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The crossover from weak to strong coupling for a three-dimensional continuum model of fermions interact-
ing via an attractive contact potential is studied above the superconducting critical tempdratufée
pair-fluctuation propagator, the one-loop self-energy, and the spectral function are investigated in a systematic
way from the superconducting fluctuation regiriveeak coupling to the bosonic regiméstrong coupling
Analytic and numerical results are reported. In the strong-coupling regime, where the pair fluctuation propa-
gator has bosonic character, two quite different peaks appear in the spectral function at a given wave vector, a
broad one at negative frequencies and a narrow one at positive frequencies. The broad peak is asymmetric
about its maximum, with its spectral weight decreasing by increasing coupling and temperature. In this regime,
two crossover temperatur@§ (at which the two peaks in the spectral function merge in one)padkT; (at
which the maximum of the lower peak crosses zero frequenay be identified, withT.<T§<T7 . By
decreasing coupling, the two-peak structure evolves smoothly. In the weak-coupling regime, where the fluc-
tuation propagator has diffusive Ginzburg-Landau character, the overall line shape of the spectral function is
more symmetric and the two crossover temperatures appréachThe analysis of the spectral function
identifies specific features which allow one to distinguish by ARPES whether a system is in the weak- or
strong-coupling regime. Connection of the results of our analysis with the phenomenology of cuprate super-
conductors is also attempted.
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[. INTRODUCTION pairs start forming without coherence, the latter being not yet
established owing to large fluctuations of the superconduct-
High-T. cuprate superconductors are characterized byng order parameter. Upon lowering the temperature, the co-
doping- and temperature-dependent anomalous properties rerence between pairs is established and superconductivity
the metallic and superconducting phases. At low doping, th@ppears. The occurrence of large pair fluctuations in cuprates
cuprates display pseudogapn the single-particle excitation is related to the quasibidimensionality, as well as to the short
spectra and in the spin susceptibility, above the supercorcoherence lengtld, of the Cooper pairgtypically, £,~10
ducting critical temperatur@, and below a crossover tem- —20 A).
peratureT*. The temperaturd* decreases with increasing  Within this scheme, the phase diagram of cuprates is in-
doping and merges eventually t®. close to optimum terpreted in terms of @rossoverfrom Bose-EinsteinBE)
doping! The pseudogap phase of underdoped cuprates igndensation of preformed pairs to BCS superconductivity,
best characterized by angle resolved photoemission spectrogs the doping is varieti:** Heavily underdoped cuprates are
copy (ARPES (Refs. 2—4 and by tunneling experiment$.  accordingly considered as superconductors in a strong-
The pseudogap opening beld corresponds to a suppres- coupling (BE) regime with T*>T.; optimally doped and
sion of the low-frequency differential conductan@ehich is  overdoped cuprates are instead more conventional supercon-
connected to the density of stateseasured by tunneling, ductors in an intermediate- or weak-couplitBCS) regime
and to a leading-edge shift of the spectral intengitjtich is ~ with T*=T.. The evolution from strong- to weak-coupling
connected to the spectral function via the Fermi distributionsuperconductivity as the doping is increased is further sup-
and a dipole matrix elementmeasured by ARPES. As ported by low-temperature ARPES and tunneling measure-
clearly shown by ARPES, the pseudogap is tied to the Ferminents in Bi-based compounds of the maximum supercon-
surface and its two-dimensional wave-vector dependence relucting gapA,, whereby A, decreases as the doping is
sembles al,2_,2 harmonic. Both ARPES and tunneling ex- increased, withA,=60—70 meV in underdoped cuprates
periments suggest that the pseudogap evolves smoothly intmd A,=20-30 meV in optimally and overdoped
the superconducting gap as the temperature is lowered froeuprates:® Moreover, in underdoped Bi-based cupratgss
T* to T,. larger than the bandwidth along thé —Y(X) directions,
The d-wave-like wave-vector dependence of thesuggesting that at least near tkepoints states with bosonic
pseudogap, its continuous evolution into the superconductingharacter can be formed. Recent ARPES measurements on
gap belowT, and its tying to the Fermi surface suggest thatLa,_,Sr,CuQ, also indicate a similar doping dependence of
the pseudogap phase could beracursorof the supercon- the gap?°
ducting phasdat least in Bi-based compounds for which a  Recent high-resolution ARPES experiments in Bi2212
detailed ARPES analysis of the pseudogap is availaBle  further suggest that a crossover from weak to strong coupling
cording to this interpretation, the crossover temperafire can even be foun@long the Fermi surfac€FS at fixed
acquires the meaning of the temperature at which fluctuatingoping?* Fermionic states near the nod&l) points of the

0163-1829/2002/6@)/02451416)/$20.00 66 024510-1 ©2002 The American Physical Society



A. PERALLI, P. PIERI, G. C. STRINATI, AND C. CASTELLANI PHYSICAL REVIEW B56, 024510 (2002

FS (namely, the points where thlbwave gap vanisheésap- The approach we follow in this paper belongs to the first
pear to be weakly coupled, while states nearNhgoints are  group of the pairing scenario. Specifically, we investigate the
strongly coupled and could display bosonic character. Irrole played by pair fluctuations in the pseudogap opening,
agreement with the expectation that increasing the couplinfpllowing the BCS to Bose-Einstein crossover from weak to
should cause an increase of the width of the spectral peakstrong coupling. To this end, we introduce a simplified mi-
explicit support to the wave-vector induced crossover alongroscopic model representing a three-dimensig¢8B) con-

the FS is obtained, for instance, from Fig. 2 of Ref. 21. Thetinuum of fermions mutually interacting via an attractive
ARPES spectral intensities for an optimally doped Bi2212contact potential, which can be parametrized in terms of the
sample reported in that figure show, in fact, that the width ofscattering length. This 3D model allows us to considerably
the quasiparticle peak in the normal phase increases alonrgmplify the numerical calculations as well to obtain analytic
the FS, as one moves from tie toward theM point. In  results(at least in some limits yet preserving the qualitative
particular, near thé points the frequency distribution of the features obtained for more realistic models, such as the two-
spectral i_ntensity is broad and flat _Without any observablgjimensional negative-U Hubbard mod&rs3t

peak, while a broad peak feature is present in the wave- \yg examine initially the two-particle propagator in the
vector distribution. In addition, in Bi2212 at optimum doping particle-particle channel, and evaluate the pair-fluctuation

the band dispersion near thé points along theM —Y(X) propagatod”(k,w) as a function of wave vectde and fre-

direction is rather narrow~50 meV), while the band dis- ) :
persion along thé‘—Y(X)Ainrections)is considerably larger quencya. We further analyze theingle-particlepropagator,
(~400 meV). For all cuprates for which ARPES measure-and evaluate the self-ener@(k,») and the spectral func-

ments are available, the Fermi velocity is also anisotropic t|ont.A(k,|w)tf\:v |th|tn the nond—self—clf nS|st(|almtmatr|?< approxi- di
along the Fermi surface, withe(N)/vo(M)~3 2As a con-  Mation. In the strong- and weak-coupling regimes, we dis-

sequence, fermionic states near Mepoints are locally as- cussanalyticforms for the self-energy, and comment on the
sociated with a small Fermi velocity and strong couplihgt ~ Main differences in the line shape &{k,w) between the
fermions; while fermionic states near thd points are lo- two regimes. The spectral weight of the incoherent peak that
cally associated with a large Fermi velocity and weak cou2ppears inA(k,w) and the temperature dependence of the
pling (cold fermions. To account explicitly for the different chemical potential are also discussed. In the intermediate
properties about th& and N points, a two-gap model has (crossover region (where analytic calculations are not fea-
been recently proposéd. sible) only numerical results are presented. Our findings of
In the present paper, we investigate the evolution of thelifferent characteristic features occurring #fk, w) in dif-
spectral function from the weak- to strong-coupling regimedferent coupling regimes are then organized in a systematic
in a systematic way, to compare with the evolution of theway, and a criterion to distinguish by ARPES experiments
spectral function in cuprates by varying doping and wavewhether an interacting fermion system is in the strong-,
vector. More specifically, we aim to account for the characteintermediate-, or weak-coupling regime is discussed. In the
of the fermionic states near thd points (where bosonic strong-coupling regime, we find it is appropriate to introduce
states can be formed upon reducing the doping due thdhe two different crossover temperature$i( and Tg) to de-
character of these stajeand to follow the wave-vector in- scribe the peculiar evolution of the spectral function for in-
duced crossover along the Fermi surface. The local charactereasing temperature. We also show how these two tempera-
of the fermionic states in wave-vector space further enabletires merge to a single crossover temperat(re) (as the
us to use a simple isotropic attraction between electrons;oupling is decreased. A detailed comparison of ARPES ex-
which gives rise in the superconducting state to a gap witlperiments with our analysis of the spectral function in differ-
swave symmetry. ent coupling regimes is eventually attempted. Although it
Two different(albeit relatedl kinds of approaches for the might at first appear that our model could not be directly
pseudogap state can be identified within the pairing scenari@pplied for comparison with ARPES experiments in cu-
On the one hand, owing to the short coherence length and thgrates, this comparison is attempted by invoking the wave-
large value of the superconducting gap about tie vector-induced crossover mentioned above. Even though
points/~*6181%he superconducting phase of underdoped cusome parts of our analysis and results have been already
prates is interpreted as intermediate between a BCS stapgesentedalbeit for different models and/or with different
with extended pairs and a Bose-Einstein condensate wittethods in previous worlé®181719ur approach should be
preformed(local) pairs. Within this view, due to strong- or regarded as more systematic and complete than others.
intermediate-coupling effects, pairing correlations survive The plan of the paper is as follows. In Sec. Il we intro-
well above T. and determine a pseudogap opening wherduce the microscopic model and discuss the relevant equa-
coupled to the fermions. On the other hand, the second apions for the spectral function and related quantities. In Secs.
proach emphasizes the relevance of phase fluctuations of thk and IV we report the results for two- and single-particle
superconducting order parameter, owing to the low value oproperties, respectively, discussing the evolution of the pair-
the plasma frequency and the quasibidimensionality of thdluctuation propagator and of the spectral function from the
cuprate*~2" Within this view, the amplitude of the local superconducting fluctuations regineeak coupling to the
order parameter is establishedTdt, even though phase co- bosonic limit(strong coupling In Sec. V we present a de-
herence and hence long-range superconductivity occurs #iled comparison of our results with ARPES experiments.
the lower temperature,. Section VI gives our conclusions.
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Il. RELEVANT EQUATIONS FOR THE SPECTRAL

