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Pseudogap and spectral function from superconducting fluctuations to the bosonic limit
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The crossover from weak to strong coupling for a three-dimensional continuum model of fermions interact-
ing via an attractive contact potential is studied above the superconducting critical temperatureTc . The
pair-fluctuation propagator, the one-loop self-energy, and the spectral function are investigated in a systematic
way from the superconducting fluctuation regime~weak coupling! to the bosonic regime~strong coupling!.
Analytic and numerical results are reported. In the strong-coupling regime, where the pair fluctuation propa-
gator has bosonic character, two quite different peaks appear in the spectral function at a given wave vector, a
broad one at negative frequencies and a narrow one at positive frequencies. The broad peak is asymmetric
about its maximum, with its spectral weight decreasing by increasing coupling and temperature. In this regime,
two crossover temperaturesT1* ~at which the two peaks in the spectral function merge in one peak! andT0* ~at
which the maximum of the lower peak crosses zero frequency! can be identified, withTc!T0* ,T1* . By
decreasing coupling, the two-peak structure evolves smoothly. In the weak-coupling regime, where the fluc-
tuation propagator has diffusive Ginzburg-Landau character, the overall line shape of the spectral function is
more symmetric and the two crossover temperatures approachTc . The analysis of the spectral function
identifies specific features which allow one to distinguish by ARPES whether a system is in the weak- or
strong-coupling regime. Connection of the results of our analysis with the phenomenology of cuprate super-
conductors is also attempted.

DOI: 10.1103/PhysRevB.66.024510 PACS number~s!: 74.20.2z, 74.25.Jb
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I. INTRODUCTION

High-Tc cuprate superconductors are characterized
doping- and temperature-dependent anomalous properti
the metallic and superconducting phases. At low doping,
cuprates display apseudogapin the single-particle excitation
spectra and in the spin susceptibility, above the superc
ducting critical temperatureTc and below a crossover tem
peratureT* . The temperatureT* decreases with increasin
doping and merges eventually toTc close to optimum
doping.1 The pseudogap phase of underdoped cuprate
best characterized by angle resolved photoemission spec
copy ~ARPES! ~Refs. 2–4! and by tunneling experiments.5,6

The pseudogap opening belowT* corresponds to a suppre
sion of the low-frequency differential conductance~which is
connected to the density of states! measured by tunneling
and to a leading-edge shift of the spectral intensity~which is
connected to the spectral function via the Fermi distribut
and a dipole matrix element! measured by ARPES. A
clearly shown by ARPES, the pseudogap is tied to the Fe
surface and its two-dimensional wave-vector dependence
sembles adx22y2 harmonic. Both ARPES and tunneling e
periments suggest that the pseudogap evolves smoothly
the superconducting gap as the temperature is lowered
T* to Tc .

The d-wave-like wave-vector dependence of t
pseudogap, its continuous evolution into the superconduc
gap belowTc , and its tying to the Fermi surface suggest th
the pseudogap phase could be aprecursorof the supercon-
ducting phase~at least in Bi-based compounds for which
detailed ARPES analysis of the pseudogap is available!. Ac-
cording to this interpretation, the crossover temperatureT*
acquires the meaning of the temperature at which fluctua
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pairs start forming without coherence, the latter being not
established owing to large fluctuations of the supercond
ing order parameter. Upon lowering the temperature, the
herence between pairs is established and superconduc
appears. The occurrence of large pair fluctuations in cupr
is related to the quasibidimensionality, as well as to the sh
coherence lengthj0 of the Cooper pairs~typically, j0;10
220 Å).

Within this scheme, the phase diagram of cuprates is
terpreted in terms of acrossoverfrom Bose-Einstein~BE!
condensation of preformed pairs to BCS superconductiv
as the doping is varied.7–19 Heavily underdoped cuprates a
accordingly considered as superconductors in a stro
coupling ~BE! regime with T* @Tc ; optimally doped and
overdoped cuprates are instead more conventional super
ductors in an intermediate- or weak-coupling~BCS! regime
with T* .Tc . The evolution from strong- to weak-couplin
superconductivity as the doping is increased is further s
ported by low-temperature ARPES and tunneling measu
ments in Bi-based compounds of the maximum superc
ducting gapD0, whereby D0 decreases as the doping
increased, withD0.60270 meV in underdoped cuprate
and D0.20230 meV in optimally and overdoped
cuprates.5,6 Moreover, in underdoped Bi-based cupratesD0 is
larger than the bandwidth along theM2Y(X) directions,
suggesting that at least near theM points states with bosonic
character can be formed. Recent ARPES measurement
La22xSrxCuO4 also indicate a similar doping dependence
the gap.20

Recent high-resolution ARPES experiments in Bi22
further suggest that a crossover from weak to strong coup
can even be foundalong the Fermi surface~FS! at fixed
doping.21 Fermionic states near the nodal~N! points of the
©2002 The American Physical Society10-1
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FS ~namely, the points where thed-wave gap vanishes! ap-
pear to be weakly coupled, while states near theM points are
strongly coupled and could display bosonic character.
agreement with the expectation that increasing the coup
should cause an increase of the width of the spectral pe
explicit support to the wave-vector induced crossover alo
the FS is obtained, for instance, from Fig. 2 of Ref. 21. T
ARPES spectral intensities for an optimally doped Bi22
sample reported in that figure show, in fact, that the width
the quasiparticle peak in the normal phase increases a
the FS, as one moves from theN toward theM point. In
particular, near theM points the frequency distribution of th
spectral intensity is broad and flat without any observa
peak, while a broad peak feature is present in the wa
vector distribution. In addition, in Bi2212 at optimum dopin
the band dispersion near theM points along theM2Y(X)
direction is rather narrow (;50 meV), while the band dis
persion along theG2Y(X) directions is considerably large
(;400 meV). For all cuprates for which ARPES measu
ments are available, the Fermi velocityvF is also anisotropic
along the Fermi surface, withvF(N)/vF(M ).3.22 As a con-
sequence, fermionic states near theM points are locally as-
sociated with a small Fermi velocity and strong coupling~hot
fermions!; while fermionic states near theN points are lo-
cally associated with a large Fermi velocity and weak c
pling ~cold fermions!. To account explicitly for the differen
properties about theM and N points, a two-gap model ha
been recently proposed.23

In the present paper, we investigate the evolution of
spectral function from the weak- to strong-coupling regim
in a systematic way, to compare with the evolution of t
spectral function in cuprates by varying doping and wa
vector. More specifically, we aim to account for the charac
of the fermionic states near theM points ~where bosonic
states can be formed upon reducing the doping due to thehot
character of these states! and to follow the wave-vector in
duced crossover along the Fermi surface. The local chara
of the fermionic states in wave-vector space further ena
us to use a simple isotropic attraction between electro
which gives rise in the superconducting state to a gap w
s-wave symmetry.

Two different ~albeit related! kinds of approaches for th
pseudogap state can be identified within the pairing scena
On the one hand, owing to the short coherence length and
large value of the superconducting gap about theM
points,7–16,18,19the superconducting phase of underdoped
prates is interpreted as intermediate between a BCS
with extended pairs and a Bose-Einstein condensate
preformed~local! pairs. Within this view, due to strong- o
intermediate-coupling effects, pairing correlations surv
well above Tc and determine a pseudogap opening wh
coupled to the fermions. On the other hand, the second
proach emphasizes the relevance of phase fluctuations o
superconducting order parameter, owing to the low value
the plasma frequency and the quasibidimensionality of
cuprates.24–27 Within this view, the amplitude of the loca
order parameter is established atT* , even though phase co
herence and hence long-range superconductivity occur
the lower temperatureTc .
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The approach we follow in this paper belongs to the fi
group of the pairing scenario. Specifically, we investigate
role played by pair fluctuations in the pseudogap openi
following the BCS to Bose-Einstein crossover from weak
strong coupling. To this end, we introduce a simplified m
croscopic model representing a three-dimensional~3D! con-
tinuum of fermions mutually interacting via an attractiv
contact potential, which can be parametrized in terms of
scattering length. This 3D model allows us to considera
simplify the numerical calculations as well to obtain analy
results~at least in some limits!, yet preserving the qualitative
features obtained for more realistic models, such as the t
dimensional negative-U Hubbard model.28–31

We examine initially the two-particle propagator in th
particle-particle channel, and evaluate the pair-fluctuat
propagatorG(k,v) as a function of wave vectork and fre-
quencyv. We further analyze thesingle-particlepropagator,
and evaluate the self-energyS(k,v) and the spectral func
tion A(k,v) within the non-self-consistentt-matrix approxi-
mation. In the strong- and weak-coupling regimes, we d
cussanalytic forms for the self-energy, and comment on t
main differences in the line shape ofA(k,v) between the
two regimes. The spectral weight of the incoherent peak
appears inA(k,v) and the temperature dependence of
chemical potential are also discussed. In the intermed
~crossover! region ~where analytic calculations are not fe
sible! only numerical results are presented. Our findings
different characteristic features occurring forA(k,v) in dif-
ferent coupling regimes are then organized in a system
way, and a criterion to distinguish by ARPES experime
whether an interacting fermion system is in the stron
intermediate-, or weak-coupling regime is discussed. In
strong-coupling regime, we find it is appropriate to introdu
two different crossover temperatures (T1* and T0* ) to de-
scribe the peculiar evolution of the spectral function for
creasing temperature. We also show how these two temp
tures merge to a single crossover temperature (T* ) as the
coupling is decreased. A detailed comparison of ARPES
periments with our analysis of the spectral function in diffe
ent coupling regimes is eventually attempted. Although
might at first appear that our model could not be direc
applied for comparison with ARPES experiments in c
prates, this comparison is attempted by invoking the wa
vector-induced crossover mentioned above. Even tho
some parts of our analysis and results have been alre
presented~albeit for different models and/or with differen
methods! in previous work,28,16,17,19our approach should be
regarded as more systematic and complete than others.

