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Electrodynamic response of current-biased elementary cubic networks of Josephson junctions
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We study the electrodynamic behavior of elementary cubic networks of Josephson junctions in the presence
of a constant current bias and of a uniform external magnetic field. We find that, for well defined external field
directions, the observable electrodynamic quantities, such as the time-averaged {woltaaye periodic with
respect to the applied flu®,,. Considering linear and shear strain of the network, by first order pertubation
analysis on the deformation parameters it is shown tha¢thes @, curves are still periodic. However, both
periodicity and the field directions for which periodic behavior occurs differ from those found in the nonde-
formed case.
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I. INTRODUCTION Il. ELECTRODYNAMICS

The electrodynamic response of 3D JIN’s can be studied

Three-dimensional(3D) Josephson junction networks by solving the set of dynamical equations for the veator
(JIN'S have been adopted as models of both superconducwhose components are the gauge-invariant superconducting
ing granular systems® and superconductive devic€s!*  phase diﬁerencwg(F,t) across the twelve junctions in the
Lately, 3D JIN's have been considered as circuit models ofietwork. In labeling the quantitiesg(F,t), we adopt an in-
ultrasensitive magnetic field sensdfs!’ Even though a dex ¢ for denoting the direction in which the junction lies
great amount of experimental work has been performed OPs=x, v, 7) and a second indexto distinguish between the
granular samples and traditional devices, 3D systems are Ygf,r 37's lying in the same direction, but occupying different
to be fabricated and tested due to the inherent difficulty inyositions in space. By adopting the resistively shunted junc-

patterning superconducting material in three dimensionsion (RSJ) model the dynamical equations for the vecigr
However, these same systems show peculiar and interestir@Gn be shown to be written as follot’:

propertiest® so that it is useful to develop a full understand-
ing of their electrodynamic response. In addition, these stud-
ies might trigger future experimental work on the subject. d )

An elementary cubic network of Josephson junctions is 3" 5'”¢+mA¢’:fv @
formed by twelve Josephson junctions located at the mid-
points of the edges of a cubic superconducting structure, as
shown in Fig. 1. When a bias currery is injected into the
network, a so-called 3D SQUID is obtaintdThis term is H
justified by the fact that the system behaves very similar to a
dc SQUID (Refs. 10 and 1ifor fields applied along the I %
coordinate axes. Moreover, since the electrodynamic re-
sponse of these models depends upon the field direction in a

<
predictable way, it has been hypothesized that the corre- 2% ' / %Z
>
D>

sponding devices might find application as ultrasensitive
vectorial magnetic field sensots*® X
In the present work we focus our attention on the presence
of periodicity in the electrodynamic quantities, such as the
time-averaged voltagé) across the twelve branches in the
network, with respect to the applied magnetic fldx,.
Therefore, in the following section we write the time-
evolution equations for the superconducting phase differ-
ences across the twelve Josephson junctidd's in the net-
work and define the observable electrodynamic quantities of "D<]‘ &
the system. In the third section we determine, by means of an
analytic procedure, the field directions for which periodicity
in the(v) vs ®, curves is present. In the fourth section we
study how the periodicity is affected by linear and shear FIG. 1. Elementary cubic network of Josephson junctions. The
strain of the network. Conclusions are drawn in the last secdouble triangles are representative of one JJ and an inductor, as
tion. shown in the inset.

1y
—

0163-1829/2002/6@)/0245097)/$20.00 66 024509-1 ©2002 The American Physical Society



R. DE LUCA AND F. ROMEO PHYSICAL REVIEW B66, 024509 (2002

where 7=(27RI;¢/®)t is the normalized time variable, In order to illustrate this point more clearly, let us refer to
with Randl ;5 the resistive junction parameter and the maxi-a planar dc SQUID. In this case the matix which may be
mum Josephson current, respectivedy,is a singular 12 denoted a®\gqyp, IS given by®