_ m d3k
FUNCTION AND RELATED QUANTITIES 1) 1(q,QV): — — j
Amag (2m)3

In this section, we set up the relevant equations to follow
the evolution of the single-particle spectral function and the X
two-particle fluctuation propagator from weak to strong cou-
pling. To this end, we consider a system of fermions embed-
ded in a three-dimensional continuum and mutually interact- XGO(q—k,Q,— w,)— m @)
. . . _ . . q ) v n 2|1
ing via an effective short-range attractive potentigld(r k
—r") of strengthvy, wherev is a negative constant. For the

T GOk w,)
n

3D continuum mod_el we are allowed to_take the limit pf a G’l(k,wn)=G(O)fl(k,wn)—[E(k,wn)—Eo], 3)
strictly short-range interaction, thus relating to the fermionic

scattering lengthtag by a suitable regularization procedure. 3

Knowledge of the detailed form of the fermionic interaction n=2T> eiO*wnj G(k,wp). (4)
is, in fact, not required for studying the main features of the n (2m)°

evolution from weak to strong coupling. The many-body dia- ©) ] . ., ) .
grammatic structure for the single- and two-particle Green'd1ere,G™(k, wy) is the “bare” fermion propagator given by
functions gets in this way considerably simplified, while pre-G® (k,w,) =iw,— &(k) [&(k)=k%*(2m)—u’ being the
serving the physical effects of pseudogap operiingror a  free-particle dispersion measured with respect to the renor-
detailed discussion of this model, see Ref.)33. malized chemical potential’=u—3,, where u is the

For the attractive fermionic interaction of interest, the Physical chemical potential aritl, the constant self-energy
scattering lengtfas changes from being negativehen the  Shift mentioned abovem s the free-fermion mass, ana,
two-body problem fails to support a bound slate being = 71(2n+1) (n integej and ), =27Tw (v intege) are,
positive (when the bound state is eventually supported b);espectlvely, fermionic ar_1d bosomc'Mgtsupa.ra freqyenmes at
increasing the interaction strengtiand diverges when the temperaturef. The chemical potential is eliminated in favor
coupling strength suffices for the bound state to appear. Thféf theldensn)n via Eq.(42. The cgnstant ielf—energy shif
dimensionless parametkgar (wherekg is the Fermi wave IS _glvep by Ré(k—kﬂ,.,w—_o,‘.lkT ) whe_:re Ky .
vectol thus locates the side of the crossover one is examin-_ 2mg”. It turns out that this shift is non-negligible only in

ing and how close to the crossover region one is. Specifi'Ehe weak- to intermediate-coupling regime, where it is al-

. T . most temperature independent frofmto T*. (In this cou-
cally, kear is small and negative in the weak-coupling re-

) . . ) . . pling regime, T* =T§ =T7 is the temperature at which the
gime, diverges in the intermediaterossover regime, and . . .
o ._pseudogap disappearsin practice, we will take X,
eventually becomes small and positive in the strong-couplin - RPN . : .
: : o . ~=ReX(k=k, ,0=0,T=T,.) in the weak- to intermediate-
regime. For this reason, driving the crossover by var|kpg K

. . . . . . coupling regime, while we shall negleEt, altogether in the
while keepinga fixed requires one to change discontinuosly jnsermediate- to strong-coupling regime. Inclusion of this

the sign ofag at the value Kea) '=0. S self-energy shift amounts to a partial self-consistency dress-

The diagrammatic scheme we consider is based on thﬁalg of the single-particle Green’s functio@®, and corre-
non-self-consistertmatrix approximation, constructed with sponds to a complete description of the high-temperature re-
“bare” single-particle Green’s functiongwith the inclusion,  gion,
however, of the dressed chemical potential and of an addi- After analytic continuation to the real frequency a¥s,
tional constant energy shifto be discussed belgwvhich is  the imaginary part of the retarded self-energy can be written
relevant to the symmetry of the spectral funciioifhis  at this order of approximation in the form
choice embodies the physics of the pseudogap state, because
in the weak-coupling regime it describes the Ginzburg-
Landau superconducting fluctuations abolg3* while in Im3(k,w)= _f
the strong-coupling regime it describes the formation of non-
interacting bosongfermionic bound states®

The set of relevant equations for the two-particle Green’s
function in the particle-particle channdi.e., the pair-
fluctuation propagat9rthe single-particle Green’s function, wheref(x)=1/(e’*+1) is the Fermi distribution ant(x)
and the self-energy is the following: =1/(ef*—1) is the Bose distribution, witi8=1/T. Hereaf-
ter, analytic continuations are meant to produce retatged
functions. Once the imaginary part of the self-energy is
evaluated as above, its real part gk, w) is obtained via a
Kramers-Kronig transform. The real-frequency formulation

3

(2:)3{b[w+g(q—k>]+f[§<q—k>]}

XImTO[q,0+ &(q—k)], (5

d3q
=— (0)
2 (k,wp) TEV J (277)3F (9.4,) (5) allows for high accuracy of the numerical calculations,
and avoids the problems of dealing numerically with analytic
xGO(q—k,Q,—wy,), (1) continuation from the imaginary frequency axis.
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The spectral functio\(k,w) for the single-particle fer-
mionic excitations of interest is obtained from the imaginary
part of the retarded Green’s functi@®R(k,w) via the rela-
tion

1 £
Ak,w)=——ImGF(k,). (6) =
In terms of the real and imaginary parts of the self-energy, ‘ v
H -1 s AN " -y
the spectral functio®\(k,w) has the form 0 02 04 06 08 ]

—Im3(k,w)/m Tleg

2 2"
[o=&(k)—ReX(k,w) + 2ol +[ImX (K, 0)] FIG. 1. Critical chemical potentiau.(T.) (full line) and
() normal-phase chemical potentja(n,T) for different values of the
density expressed in terms dé:ag) ~* (broken line$, as functions
of temperature. The values dk{ar) " are 1.33, 0.96, 0.76, 0.60,
and 0.52 from bottom to top.

Ak,w)=

The set of equationél)—(5), together with the definition
of the spectral functiori7) and the prescription for analytic
continuation to real frequencies, allows us to study sys-
tematic way with limited computational effort two- and
single-particle properties over a wide range of parameterghe bosonidstrong-coupling regime for the pair-fluctuation
(namely, coupling, density, and temperajurfellowing the  propagator is reported via both analytical and numerical cal-
crossover from weak to strong coupling. culations, for a wide temperature range ab®ye This study

