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Dynamic transition and resonance in current-driven arrays of Josephson junctions
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We consider a two-dimensional fully frustrated Josephson-junction array, which is driven uniformly by
oscillating currents. As the temperature is lowered, there emerges a dynamic phase transition to an ordered
state with a nonzero dynamic order parameter for small currents. The transition temperature decreases mono-
tonically with the driving amplitude, approaching zero at a certain critical value of the amplitude. Above the
critical value, the disordered phase and the dynamically ordered phase are observed to appear alternatively. The
characteristic stochastic resonance behavior of the system is also examined, which reveals that the resonance
behavior of odd and even harmonics can be different according to the zero-temperature state.
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[. INTRODUCTION riod of the uniform oscillating current, and investigate its
behavior with respect to the amplitude and the frequency of
Dynamic responses of cooperatively interacting many+the driving current as well as to the temperature. At zero
body systems to time-driven perturbations are extremely imtemperature, as the driving amplitude is raised, the dynami-
portant technologically and involve intriguing physics, re-cally ordered phase and the disordered one are observed to
sulting in intensive investigation in recent years. Among the2ppear alternatively. As the temperature is increased, the or-
well-known systems is a simple kinetic Ising model underdered phase undergoes a dynamic phase transition to the dis-
oscillating magnetic fields-3 It has been revealed that spon- ordered phase. Through the use of the finite-size scaling
taneous symmetry breaking takes place at a finite strength @nalysis, the dynamic transition is shown to belong to the
the oscillating field-? and that in two dimensions the transi- Same universality class as the equilibrium Hansition
tion belongs to the same universality class as the equilibriurRresent in the FRY. We also examine the SR phenomena in

two-dimensional(2D) Ising modeP Stochastic resonance the system. As manifested by the signal-to-noise r&NR)
(SR phenomena have also been studied. at several harmonics, odd and even harmonics are revealed to

Another interesting example is the dynamics of the fullyexhibit different SR behaviors. It is discussed in view of the
frustrated Josephson-junction arrdFFJJA, which pos- variation of the zero-temperature states with the driving cur-
sesses the same Zymmetry as the Ising model in addition rent amplitude.
to a continuous () symmetry. Unlike the Ising model, the This paper consists of five sections: Section Il introduces
FFJJA has real intrinsic dynamics derived from the Josepha fully frustrated Josephson-junction array, driven uniformly
son relations, and thus grants direct experimental realizay alternating currents, together with a dynamic order pa-
tions. There have been some studies of the dynamic propef@meter describing the dynamic transition of the system, and
ties of the FFJJA® and recently dynamic transitions were Presents the zero-temperature behavior. In Sec. Il the behav-
also investigated in a FFJJA driven by uniform dc currgnts ior of the dynamic order parameter at finite temperatures is
or staggered oscillating magnetic fieldSimilarly to the ki- ~ investigated in detail, on the basis of which the dynamic
netic Ising model, a FFJJA driven by staggered oscillatingPhase diagram is constructed on the plane of the temperature
fields has been shown to exhibit a dynamic phase transitioAnd the driving amplitude. The nature of the transition is also
and a SR behavior. In the presence of weak fields, the dyexamined and the equilibriumy,Ziniversality class is identi-
namic phase transition belongs to the same universality cladid. Section IV is devoted to the power spectrum of the
as the equilibrium Z transition in the fully frustratecY  Staggered magnetization and the corresponding signal-to-
(FFXY) model. At strong fields, in contrast, a different uni- Noise ratio, which reveals the characteristic resonance behav-
versality class has been suggested. ior of the system with the appropriate values of the param-

In this paper, we investigate the FFJJA in the presence dtters. Finally, a brief summary is given in Sec. V.
uniform oscillating currents, which is easier to realize in ex-
periment than a system undgr staggered oscillating magpetic Il. FULLY FRUSTRATED ARRAY DRIVEN BY
flglds. The.dynarrlnc properties of .the system are examined ALTERNATING CURRENT
with attention paid to the dynamic transition and the SR
phenomena. At low temperatures the chirality in the FFJJA To begin with, we consider the equations of motion for
displays an antiferromagnetic ordering. To describe the dyphase angles;} of the superconducting order parameters in
namic transition associated with the antiferromagnetic ordergrains forming arL X L square lattice with a unit lattice con-
ing of the chirality, we introduce a dynamic order parameterstant. Within the resistively-shunted-junction model under
which is the staggered magnetization averaged over one péie fluctuating twist boundary conditioRshey read.
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where the primed summation runs over the nearest neighbors |_[ |_l
of grain i and the thermal noise curreny;; satisfies