X 12 matrix, B=LI /P, L being the self-inductance of a

single branch, and wherkis the forcing vector which in- A _
cludes both the bias current and the external magnetic field. SQUID™
In Eqg. (1) the matrixA takes into account both the electro-
magnetic and the quantum mechanical coupling of the JJ
Details on the derivation of Eq1) can be found in Ref. 18.
We finally notice the particular notation used in Ed), in
which the sinp term symbolically represents a vector whose

twelve components are the quantities @}(F,r).
Because of the Josephson equations, the branch curr

-1 +1
+1 -1

The dynamical equations for the superconducting phase dif-
%'erences of the two JJ’s in the SQUID is formally identical to
Eq. (1). Since the matri¥gqup is singular, the null space of
the matrix itself can be seen to be nonempty, so that from Eq.
(1) we can argue that the time derivative of the veapois
invariant for a translatio in time, if K belongs to the null
e§}5ace ofA. In this case the vectdf can be written as fol-

. (7

vectori, whose components are normalized with respect tcfows,'
the maximum Josephson curréng, may be defined as fol- '
lows: 1
K= . 8
1) ®
i=f- mA‘a' (2 This means that the two identical JJ's in a SQUID are in

phase when a dissipative dynamical state is realized under a
If we assume that the forcing term is constant, the voltageonstant external forcing ter
vector, normalized with respect tRl;5, can be written as As for the instantaneous voltage, periodic behavior in the
follows: cubic system comes from E¢p), given that it is possible to
write the vectowv(7) in terms of the time derivative ap, as
d d . in Eq. (3). Periodicity in the voltages induces periodic be-
v(7)= P 277,8d—7|=(1_A)d_T¢’- (3 havior in the instantaneous currents. Settifg0.5, g
=3.514, and®d,,=0.4D, taking the field in thez direction,
The components of the current vectioand of the voltage instantaneous voltages and currents are shown in Figs- 2
vectorv are seen to be periodic with a global peribdThe  2(c) and in Figs. &), 3(b), respectively, where periodicity is
presence of a global perigiin the electrodynamic quanti- clearly visible. Experimentally observable currents and volt-
ties is a consequence of the properties of the maktixn- ages, however, are related to the time average of the corre-
deed, by imposing periodicity in time of the instantaneoussponding instantaneous quantities. Since the instaneous ex-

current vectoli, we may write pressions of andv are periodic in time, the average value of
these quantitiegi) and(v), respectively, can be calculated
Ap(t+T)=Ag(T). (4 over a single period, if the value ofT is exactly known. For

more practical purposes, numerical evaluatiodipfand(v)
We can argue, by analogy with the single JJ case, that sonean be performed over a rather high number of periods as
junctions in the network undergo am2phase shift after a follows:
time T for values of the bias current greater than some criti-
cal current valud.. As in the SQUID, I, depends on the (V)= iffﬂ“"'v( Hdr ©)
external magnetic field amplitude, but, in contrast to what MJz '
happens in the planar case, it also depends upon the direction

of the external magnetic field. By following the analogy with WhereM is a positive real number much greater tfiaand
the single JJ case, then, we can set To IS an arbitrary normalized time value.

e(T+T)=¢(7)+27K, (5 lll. PERIODICITY OF THE OBSERVABLE QUANTITIES

In order to find periodicity with respect to the applied
magnetic fluxd .= uoHa? H being the external magnetc
field amplitude andh the length of the cube side, the matrix
A and the forcing terni need to be defined. Naturally, as in
the SQUID case, it can be proven that no periodicity can be
present with respect to the bias currégt Let us then start

so thatk must belong to the null-space of the matdx by considering the expression for thexX 22 matrix A:

Ngw, sinceA is a singular matrix, its null-space is nontrivjal; A=—LT(M-T)"'F, (10)

this ensures that not all the componentKoére necessarily

null when some of the junctions in the network are in thewhereT is a 12x5 matrix relating the twelve branch cur-
resistive state. Naturally, the solutiéh=0 to Eq.(6) corre-  rents to only five independent currenkd, andF are 5<12
sponds to the zero-voltage state of the system. matrices which relate the fluxes linked to the cubic faces to

whereK is a vector whose components are either Q+dr.
By substituting in Eq(4) the expression fogp(7+T) given
in Eq. (5), we get