A few additional comments are in order at this point aboutis preliminary to the discussion of the spectral function via
the choice(1) of the self-energy. In the weak-coupling re- the self-energy(1), presented in the next section.
gime and at high enough temperature, the expreg4jorep- The pair-fluctuation propagatoF(®)(q,Q,) within the
resents the leading term of a low-density expansion for aon-self-consistent-matrix approximation is given by Eg.
Fermi system even when the interaction is attractiidpon  (2). We shall examine, in particular, its wave vector and fre-
approachingT ., the expressioril) can alternatively be in- quency dependence for all coupling regimes.
terpreted as representing the coupling of a bare fermion with Being interested imormal-phaseproperties of the fermi-
pairing fluctuations. In the strong-coupling regime, the ex-onic system, knowledge of the superconducting critical tem-
pression(1) represents instead a “free” boson coupled to aperatureT, is required at the outset to insure tia:T.. To
bare fermion, and is known to produce a shadow-band strudeentify the critical temperatur&., we rely on the condition

ture in the spectral function at negative frequencies. that the fluctuation propagator has a pold afor vanishing
Finally, we recall that inclusion of full self-consistency in wave vector and frequency, namely?(o)fl(qzo,ﬂy
the single-particle Green’s functions entering Eb).can be =0;u,T=T,)=0. This condition(known as the Thouless

safely dismissedat least in the weak- and strong-coupling criterior) taken alone is equivalent to the BCS equation for
regimes, where the use of expressidh can be justified t0  the critical temperature in the weak-coupling limit. In addi-
start with], as discussed in Ref. 33. In contrast to the non+jon when coupled to the density equatiof) to fix the
self-consistent-matrix approximation used in Eq&)—(4),  chemical potential, it yields the value of the Bose-Einstein
the self-consistent matrix uses full self-consistent Green's ¢ongensation temperature in the strong-coupling limit.
functions but does not include vertex corrections in the self- The Thouless criterion provides a temperature-dependent
energy. As remarked in Ref. 31, the different Ievels, of ap-yitical value for the chemical potentiaty(Te) = (N, To),
proximation for vertexes and single-particle Green’s funcyith ,(n,T) obtained from the density equation. In Fig. 1
tions may then lead to unphysical results for the pseudogage critical chemical potential and the normal-phase chemical
in the spectral function, in a similar way to what happens for,gienial are reported for different values &t-@r) ~* in the

the 2D repulsive Hubbard mo??.‘_rhe important pointto be  gyong- to intermediate-coupling regime. We have verified
emphasized is that, provided@™ in Egs. (1) and(2) con-  hat in the high-temperature limit the chemical potential
tains the dressed chemical potential obtained from E&)S. ,(n 1)  tends to its classical value u(n,T)

and (4), this set of equations interpolates smoothly betweer_ 1 5|- IN(1.898T 5 /T) for all densities Tge=3 31n§’3/'m3

weak-. a'nd strong-cpupling limits and provides a reasonablgemg the Bose-Einstein condensation temperatiirtlote
description (.)f both limits. A comparison k_)etween our res'“!ltﬁhat in the strong-coupling regime, i.e., at low density and for
for the continuum model and those available for the Iattlcell.),|lu|>l . approaches the \,/alue’z— e/2, where e,

model W'". bg made in Sec. V.I’ with the qutcome that the=(ma§)*l is the binding energy of the associated two-body
main qualitative features remain the same in the two models, ; . . S .

problem. In the intermediate-coupling regime jnitially in-
creases as the temperature is increased, reaches a maximum,
and eventually decreases, tending to the classical behavior.
The temperature where the maximum is located turns out to
In this section, a systematic study of the crossover fronbe smaller than the binding energy and does not relate to

the superconducting fluctuatiofwveak-coupling regime to  specific changes of single-particle properties in the strong- or

Ill. PAIRING FLUCTUATIONS FROM WEAK
TO STRONG COUPLING
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FIG. 2. Critical temperatur&, (full line) and BCS mean-field FIG. 3. Phenomenological paramekgi; as a function of the

; - .
critical temperatureTges (broken ling as functions of keag) "t coupling parameterkeag) ~*, from weak to strong coupling.

(both temperatures are normalized to the Bose-Einstein condensa- ]
tion temperaturd g evaluated at the same density sation temperatur@gg evaluated at the same density. Note

that in the 3D continuum moddigg is of the same order of
intermediate-coupling regimes. In the weak-coupling regimegg.) The results of Fig. 2 can be compared with the calcu-
on the other hand, this temperature turns out to coincide witlhation of T within the non-self-consisterttmatrix approxi-
the crossover temperatufé where pair fluctuations become mation reported in Ref. 41. We mention that the inclusion of
manifest and a pseudogap opens. the self-energy shiftY, in the weak- to intermediate-

In the intermediate- and weak-coupling regime, the preseoupling regime adopted in the present paper, slightly in-
ence of the maximum i (T) is connected with the fermi- creases the value of the critical temperature with respect to
onic degrees of freedom, and in particular with the openinghe results of Ref. 41. We have verified that, in the strong-
of a pseudogap at the Fermi surface which tends to depressid intermediate-coupling regimes, the mean-field tempera-
the chemical potential upon lowering the temperatiinea  ture Tgcg about coincides with the temperature at which the
similar fashion to what happens when a real gap opens in bare(fermionic) contributionn, to the total densityn equals
BCS superconductor below,). In the weak-coupling re- the (bosoni¢ contributiondn due to interaction effects, i.e.,
gime, the temperature interval where the pseudogap is finite,(T=Tgcg = on(T=Tgcg =n/2. This result permits us to
is very narrow and the maximum @f(T) approaches the identify Tgcs as the crossover temperature where preformed
critical line u.(T,), becoming in practice not visible both in pairs start to form[The connection betweefigcs and the
our results and in Monte Carlo simulations. The presence ofharacteristic crossover temperatsyeof the spectral func-

a maximum ofu(T) [with the ensuing nonmonotonic behav- tion will be made in Sec. I\. Note from Fig. 2 that for

ior of u(T)] is clearly observed in Monte Carlo simulations (krag) "< —1 the critical temperature approaches the BCS
of the 2D attractive §-wave Hubbard model in the mean-field critical temperature, indicating that the fermionic
intermediate-coupling regimesee Fig. 6 of Ref. 20 while  system is in the weak-coupling regime. Fégé) =1 the

the presence of the maximum is somewhat debated when tlugitical temperature is instead close to the Bose-Einstein con-
self-consistentt-matrix approximation is uséd®*° In the  densation temperature, indicating that in the strong-coupling
strong-coupling regime, the fermionic degrees of freedonregime the fermionic system is equivalent to a system of
are exponentially suppressed according td(¢&) noninteracting bosons. The strong-coupling limit is thus ef-
~exp(—plu)) and the above maximum is progressively fectively reached for not too large values of the parameter
shifted toward zero temperature for increasi@u|, thus  (kpag) 143

recovering in the extreme strong-coupling limit the behavior In Fig. 3 we report for convenience the relation between
of a free Bose gas via the relatiop2 — e+ ug . *>**8We K &pair and krap) ! as obtained from the analytic solution
have verified that in the strong- and intermediate-couplingof Ref. 44,£,,;, being the average pair size 0. This plot
regimes, the temperature at whigl(T) reaches its maxi- is especially useful to compare our results for the two- and
mum does not relate with the temperature at which thesingle-particle propertigswhich are expressed in terms of
pseudogap opens. (keag) ~1] with the phenomenology of cuprates, for which

The equation for the density, together with the conditionsome estimates of the paramekg#,; in different doping
for the critical chemical potentigh(T)=u(T), yields the regimes are available Specifically, at optimum doping the
value of the critical temperaturg; for the superconducting parameteke¢,,; takes roughly values between 6 and 10, and
instability. The critical temperatur&, and the BCS mean- its value decreases for decreasing dopinminly because
field critical temperaturél g [the latter obtained formally the superconducting gap dt=0 increases and the Fermi
from the same equations defining, but with the bare  energy decreases approaching the insulating ph@gemay
single-particle Green’s functio8(?) replacingG in Eq. (4)] reasonably considekgép,~1 as a lower-bound value for
are reported in Fig. 2 as functions of the paramekenf) ~* underdoped cuprates, especially if we consider it as a local
[recall that in the weak-coupling limit Tgeg  quantity about theM points. Accordingly, the coupling pa-
=1.67er exp(m/2keag) (ap<0)]. (Both temperatures have rameter krag) ! in the optimum and underdoped regimes
been conveniently normalized to the Bose-Einstein conderfor cuprates lies approximately in the range 1.7
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FIG. 4. Ratio between the imaginargy) and real ¢;) part of FIG. 5. Coefficientb of the |g|? term in the inverse pair-

the frequency coefficient of the inverse pair-fluctuation propagatofiuctuation propagator & =T, as a function of krag) 2.
at T, as a function of krag) L.

limit we can writea= —m?agug(T)/(87), whereug(T) is
=<(krag) 1=0.5, as indicated in Fig. 3. the bosonic chemical potential, which we pass now to dis-

Having determined the thermodynamic quantifigs, T) CUSS.

andT., we pass now to calculate the pair-fluctuation propa- According to the above analysis, we have verified that in
gator(2). From a physical point of view, pairing fluctuations the strong-coupling regimévhen the conditiongt<0 and
have essentially different character in the strong- and weakg|u|>1 are satisfiedthe pair-fluctuation propagator evalu-
coupling regimes. While to evaluate the self-energy numeriated numerically acquires the polar structure of a free-boson
cally from Eq.(5) knowledge ofl" () is required over a wide Green’s functiof?3?
range of wave vectors and frequencies, to characterize the

evqutiqn ofT’© from weak to strong coupIing it is sufficient © 8m/(m?ag)
to consider the expansion of its inverse in powers of the rq,Q,)=-- 5 9
wave vectorg and the Matsubara frequen€y,,:*"*? 1Q,—q%(4m)+ ug

o)1 o with mass 2n, a quadratic dispersion as a function of wave
' "(q.Q,)=a+blg|*+diQ, (8 vector, and bosonic chemical potential(T), which reduces
with d=d,+id,sgn(,). Here, @,b,d,,d,) are real coef- to 2u(T) + €4 in the extreme strong-coupling limit. This im-

ficients which are coupling, density, and temperature deperf2/i€s that, for real frequencies, the imaginary part[sf)
dent. [which enters the calculation of the imaginary part of the

In Fig. 4 we report the ratio of the imaginargy) to the self-energy via Eq(S)J ig proportional to a delta function in
real (d,) part of the frequency coefficient in E6) at T, as  the strong-coupling limit
a function of keag) 1. In the strong-coupling limitd,=

—m?ag/(87) andd,=0, with the pair-fluctuation propaga- ?