(7i;() (L)) =2T S(t—t") (S 81 — 8, 5) at temperature m() 0 r

T. We have used the abbreviati&nijz¢i—¢j—Aij andr;
=r;—r;, with r;=(x;,y;) denoting the position of grain —U U U [
Note thatr;; for nearest-neighboring grain is a unit vector

since the lattice constant has been set equal to unity. We have . . . .
also written the energy and time in units 6i./2e and o 5 10 15 20 25

hl2eRi., respectively, with the critical current and the ¢

shunt resistanc® The dynamics of the twist variables ] ) o

=(A,,A,), which are included in the fluctuating twist FIG. 1. Time evolution of the staggered magnetization at zero
X152y/) .. _ .

boundary conditions to allow fluctuations in the phase differ-€mperature for a driving frequendy/27=0.08 and amplitudes

. . =0.98,1.03,1.50, and 2.0 from above. For clarity, the datd for
ence across the whole system, is governed by the equatlorigolgs and 1.03 are shifted upward by 3.5 and 2.5, respectively,

dA 1 whereas those fdry=2.0 are shifted downward by 2.5.
T= 5 2 sin(d— A0+ 7y ~losin(Qb),

dt |2 {p, Typically, data have been averaged over 5000 driving peri-
ods after the data obtained from the initial 1000 periods were

da, 1 e discarded; the appropriate stationarity has been verified. In
o2 (%y sin(ij = Ay)+ 74, (2)  addition, five independent runs have been performed, over

which the average has also been taken, and systems of size
where 2, denotes the summation over all nearest-up to L=32 have been considered. .
neighboring pairs in thea(=x,y) direction, 7, satisfies I_n the FFJJA,. it |s.we_II known that there are two kinds of

B 5 a antiferromagnetic chirality ordering at zero temperature. The
<7]Aa(t+r)_7]Aa’(t_)>___(2T/L _) o(7) Oaa’ :?md the oscillating e ction of uniform oscillating currents plays the role of
currentl ,sin((1t) is injected in thex direction. In the Landau tilting sinusoidally the 2D “egg-carton” lattice pinning po-

gauge, the bond angl;; , given by the line integral of the tentjal. Accordingly, if the driving amplitudé, of the in-

vector potential, takes the values jected currents is large enough to overcome the lattice pin-
0 - ning potential, oscillations between the two ground states are
A= for rj=ri+x expected to take place. In Fig. 1, we display the time evolu-

T g for r=r, +9‘ tion of the staggered magnetizatioift) at zero temperature,

N ) ] evolved from the initial conditioom(t=0)=1 for a driving
For the study of the transition associated with thesym-  frequency()/27=0.08. For small 5, the system is shown to
metry in the FFJJA, it is convenient to consider the chwahtystay in the state witlm(t) =1 in spite of the driving current.

When the amplitude exceeds the valy€’~1.01, the sys-

C(R,t)zsg,{z sir[;bij(t)—rij CA(1)] (3) temis driven out of then=1 state and the staggered mag-
P netization oscillates betweem= =1, this arises since the
and the staggered magnetization chirality lattice moves coII_e(_:tiver over th_e_latti_ce potential
under a large current driving. If the driving induces the
1 chirality lattice to move over only a single lattice barrier in
m(t)= P ER: (—1)XHIC(R1), (4) the first half of the period, the system oscillates between the

two ground states symmetricaligee the staggered magneti-

where =, denotes the directional plaquette summation ofZation forlo=1.50 in Fig. 3. On the other hand, a further

links around the dual lattice sitR=r;+(1/2)(X+). To increase ofl ; allows the chirality lattice to go over another
=r; . ; ; i o

probe the dynamic transition in the presence of an oscillatingsmer' and i’;elﬁ asymngjetrlc ostcnltat(ljolr)ls ':)hf th? systen(; be-

uniform current, we define the dynamic order parameter a een ground states, as demonstrated Dy the staggered mag-

the staggered magnetization averaged over one period of ghetization forl0f2.0 |n_F|g. L _The symmetry is re_stored _and
oscillating current: broken alternatively with the increase kyf, which is mani-

