivity is due to the exchange by spin fl
tuations, then, at vanishing spin-orbit coupling, the order
rametersD11,A ,D11,B , and D11,2E correspond to the
02451
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p-wave equal-spin-pairing superconducting states studie
Ref. 2; in these terms,D11,1E corresponds tof-wave pairing.
In Ref. 4, a simple phenomenological model of the pha
diagram of ZrZn2 was proposed. The basic idea was that
underlying order parameter is a vector quantity transform
according to a three-dimensional representation of the cu
group. Then, the exchange-type interaction of the magn
moments of Cooper pairs with the ferromagnetic magnet
tion splits the superconducting critical temperature and lo
ers the dimensionality of the order parameter from three
one. In this model, the order parametersD1E andD2E are the
possible ones, and the experimental determination of the
symmetry will thus be helpful in assessing the validity of t
model.

A similar analysis can be done if the easy axis for ma
netization is@111#. In this case, the band spectra are invaria
under the operations from the groupD3d , the relevant mag-
netic point group isD3(C3), and transformation rules~8! and
~9! for the order parameter are replaced by

D11~k!→e22ip/3D11~C3xyz
21 k!,

D22~k!→e12ip/3D22~C3xyz
21 k!, ~15!

D12~k!→D12~C3xyz
21 k!

under rotationsC3xyz, and

D11~k!→D11
* ~C2x̄y

21 k!,

D22~k!→D22
* ~C2x̄y

21 k! ~16!

D12~k!→D12
* ~2C2x̄y

21 k!,

under the combined operationKC2x̄y .
Using Table II, we obtain the followingk dependences o

the order parameter at the pseudospin-up sheet:

D11,A~k!5 ihAf 1E
~k!,

D11,1E~k!5 ih1E
f 2E

~k!, ~17!

D11,2E~k!5 ih2E
f A~k!.

As above, the factorsi here guarantee that the action
KC2x̄y on hG is equivalent to complex conjugation.

TABLE II. The character table and the examples of the o
basis functions for the irreducible co-representations of the m
netic point groupD3(C3), v5e2p i /3. The overall phases of the
basis functions are chosen so thatKC2x̄y f G(k)5 f G(k).

G E C3xyz C3xyz
21 f G(k)

A 1 1 1 kx1ky1kz

1E 1 v v* e2 ip/3kx2ky1eip/3kz

2E 1 v* v eip/3kx2ky1e2 ip/3kz
2-4
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SYMMETRY OF THE ORDER PARAMETER IN . . . PHYSICAL REVIEW B66, 024512 ~2002!
A consequence of the above results is that there are
gap nodes forD2E, whereasDA and D1Ehave point nodes
where the linekx5ky5kz cuts the Fermi surface. For com
pleteness, we also give the expressions for the basis f
tions of the magnetic point groupD3(C3) in terms of the
lattice Fourier series in the nearest-neighbor approximat

f A~k!5S1
11S2

11S3
11 il1~S1

21S2
21S3

2!,

f 1E
~k!5v* S1

11vS2
11S3

11 il2~v* S1
21vS2

21S3
2!,

f 2E
~k!5vS1

11v* S2
11S3

11 il3~vS1
21v* S2

21S3
2!,

where S1
65sin(kxa/26kya/2), S2

65sin(kya/26kza/2), and
S3

65sin(kza/26kxa/2), and l1,2,3 are arbitrary real con-
stants.

For the order parameter at the ‘‘2 ’’-sheet of the Fermi
surface:

D22,A~k!5 ihAf 2E
~k!,

D22,1E~k!5 ih1E
f A~k!, ~18!

D22,2E~k!5 ih2E
f 1E

~k!.

There are no gap nodes forD1E
, but DA andD2Ehave point

nodes atkx5ky5kz . If the interband hybridization of the
form ck1

† c2k,1
† ck82c2k8,2 is taken into account, the orde

parameters are nonzero on both sheets of the Fermi sur
From Eqs. ~17! and ~18!, we see that bothD11,A(k)
; f 1E

(k) and D22,A(k); f 2E
(k) vanish on the linekx5ky

5kz . The gap nodes disappear only in the presence of
interband pairingck1

† c2k,2
† ck82c2k8,1 , which induces the

order parameterD12,G(k); f G(k), whereG5A, 1E, or 2E.
Again, we expectD12 to be negligibly small in the presenc
of a large exchange field.

The presence of gap nodes would manifest themselve
power-law temperature dependences of the thermodyna
and transport properties.8 For example, the electronic specifi
heat at low temperatures should beC(T)/T5g01g1T for
the line nodes andC(T)/T5g01g1T2 for the point nodes.
The temperature-independent contributions on the right-h
side of these equations come from the normal excitation
the unpaired sheet of the Fermi surface. If the magnitude
both order parametersD1

2 areD2
2 are comparable~we expect

this to be the case only if the spin-orbit coupling is stro
enough!, then g0 is absent and a power-law dependen
should be observed.