A-K=0, (6)
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FIG. 2. v, vs 7 curves for3=0.5,ig=3.5, and for applied field
(Vo= 0.4) along thez axis. (a) vX(F, 7) VS 7 curves: the instanta-

neous voltage®,(0,7) and v,(ay+az7) lie close to the zero- N
voltage axis and are represented, respectively, by a full and a dottgfg

line; the voltages,(ay,7) andv,(az 7) are represented, respec-
tively, by the dotted and the full lines below the axis) vy(F, T) VS
T curves: the instantaneous voltageys(ai,a-) and vy(ai,r) lie

FIG. 3.i; vs 7 curves for3=0.5, ig=3.5, and for applied field
(¥, =0.4) along thez axis. (a) i4(r,7) Vs 7 curves: the instanta-
ous currents,(0,7) andi,(ay+az,7) lie close to thei=—0.6
lue and are represented, respectively, by a full and a dotted line;
the currents,(ay, 7) andi,(az ) are represented, respectively, by
the dotted and the full lines below the first two curvés. iy(F, 7)

; _ vs 7 curves: the instantaneous curreijéax,7) andi,(az,7) lie
close to the zero-voltage axis and are representedA, resPectlver, byc%se to thei =0.6 value and are represented, respectively, by a
dotted ar:dda full “nf,; tTe E)/O“a?ansf(og) 3n?tvé(|a_‘x+ abz, 7 ?rr]e _dotted and a full line; the currenig(0,7) andi,(ax+az7) are
represented, respectively, y? ull and a dotted fine above the ax'?epresented, respectively, by the full line and the dashed line above
() v (r,7) vs 7 curves: the instantaneous voltageg0.7) and o |aer couple of curves) i (T, 7) vs 7 curves: the instantaneous

v,(ax+ay,7) lie close to the zero-voltage axis and are rEpresemedcurrentsiZ(O,r) and iz(a3<+ a§/, 7) lie close to thei=—0.6 value

respectively, by a full and a dotted line; the voltaggéax,7) and  and are represented, respectively, by a full and a dotted line; the
v,(ay,7) coincide and are represented by the curve belowrthe cyrrentsi,(ax, ) andi,(ay,7) coincide and are represented by the
axis. curve which lies close to thie=—1.2 value.

the branch currents and to the superconducting phase diffeBy inspection we see that E(L1) may be satisfied by setting

enCGS(pg(F, 7), respectively. A periodicityp in the forcing  ¢*=¢+27K, whereK is a vector whose components are
term f gives (v)=(v*), where (v*) is the time-averaged integers. Therefore, the perigpdcan be expressed as follows:
value of the instantaneous voltage obtainedffor f+p. In

order to satisfy the relatiofv) =(v*), by denoting withe* 1 - (12)

the solution to Eq(1) for f*, we set P=- EA' K.

. 1 We now need to express the forcing term in its parts. By
. _ A~ " referring to Ref. 18, we get, under zero field cooling condi-
(sing) + 55 A@) =pH{sing) + 2 Ale"). (1D ions,
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f=iB(C—1)V|+l%XtV,,,, (13)
whereC=T(M-T) M, 1is the 1212 identity matrix,V,
is a twelve-component column vector representative of the
bias configuration chosenV .,=®.,/®y, ig=Ig/l;y and
whereV 4= —LT(M -T)™I', T being the following vector:

. S
q. 2=
a2
L S
H- 22 —COSYyx
<0 COSYyy
r=| A= [=| —cosy |. (14)
a
N Cosyy
a3 | —cosy,
a2
Sy
q. =L
a2 FIG. 4. Field directions for which thév) vs ¥, curves of the

