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Electrodynamic response of current-biased elementary cubic networks of Josephson junctions

R. De Luca and F. Romeo
INFM and DIIMA, University of Salerno, I-84084 Fisciano, Salerno, Italy

~Received 4 January 2002; revised manuscript received 7 March 2002; published 3 July 2002!

We study the electrodynamic behavior of elementary cubic networks of Josephson junctions in the presence
of a constant current bias and of a uniform external magnetic field. We find that, for well defined external field
directions, the observable electrodynamic quantities, such as the time-averaged voltage^v&, are periodic with
respect to the applied fluxFex. Considering linear and shear strain of the network, by first order pertubation
analysis on the deformation parameters it is shown that the^v& vs Fex curves are still periodic. However, both
periodicity and the field directions for which periodic behavior occurs differ from those found in the nonde-
formed case.
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I. INTRODUCTION

Three-dimensional~3D! Josephson junction network
~JJN’s! have been adopted as models of both supercond
ing granular systems1–9 and superconductive devices.10–14

Lately, 3D JJN’s have been considered as circuit model
ultrasensitive magnetic field sensors.15–17 Even though a
great amount of experimental work has been performed
granular samples and traditional devices, 3D systems are
to be fabricated and tested due to the inherent difficulty
patterning superconducting material in three dimensio
However, these same systems show peculiar and intere
properties,18 so that it is useful to develop a full understan
ing of their electrodynamic response. In addition, these s
ies might trigger future experimental work on the subject

An elementary cubic network of Josephson junctions
formed by twelve Josephson junctions located at the m
points of the edges of a cubic superconducting structure
shown in Fig. 1. When a bias currentI B is injected into the
network, a so-called 3D SQUID is obtained.17 This term is
justified by the fact that the system behaves very similar
dc SQUID ~Refs. 10 and 11! for fields applied along the
coordinate axes. Moreover, since the electrodynamic
sponse of these models depends upon the field direction
predictable way, it has been hypothesized that the co
sponding devices might find application as ultrasensit
vectorial magnetic field sensors.15,16

In the present work we focus our attention on the prese
of periodicity in the electrodynamic quantities, such as
time-averaged voltagêv& across the twelve branches in th
network, with respect to the applied magnetic fluxFex.
Therefore, in the following section we write the time
evolution equations for the superconducting phase dif
ences across the twelve Josephson junctions~JJ’s! in the net-
work and define the observable electrodynamic quantitie
the system. In the third section we determine, by means o
analytic procedure, the field directions for which periodic
in the ^v& vs Fex curves is present. In the fourth section w
study how the periodicity is affected by linear and she
strain of the network. Conclusions are drawn in the last s
tion.
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II. ELECTRODYNAMICS

The electrodynamic response of 3D JJN’s can be stud
by solving the set of dynamical equations for the vectorw,
whose components are the gauge-invariant supercondu
phase differencewj(rW,t) across the twelve junctions in th
network. In labeling the quantitieswj(rW,t), we adopt an in-
dex j for denoting the direction in which the junction lie
(j5x, y, z) and a second indexrW to distinguish between the
four JJ’s lying in the same direction, but occupying differe
positions in space. By adopting the resistively shunted ju
tion ~RSJ! model,10 the dynamical equations for the vectorw
can be shown to be written as follows:18

d

dt
w1sinw1

1

2pb
Aw5f, ~1!

FIG. 1. Elementary cubic network of Josephson junctions. T
double triangles are representative of one JJ and an inducto
shown in the inset.
©2002 The American Physical Society09-1
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where t[(2pRIJ0 /F0)t is the normalized time variable
with R andI J0 the resistive junction parameter and the ma
mum Josephson current, respectively,A is a singular 12
312 matrix,b5LI J0 /F0 , L being the self-inductance of
single branch, and wheref is the forcing vector which in-
cludes both the bias current and the external magnetic fi
In Eq. ~1! the matrixA takes into account both the electr
magnetic and the quantum mechanical coupling of the J
Details on the derivation of Eq.~1! can be found in Ref. 18
We finally notice the particular notation used in Eq.~1!, in
which the sinw term symbolically represents a vector who
twelve components are the quantities sinwj(rW,t).

Because of the Josephson equations, the branch cu
vector i, whose components are normalized with respec
the maximum Josephson currentI J0, may be defined as fol
lows:

i5f2
1

2pb
Aw. ~2!