The plan of the paper is as follows. In Sec. II we intr
duce the microscopic model and discuss the relevant e
tions for the spectral function and related quantities. In Se
III and IV we report the results for two- and single-partic
properties, respectively, discussing the evolution of the p
fluctuation propagator and of the spectral function from
superconducting fluctuations regime~weak coupling! to the
bosonic limit ~strong coupling!. In Sec. V we present a de
tailed comparison of our results with ARPES experimen
Section VI gives our conclusions.
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PSEUDOGAP AND SPECTRAL FUNCTION FROM . . . PHYSICAL REVIEW B66, 024510 ~2002!
II. RELEVANT EQUATIONS FOR THE SPECTRAL
FUNCTION AND RELATED QUANTITIES

In this section, we set up the relevant equations to foll
the evolution of the single-particle spectral function and
two-particle fluctuation propagator from weak to strong co
pling. To this end, we consider a system of fermions emb
ded in a three-dimensional continuum and mutually intera
ing via an effective short-range attractive potentialv0d(r
2r 8) of strengthv0, wherev0 is a negative constant. For th
3D continuum model we are allowed to take the limit of
strictly short-range interaction, thus relating to the fermio
scattering lengthaF by a suitable regularization procedur
Knowledge of the detailed form of the fermionic interactio
is, in fact, not required for studying the main features of
evolution from weak to strong coupling. The many-body d
grammatic structure for the single- and two-particle Gree
functions gets in this way considerably simplified, while pr
serving the physical effects of pseudogap opening.32 ~For a
detailed discussion of this model, see Ref. 33.!

For the attractive fermionic interaction of interest, t
scattering lengthaF changes from being negative~when the
two-body problem fails to support a bound state! to being
positive ~when the bound state is eventually supported
increasing the interaction strength!, and diverges when the
coupling strength suffices for the bound state to appear.
dimensionless parameterkFaF ~wherekF is the Fermi wave
vector! thus locates the side of the crossover one is exam
ing and how close to the crossover region one is. Spe
cally, kFaF is small and negative in the weak-coupling r
gime, diverges in the intermediate~crossover! regime, and
eventually becomes small and positive in the strong-coup
regime. For this reason, driving the crossover by varyingkF

while keepingaF fixed requires one to change discontinuos
the sign ofaF at the value (kFaF)2150.

The diagrammatic scheme we consider is based on
non-self-consistentt-matrix approximation, constructed wit
‘‘bare’’ single-particle Green’s functions@with the inclusion,
however, of the dressed chemical potential and of an a
tional constant energy shift~to be discussed below! which is
relevant to the symmetry of the spectral function#. This
choice embodies the physics of the pseudogap state, bec
in the weak-coupling regime it describes the Ginzbu
Landau superconducting fluctuations aboveTc ,34 while in
the strong-coupling regime it describes the formation of n
interacting bosons~fermionic bound states!.35

The set of relevant equations for the two-particle Gree
function in the particle-particle channel~i.e., the pair-
fluctuation propagator!, the single-particle Green’s function
and the self-energy is the following:

S~k,vn!52T(
n
E d3q

~2p!3
G (0)~q,Vn!

3G(0)~q2k,Vn2vn!, ~1!
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G (0)21
~q,Vn!52

m

4paF
2E d3k

~2p!3

3FT(
n

G(0)~k,vn!

3G(0)~q2k,Vn2vn!2
m

k2G , ~2!

G21~k,vn!5G(0)21
~k,vn!2@S~k,vn!2S0#, ~3!

n52T(
n

ei01vnE d3k

~2p!3
G~k,vn!. ~4!

Here,G(0)(k,vn) is the ‘‘bare’’ fermion propagator given by
G(0)21

(k,vn)5 ivn2j(k) @j(k)5k2/(2m)2m8 being the
free-particle dispersion measured with respect to the re
malized chemical potentialm85m2S0, where m is the
physical chemical potential andS0 the constant self-energ
shift mentioned above#, m is the free-fermion mass, andvn
5pT(2n11) (n integer! and Vn52pTn (n integer! are,
respectively, fermionic and bosonic Matsubara frequencie
temperatureT. The chemical potential is eliminated in favo
of the densityn via Eq.~4!. The constant self-energy shiftS0
is given by ReS(k5km8 ,v50,T;T* ) where km8
5A2mm8. It turns out that this shift is non-negligible only i
the weak- to intermediate-coupling regime, where it is
most temperature independent fromT to T* . ~In this cou-
pling regime,T* 5T0* 5T1* is the temperature at which th
pseudogap disappears.! In practice, we will take S0
5ReS(k5km8 ,v50,T5Tc) in the weak- to intermediate
coupling regime, while we shall neglectS0 altogether in the
intermediate- to strong-coupling regime. Inclusion of th
self-energy shift amounts to a partial self-consistency dre
ing of the single-particle Green’s functionsG(0), and corre-
sponds to a complete description of the high-temperature
gion.

After analytic continuation to the real frequency axis36

the imaginary part of the retarded self-energy can be writ
at this order of approximation in the form

Im S~k,v!52E d3q

~2p!3
$b@v1j~q2k!#1 f @j~q2k!#%

3Im G (0)@q,v1j~q2k!#, ~5!

where f (x)51/(ebx11) is the Fermi distribution andb(x)
51/(ebx21) is the Bose distribution, withb51/T. Hereaf-
ter, analytic continuations are meant to produce retarded~R!
functions. Once the imaginary part of the self-energy
evaluated as above, its real part ReS(k,v) is obtained via a
Kramers-Kronig transform. The real-frequency formulati
~5! allows for high accuracy of the numerical calculation
and avoids the problems of dealing numerically with analy
continuation from the imaginary frequency axis.
0-3
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The spectral functionA(k,v) for the single-particle fer-
mionic excitations of interest is obtained from the imagina
part of the retarded Green’s functionGR(k,v) via the rela-
tion

A~k,v!52
1

p
Im GR~k,v!. ~6!

In terms of the real and imaginary parts of the self-ener
the spectral functionA(k,v) has the form

A~k,v!5
2Im S~k,v!/p

@v2j~k!2ReS~k,v!1S0#21@ Im S~k,v!#2
.

~7!

The set of equations~1!–~5!, together with the definition
of the spectral function~7! and the prescription for analyti
continuation to real frequencies, allows us to study in asys-
tematic way with limited computational effort two- and
single-particle properties over a wide range of parame
~namely, coupling, density, and temperature!, following the
crossover from weak to strong coupling.

A few additional comments are in order at this point abo
the choice~1! of the self-energy. In the weak-coupling re
gime and at high enough temperature, the expression~1! rep-
resents the leading term of a low-density expansion fo
Fermi system even when the interaction is attractive.33 Upon
approachingTc , the expression~1! can alternatively be in-
terpreted as representing the coupling of a bare fermion w
pairing fluctuations. In the strong-coupling regime, the e
pression~1! represents instead a ‘‘free’’ boson coupled to
bare fermion, and is known to produce a shadow-band st
ture in the spectral function at negative frequencies.

Finally, we recall that inclusion of full self-consistency
the single-particle Green’s functions entering Eq.~1! can be
safely dismissed@at least in the weak- and strong-couplin
regimes, where the use of expression~1! can be justified to
start with#, as discussed in Ref. 33. In contrast to the no
self-consistentt-matrix approximation used in Eqs.~2!–~4!,
the self-consistentt matrix uses full self-consistent Green
functions but does not include vertex corrections in the s
energy. As remarked in Ref. 31, the different levels of a
proximation for vertexes and single-particle Green’s fun
tions may then lead to unphysical results for the pseudo
in the spectral function, in a similar way to what happens
the 2D repulsive Hubbard model.38 The important point to be
emphasized is that, providedG(0) in Eqs. ~1! and ~2! con-
tains the dressed chemical potential obtained from Eqs.~3!
and ~4!, this set of equations interpolates smoothly betwe
weak- and strong-coupling limits and provides a reasona
description of both limits. A comparison between our resu
for the continuum model and those available for the latt
model will be made in Sec. VI, with the outcome that t
main qualitative features remain the same in the two mod

III. PAIRING FLUCTUATIONS FROM WEAK
TO STRONG COUPLING

In this section, a systematic study of the crossover fr
the superconducting fluctuation~weak-coupling! regime to
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the bosonic~strong-coupling! regime for the pair-fluctuation
propagator is reported via both analytical and numerical c
culations, for a wide temperature range aboveTc . This study
is preliminary to the discussion of the spectral function v
the self-energy~1!, presented in the next section.

The pair-fluctuation propagatorG (0)(q,Vn) within the
non-self-consistentt-matrix approximation is given by Eq
~2!. We shall examine, in particular, its wave vector and f
quency dependence for all coupling regimes.