8m
ImI9(q,0)= Mow—a?(4m)+upl. (10

tor acquiring the polar structure of a bosonic Green’s func- m?ag

tion. In the weak-coupling limit, on the other hand,~

—(T¢/Ep)?<1 andd,=—No/(8T), whereN, is the den- We have verified that Eq(10) remains approximately
sity of states(per spin componehiat the Fermi energ¥g,  valid in the intermediate-coupling regime toward strong cou-

W[th the pair-fluctuation propagator acquiring the diffusive pling (when 8| u|~1 andx<0), while only in the strong-
Ginzburg-Landau structuré. When [dy|>|d,|, fluctuating  coupling limit ug(T) therein reduces to the chemical poten-

pairs become propagatiriglbeit with a damping and even-  tial u,(T) of an ideal Bose gas, with the characteristic
tually acquire the(bosonig character of undamped pre- temperature dependence
formed pairs.

In Fig. 5 the coefficienb of the|g|? term in Eq.(8) is (T—Tgp)?
plotted as a function ofkrag) !. In the strong-coupling Mo(T):—l-ZZT—BE (13)

regime[i.e., for (krag) “1=1], b coincides with its strong-
coupling valuemag /(327), where 2n is the mass of the at low enough temperature. Specifically, we have verified
composite boson. In the weak-coupling regirfiee., for  that as-function contribution to Inf’'(®)(q, ) appears when
lkrag=—1), b=N07§(3)u§/(48772T§) is proportional to  (krag) “*=0 (corresponding tal,/d;<1 in Fig. 4. This
the square of the zero-temperature correlation lenh contribution, which is initially present for large values af
[wherevg is the Fermi velocity and(3)=1.202 is the Rie- extends progressively to smaller valuescpfor increasing
mann zeta function of argumeni,3and tends to diverge in coupling, reaching eventuallgy=0 when the chemical po-
the extreme weak-coupling limit. tential becomes negative. By further increasing the coupling,
Finally, the coefficientin Eq. (8) provides a mass to the the &-function contribution to InT'(®)(q,w) becomes in-
pair-fluctuation propagator. In the weak-coupling linsit creasingly prominent and the asymptotic expressid is
=Np In(T/T,) vanishes afl., while in the strong-coupling progressively reached.
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This s-function contribution, associated with the forma- particle band f<0) corresponding to the strong- to
tion of a bound state with bosonic character, is responsible imtermediate-coupling regime, and when the chemical poten-
the strong-coupling limit for the opening of a real gap in atial lies inside the single-particle bang 0) corresponding
broad temperature range abolg, as it will be shown in the to the intermediate- to weak-coupling regime.
next section. Actually, in addition to th& function, one also
finds a finite contribution to |I1T(O) for w>2|,u| When in- A. Strong- to intermediate-coupling regime
serted in Eq(5), this contribution leads to an exponentially

vanishing | for o>|pu|. . . . . .
g Im 0=>|ul tion appears in Ini'(®)(q,w) starting from the intermediate-

Finally, in theweak-couplingregime, the pair-fluctuation ? . h “1-0 (for t f h
propagator recovers the Ginzburg-Landau diffusive form.cr?uplng r>e%|m? w en_KF?F) h(or em.?e[ja L;]res_such
Near the critical temperature, its expression for small wavdhat 8l#[=1). In particular, we have verified that in the
vectors and frequencies is accordingly given by strong-(_:oupllng I|m|t(wher_e,q,<0 af‘dﬁ|“|>1) the pair-

fluctuation propagator coincides with a free-boson Green’s

In the previous section, we have verified that a delta func-

1 function with mass & [see Eq(9)]. In this limit, the imagi-
rq,0,)= > } (12 nary part of the pair-fluctuation propagator reduces to a delta
No(e+ 7]a[*+ ¥|Q,]) function and the self-energy can be evaluated analitically.

Inserting Eq.(10) into the general expressiofb) for the

Here, e=In(T/T.) is the mass term of the propagatoj, . . X ]
~v,2:/T§ represents the stiffness of the superconducting flucimaginary part of the self-energy, the following form results:

tuations with a proportionality coefficient which depends on _ 32 — B
dimensionality{ 7¢(3)/(4872) being its value in 30 while M3 (K= 00) = —2am ™ Nou—wOlon—0) =
y=l(8T,) is related to the lifetime of the fluctuating pairs m?ae  ePlem—otlnel g

(which do not obey Bose statistjcdn this limit, ImT'(®)(q _ ,
—0,w) diverges as I only at the critical temperatur® ~ Where ww=pu—ug is a threshold frequency an@ is the

=T.; as a consequence, the pseudogap region induced Wlt step function[In th_e strong- to intermediate-coupling
the diffusive pair fluctuations will be present only in a rather '€9ime, when the chemical potential is below the bottom of

H 2
narrow temperature range. No delta function contributes inth€ free-fermion band £<0) andk®/(2m)<e,, the self-

this regime, but InT©(q=0,0) has a broadened peak €N€rgy and hence the spectral function are almost indepen-
structure for’ small enough. ' dent of wave vector. In this cask=0 can be taken as a

To summarize, the main effect of increasing coupling in€Presentative value, as we did in Eg3).] _
ImT'©)(q,w) is the appearance of a peak struct(delta Note that the frequency dependence of3nis strongly

function) at finite frequencies, whose area grows with@Symmetricabout its minimum akw=wy,~|xg|. Note also

(keap) L. In the strong-coupling regime, fay=0 and T that Im% (and hence RE obtained via Kramers-Kronig

>T, the real part off ©(q,»)~* vanishes at a finite fre- transform has a nontrivial temperature and frequency depen-
C )

quency, corresponding to a pair resonance. This resonan_éi@nce' showing strong deviations from Fermi-liquid behav-

disperses ag. In the weak-coupling regime, the real part of 0" I the regime whergs| 5| <1 (ie., T=T), three differ-
T'©)(q, )t is small only in the critical region, and vanishes €Mt behaviors of Ink(0,w) can be specifically identified on

only at the critical temperature. Increasing the coupling fromthe frequency axis(i) For oy —|ug|<wo<wp, IM2(0,0)

weak to strong, the frequency dependence oflIf(q ~ —on—o/p|ug| and (i) for wthfﬁ<w<wth_|MB|’
—0,w) evolves from being antisymmetric with respectdgo M2 (0.w)~—(BJwn—w) !, and (i) for w<wp— B,

=0 to an asymmetric structure. This evolution confirms preJM 2 (0,w) ~ —exd —B(wpn—w)]. Note that, in the strong-
vious results forl'(®(q=0,w) reported in Ref. 17. In the coupling limit, the imaginary part of the self-energy has a
next section, we will show how the peak structures ofSquare-root divergence ai=wy, for T=Te. .
spectral function, giving rise to @ronouncel suppression tions from Fermi-liquid behavior are present in the strong- to

above T, (while in the weak-coupling regime non-Fermi-

liquid behavior is found only in a narrow temperature range
aboveT,, as discussed in the next subsection

The above characteristic features of the analytic expres-

In this section, we study the single-particle excitations forsion(13) can be clearly identified in the numerical results for
fermions coupled to pair fluctuations above the critical tem-Im X (k=0,w) reported in Fig. 6 at different temperatures
perature. The spectral functigh(k,w), obtained by solving (for a specific coupling The associated real part is shown in
the set of equation€l)—(7), is analyzed ira systematic way Fig. 7, where the straight lines+ w are also reported for the
as a function of coupling and temperature, thus following itssame temperaturéggnd coupling, with increasing tempera-
evolution from weak to strong coupling. In this way, charac-ture from top to bottom. At any temperature, the intersection
teristic features of the spectral function as a function of fre-of a given straight line with RE (k=0,w) locates the posi-
guency and temperature will be evidencedaih coupling tion of the quasiparticle peak at>0.
regimes. We shall analyze separately the cases when the Note that for temperatures closeTg, three intersections
chemical potential lies below the bottom of the single-occur, with the most left intersection giving rise to the inco-