fested by the zero-temperature behaviooivith |4 in Fig.
Q 2. As expected in Fig. 1, the dynamic order param&er
Q=5_ jg m(t)dt‘. (5 which is unity below! (), is shown to decrease abruptly to
zero for I>1{). A further increase of, reveals that the
In the numerical calculation, the sets of the equations oflynamically ordered stateQ0) and the disordered one
motion in Egs.(1) and (2) are integrated via the modified (Q=0) appear alternatively in the system. It is observed that
Euler method with time steps of siz&t=0.05. We have the saturation value d is less than unity and that the peak
varied the step size, only to find no essential differencevalue of Q in each ordered region decreases monotonically
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FIG. 2. Dynamic order parameter as a function of the driving 0 5 o1 02 0'3 VY
amplitude at zero temperature in a system of $izel6 with (a) (b) ’

Q/27=0.08 and(b) Q/27=0.16.
FIG. 3. Dynamic order parameter as a function of the tempera-

with I. Also note that the increase of the driving frequencyture in the system of siz& =16 for various driving amplitudes

Q enhances the value df” and moves the dynamically (a) 1,=0.3(0), 0.5(), and 0.8¢\), and (b) |,=1.0200),

ordered regions to larger values lgf, which reflects that a 1.04(0),1.06(A). Error bars have been estimated from standard

higher frequency implies a shorter period and accordinglydeviations; in(a) they are not larger than the sizes of the symbols.

that a larger driving is necessary to move the chirality latticeLines are merely guides to the eyes.

over the lattice barrier within theshortej period. Except for

the scale, however, the overall behavior at zero temperatu

does not change qualitatively with.

rFig. 3(b) shows that the zero-temperature value(®) is
feduced rapidly with the increase kyf. Here it is interesting
that the apparent peak ¢Q) is observed at a certain finite
temperature rather than at zero temperature.

1. DYNAMIC TRANSITION To estimate the transition temperature, we consider Bind-

We next investigate the effects of the temperature. At sufé"s cumulants

ficiently high temperatures, thermal fluctuations are domi- (Q%
nant, so that the influence of the driving current and the U=1- HODE (6
lattice pinning potential can be neglected. Consequently, at Q9

high temperature, the staggered magnetization should fluct&ince this quantity is size independent at the transition tem-
ate randomly with time, resulting in a vanishing dynamic perature, the transition temperature can be determined from
order parameter. On the other hand, at low temperatureshe crossing point ofJ, for several sizek. In Fig. 4, we plot
where thermal fluctuations are small, the system is expecteithe resulting phase diagram on tfie- 1, plane, displaying

to be driven mainly by oscillating uniform currents, exhibit- dynamic phase boundaries. The transition temperature ini-
ing a behavior similar to that at zero temperature. Accord4ially decreases monotonically to zero as the driving ampli-
ingly, we expect a phase transition between the dynamicallyudel is increased. However, a further increase ptirives
ordered phase and the disordered one as the temperaturethig system into another ordered region, where the transition
varied. Figure 3, in which the ensemble average of the dytemperature first grows with the driving current then reduces
namic order parametgiQ) is plotted as a function of the to zero. The zero-temperature results shown in Fig. 2 suggest
temperatureT for various driving amplitudes, explicitly that these additional ordered regions emerge repeatedly with
shows the existence of such a transition between the dynamihe amplitudd , raised although the peak values of the tran-
cally ordered phase and the disordered one. The dynamagition temperature in these regions should decrease lyith
order parameter, starting from zero at high temperatures, dés the driving frequency is increased, on the other hand,
velops as the temperature is lowered. It then grows rapidlyhe transition temperature also increases and the dynamically
and eventually saturates to a zero-temperature value as tedered region expands on tfe-1, plane. It is thus con-
temperature approaches zero. In particular) 5oabovel(°), cluded that high driving frequency helps to maintain the dy-
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FIG. 4. Dynamic phase diagram on tfie- 1, plane for driving
frequencied)/277=0.08(0) and 0.16{\). The boundaries are de-
termined by the crossing points of Binder’'s cumulants for sizes e,
=8,16, and 24. Again error bars have been estimated from standard %

%
a

deviations and lines are merely guides to the eyes.

namic order, which is consistent with the zero-temperature
result in Fig. 2. It should also be noted here that cooling and j
heating curves for the dynamic order parameter do not ex- %S

100) Al
(=]
[4,]

hibit any appreciable hysteresis even in the strong-current
regime.