Being interested innormal-phaseproperties of the fermi-
onic system, knowledge of the superconducting critical te
peratureTc is required at the outset to insure thatT>Tc . To
identify the critical temperatureTc , we rely on the condition
that the fluctuation propagator has a pole atTc for vanishing
wave vector and frequency, namely,G (0)21

(q50,Vn

50;m,T5Tc)50. This condition~known as the Thouless
criterion! taken alone is equivalent to the BCS equation
the critical temperature in the weak-coupling limit. In add
tion, when coupled to the density equation~4! to fix the
chemical potential, it yields the value of the Bose-Einste
condensation temperature in the strong-coupling limit.

The Thouless criterion provides a temperature-depend
critical value for the chemical potentialmc(Tc)5m(n,Tc),
with m(n,T) obtained from the density equation. In Fig.
the critical chemical potential and the normal-phase chem
potential are reported for different values of (kFaF)21 in the
strong- to intermediate-coupling regime. We have verifi
that in the high-temperature limit the chemical potent
m(n,T) tends to its classical value m(n,T)
51.5T ln(1.898TBE/T) for all densities (TBE53.31nB

2/3/mB

being the Bose-Einstein condensation temperature!.39 Note
that in the strong-coupling regime, i.e., at low density and
bumu@1, m approaches the value2e0/2, where e0

5(maF
2)21 is the binding energy of the associated two-bo

problem. In the intermediate-coupling regime,m initially in-
creases as the temperature is increased, reaches a maxi
and eventually decreases, tending to the classical beha
The temperature where the maximum is located turns ou
be smaller than the binding energye0 and does not relate to
specific changes of single-particle properties in the strong

FIG. 1. Critical chemical potentialmc(Tc) ~full line! and
normal-phase chemical potentialm(n,T) for different values of the
density expressed in terms of (kFaF)21 ~broken lines!, as functions
of temperature. The values of (kFaF)21 are 1.33, 0.96, 0.76, 0.60
and 0.52 from bottom to top.
0-4
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intermediate-coupling regimes. In the weak-coupling regim
on the other hand, this temperature turns out to coincide w
the crossover temperatureT* where pair fluctuations becom
manifest and a pseudogap opens.

In the intermediate- and weak-coupling regime, the pr
ence of the maximum inm(T) is connected with the fermi
onic degrees of freedom, and in particular with the open
of a pseudogap at the Fermi surface which tends to dep
the chemical potential upon lowering the temperature~in a
similar fashion to what happens when a real gap opens
BCS superconductor belowTc). In the weak-coupling re-
gime, the temperature interval where the pseudogap is fi
is very narrow and the maximum ofm(T) approaches the
critical line mc(Tc), becoming in practice not visible both i
our results and in Monte Carlo simulations. The presenc
a maximum ofm(T) @with the ensuing nonmonotonic beha
ior of m(T)# is clearly observed in Monte Carlo simulation
of the 2D attractive (s-wave! Hubbard model in the
intermediate-coupling regime~see Fig. 6 of Ref. 29!, while
the presence of the maximum is somewhat debated when
self-consistentt-matrix approximation is used.28,40 In the
strong-coupling regime, the fermionic degrees of freed
are exponentially suppressed according tof (j)
;exp(2bumu) and the above maximum is progressive
shifted toward zero temperature for increasingbumu, thus
recovering in the extreme strong-coupling limit the behav
of a free Bose gas via the relation 2m52e01mB .41,42,8We
have verified that in the strong- and intermediate-coupl
regimes, the temperature at whichm(T) reaches its maxi-
mum does not relate with the temperature at which
pseudogap opens.

The equation for the density, together with the conditi
for the critical chemical potentialm(T)5mc(T), yields the
value of the critical temperatureTc for the superconducting
instability. The critical temperatureTc and the BCS mean
field critical temperatureTBCS @the latter obtained formally
from the same equations definingTc but with the bare
single-particle Green’s functionG(0) replacingG in Eq. ~4!#
are reported in Fig. 2 as functions of the parameter (kFaF)21

@recall that in the weak-coupling limit TBCS
51.67eF exp(p/2kFaF) (aF,0)#. ~Both temperatures hav
been conveniently normalized to the Bose-Einstein cond

FIG. 2. Critical temperatureTc ~full line! and BCS mean-field
critical temperatureTBCS ~broken line! as functions of (kFaF)21

~both temperatures are normalized to the Bose-Einstein conde
tion temperatureTBE evaluated at the same density!.
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sation temperatureTBE evaluated at the same density. No
that in the 3D continuum modelTBE is of the same order o
eF .) The results of Fig. 2 can be compared with the cal
lation of Tc within the non-self-consistentt-matrix approxi-
mation reported in Ref. 41. We mention that the inclusion
the self-energy shiftS0 in the weak- to intermediate
coupling regime adopted in the present paper, slightly
creases the value of the critical temperature with respec
the results of Ref. 41. We have verified that, in the stron
and intermediate-coupling regimes, the mean-field temp
ture TBCS about coincides with the temperature at which t
bare~fermionic! contributionn0 to the total densityn equals
the ~bosonic! contributiondn due to interaction effects, i.e.
n0(T5TBCS).dn(T5TBCS).n/2. This result permits us to
identify TBCS as the crossover temperature where preform
pairs start to form.@The connection betweenTBCS and the
characteristic crossover temperature~s! of the spectral func-
tion will be made in Sec. IV.# Note from Fig. 2 that for
(kFaF)21&21 the critical temperature approaches the B
mean-field critical temperature, indicating that the fermion
system is in the weak-coupling regime. For (kFaF)21*1 the
critical temperature is instead close to the Bose-Einstein c
densation temperature, indicating that in the strong-coup
regime the fermionic system is equivalent to a system
noninteracting bosons. The strong-coupling limit is thus
fectively reached for not too large values of the parame
(kFaF)21.43

In Fig. 3 we report for convenience the relation betwe
kFjpair and (kFaF)21 as obtained from the analytic solutio
of Ref. 44,jpair being the average pair size atT50. This plot
is especially useful to compare our results for the two- a
single-particle properties# which are expressed in terms o
(kFaF)21# with the phenomenology of cuprates, for whic
some estimates of the parameterkFjpair in different doping
regimes are available7. Specifically, at optimum doping the
parameterkFjpair takes roughly values between 6 and 10, a
its value decreases for decreasing doping~mainly because
the superconducting gap atT50 increases and the Ferm
energy decreases approaching the insulating phase!. We may
reasonably considerkFjpair'1 as a lower-bound value fo
underdoped cuprates, especially if we consider it as a lo
quantity about theM points. Accordingly, the coupling pa
rameter (kFaF)21 in the optimum and underdoped regim
for cuprates lies approximately in the range21.7

sa-

FIG. 3. Phenomenological parameterkFjpair as a function of the
coupling parameter (kFaF)21, from weak to strong coupling.
0-5
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&(kFaF)21&0.5, as indicated in Fig. 3.
Having determined the thermodynamic quantitiesm(n,T)

andTc , we pass now to calculate the pair-fluctuation prop
gator~2!. From a physical point of view, pairing fluctuation
have essentially different character in the strong- and we
coupling regimes. While to evaluate the self-energy num
cally from Eq.~5! knowledge ofG (0) is required over a wide
range of wave vectors and frequencies, to characterize
evolution ofG (0) from weak to strong coupling it is sufficien
to consider the expansion of its inverse in powers of
wave vectorq and the Matsubara frequencyVn :17,19

G (0)21
~q,Vn!5a1buqu21diVn ~8!

with d5d11 id2 sgn(Vn). Here, (a,b,d1 ,d2) are real coef-
ficients which are coupling, density, and temperature dep
dent.

In Fig. 4 we report the ratio of the imaginary (d2) to the
real (d1) part of the frequency coefficient in Eq.~8! at Tc as
a function of (kFaF)21. In the strong-coupling limit,d1.
2m2aF /(8p) andd2.0, with the pair-fluctuation propaga
tor acquiring the polar structure of a bosonic Green’s fu
tion. In the weak-coupling limit, on the other hand,d1;
2(Tc /EF)2!1 andd252N0p/(8Tc), whereN0 is the den-
sity of states~per spin component! at the Fermi energyEF ,
with the pair-fluctuation propagator acquiring the diffusi
Ginzburg-Landau structure.34 When ud1u.ud2u, fluctuating
pairs become propagating~albeit with a damping!, and even-
tually acquire the~bosonic! character of undamped pre
formed pairs.

In Fig. 5 the coefficientb of the uqu2 term in Eq.~8! is
plotted as a function of (kFaF)21. In the strong-coupling
regime@i.e., for (kFaF)21*1#, b coincides with its strong-
coupling valuemaF /(32p), where 2m is the mass of the
composite boson. In the weak-coupling regime~i.e., for
1/kFaF&21), b5N07z(3)vF

2/(48p2Tc
2) is proportional to

the square of the zero-temperature correlation lengthj0
@wherevF is the Fermi velocity andz(3).1.202 is the Rie-
mann zeta function of argument 3#, and tends to diverge in
the extreme weak-coupling limit.

Finally, the coefficienta in Eq. ~8! provides a mass to th
pair-fluctuation propagator. In the weak-coupling limita
5N0 ln(T/Tc) vanishes atTc , while in the strong-coupling

FIG. 4. Ratio between the imaginary (d2) and real (d1) part of
the frequency coefficient of the inverse pair-fluctuation propaga
at Tc as a function of (kFaF)21.
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limit we can writea52m2aFmB(T)/(8p), wheremB(T) is
the bosonic chemical potential, which we pass now to d
cuss.