IV. SPECTRAL FUNCTION FROM WEAK TO STRONG
COUPLING
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FIG. 6. Imaginary part of the self-energy lat0 as a function FIG. 8. Spectral function &=0 as a function of frequendyn

of frequency(in units of ¢,) at different temperatures. In this case, units of €,) at different temperatures. In this casek:4g) !
(krag) "1=0.77 and T,/Tge=1.14. (Strong- to intermediate- =0.77 andT./Tge=1.14. (Strong- to intermediate-coupling re-
coupling regime. gime)

herent peak irA(k, ) at negative frequencidsvhile to the  in an asymmetric wayin contrast to the weak-coupling re-
central intersection there corresponds a strong suppression @ime (see below, approaching which the broadening of the
A(k,w)]. At high enough temperatures, on the other hand{wo peaks becomes progressively more symmgtie have
only a single intersection occurs. The corresponding spectrdlso verified that, in the extreme bosonic limit, the spectral
function for the same coupling and temperatures atiqvis ~ function has the structure of two deltalike peaks symmetri-
reported in Fig. 8. The resulting spectral function has ecally located with respect to =0 (albeit with quite different
strongly asymmetric structure with two peaks: The one aspectral weights which is generated in an asymmetric way
positive frequencies is rather narrow, coherentlike, and has By the narrowing of the incoherent peak at negative frequen-
large spectral weigh{namely, the area enclosed by the cies as the produdt-ar becomes smaller and smaller.

peak; the one at negative frequencies is instead broad and In Fig. 9 the spectral function &=0 is plotted as a
has a small spectral weight. When the chemical poteptial function of frequency for different values of the parameter
is below the bottom of the band, the peak located at negativekrag) ! at T=T.. Note that these curves have been ex-
frequencies represents tireoherent pealkjenerated by the pressed in unitssg, instead ofeg, to get a more evident
interaction of the fermions with strong pair fluctuations. Thisevolution with coupling. The spectral function has two well-
incoherent peak is itself asymmetric, it becomes broader fogeparated peaks, withreal gapopening at an energy of the
increasing temperature, its spectral weight is density an@rder of the binding energy of the pairs. By increasing the
coupling dependeritlecreasing ask¢ar)®], and its position ~ coupling, the spectral weight inside the gap is progressively
depends mainly on the value of the chemical potentiasuppressed, until in the extreme strong-coupling limit the
(which in turn depends on temperaturBy increasing tem-  step function in the imaginary part of the self-enerdp)
perature, the chemical potential becomes progressively momdakes the spectral weight to vanish identically in the range
negative(see Fig. 1 and the peak position oA(k=0,0)  —|u|+|usl<w<|u|.

shifts accordingly toward positive frequencies. The broaden- Since photoemission experiments measure the intensity of
ing of the incoherent peak becomes pronounced when thehotoemitted electron@hat is, the spectral weight aega-
temperature is of the order of the binding eneftgge, e.g., tive frequencies no signal would be detected if both the
the case withl/T,=3 in Fig. 8. Note also that, for increas- incoherent and coherent peaks had moved to positive fre-

ing temperature, the two peaks A{k=0,w) get broadened quencies for increasing temperature. In this confexd in
analogy with what is empirically done when interpreting

o TT=t — | | .
1.5 — yl=077 —
g 6 3 0.8 | 0.97
2_ 4 5 - 1 o 1.33
5"/ 2 ’e? 0.6
N o
g 0 < 04
2 <
4 0.2
W/ 3 0
w/ep

FIG. 7. Real part of the self-energy kt=0 as a function of
frequency(in units of ;) at different temperatures. In this case, FIG. 9. Spectral function =0 as a function of frequencfin
(krag) "1=0.77 and T./Tge=1.14. (Strong- to intermediate- units ofeg) at T=T, for different values of the couplingkgag) 2.
coupling regime. (Strong- to intermediate-coupling regime.
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FIG. 10. Crossover temperatur€s (dashed lingand T} (full FIG. 11. Imaginary part of the self-energy|at=k, as a func-

line), and BCS critical temperatur€zcs (dashed-dotted lineas  tion of frequency(in units of e¢) at different temperatures when
functions of keag) ~L; all temperatures are normalized to the criti- (krag)  '=—0.45 (T./ex=0.23).(Intermediate- to weak-coupling
cal temperatureT, of Fig. 2. The value of K-ag) ! where the regime)
chemical potential changes sign is indicated by an arrow.

turns out to be minima] at zero frequencyabout which the
photoemission measurementit is natural to introduce a relevantrange of the pseudogap phenomena is centered
crossover temperaturg; at which the maximum of the &t @ temperature close 6 (where the system recovers a
lower peak crosses zero frequency. Our analysis shows, hofermi-liquid behavior. An exact selection of is, in prac-
ever, that afT* the spectral function still maintains a two- [Ce: NOt required sinc&, turns out to depend rather weakly
peak structurgsee Fig. 8 reflecting the sizable effects of onTin thg |{1tern;;ed|ate- ktp O\l/vefa:cct)uplmgf:eglme.tklln th'hs
the interaction between fermions and pair fluctuations. W ense, we Interpreét, as a kind of martree shift, even thoug
are accordingly led to introduce a second crossover temperz2’ 04" choice of the F’Otef“'a' the true Hartree shift vanlshe_s
ture T*>T* , at which the upper and lower peaks of the identically. We have consistently evaluated the constant shift

1 0 = ' =

spectral function merge just in one pdakthe sense that the Eolf?éthlr k§ I,<w Oo,faEn d ?i)t?: s;rguel;teerggerature where the
incoherent peak is progressively absorbed by the cohereﬁPTh ing)I/ (i ’nw)fth q.b v nstant fﬁf@ tems from
(quasiparticlg peak, even though the separation between th € Inclusion ot the above constant s se’ s from
two peaks remains almost consfant e need of improving the single-particle Green’s functions

In Fig. 10 the two crossover temperatufls and T? (as entering the construction of thg self-energl) when ap-
obtained numerically from the above definiti()marle re- proachingTs, only close to which pseudogap phenomena

ported as functions of the parametée.4.) ?, both tem- become appreciable in the intermediate- to weak-coupling

peratures being normalized with respect to the critical tem.c9'Me: The choice of the self-energl) takes, in fact, into

ratureT. . The BCS mean-field critical temperatur account fluctuation corrections only at the lowest order, a
pe e . P Bcs procedure which is certainly not completely satisfactory
from Fig. 2 is also reported for comparison. In the strong-

. . — . when approaching the critical temperature where all sort of
coupling limit [when «FaF) 121,] TI>T3 ' TI. being a fluctuations corrections become important. To approbgch
large energy §cale which, according to F|g. 10, in the strongg o may try to improve the self-energy) by dressing the
coupling limit is mucrl larger ttlan the binding energy The g6 particle Green's functions therein with a constant self-
difference betweenl; and Tg is reduced by decreasing gnergy insertion appropriate to the noncritié@mperature
(keag) %, but only in the intermediate-coupling regirfi.,  region. On the other hand, the inclusion of the full self-
when (kear) '=—0.1] the two crossover temperatures al- consistent Green's functiowithout vertex corrections, how-
most coincide 1 =Tg). In the weak-coupling regime, only evey leads to an overall depression of pseudogap phenom-
a single crossover temperature can be identifiefi£T;),  ena and is not theoretically justifié4>® From a pragmatic
since in this regime the chemical potential is almost equal tgoint of view, we have verified that in the intermediate- to
the Fermi energy and the two peaks of the spectral functiomveak-coupling regime the pseudogap would open at negative
are symmetrically located about zero frequency. Note finallyfrequencies(and not atw=0, as expected from a simple
that T; about coincides withTgcg which was previously physical intuition, if the constant self-energy shil, were
identified via an independent proceduf@/henTd=T7 we  not properly included. The pseudogap opening at negative
shall indicate both temperatures simply&s.) frequencies would, in turn, be in contrast with Monte Carlo
results and experimental findings.