If we assume that the forcing term is constant, the volta
vector, normalized with respect toRIJ0, can be written as
follows:

v~t!5
d

dt
w12pb

d

dt
i5~12A!

d

dt
w. ~3!

The components of the current vectori and of the voltage
vectorv are seen to be periodic with a global periodT. The
presence of a global periodT in the electrodynamic quanti
ties is a consequence of the properties of the matrixA. In-
deed, by imposing periodicity in time of the instantaneo
current vectori, we may write

Aw~t1T!5Aw~t!. ~4!

We can argue, by analogy with the single JJ case, that s
junctions in the network undergo a 2p phase shift after a
time T for values of the bias current greater than some c
cal current valueI c . As in the SQUID,I c depends on the
external magnetic field amplitude, but, in contrast to w
happens in the planar case, it also depends upon the dire
of the external magnetic field. By following the analogy wi
the single JJ case, then, we can set

w~t1T!5w~t!12pK , ~5!

whereK is a vector whose components are either 0 or61.
By substituting in Eq.~4! the expression forw(t1T) given
in Eq. ~5!, we get

A•K50, ~6!

so thatK must belong to the null-space of the matrixA.
Now, sinceA is a singular matrix, its null-space is nontrivia
this ensures that not all the components ofK are necessarily
null when some of the junctions in the network are in t
resistive state. Naturally, the solutionK50 to Eq.~6! corre-
sponds to the zero-voltage state of the system.
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In order to illustrate this point more clearly, let us refer
a planar dc SQUID. In this case the matrixA, which may be
denoted asASQUID, is given by19

ASQUID5S 21 11

11 21D . ~7!

The dynamical equations for the superconducting phase
ferences of the two JJ’s in the SQUID is formally identical
Eq. ~1!. Since the matrixASQUID is singular, the null space o
the matrix itself can be seen to be nonempty, so that from
~1! we can argue that the time derivative of the vectorw is
invariant for a translationT in time, if K belongs to the null
space ofA. In this case the vectorK can be written as fol-
lows:

K5S 1

1D . ~8!

This means that the two identical JJ’s in a SQUID are
phase when a dissipative dynamical state is realized und
constant external forcing termf.

As for the instantaneous voltage, periodic behavior in
cubic system comes from Eq.~5!, given that it is possible to
write the vectorv(t) in terms of the time derivative ofw, as
in Eq. ~3!. Periodicity in the voltages induces periodic b
havior in the instantaneous currents. Settingb50.5, I B
53.5 I J0, andFex50.4F0, taking the field in thez direction,
instantaneous voltages and currents are shown in Figs. 2~a!–
2~c! and in Figs. 3~a!, 3~b!, respectively, where periodicity is
clearly visible. Experimentally observable currents and vo
ages, however, are related to the time average of the co
sponding instantaneous quantities. Since the instaneous
pressions ofi andv are periodic in time, the average value
these quantitieŝi& and ^v&, respectively, can be calculate
over a single periodT, if the value ofT is exactly known. For
more practical purposes, numerical evaluation of^ i& and^v&
can be performed over a rather high number of periods
follows:

^v&5
1

ME
t0

t01M

v~t!dt, ~9!

whereM is a positive real number much greater thanT and
t0 is an arbitrary normalized time value.

III. PERIODICITY OF THE OBSERVABLE QUANTITIES

In order to find periodicity with respect to the applie
magnetic fluxFex5m0Ha2, H being the external magnet
field amplitude anda the length of the cube side, the matr
A and the forcing termf need to be defined. Naturally, as
the SQUID case, it can be proven that no periodicity can
present with respect to the bias currentI B . Let us then start
by considering the expression for the 12312 matrixA:

A52LT~M•T!21F, ~10!

whereT is a 1235 matrix relating the twelve branch cur
rents to only five independent currents,M andF are 5312
matrices which relate the fluxes linked to the cubic faces
9-2
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the branch currents and to the superconducting phase d
enceswj(rW,t), respectively. A periodicityp in the forcing
term f gives ^v&5^v* &, where ^v* & is the time-averaged
value of the instantaneous voltage obtained forf* 5f1p. In
order to satisfy the relation̂v&5^v* &, by denoting withw*
the solution to Eq.~1! for f* , we set

^sinw&1
1

2pb
A^w&5p1^sinw* &1

1

2pb
A^w* &. ~11!