One of the most powerful methods of determining t
presence and the location on the Fermi surface of gap n
in unconventional superconductors has been ultras
attenuation.15–19 The method is based on finding whic
sound waves are particulary weakly attenuated by the n
quasiparticles. Nodal quasiparticles are ‘‘inactive’’ in atten
ating a particular sound wave if the electron-phonon inter
tion for the nodal quasiparticle with the particular sou
wave is zero. Symmetry arguments determining the inac
nodes were developed in a previous paper.19 We refer to that
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paper for a detailed treatment of the basic ideas, and h
give an extension of the arguments which is necessary
treating magnetic groups.

If a symmetry operation of the crystal~i.e. an element of
its magnetic point group! leaves the wave vectork charac-
terizing a given electron state invariant, then the interact
of this electron with certain phonons can be shown to
zero. Consider a phonon of wave vectorq and polarization
direction e. The interaction of the given electron with th
given phonon can be shown to be zero if the symmetry
eration causes an odd number of changes of sign of the
quantities iq and e ~the factor i is important because th
time-reversal operation contains complex conjugation!. The
transformation rules fork, q, ande are as follows:~i! Under
the point-group operationsR, they transform like polar vec-
tors, i.e.,k→R21k, etc. ~ii ! Under the combined operation
KR, k→2R21k, e→R21e, and q→2R21q, so that iq
→ iR21q. For example, suppose that the magnetic gro
contains the symmetry elementKC2x . The wave vectorsk of
electrons lying in thekx50 plane are invariant underKC2x .
According to the rule just stated, these electrons have z
interaction with transverse phonons having their wave v
tors along thex axis because, under the operationKC2x , iq
remains invariant, bute changes sign.

As shown above, one should expect the order param
in ZrZn2 to have nodes ifMi@001#, when the magnetic poin
group isD4(C4). The gap nodes are always active for long
tudinal sound waves. If the order parameter has point no
@DA or DB in Eqs.~10!#, then these point nodes are inactiv
for the transverse wavesT100 andT110 polarized either in
the basal plane or along@001#, and also for the wavesT001
polarized either along@100# or @110#. ~By definition, aThkl
sound wave is a transverse wave having its wave vectoq
along the@hkl# direction.! If the order parameter has lin
nodes in the planekz50 @D1E or D2E in Eqs. ~10!#, then
these line nodes are inactive for the transverse wavesT100
and T110 polarized along@001#, and also forT001 waves
polarized either along@100# or @110#. Note that the attenua
tion of theT100 andT110 waves polarized in the basal plan
can be used to distinguish between the equatorial line no
and the point nodes, because the former are active but
latter are inactive. The presence of unpaired electrons on
of the sheets of the Fermi surface will not cause difficult
in symmetry determination by ultrasonic attenuation, as t
will simply make a contribution to the low-temperatu
temperature-independent background, which is easily dis
guished from the temperature-dependent contribution of
gapped sheet~or sheets! of the Fermi surface.

To summarize, we have studied the symmetry of the
perconducting order parameter in ZrZn2. If the spin-orbit
coupling is weak then superconductivity should appear
only one of the sheets of the Fermi surface. The interb
scattering can, in principle, induce nonzero order parame
on other sheets and also fill the gap zeros, but we exp
these effects to be small. The symmetry of the order par
eter depends on the direction of the easy axis for magne
tion. If Mi@001#, then the magnetic point group isD4(C4),
and the order parameter goes to zero on the linekx5ky50
2-5
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for the gap symmetriesA and B, or on the planeskz50,
6p/a for the symmetries1E and 2E, on both sheets of the
Fermi surface. The positions of the gap zeros can be pro
by ultrasonic attenuation measurements, and to assist in
design of appropriate experiments we have given a deta
discussion of the zeros of the electron-phonon interaction
ferromagnetic ZrZn2 which are imposed by the magnet
point symmetry. IfMi@111#, then the magnetic point grou
is D3(C3), and the order parameter has point zeros on
line kx5ky5kz on both sheets of the Fermi surface, for t
gap symmetryA, and on one of the sheets, for the symm
si

s.

e
P
-

s
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tries 1E and 2E. It should be possible to fix the magnetiz
tion densityM along an arbitrary crystallographic directio
by the application of an external magnetic field, and henc
determine the gap structure for ZrZn2 for M along both@001#
and @111# and to find the changes that occur whenM is
rotated from@001# to @111#.
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