The characteristic behavior of the imaginary and real parts
of the self-energy afk|=k . are shown in Figs. 11 and 12,

In the intermediate to weak-coupling regime, it becomegespectively, at different temperatur@sr a given coupling
essential to take explicit account of the constant shift Note that the convexity of the curves Mk, ,w) about
introduced in Sec. Il. This shift has been identified with thew=0 is inverted with respect to the Fermi-liquid behavior,
value of the real part of the self-enerff) taken at the wave implying strong deviations from Fermi-liquid behavior also
vectork,, [such thaté(k,,)=0 and where the pseudogap at moderate values of the couplifige., such that a bound-

B. Intermediate- to weak-coupling regime
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FIG. 12. Real part of the self-energy|af=k, as a function of FIG. 13. Spectral function 4k| =k, as a function of frequency

frequency (in units of ) at different temperatures when (in units of e£) at different temperatures. In this case, with
(krag) 1= —0.45 (T./ex=0.23).(Intermediate- to weak-coupling (krag) = —0.45 (T./e-=0.23).(Intermediate- to weak-coupling
regime) regime)

state in the two-body problem is not yet preselile have by Ref. 46 within the same non-self-consistémbatrix ap-
verified, however, that the Fermi liquid behavior is consis-proximation adopted in the present paper. According to Ref.
tently recovered when the coupling is progressively de-46, the diffusive form(12) of the pair-fluctuation propagator

creased. would yield
In the weak-coupling limit and for temperature close to
T., an analytic approximation for the imaginary part of the Agg
self-energy can be obtained by inserting into E5). the E(kﬂv):m, (15

weak-coupling expression of the pair-fluctuation propagator
given by Eq.(12). At zero frequency and at the Fermi wave where A, is a parameter that depends on a wave-vector
vector, the imaginary part of the self-energy acquires then thgutoff and y=(T—T,). This expression evidently does not
following expression in the limif —T: reduce to Eq(14) for =0 andT—T,, nor to the counter-
part of Eq.(14) for T=T, and finitew. A few comments to
67 [Tc\*T, (T-T, 14  Clarify the origin of these discrepancies are then in order.
7L(3) 2 n T, (14 The expression(15) has been derived more recently in
Ref. 50, where it was also extensively used to fit ARPES data
which divergesupon approaching . with a slow logarithmic  for Bi-based cuprates. According to Ref. 50, Etf) results
rate. An expression analogous to Et) is also obtained at by manipulating directly the expressiofl) for the self-
finite frequency(such that|w|<eg) and T=T., with the  energy in Matsubara frequency, whereby the finite vate
replacement of INT—T,)/T.] by In(w|/w;), wherew <er is  of the smallestfermionic) Matsubara frequency is exploited
a suitable cutoff frequency. to make approximations on thg dependence of the inte-
To test the validity of the above analytic approximations,grand. Analytic continuation to the real frequency axis is
we may consider, e.g., the case of Fig. 11 TéT.=1.001  then performed on the approximate result, eventually yield-
and obtain from Eq(14) the value Ink/eg=—0.92 forw  ing expressior{15) above. This procedure is, however, ques-
=0. This estimate is indeed in good agreement with theionable, insofar as the very variable to be analytically con-
numerical result reported in Fig. 1dsee the full curve tinued is used to set restrictions on the approximate form of
therein, for which ImX/ex=—1. A fine-tuning of the tem-  the function(in this case, thg dependence of the integrand
perature very close td. is, however, necessary to get a In our procedure, on the other hand, analytic continuation is
sizable increase dfm | due to the logarithmic divergence performedat the outsefsee Eq.5)] and the relevantcon-
in Eq. (14). For instance, to double the above value a tem4rolled) approximations to get the approximate reiit) are
perature T—T.)/T.=10 ° has to be reached. In the 3D introduced only afterwards.
model here considered, the divergence of3lnis therefore Note, in addition, that ak| =kg the expressioiil5) pro-
not numerically detectable for all practical purposes. In adduces two peaks symmetrically located abawut0. This
dition, to test the validity of the counterpart of Ed4) ex-  expression cannot, therefore, be used to fit the curves of
tended to finite frequency as explained above, we may comA(k,, ,w) for the coupling values we are consideritgpe
sider the case of Fig. 11 fof/T.=1.001 and two different Figs. 13 and 16 beloyy whereby the symmetry of the two
frequencies, sayw;/ex=0.075 andw,/e-=0.037. In this peaks is recovered only in the extreme weak-coupling limit.
case, we obtain from our analytic approximation the valuein the analysis reported in Ref. 50, on the other hand, the
[IMm3(w,) —IM3(w,)]/e=0.093, which is rather close to experimental data are artificially symmetrized and the ex-
the numerical result 0.106 as obtained from Fig. 11. pression(15) (together with an additional scattering ratg)
The analytic approximationil4) (as well as its counter- is used to fit the ARPES data. We shall propose below an
part atT=T, and finite w) need to be compared with the alternative phenomenological fit to the curvesitk,, ,),
analytic form of2 (k,w) obtained in the weak-coupling limit which is suggested by our numerical calculations.

Im E(kF ,(1):0):

€F
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FIG. 14. Spectral function at different wave vectok$ about N . .
k,  as a function of frequencyin units of eg), for (kpag) 1= FIG. 15. Peak positions of the spectral function at negéthse

—0.72 andT/T,=1.001.(Intermediate- to weak-coupling regime. teriskg and positive(squarep frequencies versus wave vector for
(keag) t=—0.72 andT/T,=1.001. Full and dotted lines represent

In our numerical calculations we have found that, at lowthe BCS-like fit.(Intermediate- to weak-coupling regine.
enough temperature, there are three intersections of the
curves[Re3 (k,: ) —3,] with the straight linew (not  creasing the wave vector t&| >k, this peak becomes a
shown in Fig. 12, with the two outer intersections giving small and broad incoherent peak. Thus, fat<k, the
rise to the two peaks oh(k,,») (see Fig. 13 while the spectral weight of the coherent peak at negative frequencies
central intersection corresponds to a strong suppression dfecreases as the wave vedtoapproacheg ., while at the
A(k, ,») owing to the associated large value of same time the spectral weight of the associated incoherent
Im E(k ,w). By increasing temperature, on the other handpeak located at positive frequencies increases, with a transfer
only one intersection remairigesulting in only one visible of spectral weight from negative to positive frequencies upon
peak in A(k, w) see Fig. 13 The associated spectral crossing the “Fermi surface{which is defined as the locus
function at|k| . is reported in Fig. 13 for the same tem- of minimum pseudogap, and almost coincides with the
peratures and coupllng of Figs. 11 and 12. The spectral funspherek=k,.; note that for the coupling value of Fig. 14,
tion obtained in the intermediate-coupling regime shows &, is about 10% smaller thakg). This clearly shows that
well-developed two-peak structure négy with a minimum the interaction of the fermions with pair fluctuations gets
at zero frequency; yet the spectral weight distribution redncreasingly stronger upon approaching the “Fermi surface,”
mains slightly asymmetric about zero frequency, even wheg0 that deviations from the Fermi liquid picture appear to be
approaching the critical temperature. At zero frequency thé&tronger at low energy.
spectral function has a sizeable finite value, indicating that In Fig. 15 the positions of the two peaks of the spectral
no real gap opens at the Fermi surface. Note from Fig. 18unction are reported for different wave vectors abkyt
that, upon increasing the temperature, the pseudogap fills whenT=T.. The results of our non-self-consisternatrix
and closes at the same time, with the two peaks of the spe@pproximation(squares and asterigksre here compared
tral function merging in just one peak at a crossover temperawith the BCS-like dispersions= = \/&(k)?+ Ang (continu-
ture Ty =T§ (which in this particular case is between ITQ5 ous and dotted lingswhere the BCS gap has been replaced
and 1.09). It is thus apparent that a breakdown of theby the pseudogap, atk,, . Itis rather remarkable that the
normal-state Fermi liquid occurs well before the system is incoherent peak of the spectral function|kf<k,  gets re-
the preformed-pair limit. From the two-peak structure offlected into the incoherent peak &>k, as the wave vec-
A(k, ) in the intermediate- to weak-coupling regime, ator crosses the “Fermi surfacefwith the characteristic be-
pseudogap 4 could be empirically defined either halfthe  havior of an avoided level crossihgn such a way that the
frequency separation between the maxima of the peaks, or @osition of the peak at negative frequencies follows almost
the separation of the maximum of the lower pédaknega- exactly the BCS-like dispersion, provided the value of the
tive frequenciesfrom zero frequency. These two definitions pseudogap is inserted as explained above.
coincide in the weak-coupling limit but slightly differ in the  To fit the prominent features @(k,, ,») with a simple
strong-coupling limit(see also Table Il beloyw Throughout analytic expressiofifrom which the corresponding form of
this paper we will adopt the second definition, which is theX (k, ,w) replacing Eq.(15) could be extracteld we may
most relevant for comparison with photoemission experi-consider two Lorentians of width, and yg, centered at
ments, accessing only negative frequencies. —A, and A, and with weightsp, and pg (such thatp,

In the intermediate-coupling regime, when the chemical+ pg=1), with the labelsL andR referring to the left and
potential lies inside the fermion band and the Fermi surfaceight peaks ofA(k,. ,w), in the order. In Tables | and Il we
is well defined, the wave-vector dependence of the spectrakport the values of the fitting parameteéxs, Ag, v, Yr,
function shows a strong asymmetry about the wave vectoanda=1—2p, for the curves of Fig. 18&fixed coupling and
k. In Fig. 14 the spectral function is reported as a functionvarying temperatupeand of Fig. 16(fixed temperature and
of frequency for different wave vectors abokif, whenT  varying coupling, respectively.
=T,. It is clear from this figure that fofk|<k, a well- Note that the asymmetry of the two Lorentiamghich is
defined peak is found at negative frequencies, and that ireontrolled by the parameters and y, /yg) is considerable,
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TABLE |I. Fitting parameters for the curves of Fig. 13. Energy 5 T : : : :
variables are in units ofg . 45 r(keag) =11 — !
4 -0.72 - '
35 | -0.23 -
TITe Ay A YL YR @ ’g‘i- 3!l 0
1.001 0.31 0.31 0.16 0.29 0.22 A 2-2 [ 035 —-
1.01 0.28 0.28 0.17 0.32 0.28 < sl
1.05 0.21 0.21 0.18 0.33 0.33 1t
1.08 0.18 0.18 0.18 0.34 0.36 051
0

