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Neel transition, spin fluctuations, and pseudogap in underdoped cuprates by a Lorentz invariant
four-fermion model in 2+1 dimensions
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We show that the Na transition and spin fluctuations near théeN&ransition in planar cuprates can be
described by an S@) invariant relativistic four-fermion model in21 dimensions. Features of the pseudogap
phenomenon are naturally described by the appearance of an anomalous dimension for the spinon propagator.
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The two dimensional one-band repulsive Hubbard mbdelbosons are the massless AF spin waves. The disordered spin-
is considered as one of the best candidates for describingapped phase is equivalent to the subcritical symmetric
microscopically the planar cuprate high-superconductors. phase and is characterized by the existence of massless
The strong-coupling limit of the Hubbard model is equiva- spinons and unstable bound states as broad resonances.
lent to thet-J model? In the t-J model at half-filing, on  These resonances supposedly correspond to the spin excita-
each site of a square lattice, on average a single electrafbns observed in the normal state and superconducting state
interacts antiferromagnetically with its nearest neighbors angf underdoped and optimally doped cuprates.
the system is an antiferromagnetidF) insulator (a Mott Although the physical picture sketched by Kim and Lee is
insulatoy described by Nel ordering. By introducing doped plausible, it was pointed out that Qs not an appropriate
holes, thus charge carriers, on this lattice, the AF interaction;hodd for describing unstable bound st&t@e main prob-

is frustrated and a transition from the &eordered to the lem being that DSB in QEDis not a phase transition of the

Slljsrzrdg(r)?d&?:ﬁ!ﬁg&jﬂt&gﬁgﬁgp;?)?jee|0;tn2rr]rgaries;?tﬁa? _écond-order type, but a so-called conformal phase transition
fiIIinQ Affleck and Marston showed, using a Ieading—orderWhiCh does not allow light unstable bound states in the sym-

1N expansion, that the ground state is thelux phase for metric phasé’ As an alternative for.the gauge interac.tions,
appropriate values of the hopping amplitugdeoping é, and We propose thqt relevgnt, Lorentz—mvanapt four—ferm|_on or
AF interactiond.? The numben is the generalization of the fogr-Ferml (4F) |nteract_|ons W|th.an uIFraonet stable f|>_<ed
physical up-down spinsN=2, to N types. In them-flux point for the four-fermion coupling drive the AF ordering.

phase the spinon spectrum has the dispersion The AF lattice Heisenberg interactioh=JS  ,S,- S, , ex-
panded around the two Fermi points, gives rise to(Z3U
Ex=2|x|aVcogak, + cogak,, invariant attractive 4F terms in the action of the model. At

: sufficient strong AF coupling DSB occurs, giving rise to the
where x| is H.‘e absolute 'valuelof the-ﬂux phase o.rder Neel state. Despite the fact that the real temperature is not
Earameter. This spe_ctrum IS gapless at_ t_ e two Fermi VeCto?]secessarily zero, the time-dependent quantum fluctuations
fp=(m/2a,=m/2a) in the reduced Brillioun zone of the 5 ordering are given by a zero-temperature 4F model. The
even and odd lattices with lattice spaciagrhe linearization mean-fieldm-flux phase local order parameter describes

Zirr?1urr]1di tr? eIS(ren Felrml F[’)?r'ntsthgwres da i?g;;:nrl\(/'zr 1)'f the thermodynamic equilibrium state and is therefore time
ensional massiess Lirac theory desc dlavors o independent. In addition, there is no need for a chemical
four-component Dirac spinors having a global B(2 L .

) - . - . potential in the proposed model, since theearly half-
symmetry* At half-filing, the Dirac spectrum is isotropic illing constraint has already been taken into account via the
and the flux-phase order parameter is equal to the so—callefH g s y : .

mean-field equilibrium real bosonic Lagrange figldhe

d-wave pairing order parametgk|=|y|.° . ; . .
Recently Kim and Lee addressed the question, how th@resent idea is partly inspired by Ref. 4, where it was sug-

spin gapped phase is connected to thelNedered phase at gested, by analyzing various Iattice. 4F operators, 'that_the
zero dopind In their work the mean-fieldr-flux phase of pnly reIevant operators are those which are Lorentz invariant
Affleck and Marston is taken as the reference state for dell the continuum. _
scribing the spin fluctuations around the AF Fermi points. By ~We adopt the spin liquid ansatz of Refs. 3 and 6; the spin
introducing gauge-field fluctuations, enhancing AF correladiquid is described by the mean-field larye-m-flux-phase
tions around ther-flux phase solution, Kim and Lee pro- for low doping. The flux-phase order parameitgf depends
pose, along the lines of Ref. 7 that &erdering is described on temperature and doping. The AF Heisenberg interaction is
by dynamical symmetry breakind®SB) and mass genera- reinstated for this spin liquid. The fluctuations of the holes
tion in QED;. Neel ordering corresponds to the dynamically are ignored, and their effect is only included via their mean-
broken phase, which is characterized by a “mass gap” foffield effect on reducing the AF exchangé to J.=J

the spinon spectrum and Nambu-Goldstone bosons as bouiiti— 5)2.** Therefore, on a lattice with spaciraf =a/+/2,
states of spinons and antispinons. These Nambu-Goldstowee consider the action
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> e D d—xydCaly,D—H [, (D) H.=4Jea2J (2m)28(p; +ky—Ka— Pa)