According to the above analysis, we have verified that
the strong-coupling regime~when the conditionsm,0 and
bumu@1 are satisfied! the pair-fluctuation propagator evalu
ated numerically acquires the polar structure of a free-bo
Green’s function42,33

G (0)~q,Vn!52
8p/~m2aF!

iVn2q2/~4m!1mB

~9!

with mass 2m, a quadratic dispersion as a function of wa
vector, and bosonic chemical potentialmB(T), which reduces
to 2m(T)1e0 in the extreme strong-coupling limit. This im
plies that, for real frequencies, the imaginary part ofG (0)

@which enters the calculation of the imaginary part of t
self-energy via Eq.~5!# is proportional to a delta function in
the strong-coupling limit

Im G (0)~q,v!5
8p2

m2aF

d@v2q2/~4m!1mB#. ~10!

We have verified that Eq.~10! remains approximately
valid in the intermediate-coupling regime toward strong co
pling ~when bumu;1 andm,0), while only in the strong-
coupling limit mB(T) therein reduces to the chemical pote
tial m0(T) of an ideal Bose gas, with the characteris
temperature dependence

m0~T!521.22
~T2TBE!2

TBE
~11!

at low enough temperature. Specifically, we have verifi
that ad-function contribution to ImG (0)(q,v) appears when
(kFaF)21>0 ~corresponding tod2 /d1&1 in Fig. 4!. This
contribution, which is initially present for large values ofq,
extends progressively to smaller values ofq for increasing
coupling, reaching eventuallyq50 when the chemical po
tential becomes negative. By further increasing the coupl
the d-function contribution to ImG (0)(q,v) becomes in-
creasingly prominent and the asymptotic expression~10! is
progressively reached.

r
FIG. 5. Coefficientb of the uqu2 term in the inverse pair-

fluctuation propagator atT5Tc as a function of (kFaF)21.
0-6
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PSEUDOGAP AND SPECTRAL FUNCTION FROM . . . PHYSICAL REVIEW B66, 024510 ~2002!
This d-function contribution, associated with the form
tion of a bound state with bosonic character, is responsibl
the strong-coupling limit for the opening of a real gap in
broad temperature range aboveTc , as it will be shown in the
next section. Actually, in addition to thed function, one also
finds a finite contribution to ImG (0) for v.2umu. When in-
serted in Eq.~5!, this contribution leads to an exponential
vanishing ImS for v.umu.

Finally, in theweak-couplingregime, the pair-fluctuation
propagator recovers the Ginzburg-Landau diffusive for
Near the critical temperature, its expression for small wa
vectors and frequencies is accordingly given by

G (0)~q,Vn!5
1

N0~«1huqu21guVnu!
. ~12!

Here, «5 ln(T/Tc) is the mass term of the propagator,h
;vF

2/Tc
2 represents the stiffness of the superconducting fl

tuations with a proportionality coefficient which depends
dimensionality@7z(3)/(48p2) being its value in 3D#, while
g5p/(8Tc) is related to the lifetime of the fluctuating pai
~which do not obey Bose statistics!. In this limit, ImG (0)(q
50,v) diverges as 1/v only at the critical temperatureT
5Tc ; as a consequence, the pseudogap region induce
the diffusive pair fluctuations will be present only in a rath
narrow temperature range. No delta function contributes
this regime, but ImG (0)(q50,v) has a broadened pea
structure for small enoughq.

To summarize, the main effect of increasing coupling
Im G (0)(q,v) is the appearance of a peak structure~delta
function! at finite frequencies, whose area grows w
(kFaF)21. In the strong-coupling regime, forq50 and T
.Tc the real part ofG (0)(q,v)21 vanishes at a finite fre
quency, corresponding to a pair resonance. This reson
disperses asq2. In the weak-coupling regime, the real part
G (0)(q,v)21 is small only in the critical region, and vanishe
only at the critical temperature. Increasing the coupling fr
weak to strong, the frequency dependence of ImG (0)(q
50,v) evolves from being antisymmetric with respect tov
50 to an asymmetric structure. This evolution confirms p
vious results forG (0)(q50,v) reported in Ref. 17. In the
next section, we will show how the peak structures
G (0)(q,v) affect the single-particle self-energy and hence
spectral function, giving rise to a~pronounced! suppression
of the low-energy spectral weight, namely, to a pseudoga

IV. SPECTRAL FUNCTION FROM WEAK TO STRONG
COUPLING

In this section, we study the single-particle excitations
fermions coupled to pair fluctuations above the critical te
perature. The spectral functionA(k,v), obtained by solving
the set of equations~1!–~7!, is analyzed ina systematic way
as a function of coupling and temperature, thus following
evolution from weak to strong coupling. In this way, chara
teristic features of the spectral function as a function of f
quency and temperature will be evidenced inall coupling
regimes. We shall analyze separately the cases when
chemical potential lies below the bottom of the sing
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particle band (m,0) corresponding to the strong- t
intermediate-coupling regime, and when the chemical pot
tial lies inside the single-particle band (m.0) corresponding
to the intermediate- to weak-coupling regime.

A. Strong- to intermediate-coupling regime

In the previous section, we have verified that a delta fu
tion appears in ImG (0)(q,v) starting from the intermediate
coupling regime when (kFaF)21.0 ~for temperatures such
that bumu*1). In particular, we have verified that in th
strong-coupling limit~wherem,0 andbumu@1) the pair-
fluctuation propagator coincides with a free-boson Gree
function with mass 2m @see Eq.~9!#. In this limit, the imagi-
nary part of the pair-fluctuation propagator reduces to a d
function and the self-energy can be evaluated analitica
Inserting Eq.~10! into the general expression~5! for the
imaginary part of the self-energy, the following form resul

Im S~k50,v!5
22~4m!3/2

m2aF

Av th2vQ~v th2v!

eb(v th2v1umBu)21
, ~13!

where v th5m2mB is a threshold frequency andQ is the
unit step function.@In the strong- to intermediate-couplin
regime, when the chemical potential is below the bottom
the free-fermion band (m,0) and k2/(2m)!e0, the self-
energy and hence the spectral function are almost inde
dent of wave vector. In this case,k50 can be taken as a
representative value, as we did in Eq.~13!.#

Note that the frequency dependence of ImS is strongly
asymmetricabout its minimum atv.v th2umBu. Note also
that ImS ~and hence ReS obtained via Kramers-Kronig
transform! has a nontrivial temperature and frequency dep
dence, showing strong deviations from Fermi-liquid beha
ior. In the regime wherebumBu!1 ~i.e.,T.Tc), three differ-
ent behaviors of ImS(0,v) can be specifically identified on
the frequency axis:~i! For v th2umBu,v,v th , Im S(0,v)
;2Av th2v/bumBu and ~ii ! for v th2b,v,v th2umBu,
Im S(0,v);2(bAv th2v)21, and ~iii ! for v,v th2b,
Im S(0,v);2exp@2b(vth2v)#. Note that, in the strong-
coupling limit, the imaginary part of the self-energy has
square-root divergence atv5v th for T5Tc .

We have further verified numerically that strong dev
tions from Fermi-liquid behavior are present in the strong-
intermediate-coupling regime in a wide temperature ran
above Tc ~while in the weak-coupling regime non-Ferm
liquid behavior is found only in a narrow temperature ran
aboveTc , as discussed in the next subsection!.

The above characteristic features of the analytic exp
sion~13! can be clearly identified in the numerical results f
Im S(k50,v) reported in Fig. 6 at different temperature
~for a specific coupling!. The associated real part is shown
Fig. 7, where the straight linesv1m are also reported for the
same temperatures~and coupling!, with increasing tempera
ture from top to bottom. At any temperature, the intersect
of a given straight line with ReS(k50,v) locates the posi-
tion of the quasiparticle peak atv.0.

Note that for temperatures close toTc , three intersections
occur, with the most left intersection giving rise to the inc
0-7
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A. PERALI, P. PIERI, G. C. STRINATI, AND C. CASTELLANI PHYSICAL REVIEW B66, 024510 ~2002!
herent peak inA(k,v) at negative frequencies@while to the
central intersection there corresponds a strong suppressi
A(k,v)#. At high enough temperatures, on the other ha
only a single intersection occurs. The corresponding spec
function for the same coupling and temperatures aboveTc is
reported in Fig. 8. The resulting spectral function has
strongly asymmetric structure with two peaks: The one
positive frequencies is rather narrow, coherentlike, and h
large spectral weight~namely, the area enclosed by th
peak!; the one at negative frequencies is instead broad
has a small spectral weight. When the chemical potentiam
is below the bottom of the band, the peak located at nega
frequencies represents theincoherent peakgenerated by the
interaction of the fermions with strong pair fluctuations. Th
incoherent peak is itself asymmetric, it becomes broader
increasing temperature, its spectral weight is density
coupling dependent@decreasing as (kFaF)3], and its position
depends mainly on the value of the chemical poten
~which in turn depends on temperature!. By increasing tem-
perature, the chemical potential becomes progressively m
negative~see Fig. 1! and the peak position ofA(k50,v)
shifts accordingly toward positive frequencies. The broad
ing of the incoherent peak becomes pronounced when
temperature is of the order of the binding energy~see, e.g.,
the case withT/Tc53 in Fig. 8!. Note also that, for increas
ing temperature, the two peaks inA(k50,v) get broadened

FIG. 6. Imaginary part of the self-energy atk50 as a function
of frequency~in units of e0) at different temperatures. In this cas
(kFaF)2150.77 and Tc /TBE51.14. ~Strong- to intermediate-
coupling regime.!