' homogeneous cubic network show periodicity. The representative
The vectores(ﬂ')v in Eq. (14) are the area vectors of the cubic points on the unitary sphere are plotted for the indicgs andk
faces lying in thewv plane, the index being 0 if the face [EQ.(20) in the tex] running from O to 10.
has one vertex in the origin, 1 otherwise. In the case of an
undeformed cubic system the area vectors lie along the di- A\Ifég)cos%:k,
rections of the coordinate axes, so that the scalar product o ) . )
between the external field arg), give the directional co- Wherei, j , k are integers. The possible periods can thus be
sines cog; (¢=Xx, y, 7) of the external field itself relative to Written as follows:
the coordinate axes. In analogy to the SQUID case, where it N
is possible to prove that the%)é cannot be periodicity with AV =\iIZ+]2+K2, (19
respect to the bias current for fixed values of the external i N ) o
magnetic field® we take the period in the forcing term to be SO that the field directiond, forlwh|ch periodicity is present
given by an incremena () in the normalized applied flux 1N the(V) vs W, curves, are given by the following expres-
V¥, at a fixed value of the bias current. We thus set on:

p=——5 Vo= AR, a9 Nz 20
By now expliciting the vectol ,, and the matrixA in terms ~ In Fig. 4 we represent the possible field directions for the
of their elementary components, we have indicesi, j andk running from O to 10.

B(A¥YOr—F.K)=0, (16) IV. STRUCTURAL DEFORMATION
whereB=—LT(M-T) L. Now, sinceB has a null space of In the case of slight structural deformation of the system,
dimension zero, we may set such as linear and shear strgffigs. 5a) and 5b), respec-

tively], we can still predict the periodicity of thiy) vs W,
AVYOTr=F.K. (17)  curves by a first-order perturbation analysis as follows.

Therefore, if there exist a real numbaw’(®) such that Eq.
(17) is satisfied, the time-averaged voltage is periodic in i )
V... We can extract three linearly independent relations L€t us define the area vectors generated by elongaton

A. Linear strain

from Eq. (17), namely. of the lateral sides of the cubic network:
AV Ocosy, =i, SY=(a+Aa)ax,
AV Dcosy, =], (18) sY=(a+Aa)ay, (21)
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FIG. 5. Linear(a) and shearb) strain in the network.

sy =a%.
By proceeding in the same way as in the previous section
we may consider a relation similar to E[.7) as a starting
point. In this way, we can write the three independent rela-
tions defining the field directions for which a periodicity in
the (v) vs V¥, curves is present as follows:

Aa
1+ —
a

AP cosy,=i,

Aa
A\IIQ)Z( 1+ —|cosy, =], (22)

AV cosy,=k.

Therefore, from Eq(22) we can write

AVQ=AVE(1-\sirty,), (23
) ) . FIG. 6. Field directions for which thév) vs ¥, curves of the
where\ =Aa/a. In order to determine the field directions for cypic network show periodicity under the presence of linear strain.

which pe_riodicity is aI_Iowed, b}_/ combining Eq$22) and  The representative points on the unitary sphere are plotted for the
(23) we find the following equation for cos: indicesi, j, andk [Eq. (22 in the texi running from 0 to 10(a)
A=0.1; (b) A=0.2.

k
A\ oSy, +(1—N\)cosy,— Ap© =0. (24 B. Shear strain
ex In the case of shear strain of the network, we can write the
Notice that forA =0 we obtain the result found in the unde- grea vectors as follows:
formed case. After having solved for cgs we can deter-
mine the periodiciydA W) from Eq.(23), and the remaining §{=a2cosox~aZ,
components of the external fields, for which it is possible to

detect periodicity in th€v) vs ¥, curves, from Eq(22). 1)_ 42 O ain AR ~a2(U— 05

Results are shown in Figs(& and Gb), where the possible ng a’(cosfy—sinfz)~a‘(y- 0z), @9
field directions for the indices j, andk running from 0 to 10 1) 2%

are shown fox =0.1 and\ = 0.2, respectively. S(xy -az
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AV = AT 1+ 6 COSy,COSY,). (27)

We can determine the field directions for which periodicity is
allowed, as it has been done in the previous subsection. By
combining Egs(26) and(27) we find, fork+ 0, the follow-

ing equation for cos,:

k
ATV
Notice that for#=0 we obtain the result found in the non-
deformed case. Fd=0, we have cog,=0 and the expres-
sion for AW is found to be the same as in the unstrained
case. This means that for magnetic fields in g plane,
whose directions are the same as those allowed in the non-
deformed case, no change in periodicity is detected. The
value of AW and the remaining components of the exter-
nal fields for which it is possible to detect periodicity in the
(v) vs ¥, curves can be determined from Ed26) and
(27). Results are shown in Figs(af and in 7b), where the
possible field directions for the indicesj, and k running
from O to 10 are shown fof=0.01 andd= 0.1, respectively.