To probe the nature of the transition, we consider the scal- 0
ing relation for the dynamic order parameter -3 0 3 6

(b) (T-T.) L
(Q)=L"A"[(T-ToL¥], )

and plot(Q)L#” versus T—T)LY" for various sizes. Fig-

ure 5 exhibits the resulting scaling plots for the driving am-, )|~ 0.3 and(b) 1 ,=2.2. The data fitting has been made with
plitude () 1o="0.3 and(b) 19=2.2, with the critical expo- the equ(i)librium valueso of the critical expoger(@ v=0.82 and
nents: (@ »=0.82 andpB/v=0.11; (b) v=0.95 andB/v g/, —0.11 and(b) »=0.95 andB/»=0.13.

=0.13. Since the critical exponents {a) agree well with
those for the equilibrium £ transition in the FKRY
model>°the nice collapse of the data suggests strongly th
the dynamic transition in the first ordered regifire., I,
<I§)°) in Fig. 2(a)] belongs to the same universality class as
the equilibriumZ, transition of the FKKY model. A similar s
conclusion was also reached for the FFJJA under weak stag- SNR=10log o _}_ (8)
gered oscillating field$.On the other hand, the values(in), N

corresponding to the second ordered region, appear some- | o . .

what larger than the critical exponents for the equilibriggn "€ SignalS is given by the peak intensity of the power
transition. However, due to large fluctuations, the numericafP€ctrum at the driving frequen€y andN represents the the
accuracy in(b) is not so good, yielding reasonable collapsing background noise level, wh|ch is estimated by the average
behavior down tar=0.87 andB/»=0.12. Further, note that PCWer spectrum around the signal peak. We can also define
there does exist rather large discrepancy among the equilitimilar quantities for the higher harmonics of the driving
rium values reported in the literatu?é% which may be frequ_encyQ, the _behawors of which are found to be quite
summed up as follows8=0.11+0.03 and»=0.9+0.1. In  Peculiar as described below. ,

view of this uncertainty, it is also possible to consider the !N Fig. 6, we display typical behavior of the power spec-
values in(b) to be consistent with those for the safegui- UM P(w) at low temperatures for several driving ampli-
librium Z,) transition. Accordingly, we presume that for all Udes. Note the substantial difference according to the driv-
driving amplitudes the dynamic transition in the system beiNg current amplitude, which may be understood in view
longs to the same universality class as the equilibriyn z Of Zéro-temperature states. Fly=0.8, where there is no

transition present in the B&Y model. oscillation of the staggered magnetizatimt) at zero tem-
perature, observed at low temperatures are broad peaks

around odd harmonics as well as sharp peaks at even har-

monics, as shown in Fig.(&). On the other hand, for higher
Finally, we explore the possibility of the stochastic reso-values oflg, corresponding tcQ=0 at zero temperature,

nance phenomena in the FFJJA under uniform oscillatingaddition of thermal noise gradually suppresses the sharp

®as o Al 5

FIG. 5. Scaling plot of the dynamic order parameter vs the tem-
perature for sizek =16(),24(0), and 32(\) with /27=0.08

currents. In numerical simulations, we compute the power
a*§pectrumP(w) of the staggered magnetizatiom(t) and its
SNR, which is defined to be

IV. RESONANCE BEHAVIOR
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Error bars have been estimated from standard deviations; lines are
guides to eyes.
P 10
respectively. It is demonstrated that both the broad peak at
the first harmonics and the sharp one at the second harmon-
ics, which shows up in the presence of the noise, exhibit a
SR behavior. Remarkably, the resonance temperature for the
10° : : : first harmonics is found to be different from that for the
© 0 2 (D‘}Q) 6 8 second harmonics: The former is higher and the dynamic