FIG. 7. Real part of the self-energy atk50 as a function of
frequency~in units of e0) at different temperatures. In this cas
(kFaF)2150.77 and Tc /TBE51.14. ~Strong- to intermediate-
coupling regime.!
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in an asymmetric way@in contrast to the weak-coupling re
gime ~see below!, approaching which the broadening of th
two peaks becomes progressively more symmetric#. We have
also verified that, in the extreme bosonic limit, the spec
function has the structure of two deltalike peaks symme
cally located with respect tov50 ~albeit with quite different
spectral weights!, which is generated in an asymmetric wa
by the narrowing of the incoherent peak at negative frequ
cies as the productkFaF becomes smaller and smaller.

In Fig. 9 the spectral function atk50 is plotted as a
function of frequency for different values of the parame
(kFaF)21 at T5Tc . Note that these curves have been e
pressed in unitseF , instead ofe0, to get a more eviden
evolution with coupling. The spectral function has two we
separated peaks, witha real gapopening at an energy of th
order of the binding energy of the pairs. By increasing t
coupling, the spectral weight inside the gap is progressiv
suppressed, until in the extreme strong-coupling limit t
step function in the imaginary part of the self-energy~13!
makes the spectral weight to vanish identically in the ran
2umu1umBu,v,umu.

Since photoemission experiments measure the intensit
photoemitted electrons~that is, the spectral weight atnega-
tive frequencies!, no signal would be detected if both th
incoherent and coherent peaks had moved to positive
quencies for increasing temperature. In this context~and in
analogy with what is empirically done when interpretin

FIG. 8. Spectral function atk50 as a function of frequency~in
units of e0) at different temperatures. In this case, (kFaF)21

50.77 andTc /TBE51.14. ~Strong- to intermediate-coupling re
gime.!

FIG. 9. Spectral function atk50 as a function of frequency~in
units ofeF) at T5Tc for different values of the coupling (kFaF)21.
~Strong- to intermediate-coupling regime.!
0-8
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PSEUDOGAP AND SPECTRAL FUNCTION FROM . . . PHYSICAL REVIEW B66, 024510 ~2002!
photoemission measurements!, it is natural to introduce a
crossover temperatureT0* at which the maximum of the
lower peak crosses zero frequency. Our analysis shows, h
ever, that atT0* the spectral function still maintains a two
peak structure~see Fig. 8!, reflecting the sizable effects o
the interaction between fermions and pair fluctuations.
are accordingly led to introduce a second crossover temp
ture T1* .T0* , at which the upper and lower peaks of th
spectral function merge just in one peak@in the sense that the
incoherent peak is progressively absorbed by the cohe
~quasiparticle! peak, even though the separation between
two peaks remains almost constant#.

In Fig. 10 the two crossover temperaturesT0* andT1* ~as
obtained numerically from the above definitions! are re-
ported as functions of the parameter (kFaF)21, both tem-
peratures being normalized with respect to the critical te
peratureTc . The BCS mean-field critical temperatureTBCS
from Fig. 2 is also reported for comparison. In the stron
coupling limit @when (kFaF)21*1# T1* @T0* , T1* being a
large energy scale which, according to Fig. 10, in the stro
coupling limit is much larger than the binding energye0. The
difference betweenT1* and T0* is reduced by decreasin
(kFaF)21, but only in the intermediate-coupling regime@i.e.,
when (kFaF)21&20.1# the two crossover temperatures a
most coincide (T1* .T0* ). In the weak-coupling regime, onl
a single crossover temperature can be identified (T1* 5T0* ),
since in this regime the chemical potential is almost equa
the Fermi energy and the two peaks of the spectral func
are symmetrically located about zero frequency. Note fina
that T0* about coincides withTBCS which was previously
identified via an independent procedure.~WhenT0* .T1* we
shall indicate both temperatures simply asT* .!

B. Intermediate- to weak-coupling regime

In the intermediate to weak-coupling regime, it becom
essential to take explicit account of the constant shiftS0
introduced in Sec. II. This shift has been identified with t
value of the real part of the self-energy~1! taken at the wave
vector km8 @such thatj(km8)50 and where the pseudoga

FIG. 10. Crossover temperaturesT0* ~dashed line! andT1* ~full
line!, and BCS critical temperatureTBCS ~dashed-dotted line! as
functions of (kFaF)21; all temperatures are normalized to the cri
cal temperatureTc of Fig. 2. The value of (kFaF)21 where the
chemical potential changes sign is indicated by an arrow.
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turns out to be minimal#, at zero frequency~about which the
relevant range of the pseudogap phenomena is centered!, and
at a temperature close toT* ~where the system recovers
Fermi-liquid behavior!. An exact selection ofT is, in prac-
tice, not required sinceS0 turns out to depend rather weak
on T in the intermediate- to weak-coupling regime. In th
sense, we interpretS0 as a kind of Hartree shift, even thoug
for our choice of the potential the true Hartree shift vanish
identically. We have consistently evaluated the constant s
S0 at uku5km8 ,v50, and at the same temperature where
self-energyS(k,v) of Eq. ~1! is calculated.45

The inclusion of the above constant shiftS0 stems from
the need of improving the single-particle Green’s functio
entering the construction of the self-energy~1! when ap-
proachingTc , only close to which pseudogap phenome
become appreciable in the intermediate- to weak-coup
regime. The choice of the self-energy~1! takes, in fact, into
account fluctuation corrections only at the lowest order
procedure which is certainly not completely satisfacto
when approaching the critical temperature where all sor
fluctuations corrections become important. To approachTc ,
one may try to improve the self-energy~1! by dressing the
single-particle Green’s functions therein with a constant s
energy insertion appropriate to the noncritical~temperature!
region. On the other hand, the inclusion of the full se
consistent Green’s function~without vertex corrections, how
ever! leads to an overall depression of pseudogap phen
ena and is not theoretically justified.31,33 From a pragmatic
point of view, we have verified that in the intermediate-
weak-coupling regime the pseudogap would open at nega
frequencies~and not atv50, as expected from a simpl
physical intuition!, if the constant self-energy shiftS0 were
not properly included. The pseudogap opening at nega
frequencies would, in turn, be in contrast with Monte Ca
results and experimental findings.

The characteristic behavior of the imaginary and real pa
of the self-energy atuku5km8 are shown in Figs. 11 and 12
respectively, at different temperatures~for a given coupling!.
Note that the convexity of the curves ImS(km8 ,v) about
v50 is inverted with respect to the Fermi-liquid behavio
implying strong deviations from Fermi-liquid behavior als
at moderate values of the coupling~i.e., such that a bound

FIG. 11. Imaginary part of the self-energy atuku5km8 as a func-
tion of frequency~in units of eF) at different temperatures whe
(kFaF)21520.45 (Tc /eF50.23).~Intermediate- to weak-coupling
regime.!
0-9
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A. PERALI, P. PIERI, G. C. STRINATI, AND C. CASTELLANI PHYSICAL REVIEW B66, 024510 ~2002!
state in the two-body problem is not yet present!. We have
verified, however, that the Fermi liquid behavior is cons
tently recovered when the coupling is progressively
creased.

In the weak-coupling limit and for temperature close
Tc , an analytic approximation for the imaginary part of t
self-energy can be obtained by inserting into Eq.~5! the
weak-coupling expression of the pair-fluctuation propaga
given by Eq.~12!. At zero frequency and at the Fermi wav
vector, the imaginary part of the self-energy acquires then
following expression in the limitT→Tc :

Im S~kF ,v50!5
6p3

7z~3! S Tc

eF
D 2Tc

2
lnS T2Tc

Tc
D ~14!

which divergesupon approachingTc with a slow logarithmic
rate. An expression analogous to Eq.~14! is also obtained a
finite frequency~such thatuvu!eF) and T5Tc , with the
replacement of ln@(T2Tc)/Tc# by ln(uvu/vc), wherevc!eF is
a suitable cutoff frequency.

To test the validity of the above analytic approximation
we may consider, e.g., the case of Fig. 11 forT/Tc51.001
and obtain from Eq.~14! the value ImS/eF.20.92 for v
50. This estimate is indeed in good agreement with
numerical result reported in Fig. 11~see the full curve
therein!, for which ImS/eF.21. A fine-tuning of the tem-
perature very close toTc is, however, necessary to get
sizable increase ofuIm Su due to the logarithmic divergenc
in Eq. ~14!. For instance, to double the above value a te
perature (T2Tc)/Tc51026 has to be reached. In the 3
model here considered, the divergence of ImS is therefore
not numerically detectable for all practical purposes. In
dition, to test the validity of the counterpart of Eq.~14! ex-
tended to finite frequency as explained above, we may c
sider the case of Fig. 11 forT/Tc51.001 and two different
frequencies, say,v1 /eF50.075 andv2 /eF50.037. In this
case, we obtain from our analytic approximation the va
@ Im S(v1)2Im S(v2)#/eF50.093, which is rather close t
the numerical result 0.106 as obtained from Fig. 11.