X,y) P1.P2 Ky ko=A
with X[C1a(P1.0)Cerp(P2.1) + Clon(P1.1) Cerp(P2.1)]
o X[Ch1,(K1,t)Cors(Ka 1)+l (K1, 1) Cops(Ka 1)]
Hi= 2, 9SSy @ X (80505 8updyol2), )

and where(x,y) denotes nearest neighbors on an isotropiovhere the S(2) Fierz identity has been used}aﬁ-(;y,;
cubic lattice. The indexx=1,| labels the spin components =26,59,5— d459,5- Using Eq.(4), Eq. (5) can be written

and the spin operator is as
& _ ot - . e s
Sx=Ca(X, 1) TapCp(X,1)/2, H= _Jeazf (2m)28(p1+ky—ky—po)
P1.P2 Ky ko<A
where o are the Pauli matrices and,c’ are the spinon, - . .
antispinon operators. A particular representation for this Her- X(Potppilyps— o lplys) (04505~ Oapdysl2).
mitian 7-flux-phase hopping parametgy, is® (6)
Xxsa x=ilxls Xxza, x= 1| x!, Subsequently, it is straightforward to show that Eg). to-
*ay, *ay,

gether with Eq.(3) gives rise to the actio®=S,+S,, with

with the nearest-neighbor vect0r§1= (a’,0) and 52

=(0a’). The low-energy behavior of the kinetic term in Eq. s, :Jeazf dtf (2m)28(p1+ki—kp—Py)
(1) is known to be equivalent to a two-flavor massless Dirac P1.P2.Ky kp<A

theory with the action 3 (%ﬁ)z ()2
X[A; ()= (' P y)?) = ——+ =,

)

wherec=2|y|a is the “speed of light’ andg=y'°. The Wi 7 the generators of the $B) symmetry with
momentum cutoff\ is naturally related to the lattice spacing Tr (7°7%)= 8% (#=0%/2), and y7*y=3, shamosts-
via A= m/2a. The fieldsy, " are four-component spinors, The action(7) is invariant under global SU(2)U(1) corre-
sponding to the spin orientation symmetry and total spin con-
servation. Moreover the action is invariant under the discrete
transformations; space reflection, parity, and the combined
| Cota ot t 1 t CT (charge-conjugation and time-revepsabnsformations.
Vo= Coza | ¥o=(Ceta Cota Coza Ceza): Naturally, it is invariant under continuous rotations in space.
However, the terms of the fornt™y are not invariant under
Lorentz boosts and therefore the action is not relativistic in-
variant.
In what follows, we shall show that the actidn) lies in
the same universality class as that of a Lorentz-covariant
SU(2) invariant(2+1)-dimensional 4F model for two mass-
less fermion flavors:

S [ dt| dtioo+ oky kv, @

Cela

Ce2a

4

where 1,2 labels the Fermi point argb label fields on the
even and odd lattices, respectively. Th& 4y matrices sat-
isfy a Clifford algebra corresponding to the Minkowskian
metric g#"=diag(1-1,—1). The following representation
for the y matrices has been chosen:

_. G —
Gy 2 W2, ®

70:(03 0), yl_(i(rl 0), S=fd3x

0 — 03 0 _iO']_

where xo=ct,d=y“3/dx*, and whereG is an attractive
four-fermion coupling,cG/2=J.a2. The universality only
5 ( iop 0 ) holds close to a critical point or ultraviolet stable fixed point
Y= g G, of a second-order phase transition of E&).at which the
SU(2) symmetry is dynamically broken to a(l) symmetry.

whereo; are Pauli matrices, acting on the even and odd sitd ere is a dynamical generation of a parity-conserving