2 -15 -1 05 0 05 1 15 2
o/ep

increasing for increasing temperature or couplibgt for the
last value of Table )L For temperatures and couplings larger ~ FIG. 16. Spectral function 4k|=k,,, as a function of frequency
than those reported in the tables, however, the fit of? (in units of eg) for different values of Kear) ™' and T/T,
A(k,,®) with two Lorentians become inadequate. Note = 1-001.(Intermediate- to weak-coupling regime.

also that in most cases; =Ag=A,. In these cases a rela-

tively simple form for= (k. ,») can be extracted, yielding Finally, a comparison of the pseudogag, at T, with the

BCS gapAgcs at T=0 and with the two-body gag,/2
) =er/(keag)? (which is nonvanishing only foag>0) is
Sk, 0)=—i(y—ad)+aly shown in Fig. 17 for all cgupling regzirr}/ez}«SNhen u<O0,
_ 2\(A2 _ s2\_ o 2 AgcyT=0) is set equal tpu“+A(T=0)~]"4}. Note that in
L (AT (Agm 0~ 218p0(1H ), the weak-coupling limith o T=T¢) <Apc(T=0), while in
wtalpgti(y+ad) the intermediate-coupling reginig,(T="T.) =Agc(T=0).
(16) Moreover, in the intermediate- to strong-coupling regime
(where ag>0), both Agcs and A,y approachey/2 from
where y=(ya+ 7.)/2 and 8= (yg— y.)/2. Note that, even aboveas the coupling is increased. Many-body effects thus
in the symmetric case witk=0 and 5=0, the expression ncrease the pair-breaking energy scale with respect to the
(16) does not reduce to the fortd5) [due to the presence of tWwo-body limit. This result resembles the pair-size-shrinking
an extra term—ivy in Eq. (16)], unlessA > y [this condi- effect noticed in Ref. 48 at the mean-field level. .
tion would be consistent with the assumptions under which N this context, it is interesting to mention that, taking
Eq. (16) has been derived only wheéhapproached . (Ref. ee=400 meV as a representative value for cuprgte_ super-
46)]. However, the condition .. y is never satisfied by our €ONductors, the rangap,=20-120 meV characteristic of
fits, whereA ,, and y are of the same order. cuprate superconductc_)rs co_rresp.on_ds to :@mgg/e.FsO@,
In Fig. 16 the spectral function &| =k, is reported for which (as seen from Fig. )7ies within the range identified

different values of kag) ~* from intermediate to weak cou- " Fig. 3 for cuprates.
pling, slightly above the critical temperature. Note that, in
the weak-coupling regime, the spectral function acquires an C. Criterion to distinguish weak from strong coupling

almost symmetric two-Eeak struc'Fure, which differs frpm the " The above systematic study of the single-particle spectral
standard BCS result at=0 essentially for the broadening of ¢ ,ction from weak to strong coupling suggests the follow-

the peaks due to the finite lifetime of the pairs. Note also tha}ng criterion to distinguish by ARPES experiments whether a
the pseudogap near the critical temperature decreases Wilimion system with an attractive interaction lies in the

coupling. strong- or weak-coupling regime. This criterion rests on the

_ An analysis of the pseudogap opening within a 2D attraCn4ysis of the spectral function at negative frequengiest
tive Hubbard model in the weak-coupling regime has re-

cently been reported in Ref. 37, by means of the non-self- 45

consistentT-matrix approximation formulated on the real 4l | A(T:b) —
frequency axis. The frequency dependence of the spectral & 35 Ape(T=To) =~
function obtained in that papéat quarter filling resembles e 3}
the results of our Fig. 16. L 25}
22y

TABLE Il. Fitting parameters for the curves of Fig. 16. Energy \‘*L’; 157
variables are in units o . & 0; I
(keag) ™t AL Ag " R a 0 2
-1.1 0.035 0.035 0.042 0.047 0.060 (keap) "
-0.72 014 0.4 0.11 015  0.17 o
-0.23 0.47 0.61 0.22 0.33 0.15 FIG. 17. Pseudogap &t=T., superconducting gap evaluated
0 0.78 0.84 0.25 0.18 0.008 within the BCS approach ai=0 and gap in the strong-coupling

limit, as functions of krag) L.
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as determined by ARPES experimerfty different values of to analyze the spectral intensities measured by ARPES in
the wave vectok, and(as discussed in the next sectidnis Bi-based superconducting cuprates, for which a systematic
meant to be useful for interpreting the experimental data foexperimental analysis is also available. In particular, we con-
cuprates in conjunction with the two-gap model mentionedsider ARPES intensities measured in Bi2212 near the

in the Introduction. . _ . points of the Brillouin zone as well as along the Fermi sur-
Co'nS|der 'f|rst a system in the intermediate- to weak-+face, moving from thev points toward theN (noda) points,
coupling regime, for temperatures betweEhandT., i.e.,  in different doping regimes and at different temperatures.

within the pseudogap region. In this case, the chemical poaccording to our interpretation, the effective coupling be-
tential lies inside the single-particle band and almost conyyeen fermions should increase from the weak- to strong-
cides with the Fermi energy. For wave vectors smal_ler tha'&oupling regime, when the doping is reduced from overdop-
k,r, the spectral function has a quasiparticle peak with Igrg@ng to underdoping. Moreover, as discussed in the
spectral weight at negative frequencies and a smaller iNCAntroduction, when moving fronN toward M points along
herent peak at positive frequencies. Upon moving the wavgne Fermi surface, a continuous crossover from weakly to
vector across the “Fermi surface’|k| >k, ), the quasi-  strongly coupled fermionic states should be observed even at
particle peak shifts toward positive frequencies, while thefixed doping. We summarize the main results extracted from
incoherent peak is now present at negative frequersi®s  our work, which can be compared with ARPES experiments
Fig. 14 and can accordingly be measured by ARPES. Reperformed in Bi2212 materials.

stricting to negative frequencies and realizing a cut in wave Strong- to intermediate-coupling regime (about M points)
vector space which probes the main and the reflectegh the strong- to intermediate-coupling regime, where the
(shadow bands, starting fronik| <k, ARPES should ini-  chemical potential is below the bottom of the single-particle
tially find a well-defined quasiparticle peak which, upon in- pand, our results show that the spectral function displays two
creasing the wave vector tk|>k,, should be reflected as peaks, one incoherent at negative frequencies and the other
a small and broad incoherent peak. Moreovefkptk,,: the  one coherent at positive frequencies. In this case, the wave
spectral weight at zero frequency remains a sizeable fractiofectors are meant to be reckoned with respecoie of the

of the peak maximum. _ _ _ M points. In this regime, the prominent features to be com-
Consider then a system in the intermediate- to strongpared with experiments are as follows.
coupling regimgwhen u<0), for temperatures betwedrf (i) The line shape of the spectral function at negative fre-

andT.. In this case, the chemical potential lies outside thequencies is quite broad, and the height of the incoherent peak

single-particle band. Faany wave vector, the spectral func- noticeably decreases with increasing temperaisee Fig. 8

tion has now a quasiparticle peak with large spectral weighbr increasing couplingsee Fig. 9. These features are in

at positive frequencies and a weaker incoherent peak at negqualitative agreement with the behavior of the spectral inten-

tive frequencies. For this reason, no appreciable difference isity observed by ARPES in the pseudogap phase of under-

the shape of the spectral function should be detected by varytoped cuprates, by decreasing doping and increasing tem-

ing the wave vector. Thus, starting, e.g., froki=(k,  perature. Several ARPES measurements show, in fact, that

<0,0,0) ARPES should find a broad incoherent peak whichthe height of the peak in the spectral intensities collected

upon increasing the wave vectors 1o % 0,0,0), should not about theM points decreases with underdoping, with heavily

change appreciably. In addition, the spectral weight vanishegnderdoped cuprates displaying a very broad structure with

or is much less than the maximum of the incoherent peak imo detectable peafsee, e.g., Fig. Zleft pane) of Ref. 47

a range of frequencies of the order of the pseuddgee Fig. and Fig. 1a) of Ref. 2, for the doping dependence of the

9). spectral weight about th®l points]. ARPES measurements
By this token, it is clear that, for a fermionic system with for the temperature dependence of thaite broad spectral

an attractive interaction, the wave-vector dependence and thetensities about thm points further indicate that the spectra

line shape of the spectral function at negative frequencieare(slightly) suppressed for increasing temperafisee Fig.