The analytic approximation~14! ~as well as its counter
part atT5Tc and finitev) need to be compared with th
analytic form ofS(k,v) obtained in the weak-coupling limi

FIG. 12. Real part of the self-energy atuku5km8 as a function of
frequency ~in units of eF) at different temperatures whe
(kFaF)21520.45 (Tc /eF50.23).~Intermediate- to weak-coupling
regime.!
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by Ref. 46 within the same non-self-consistentt-matrix ap-
proximation adopted in the present paper. According to R
46, the diffusive form~12! of the pair-fluctuation propagato
would yield

S~k,v!5
Dpg

2

v1j~k!1 ig
, ~15!

where Dpg is a parameter that depends on a wave-vec
cutoff andg}(T2Tc). This expression evidently does no
reduce to Eq.~14! for v50 andT→Tc , nor to the counter-
part of Eq.~14! for T5Tc and finitev. A few comments to
clarify the origin of these discrepancies are then in order

The expression~15! has been derived more recently
Ref. 50, where it was also extensively used to fit ARPES d
for Bi-based cuprates. According to Ref. 50, Eq.~15! results
by manipulating directly the expression~1! for the self-
energy in Matsubara frequency, whereby the finite valuepT
of the smallest~fermionic! Matsubara frequency is exploite
to make approximations on theq dependence of the inte
grand. Analytic continuation to the real frequency axis
then performed on the approximate result, eventually yie
ing expression~15! above. This procedure is, however, que
tionable, insofar as the very variable to be analytically co
tinued is used to set restrictions on the approximate form
the function~in this case, theq dependence of the integrand!.
In our procedure, on the other hand, analytic continuation
performedat the outset@see Eq.~5!# and the relevant~con-
trolled! approximations to get the approximate result~14! are
introduced only afterwards.

Note, in addition, that atuku5kF the expression~15! pro-
duces two peaks symmetrically located aboutv50. This
expression cannot, therefore, be used to fit the curves
A(km8 ,v) for the coupling values we are considering~see
Figs. 13 and 16 below!, whereby the symmetry of the two
peaks is recovered only in the extreme weak-coupling lim
In the analysis reported in Ref. 50, on the other hand,
experimental data are artificially symmetrized and the
pression~15! ~together with an additional scattering rateiG1)
is used to fit the ARPES data. We shall propose below
alternative phenomenological fit to the curves ofA(km8 ,v),
which is suggested by our numerical calculations.

FIG. 13. Spectral function atuku5km8 as a function of frequency
~in units of eF) at different temperatures. In this case, wi
(kFaF)21520.45 (Tc /eF50.23).~Intermediate- to weak-coupling
regime.!
0-10
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PSEUDOGAP AND SPECTRAL FUNCTION FROM . . . PHYSICAL REVIEW B66, 024510 ~2002!
In our numerical calculations we have found that, at lo
enough temperature, there are three intersections of
curves @ReS(km8 ,v)2S0# with the straight linev ~not
shown in Fig. 12!, with the two outer intersections givin
rise to the two peaks ofA(km8 ,v) ~see Fig. 13! while the
central intersection corresponds to a strong suppressio
A(km8 ,v) owing to the associated large value
Im S(km8 ,v). By increasing temperature, on the other ha
only one intersection remains@resulting in only one visible
peak in A(km8 ,v), see Fig. 13#. The associated spectra
function atuku5km8 is reported in Fig. 13 for the same tem
peratures and coupling of Figs. 11 and 12. The spectral fu
tion obtained in the intermediate-coupling regime show
well-developed two-peak structure nearTc with a minimum
at zero frequency; yet the spectral weight distribution
mains slightly asymmetric about zero frequency, even w
approaching the critical temperature. At zero frequency
spectral function has a sizeable finite value, indicating t
no real gap opens at the Fermi surface. Note from Fig.
that, upon increasing the temperature, the pseudogap fil
and closes at the same time, with the two peaks of the s
tral function merging in just one peak at a crossover temp
tureT1* .T0* ~which in this particular case is between 1.05Tc

and 1.08Tc). It is thus apparent that a breakdown of t
normal-state Fermi liquid occurs well before the system is
the preformed-pair limit. From the two-peak structure
A(km8 ,v) in the intermediate- to weak-coupling regime,
pseudogapDpg could be empirically defined either ashalf the
frequency separation between the maxima of the peaks, o
the separation of the maximum of the lower peak~at nega-
tive frequencies! from zero frequency. These two definition
coincide in the weak-coupling limit but slightly differ in th
strong-coupling limit~see also Table II below!. Throughout
this paper we will adopt the second definition, which is t
most relevant for comparison with photoemission expe
ments, accessing only negative frequencies.

In the intermediate-coupling regime, when the chemi
potential lies inside the fermion band and the Fermi surf
is well defined, the wave-vector dependence of the spec
function shows a strong asymmetry about the wave ve
km8 . In Fig. 14 the spectral function is reported as a funct
of frequency for different wave vectors aboutkm8 when T
.Tc . It is clear from this figure that foruku,km8 a well-
defined peak is found at negative frequencies, and tha

FIG. 14. Spectral function at different wave vectorsuku about
km8 as a function of frequency~in units of eF), for (kFaF)215
20.72 andT/Tc51.001.~Intermediate- to weak-coupling regime!
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creasing the wave vector touku.km8 this peak becomes a
small and broad incoherent peak. Thus, foruku,km8 the
spectral weight of the coherent peak at negative frequen
decreases as the wave vectork approacheskm8 , while at the
same time the spectral weight of the associated incohe
peak located at positive frequencies increases, with a tran
of spectral weight from negative to positive frequencies up
crossing the ‘‘Fermi surface’’~which is defined as the locu
of minimum pseudogap, and almost coincides with t
spherek5km8 ; note that for the coupling value of Fig. 14
km8 is about 10% smaller thankF). This clearly shows that
the interaction of the fermions with pair fluctuations ge
increasingly stronger upon approaching the ‘‘Fermi surfac
so that deviations from the Fermi liquid picture appear to
stronger at low energy.

In Fig. 15 the positions of the two peaks of the spect
function are reported for different wave vectors aboutkm8
whenT.Tc . The results of our non-self-consistentt-matrix
approximation ~squares and asterisks! are here compared
with the BCS-like dispersionv56Aj(k)21Dpg

2 ~continu-
ous and dotted lines!, where the BCS gap has been replac
by the pseudogapDpg at km8 . It is rather remarkable that th
coherent peak of the spectral function atuku,km8 gets re-
flected into the incoherent peak atuku.km8 as the wave vec-
tor crosses the ‘‘Fermi surface’’~with the characteristic be
havior of an avoided level crossing!, in such a way that the
position of the peak at negative frequencies follows alm
exactly the BCS-like dispersion, provided the value of t
pseudogap is inserted as explained above.

To fit the prominent features ofA(km8 ,v) with a simple
analytic expression@from which the corresponding form o
S(km8 ,v) replacing Eq.~15! could be extracted#, we may
consider two Lorentians of widthgL and gR , centered at
2DL and DR , and with weightspL and pR ~such thatpL
1pR51), with the labelsL and R referring to the left and
right peaks ofA(km8 ,v), in the order. In Tables I and II we
report the values of the fitting parametersDL , DR , gL , gR ,
anda5122pL for the curves of Fig. 13~fixed coupling and
varying temperature! and of Fig. 16~fixed temperature and
varying coupling!, respectively.

Note that the asymmetry of the two Lorentians~which is
controlled by the parametersa andgL /gR) is considerable,

FIG. 15. Peak positions of the spectral function at negative~as-
terisks! and positive~squares! frequencies versus wave vector fo
(kFaF)21520.72 andT/Tc51.001. Full and dotted lines represe
the BCS-like fit.~Intermediate- to weak-coupling regime.!
0-11
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increasing for increasing temperature or coupling~but for the
last value of Table II!. For temperatures and couplings larg
than those reported in the tables, however, the fit
A(km8 ,v) with two Lorentians become inadequate. No
also that in most casesDL5DR5Dpg. In these cases a rela
tively simple form forS(km8 ,v) can be extracted, yielding

S~km8 ,v!52 i ~g2ad!1aDpg

1
~12a2!~Dpg

2 2d2!22iDpgd~11a2!

v1aDpg1 i ~g1ad!
,

~16!

whereg5(gR1gL)/2 andd5(gR2gL)/2. Note that, even
in the symmetric case witha50 andd50, the expression
~16! does not reduce to the form~15! @due to the presence o
an extra term2 ig in Eq. ~16!#, unlessDpg@g @this condi-
tion would be consistent with the assumptions under wh
Eq. ~16! has been derived only whenT approachesTc ~Ref.
46!#. However, the conditionDpg@g is never satisfied by ou
fits, whereDpg andg are of the same order.

In Fig. 16 the spectral function atuku5km8 is reported for
different values of (kFaF)21 from intermediate to weak cou
pling, slightly above the critical temperature. Note that,
the weak-coupling regime, the spectral function acquires
almost symmetric two-peak structure, which differs from t
standard BCS result atT50 essentially for the broadening o
the peaks due to the finite lifetime of the pairs. Note also t
the pseudogap near the critical temperature decreases
coupling.

An analysis of the pseudogap opening within a 2D attr
tive Hubbard model in the weak-coupling regime has
cently been reported in Ref. 37, by means of the non-s
consistentT-matrix approximation formulated on the re
frequency axis. The frequency dependence of the spe
function obtained in that paper~at quarter filling! resembles
the results of our Fig. 16.