FIG. 2. vj vs t curves forb50.5, i B53.5, and for applied field

(Cext50.4) along thez axis. ~a! vx(rW,t) vs t curves: the instanta

neous voltagesvx(0,t) and vx(aŷ1aẑ,t) lie close to the zero-
voltage axis and are represented, respectively, by a full and a d

line; the voltagesvx(aŷ,t) and vx(aẑ,t) are represented, respe

tively, by the dotted and the full lines below the axis.~b! vy(rW,t) vs

t curves: the instantaneous voltagesvy(ax̂,t) and vy(aẑ,t) lie
close to the zero-voltage axis and are represented, respectively

dotted and a full line; the voltagesvy(0,t) and vy(ax̂1aẑ,t) are
represented, respectively, by a full and a dotted line above the

~c! vz(rW,t) vs t curves: the instantaneous voltagesvz(0,t) and

vz(ax̂1aŷ,t) lie close to the zero-voltage axis and are represen

respectively, by a full and a dotted line; the voltagesvz(ax̂,t) and

vz(aŷ,t) coincide and are represented by the curve below tht
axis.
02450
er-By inspection we see that Eq.~11! may be satisfied by setting
w*5w12pK̃ , whereK̃ is a vector whose components a
integers. Therefore, the periodp can be expressed as follow

p52
1

b
A•K̃ . ~12!

We now need to express the forcing term in its parts.
referring to Ref. 18, we get, under zero field cooling con
tions,

ed

y a

is.

d,

FIG. 3. i j vs t curves forb50.5, i B53.5, and for applied field

(Cext50.4) along thez axis. ~a! i x(rW,t) vs t curves: the instanta-

neous currentsi x(0,t) and i x(aŷ1aẑ,t) lie close to thei 520.6
value and are represented, respectively, by a full and a dotted

the currentsi x(aŷ,t) and i x(aẑ,t) are represented, respectively, b

the dotted and the full lines below the first two curves.~b! i y(rW,t)

vs t curves: the instantaneous currentsi y(ax̂,t) and i y(aẑ,t) lie
close to thei 50.6 value and are represented, respectively, b

dotted and a full line; the currentsi y(0,t) and i y(ax̂1aẑ,t) are
represented, respectively, by the full line and the dashed line ab

the latter couple of curves.~c! i z(rW,t) vs t curves: the instantaneou

currentsi z(0,t) and i z(ax̂1aŷ,t) lie close to thei 520.6 value
and are represented, respectively, by a full and a dotted line;

currentsi z(ax̂,t) and i z(aŷ,t) coincide and are represented by th
curve which lies close to thei 521.2 value.
9-3
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R. DE LUCA AND F. ROMEO PHYSICAL REVIEW B66, 024509 ~2002!
f5 i B~C21!VI1
cext

b
Vf , ~13!

whereC5T(M•T)21M , 1 is the 12312 identity matrix,VI
is a twelve-component column vector representative of
bias configuration chosen,Cex5Fex/F0 , i B5I B /I J0 and
whereVf52LT(M•T)21G, G being the following vector:

G51
Ĥ•

Syz
(0)

a2

Ĥ•

Syz
(1)

a2

Ĥ•

Szx
(0)

a2

Ĥ•

Szx
(1)

a2

Ĥ•

Sxy
(0)

a2

2 5S 2cosgx

cosgx

2cosgy

cosgy

2cosgz

D . ~14!

The vectorsSmn
( i ) in Eq. ~14! are the area vectors of the cub

faces lying in themn plane, the indexi being 0 if the face
has one vertex in the origin, 1 otherwise. In the case of
undeformed cubic system the area vectors lie along the
rections of the coordinate axes, so that the scalar pro
between the external field andSmn

( i ) give the directional co-
sines cosgj (j5x, y, z) of the external field itself relative to
the coordinate axes. In analogy to the SQUID case, whe
is possible to prove that there cannot be periodicity w
respect to the bias current for fixed values of the exter
magnetic field,10 we take the period in the forcing term to b
given by an incrementDCex

(0) in the normalized applied flux
Cex at a fixed value of the bias current. We thus set

p52
DCex

(0)

b
Vf52

1

b
A•K̃ . ~15!