) gcos y,+CoSy,— 0. (28)

k

C. Combined effects

Because we are only considering first-order perturbations
in the deformation parametexs and #, we can simply com-
bine these effects in order to determine periodicity in{the
vs ¥, curves and the allowed field directions in this case.
We thus write

AW (14N )cosy =i,
AW (1+N)(cosyy— 0 cosy,) =], (29

AP 9cosy,=Kk,

while the periodicityAWw{® is determined by the following
relation:

AV =ATO)(1-\ sirfy,+ 6 cosy,cosy,). (30

As before, we could determine the field directions for which

periodicity is allowed, fork#0, by the following equation
FIG. 7. Field directions for which thév) vs W, curves of the  for cosy,:

cubic network show periodicity under the presence of shear strain.

The representative points on the unitary sphere are plotted for the

indicesi, j, andk [Eqg. (26) in the texi running from 0 to 10(a)

#=0.01;(b) 6=0.1.

)\+JE49 coSy,+(1—\)cosy,— 0. (31

AVO

. ) ) . _On the other hand, fdt=0, we find the same expressions as
In this case the three independent relations defining the fielg, 1he case of an elongated network. Of course, we can re-
directions for which a periodicity in thev) vs We, curves is - cqyer the particular cases studied before by simply setting to

present are zero the shear strain parameteor the linear strain param-

AV Scosy, =i, eterh.
AT O . V. COMMENTS AND CONCLUSIONS
ex (COS‘yy— 6 cosy,) =], (26)
By an analytic approach we have proven that, in current-
AV cosy,=k. biased inductive cubic network of Josephson junctions, the
time-averaged voltages present a periodidty ., with re-
From Eq.(26) we have spect to the normalized applied fluk., for well defined
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applied field directions. Considering linear and shear strainvork may be adopted as a model system to study the mag-
effects on the cubic network, a first-order perturbation analynetic  response of simple eight-grain  granular
sis shows that periodic behavior of the observable electrodysuperconductor&:?'An artificially fabricated elementary su-
namic quantities is still present for small deformations; how-perconducting granular system of the type considered by
ever, periods and field directions at which periodic behavioBusseet al?? should thus reveal the characteristic features
appears are different from those found for the undeformedhvestigated in the present paper. On the other hand, in a
cubic system. These effects can be numerically evaluateduture perspective, one could also envision the use of these
Results on the determination of field directions allowing pe-systems as models of 3D SQUID’s. In this respect, it is im-
riodicity are presented collecting points on a three-portant to notice that the response of mutually orthogonal
dimensional unitary sphere, each point on the sphere corrganar dc SQUID'SRef. 23 has to be corrected for mutual
sponding to one of these directions. One may notice that thenductance effects between orthogonal loops. Indeed, even
collected points are distributed with different patterns on thefor fields applied to a single loop, these systems would still
unitary sphere, depending on the type of deformation and ogive signals in all channels. The symmetry properties of an
the value of the deformation parameter. hypothetical 3D SQUID, on the other hand, are such to give
This characteristic response is somehow unexpected SQUID-like response for fields along the coordinate axes;
given the complex form of the differential equations describ-furthermore, mutual inductance between loops can be taken
ing the dynamics of the elementary cubic system. Howevelinto account by means of the mati defined in the text.
it has been shown that a straightforward analytical approacke finally remark that experimental evidence needs to be
can provide a rather complete understanding of the underlygathered in such a way that the feasibility of the proposed
ing features of the model. system to be used as a vectorial magnetic field sensor may be
As for possible applications, we may notice that this net-judged also on the basis of experimental work.
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