TABLE I. Fitting parameters for the curves of Fig. 13. Ener
variables are in units ofeF .

T/Tc DL DR gL gR a

1.001 0.31 0.31 0.16 0.29 0.22
1.01 0.28 0.28 0.17 0.32 0.28
1.05 0.21 0.21 0.18 0.33 0.33
1.08 0.18 0.18 0.18 0.34 0.36

TABLE II. Fitting parameters for the curves of Fig. 16. Energ
variables are in units ofeF .

(kFaF)21 DL DR gL gR a

21.1 0.035 0.035 0.042 0.047 0.060
20.72 0.14 0.14 0.11 0.15 0.17
20.23 0.47 0.61 0.22 0.33 0.15
0 0.78 0.84 0.25 0.18 0.008
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Finally, a comparison of the pseudogapDpg at Tc with the
BCS gapDBCS at T50 and with the two-body gape0/2
5eF /(kFaF)2 ~which is nonvanishing only foraF.0) is
shown in Fig. 17 for all coupling regimes$when m,0,
DBCS(T50) is set equal to@m21D(T50)2#1/2%. Note that in
the weak-coupling limitDpg(T5Tc)!DBCS(T50), while in
the intermediate-coupling regimeDpg(T5Tc).DBCS(T50).
Moreover, in the intermediate- to strong-coupling regim
~where aF.0), both DBCS and Dpg approache0/2 from
aboveas the coupling is increased. Many-body effects th
increase the pair-breaking energy scale with respect to
two-body limit. This result resembles the pair-size-shrinki
effect noticed in Ref. 48 at the mean-field level.

In this context, it is interesting to mention that, takin
eF.400 meV as a representative value for cuprate sup
conductors, the rangeDpg.202120 meV characteristic o
cuprate superconductors corresponds to 0.05&Dpg/eF&0.3,
which ~as seen from Fig. 17! lies within the range identified
in Fig. 3 for cuprates.

C. Criterion to distinguish weak from strong coupling

The above systematic study of the single-particle spec
function from weak to strong coupling suggests the follo
ing criterion to distinguish by ARPES experiments whethe
fermion system with an attractive interaction lies in t
strong- or weak-coupling regime. This criterion rests on
analysis of the spectral function at negative frequencies~just

FIG. 16. Spectral function atuku5km8 as a function of frequency
v ~in units of eF) for different values of (kFaF)21 and T/Tc

51.001.~Intermediate- to weak-coupling regime.!

FIG. 17. Pseudogap atT5Tc , superconducting gap evaluate
within the BCS approach atT50 and gap in the strong-couplin
limit, as functions of (kFaF)21.
0-12
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PSEUDOGAP AND SPECTRAL FUNCTION FROM . . . PHYSICAL REVIEW B66, 024510 ~2002!
as determined by ARPES experiments! for different values of
the wave vectork, and~as discussed in the next section! it is
meant to be useful for interpreting the experimental data
cuprates in conjunction with the two-gap model mention
in the Introduction.

Consider first a system in the intermediate- to we
coupling regime, for temperatures betweenT* andTc , i.e.,
within the pseudogap region. In this case, the chemical
tential lies inside the single-particle band and almost c
cides with the Fermi energy. For wave vectors smaller th
km8 , the spectral function has a quasiparticle peak with la
spectral weight at negative frequencies and a smaller in
herent peak at positive frequencies. Upon moving the w
vector across the ‘‘Fermi surface’’ (uku.km8), the quasi-
particle peak shifts toward positive frequencies, while
incoherent peak is now present at negative frequencies~see
Fig. 14! and can accordingly be measured by ARPES. R
stricting to negative frequencies and realizing a cut in wa
vector space which probes the main and the reflec
~shadow! bands, starting fromuku,km8 ARPES should ini-
tially find a well-defined quasiparticle peak which, upon i
creasing the wave vector touku.km8 , should be reflected a
a small and broad incoherent peak. Moreover, atuku5km8 the
spectral weight at zero frequency remains a sizeable frac
of the peak maximum.

Consider then a system in the intermediate- to stro
coupling regime~whenm,0), for temperatures betweenT0*
andTc . In this case, the chemical potential lies outside
single-particle band. Forany wave vector, the spectral func
tion has now a quasiparticle peak with large spectral we
at positive frequencies and a weaker incoherent peak at n
tive frequencies. For this reason, no appreciable differenc
the shape of the spectral function should be detected by v
ing the wave vector. Thus, starting, e.g., fromk[(kx
,0,0,0) ARPES should find a broad incoherent peak wh
upon increasing the wave vectors to (kx.0,0,0), should not
change appreciably. In addition, the spectral weight vanis
or is much less than the maximum of the incoherent pea
a range of frequencies of the order of the pseudogap~see Fig.
9!.

By this token, it is clear that, for a fermionic system wi
an attractive interaction, the wave-vector dependence and
line shape of the spectral function at negative frequen
have well-pronounced qualitative differences depending
the coupling strength, differences which may be detected
a detailed ARPES analysis of the spectral function, as
cussed next. Recall, however, that comparison of our res
with ARPES data relies essentially on the two-gap mo
mentioned in the Introduction, and can be complicated by
presence of additional sources of quasiparticle scatterin
cuprates as well as by the fact that the continuum mo
relates strong coupling to low density. Yet, our analysis c
be useful to understand the evolution of the spectral pro
ties along the Fermi surface.

V. COMPARISON WITH ARPES SPECTRAL FUNCTION

The theoretical analysis of the spectral function fro
weak to strong coupling presented in this paper can be u
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to analyze the spectral intensities measured by ARPES
Bi-based superconducting cuprates, for which a system
experimental analysis is also available. In particular, we c
sider ARPES intensities measured in Bi2212 near theM
points of the Brillouin zone as well as along the Fermi s
face, moving from theM points toward theN ~nodal! points,
in different doping regimes and at different temperatur
According to our interpretation, the effective coupling b
tween fermions should increase from the weak- to stro
coupling regime, when the doping is reduced from overd
ing to underdoping. Moreover, as discussed in
Introduction, when moving fromN toward M points along
the Fermi surface, a continuous crossover from weakly
strongly coupled fermionic states should be observed eve
fixed doping. We summarize the main results extracted fr
our work, which can be compared with ARPES experime
performed in Bi2212 materials.

Strong- to intermediate-coupling regime (about M point.
In the strong- to intermediate-coupling regime, where
chemical potential is below the bottom of the single-parti
band, our results show that the spectral function displays
peaks, one incoherent at negative frequencies and the o
one coherent at positive frequencies. In this case, the w
vectors are meant to be reckoned with respect to~one of! the
M points. In this regime, the prominent features to be co
pared with experiments are as follows.

~i! The line shape of the spectral function at negative f
quencies is quite broad, and the height of the incoherent p
noticeably decreases with increasing temperature~see Fig. 8!
or increasing coupling~see Fig. 9!. These features are in
qualitative agreement with the behavior of the spectral int
sity observed by ARPES in the pseudogap phase of un
doped cuprates, by decreasing doping and increasing
perature. Several ARPES measurements show, in fact,
the height of the peak in the spectral intensities collec
about theM points decreases with underdoping, with heav
underdoped cuprates displaying a very broad structure w
no detectable peak@see, e.g., Fig. 2~left panel! of Ref. 47
and Fig. 1~a! of Ref. 2, for the doping dependence of th
spectral weight about theM points#. ARPES measurement
for the temperature dependence of the~quite broad! spectral
intensities about theM points further indicate that the spect
are~slightly! suppressed for increasing temperature@see Fig.
2~b! of Ref. 2#.

~ii ! The spectral weight near zero frequency is stron
suppressed and a real gap opens in the spectral functio
the strong-coupling regime~see Figs. 8 and 9!. Experimental
evidence for a strong suppression of the spectral weight n
zero frequency can indeed be found, e.g., in Fig. 2~left
panel! of Ref. 47 for~heavily! underdoped samples withTc
556 K.

Intermediate- to weak-coupling regime (between M and
points). In the intermediate- to weak-coupling regime, t
chemical potential lies within the single-particle band a
the wave vectors are referred to the center of the Brillo
zone. In this case, the salient features of our calculation
be compared with experiments are as follows.

~i! A single quasiparticle peak is present in the spec
function above the crossover temperatureT* ~see Fig. 13!,
0-13
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implying a well-defined Fermi surface. Underdoped, op
mally doped, and overdoped cuprates for wave vectors n
the nodal points display quasiparticle peaks in the ARP
intensities~see, e.g., Fig. 1 of Ref. 49!.

~ii ! Approaching the critical temperature from above, t
interaction between fermions and~damped! pair fluctuations
determines a suppression of spectral weight near zero
quency and therefore the opening of a pseudogap, chara
ized by a finite spectral weight at zero frequency~see Fig.
13!. In addition, the quasiparticle peak disperses as a fu
tion of the wave vector and, as the wave vector moves ac
the Fermi surface, is reflected as an incoherent broad p
~see Fig. 14!. ARPES intensities inunderdopedcuprates,
measured about theN points for temperatures betweenT*
andTc , display this feature, even though the reflection c
not be accurately identified~probably owing to the low spec
tral weight of the incoherent peak!. In particular, a spectra
weight suppression at low frequencies and a finite spec
weight at zero frequency has been found by ARPES@see,
e.g., Fig. 1~b! and Fig. 3~a! of Ref. 50#. Experimental evi-
dence for the reflection of the quasiparticle peak into an
coherent peak has also been found by ARPES measurem
of the peak along theMY direction in the pseudogap phas
of slightly underdoped cuprates@see Fig. 2~b! of Ref. 22#, for
which the intermediate- to weak-coupling regime should
ply.