By now expliciting the vectorVf and the matrixA in terms
of their elementary components, we have

B~DCex
(0)G2F•K̃ !50, ~16!

whereBÄÀLT(M•T)21. Now, sinceB has a null space o
dimension zero, we may set

DCex
(0)G5F•K̃ . ~17!

Therefore, if there exist a real numberDCex
(0) such that Eq.

~17! is satisfied, the time-averaged voltage^v& is periodic in
Cex. We can extract three linearly independent relatio
from Eq. ~17!, namely,

DCex
(0)cosgx5 i ,

DCex
(0)cosgy5 j , ~18!
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(0)cosgz5k,

where i, j , k are integers. The possible periods can thus
written as follows:

DCex
(0)5Ai 21 j 21k2, ~19!

so that the field directionsĤ, for which periodicity is present
in the ^v& vs Cex curves, are given by the following expres
sion:

Ĥ5
~ i , j ,k!

Ai 21 j 21k2
. ~20!

In Fig. 4 we represent the possible field directions for t
indicesi, j andk running from 0 to 10.

IV. STRUCTURAL DEFORMATION

In the case of slight structural deformation of the syste
such as linear and shear strain@Figs. 5~a! and 5~b!, respec-
tively#, we can still predict the periodicity of thêv& vs Cex
curves by a first-order perturbation analysis as follows.

A. Linear strain

Let us define the area vectors generated by elongationDa
of the lateral sides of the cubic network:

Syz
(1)5~a1Da!ax̂,

Szx
(1)5~a1Da!aŷ, ~21!

FIG. 4. Field directions for which thêv& vs Cex curves of the
homogeneous cubic network show periodicity. The representa
points on the unitary sphere are plotted for the indicesi, j, andk
@Eq. ~20! in the text# running from 0 to 10.
9-4
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ELECTRODYNAMIC RESPONSE OF CURRENT-BIASED . . . PHYSICAL REVIEW B66, 024509 ~2002!
Sxy
(1)5a2ẑ.

By proceeding in the same way as in the previous sect
we may consider a relation similar to Eq.~17! as a starting
point. In this way, we can write the three independent re
tions defining the field directions for which a periodicity
the ^v& vs Cex curves is present as follows:

DCex
( l )S 11

Da

a D cosgx5 i ,

DCex
( l )S 11

Da

a D cosgy5 j , ~22!

DCex
( l )cosgz5k.

Therefore, from Eq.~22! we can write

DCex
( l )5DCex

(0)~12l sin2gz!, ~23!

wherel5Da/a. In order to determine the field directions fo
which periodicity is allowed, by combining Eqs.~22! and
~23! we find the following equation for cosgz:

l cos3gz1~12l!cosgz2
k

DCex
(0)

50. ~24!

Notice that forl50 we obtain the result found in the und
formed case. After having solved for cosgz, we can deter-
mine the periodicityDCex

( l ) from Eq.~23!, and the remaining
components of the external fields, for which it is possible
detect periodicity in thê v& vs Cex curves, from Eq.~22!.
Results are shown in Figs. 6~a! and 6~b!, where the possible
field directions for the indicesi, j, andk running from 0 to 10
are shown forl50.1 andl50.2, respectively.

FIG. 5. Linear~a! and shear~b! strain in the network.
02450
n,
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B. Shear strain

In the case of shear strain of the network, we can write
area vectors as follows:

Syz
(1)5a2cosu x̂'a2x̂,

Szx
(1)5a2~cosu ŷ2sinu ẑ!'a2~ ŷ2u ẑ!, ~25!

Sxy
(1)5a2ẑ.

FIG. 6. Field directions for which thêv& vs Cex curves of the
cubic network show periodicity under the presence of linear str
The representative points on the unitary sphere are plotted for
indices i, j, andk @Eq. ~22! in the text# running from 0 to 10.~a!
l50.1; ~b! l50.2.
9-5
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In this case the three independent relations defining the
directions for which a periodicity in thêv& vs Cex curves is
present are

DCex
(s)cosgx5 i ,

DCex
(s)~cosgy2u cosgz!5 j , ~26!

DCex
(s)cosgz5k.

From Eq.~26! we have

FIG. 7. Field directions for which thêv& vs Cex curves of the
cubic network show periodicity under the presence of shear str
The representative points on the unitary sphere are plotted for
indices i, j, andk @Eq. ~26! in the text# running from 0 to 10.~a!
u50.01; ~b! u50.1.
02450
ld

DCex
(s)5DCex

(0)~11u cosgycosgz!. ~27!