have well-pronounced qualitative differences depending or2(b) of Ref. 2].

the coupling strength, differences which may be detected by (ii) The spectral weight near zero frequency is strongly

a detailed ARPES analysis of the spectral function, as dissuppressed and a real gap opens in the spectral function in

cussed next. Recall, however, that comparison of our result$ie strong-coupling regimgee Figs. 8 and)9Experimental

with ARPES data relies essentially on the two-gap modekvidence for a strong suppression of the spectral weight near

mentioned in the Introduction, and can be complicated by theero frequency can indeed be found, e.g., in Fig(ledt

presence of additional sources of quasiparticle scattering ipane) of Ref. 47 for(heavily) underdoped samples wifh

cuprates as well as by the fact that the continuum modek56 K.

relates strong coupling to low density. Yet, our analysis can Intermediate- to weak-coupling regime (between M and N

be useful to understand the evolution of the spectral propeipoints) In the intermediate- to weak-coupling regime, the

ties along the Fermi surface. chemical potential lies within the single-particle band and
the wave vectors are referred to the center of the Brillouin
V. COMPARISON WITH ARPES SPECTRAL FUNCTION zone. In this case, the salient features of our calculations to

be compared with experiments are as follows.
The theoretical analysis of the spectral function from (i) A single quasiparticle peak is present in the spectral
weak to strong coupling presented in this paper can be usddnction above the crossover temperatilite (see Fig. 13

024510-13



A. PERALLI, P. PIERI, G. C. STRINATI, AND C. CASTELLANI PHYSICAL REVIEW B56, 024510 (2002

implying a well-defined Fermi surface. Underdoped, opti-function merge in just one pepndTj (at which the maxi-
mally doped, and overdoped cuprates for wave vectors neaium of the incoherent peak crosses zero frequehaye
the nodal points display quasiparticle peaks in the ARPE$een identified, withT* >T%>T, and withT% of the order

intensities(see, e.g., Fig. 1 of Ref. 49 of the binding energy of preformed paif6RPES experi-
(i) Approaching the critical temperature from above, the \ants. however. can only meastg).

interaction between fermions aridamped pair fluctuations In the intermediate-coupling regime, the line shape of the

determines a suppression of spectral weight near zero fre, ectral function about the “Fermi surface” resembles the
guency and therefore the opening of a pseudogap, charact P

- - : ; hape of the spectral intensityhich is, in turn, related
ized by a finite spectral weight at zero frequer(sge Fig. Iné s ) .
13). In addition, the quasiparticle peak disperses as a fund® the spectral functionmeasured by ARPES in underdoped

tion of the wave vector and, as the wave vector moves acrosdiPrates betweefi; and T* for different wave vectors. In
the Fermi surface, is reflected as an incoherent broad pedi@rticular, we have reproduced the main features character-
(see Fig. 1% ARPES intensities irunderdopedcuprates, 1Zing the ARPES pseudogap, namely, a finite spectral inten-
measured about thi points for temperatures betwedrf ~ Sity at zero frequency and a finite pseudogap afT . which
andT., display this feature, even though the reflection canis of the same order of the superconducting gap at zero tem-
not be accurately identifiegbrobably owing to the low spec- perature. We have also found that in the intermediate- to
tral weight of the incoherent peakin particular, a spectral weak-coupling regime pseudogap effects are present only in
weight suppression at low frequencies and a finite spectral narrow temperature range above the critical temperature, a
weight at zero frequency has been found by ARHE&e, result related with the 3D character of the pair fluctuations
e.g., Fig. 1b) and Fig. 3a) of Ref. 50. Experimental evi- (in 2D this temperature range should, in fact, be considerably
dence for the reflection of the quasiparticle peak into an inwider).
coherent peak has also been found by ARPES measurements|n the weak-coupling regime, the pair fluctuation propa-
of the peak along thé!Y direction in the pseudogap phase gator acquires the diffusive Ginzburg-Landau character and
of slightly underdoped cupratgsee Fig. 2o) of Ref. 22, for  the line shape of the spectral function gets progressively
which the intermediate- to weak-coupling regime should apmore symmetric as the coupling is decreased. In this regime,
ply. the two crossover temperatur€$ andT§ coincide and are

(iii) Increasing the coupling from the weak- to the of the order ofT,, with the pseudogap closing and filling-in
intermediate-coupling regime, the pseudogap evaluatéd at quickly as the temperature is increased abdye
increases and the ratio between the pseudogdp ahd the It is thus clear that the pseudogap already occurs in the
BCS gap evaluated af=0 also increasessee Fig. 1Y,  one-loop approximation for the self-energy, namely, the non-
about coinciding in the intermediate-to-strong coupling re-self-consistent t-matrix approximation which we have
gion. In all underdoped cuprates, and for any wave vectoradopted in this paper.
the experimentally determined pseudogapTatclearly in- Maly et al. propose &conserving method to improve the
creases with decreasing doping, and in heavily underdopegon-self-consisterif-matrix approximation, by including the
cuprates it almost coincides with the superconducting gageedback effect of the self-energy in the two-particle
measured at zero temperatiisee, e.g., Fig.®) of Ref. 2. propagatof” This is done by substituting in the particle-
particle bubble one bare Green’s function with a dressed one
(G°G°—G@Y), following the approach by Kadanoff and
Martin as extended by PattdhThese authors show that the

In this paper, the evolutiofrom superconducting fluc- consequence of the feedback on the self-energy is to enhance
tuations to the bosonic limitof the pseudogap opening and the resonance in the two-particle propagator found already
the spectral function has been studied isyatematic wayA by the lowest-order theory. However, by comparison of Maly
system of fermions in a three-dimensional continuum, mutuet al. results with ournonconservingcalculation(which in-
ally interacting via an attractive contact potential, has beemludes although the Hartree-type self-energy shiff, it
examined. In this way, the numerical calculation of theturns out that the salient features of the spectral function are
single-particle Green’s function has been considerably simessentially preserved by the two calculations.
plified, yet preserving the main physical effects underlying A similar non-self-consister{as well as a self-consistent
the pseudogap opening. The pair-fluctuation propagator, thealculation for the spectral function has been reported in Ref.
(one-loop self-energy, and the spectral function have beerl9. Specifically, even though Yanase and Yamada also make
evaluated as functions of coupling strength and temperature@se of the non-self-consistefitmatrix approximation with
from weak to strong coupling, and analytic and numericald-wave pairing, their calculations are based on a smathd
results have been presented. Q) expansion of the two-particle propagator while the chemi-

In the strong-coupling regime, the pair-fluctuation propa-cal potential is kept at the Fermi level. As a consequence, the
gator has been shown to have bosonic character and the ligitical temperature evaluated by Yanase and Yamada coin-
shape of the incoherent peak of the spectral function to beides with the mean-field temperaturgeg, which strongly
strongly asymmetric about its maximum, with its spectraldeviates fromT reported in our Fig. 2 in the intermediate-
weight decreasing by increasing couplifoy decreasing den- and strong-coupling regimes.
sity) and increasing temperature. In this regime, two cross- Most significantly, the results presented in this paper, con-
over temperature§; (at which the two peaks in the spectral cerning the temperature and wave-vector dependence of the

VI. DISCUSSION AND CONCLUSIONS
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spectral function in the pseudogap phase, are in qualitativeral function. In particular, the pioneering work by Kampf
agreement with Monte Carlo simulations of the 2D attractiveand Schrieffet® considering antiferromagnetic fluctuations
(s-wave Hubbard model. In particular, in Refs. 30 and 31 coupled to fermions has shown that the associated spectral
the spectral function obtained by Monte Carlo simulations isfunction evolves from one peak in the Fermi-liquid regime to
reported in the intermediate-coupling regime for differenttwo peaks in the fluctuation regime. In addition, the antisym-
temperatures and wave vectors. These simulations cleariyetric structure of the imaginary part of the susceptibility
show that in the pseudogap phase the spectral function hasuaed by Kampf and Schrieffer is reminescent of the behavior
two-peak structure, with the incoherent peak smoothlyof the imaginary part of our pair-fluctuation propagator in the
emerging from the main peak as the temperature is loweregieak-coupling regime only.
below T*. In addition, moving the wave vector across the Further detailed ARPESand, possibly, inverse photo-
Fermi surface, the main peak is reflected in a shadow incoemission experiments are awaited to ultimatly distinguish
herent peak, as reported in Ref. 29. Monte Carlo simulationthe microscopic origin of the pseudogap in underdoped cu-
thus give further support to our non-self-consistematrix ~ prates and to unambiguosly identify the characteristic fea-
approximation, suggesting that dimensionality and lattice eftures of the spectral function obtained by our analysis in
fects do not modify appreciably the main qualitative featuredifferent doping and coupling regimes.
of the pseudogap phase, obtained by our work for a 3D con-
tinuum Wit_h a contact pot_ential. ACKNOWLEDGMENTS
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