~iii ! Increasing the coupling from the weak- to th
intermediate-coupling regime, the pseudogap evaluated aTc
increases and the ratio between the pseudogap atTc and the
BCS gap evaluated atT50 also increases~see Fig. 17!,
about coinciding in the intermediate-to-strong coupling
gion. In all underdoped cuprates, and for any wave vec
the experimentally determined pseudogap atTc clearly in-
creases with decreasing doping, and in heavily underdo
cuprates it almost coincides with the superconducting
measured at zero temperature@see, e.g., Fig. 3~b! of Ref. 2#.

VI. DISCUSSION AND CONCLUSIONS

In this paper, the evolution~from superconducting fluc
tuations to the bosonic limit! of the pseudogap opening an
the spectral function has been studied in asystematic way. A
system of fermions in a three-dimensional continuum, mu
ally interacting via an attractive contact potential, has be
examined. In this way, the numerical calculation of t
single-particle Green’s function has been considerably s
plified, yet preserving the main physical effects underlyi
the pseudogap opening. The pair-fluctuation propagator,
~one-loop! self-energy, and the spectral function have be
evaluated as functions of coupling strength and temperat
from weak to strong coupling, and analytic and numeri
results have been presented.

In the strong-coupling regime, the pair-fluctuation prop
gator has been shown to have bosonic character and the
shape of the incoherent peak of the spectral function to
strongly asymmetric about its maximum, with its spect
weight decreasing by increasing coupling~or decreasing den
sity! and increasing temperature. In this regime, two cro
over temperaturesT1* ~at which the two peaks in the spectr
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function merge in just one peak! andT0* ~at which the maxi-
mum of the incoherent peak crosses zero frequency! have
been identified, withT1* .T0* @Tc and withT0* of the order
of the binding energy of preformed pairs~ARPES experi-
ments, however, can only measureT0* ).

In the intermediate-coupling regime, the line shape of
spectral function about the ‘‘Fermi surface’’ resembles t
line shape of the spectral intensity~which is, in turn, related
to the spectral function! measured by ARPES in underdope
cuprates betweenTc and T* for different wave vectors. In
particular, we have reproduced the main features chara
izing the ARPES pseudogap, namely, a finite spectral int
sity at zero frequency and a finite pseudogap atT5Tc which
is of the same order of the superconducting gap at zero t
perature. We have also found that in the intermediate-
weak-coupling regime pseudogap effects are present on
a narrow temperature range above the critical temperatu
result related with the 3D character of the pair fluctuatio
~in 2D this temperature range should, in fact, be considera
wider!.

In the weak-coupling regime, the pair fluctuation prop
gator acquires the diffusive Ginzburg-Landau character
the line shape of the spectral function gets progressiv
more symmetric as the coupling is decreased. In this regi
the two crossover temperaturesT1* andT0* coincide and are
of the order ofTc , with the pseudogap closing and filling-i
quickly as the temperature is increased aboveTc .

It is thus clear that the pseudogap already occurs in
one-loop approximation for the self-energy, namely, the n
self-consistent t-matrix approximation which we have
adopted in this paper.

Maly et al. propose a~conserving! method to improve the
non-self-consistentT-matrix approximation, by including the
feedback effect of the self-energy in the two-partic
propagator.17 This is done by substituting in the particle
particle bubble one bare Green’s function with a dressed
(G0G0→GG0), following the approach by Kadanoff an
Martin as extended by Patton.51 These authors show that th
consequence of the feedback on the self-energy is to enh
the resonance in the two-particle propagator found alre
by the lowest-order theory. However, by comparison of Ma
et al. results with our~nonconserving! calculation~which in-
cludes although the Hartree-type self-energy shiftS0), it
turns out that the salient features of the spectral function
essentially preserved by the two calculations.

A similar non-self-consistent~as well as a self-consisten!
calculation for the spectral function has been reported in R
19. Specifically, even though Yanase and Yamada also m
use of the non-self-consistentT-matrix approximation with
d-wave pairing, their calculations are based on a smallq and
V expansion of the two-particle propagator while the chem
cal potential is kept at the Fermi level. As a consequence,
critical temperature evaluated by Yanase and Yamada c
cides with the mean-field temperatureTBCS, which strongly
deviates fromTc reported in our Fig. 2 in the intermediate
and strong-coupling regimes.

Most significantly, the results presented in this paper, c
cerning the temperature and wave-vector dependence o
0-14
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PSEUDOGAP AND SPECTRAL FUNCTION FROM . . . PHYSICAL REVIEW B66, 024510 ~2002!
spectral function in the pseudogap phase, are in qualita
agreement with Monte Carlo simulations of the 2D attract
(s-wave! Hubbard model. In particular, in Refs. 30 and 3
the spectral function obtained by Monte Carlo simulations
reported in the intermediate-coupling regime for differe
temperatures and wave vectors. These simulations cle
show that in the pseudogap phase the spectral function h
two-peak structure, with the incoherent peak smoot
emerging from the main peak as the temperature is lowe
below T* . In addition, moving the wave vector across t
Fermi surface, the main peak is reflected in a shadow in
herent peak, as reported in Ref. 29. Monte Carlo simulati
thus give further support to our non-self-consistentt-matrix
approximation, suggesting that dimensionality and lattice
fects do not modify appreciably the main qualitative featu
of the pseudogap phase, obtained by our work for a 3D c
tinuum with a contact potential.

Other kinds of fluctuation propagators~such as, charge
density wave,52,53 spin-density wave,54–56and phase fluctua
tions above the Kosterlitz-Thouless transition25! result into
peak structures in the two-particle Green’s function and i
an associated pseudogap opening in the single-particle s
hy
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tral function. In particular, the pioneering work by Kamp
and Schrieffer55 considering antiferromagnetic fluctuation
coupled to fermions has shown that the associated spe
function evolves from one peak in the Fermi-liquid regime
two peaks in the fluctuation regime. In addition, the antisy
metric structure of the imaginary part of the susceptibil
used by Kampf and Schrieffer is reminescent of the beha
of the imaginary part of our pair-fluctuation propagator in t
weak-coupling regime only.

Further detailed ARPES~and, possibly, inverse photo
emission! experiments are awaited to ultimatly distinguis
the microscopic origin of the pseudogap in underdoped
prates and to unambiguosly identify the characteristic f
tures of the spectral function obtained by our analysis
different doping and coupling regimes.

ACKNOWLEDGMENTS

The authors are indebted to A. A. Varlamov for discu
sions. A.P. gratefully acknowledges financial support fro
the Italian INFM under Contract No. PAIS Crossover N
269.
-
a,

N.

F.
T.

.

J. J.

-G.

d

a-
1For a recent review, see T. Timusk and B. Statt, Rep. Prog. P
62, 61 ~1999!.

2H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Rande
M. R. Norman, T. Mochiku, K. Hadowaki, and J. Giapintzak
Nature~London! 382, 51 ~1996!.

3M. R. Norman, H. Ding, M. Randeria, J. C. Campuzano,
Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki,
Guptasarma, and D. G. Hinks, Nature~London! 392, 157
~1998!.

4J. C. Campuzano, H. Ding, M. R. Norman, H. M. Fretwell, M
Randeria, A. Kaminski, J. Mesot, T. Takeuchi, T. Sato,
Yokoya, T. Takahashi, T. Mochiku, K. Kadowaki, P
Guptasarma, D. G. Hinks, Z. Konstantinovic, Z. Z. Li, and
Raffy, Phys. Rev. Lett.83, 3709~1999!.

5Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and O” . Fis-
cher, Phys. Rev. Lett.80, 149 ~1998!.

6N. Miyakawa, P. Guptasarma, J. F. Zasadzinski, D. G. Hinks,
K. E. Gray, Phys. Rev. Lett.80, 157 ~1998!; N. Miyakawa, J. F.
Zasadzinski, L. Ozyuzer, P. Guptasarma, D. G. Hinks,
Kendziora, and K. E. Gray,ibid. 83, 1018~1999!.

7F. Pistolesi and G. C. Strinati, Phys. Rev. B49, 6356~1994!.
8F. Pistolesi and G. C. Strinati, Phys. Rev. B53, 15 168~1996!.
9N. Andrenacci, A. Perali, P. Pieri, and G. C. Strinati, Phys. Rev

60, 12 410~1999!.
10M. Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. Rev. Lett.62,

981 ~1989!.
11M. Randeria inBose-Einstein Condensation, edited by A. Griffin

et al. ~Cambridge University Press, Cambridge, 1995!.
12M. Randeria, inProceedings of the International School of Phy

ics ‘‘Enrico Fermi,’’ edited by G. Iadonisiet al. ~IOS, Amster-
dam, 1998!.

13J. O. Sofo and C. A. Balseiro, Phys. Rev. B45, 8197~1992!.
14M. Capezzali and H. Beck, Physica B259-261, 501 ~1999!.
s.

,

.

.

d

.
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