transition temperature is located between the two resonance
FIG. 6. Power spectrum of the staggered magnetization for sizémperatures. For,=1.2, the SR behavior of the second
L=16 and driving frequency)/27=0.08. The driving amplitude harmonics is again observed, as shown in Figp).8How-
and the temperature afa) 1,=0.8 andT=0.28; (b) I,=1.2 and  ever, the SNR of the first harmonics decreases monotonically
T=0.2, and(c) 1,=2.0 andT=0.3. with the temperaturg¢see Fig. 8a)], indicating that the os-
cillations of the odd harmonics present in the zero-
peaks at odd harmonics while inducing broad peaks at eveigmperature state are simply suppressed by the noise. A simi-
harmonics[see Fig. @)]. When the system enters another lar argument explains the SR behaviors fg=2.0, where
ordered region of Q<1 by a further increase df,, the  only even harmonics exist in the oscillations of the staggered
staggered magnetization exhibits only oscillations of evermagnetization at zero temperature. The thermal noise tends
harmonics at zero temperature, which remain as sharp peaks reduce the oscillations of the second harmonics, which is
at finite temperatures. Here noise again helps to develomanifested by the monotonic decrease of the SNR in Fig.
broad peaks around odd harmonics, and, interestingly, th&@a). In contrast, the SNR of the third harmonics is initially
third harmonics are dominant over the first harmorj@se  enhanced by the weak thermal noise, as shown in Flg. 9
Fig. 6(c)]. These interesting behaviors may be understood as follows:
Such an interesting behavior, depending on the drivingrhe thermal noise, which is not strong enough to destroy the
current amplitude, is expected to bring about rich physics irchirality lattice, is expected to help the chirality lattice move
the SR phenomena. The SNR computed at the first and seover one more lattice barrier if the threshold is not so large.
ond harmonics fot,=0.8 is plotted in Figs. & and 1b),  Accordingly, forl,=1.2 corresponding tQ® =0 at zero tem-
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FIG. 8. Signal-to-noise ratio vs temperature in the system of size FIG. 9. Signal-to-noise ratio vs temperature in a system of
L=16 with )/27=0.08 andl,=1.2 The signal-to-noise ratio is sizeL=16 with }/27=0.08 andl,=2.0 The signal-to-noise ratio
calculated @) at the first harmonics an@h) at the second harmonics. is calculated(a) at the second harmonics ar)) at the third
The leftmost data correspond to the temperafreD.001. harmonics.

perature, the even harmonics which are absent in the groundsg than unity in other ordered regions. It has also been

state are induced by the thermal noise while the odd harmorb'bserved that the increase of the driving frequency tends to

ics are generally suppressed. With the same argument, o Rift the dynamically ordered regions toward larger values of

can expect that fory= 2.0 in the second ordered region, the . . i
odd harmonics exhibit a SR behavior with the even harmon'Ehe driving amplitude. Except for the scale, the overall be

ics decreasing monotonically. At higher values! gfa simi- havior at zero temperature does not change qualitatively with

lar SR behavior is expected for odd and even harmonicghe driving frequency. As the temperature is increased, the
ordered phase undergoes a dynamic phase transition to the

according to the zero-temperature oscillations of the stag-. ) :
gered magnetization. dlsorde_red phgge. We have obtained the phase diagram of the
dynamic transition on the plane of the temperature and the
driving amplitude. Through the use of a finite-size scaling
analysis, the dynamic transition has been shown to belong to

We have examined the dynamic properties of the 2Dthe same universality class as the equilibridgrtransition in
FFJJA driven uniformly by alternating currents, with atten-the FEXY model. We have also examined the SR phenomena
tion paid to the dynamic transition and the SR phenomenan the system. To investigate the phenomena, we calculated
At low temperatures the chirality in the FFJJA displays anthe power spectrum of the staggered magnetization, which
antiferromagnetic ordering. To describe the dynamic transishows a characteristic behavior according to the state at zero
tion associated with the antiferromagnetic ordering of thetemperature. In regions corresponding to finite values of the
chirality, we have introduced a dynamic order parameterdynamic order parameter at zero temperature, broad peaks
which is the staggered magnetization averaged over one pbave been observed around odd harmonics as well as sharp
riod of the oscillating current, and investigated its behaviorpeaks at even harmonics. On the other hand, in regions with
with respect to the amplitude and the frequency of the drivvanishing dynamic order parameters at zero temperature, the
ing current as well as to the temperature. At zero temperaepposite situation has been observed. As manifested by the
ture, as the driving amplitude is raised, the dynamically or-SNR at several harmonics, odd and even harmonics have
dered phase and the disordered one have been observedbieen revealed to exhibit different SR behaviors, which may
appear alternatively. The saturation value of the dynamic orbe understood in view of the variation of the zero-
der parameter is unity in the first ordered region while it istemperature states with the driving amplitude.

V. CONCLUSION
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