We can determine the field directions for which periodicity
allowed, as it has been done in the previous subsection
combining Eqs.~26! and~27! we find, forkÞ0, the follow-
ing equation for cosgz:

j

k
u cos3gz1cosgz2

k

DCex
(0)

50. ~28!

Notice that foru50 we obtain the result found in the non
deformed case. Fork50, we have cosgz50 and the expres-
sion for DCex

(s) is found to be the same as in the unstrain
case. This means that for magnetic fields in thex-y plane,
whose directions are the same as those allowed in the
deformed case, no change in periodicity is detected.
value ofDCex

(s) and the remaining components of the exte
nal fields for which it is possible to detect periodicity in th
^v& vs Cex curves can be determined from Eqs.~26! and
~27!. Results are shown in Figs. 7~a! and in 7~b!, where the
possible field directions for the indicesi, j, and k running
from 0 to 10 are shown foru50.01 andu50.1, respectively.

C. Combined effects

Because we are only considering first-order perturbati
in the deformation parametersl andu, we can simply com-
bine these effects in order to determine periodicity in the^v&
vs Cex curves and the allowed field directions in this cas
We thus write

DCex
( ls)~11l!cosgx5 i ,

DCex
( ls)~11l!~cosgy2u cosgz!5 j , ~29!

DCex
( ls)cosgz5k,

while the periodicityDCex
( ls) is determined by the following

relation:

DCex
( ls)5DCex

(0)~12l sin2gz1u cosgycosgz!. ~30!

As before, we could determine the field directions for whi
periodicity is allowed, forkÞ0, by the following equation
for cosgz:

S l1
j

k
u D cos3gz1~12l!cosgz2

k

DCex
(0)

50. ~31!

On the other hand, fork50, we find the same expressions
in the case of an elongated network. Of course, we can
cover the particular cases studied before by simply settin
zero the shear strain parameteru or the linear strain param
eterl.

V. COMMENTS AND CONCLUSIONS

By an analytic approach we have proven that, in curre
biased inductive cubic network of Josephson junctions,
time-averaged voltages present a periodicityDCex with re-
spect to the normalized applied fluxCex for well defined

n.
he
9-6
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ELECTRODYNAMIC RESPONSE OF CURRENT-BIASED . . . PHYSICAL REVIEW B66, 024509 ~2002!
applied field directions. Considering linear and shear str
effects on the cubic network, a first-order perturbation ana
sis shows that periodic behavior of the observable electro
namic quantities is still present for small deformations; ho
ever, periods and field directions at which periodic behav
appears are different from those found for the undeform
cubic system. These effects can be numerically evalua
Results on the determination of field directions allowing p
riodicity are presented collecting points on a thre
dimensional unitary sphere, each point on the sphere co
sponding to one of these directions. One may notice that
collected points are distributed with different patterns on
unitary sphere, depending on the type of deformation and
the value of the deformation parameter.

This characteristic response is somehow unexpec
given the complex form of the differential equations descr
ing the dynamics of the elementary cubic system. Howe
it has been shown that a straightforward analytical appro
can provide a rather complete understanding of the unde
ing features of the model.

As for possible applications, we may notice that this n
do

e
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its
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work may be adopted as a model system to study the m
netic response of simple eight-grain granu
superconductors.20,21An artificially fabricated elementary su
perconducting granular system of the type considered
Busseet al.22 should thus reveal the characteristic featu
investigated in the present paper. On the other hand,
future perspective, one could also envision the use of th
systems as models of 3D SQUID’s. In this respect, it is i
portant to notice that the response of mutually orthogo
planar dc SQUID’s~Ref. 23! has to be corrected for mutua
inductance effects between orthogonal loops. Indeed, e
for fields applied to a single loop, these systems would s
give signals in all channels. The symmetry properties of
hypothetical 3D SQUID, on the other hand, are such to g
a SQUID-like response for fields along the coordinate ax
furthermore, mutual inductance between loops can be ta
into account by means of the matrixM defined in the text.
We finally remark that experimental evidence needs to
gathered in such a way that the feasibility of the propos
system to be used as a vectorial magnetic field sensor ma
judged also on the basis of experimental work.
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