0 _iUZ

fermion operators. “mass term”mg connected with the appearance of a nonzero
Expanding the AF Heisenberg interactié® around the vacuum condensatgs73y). This Lorentz-invariant conden-
two Fermi points, we obtain sate describes a staggered spin expectation value giving rise
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to AF ordering®’ In the broken phase, two massless pions or
spin waves appear as Goldstone bosons. N -
The spinon propagat@, ; can be written as
. -0,
PA(P) Sapt \/EmsTig - - : g
= O = —_— = e ©

wetP A%(p)p?—m? _ _ o

FIG. 1. The leading larg&t truncation or ladder approximation
with Minskowskian momentunp2=p§—|5~5 and where for the Schwinger-Dyson equations for the spin-wave propagator
A(p) is the fermion wave function. In the Hartree-Fock ap-A5(p) (dashed line with bloband the spinon propagatd(p)
proximation, the equation fomg gets contributions only (solid line with blob.

from the tadpole diagram and the fermion wave function

A(p)=1. Settingc=1, the gap equation fan, reads Hooft,'® corresponding to an expansion in planar Feynman
diagrams instead of Fermion loops.
_ d®p  4mg Recently, the generalization of E() to N fermion fla-
ms= f o 3.2 o0 vors with a SUN) X U(1) invariant 4F potential containing
M(2m)” pT—mg N°—1 terms has been studied in the planar laxge-

with the subscripM denoting the Minskowskian metric with approximation.* After a Hubbard-Stratonovich transforma-
cutoff A. This gap equation gives rise to the familiar critical tion (o= —Gy7), the action(8) can be expressed as
couplingg{®=2G_A/7w?=1. Above the critical coupling
=_ZGA/7-;2>gg5), thg SU2) spin symmetry is broken and a S:J d3x[%3w—2 DAY 1 DEARREC)
() condensate is formed. A 2G

Now let us show that the nonrelativistic interaction terms
in Eq. (7) are irrelevant close tcgff). We investigate the
generation of a masm, connected with the uniform spin
expectation valuéwTT3¢>.6 In the Hartree-Fock approxima-
tion, keeping only the Lorentz-noninvariant terms, the spino

In the SUN) case, the spin labe runs from 1 toN?—1
and the fermion label from 1 tdl. Thus there aréN®—1
composite operators, giving rise N*— 1 spin propagators
n(connecteid iANQ)=(oa(@)oa(—a))c, and N spinon

propagator is of the form propagators,iS(p)=(#(p)¥(—p)). This allows for a 't
Hooft topological 1IN expansion as is conjectured in Ref. 14.
Saﬁ(p):(héaﬁ_mu'YOTiﬁ)Kax Moreover, it was argued in Ref. 14 that the leading laxge-
or planar approximation reduces to the ladder approximation
Ka:{[po_(_1)a+lmu/\/§]2_p§_pg}*ly for the so-called Yukawa vertei.e., T'2(k,p) = 71]. The

_ ) Yukawa vertexl“ﬁ is the fully amputated three-point interac-
with «=1,2 (@=1,]). The gap equation fam, then reads  tjon vertex for the actior(9). In the ladder approximation,
e the Schwinger-Dyson equations for the spin propagan‘j}s
m p|m Po i i
_u;f u 1K) — 2 (K —Ky) | and the spinon propagato8form a closed set, as depicted
4Gi M(27)3 2
The bifurcation equation is

2 J2 in Fig. 1.

For the physically relevant cas®l & 2), the propagators
Al AZ of the auxiliary fieldso;, o, describe the Goldstone
3 2 9 2 modes, whereas the fiete acquires a nonzero, but Lorentz-
iz_f d°p  potPitp; covariant, vacuum expectation value in the broken phase

AGi M(2m)3 (p2—p2—p2)?’ ((o3)#09>0Y), describing the Nel state, corresponding

. ) . W - ) to the symmetry-breaking pattern SU{2)J(1). In thesub-
giving rise to a critical couplingge”=2G.A/m"=3. This  yitical region g=g') the propagators of all three auxiliary
shows that whew is close to the critical valug(Y , itis far  fields describe Goldstone precursor modes that come down
(lg—g|/g=2) from the critical regime o). Upon in-  in energy as the transition is approached. Hence, the stag-
creasingg it first encounters the critical value for staggeredgered spin fluctuations or spin waves are described by the
magnetization. Hence, the nonrelativistic terms in @jare  propagators of the auxiliary fields,, which become light
irrelevant in that area of the coupling constant space. close to the critical poing=g® .

Naturally, the Hartree-Fock approximation ignores 4F |y Ref. 14, the Schwinger-Dyson equations represented in
fluctuations and therefore gives a rather crude description atig. 1 were solved. It was shown that the fermion or spinon
the critical behavior. Nevertheless the irrelevance of the NONpropagatolS acquires an anomalous dimensipria the fer-
Lorentz-covariant terms in E¢7) to g can be demon- mion wave functionA(p)~(A/p)¢, so that at the critical

strated _in more advanced approximations, SUC_h as tRe 1lcoup|ingG:GC the fermion(spinor) propagator scales as
expansion. In particular, the $2) Heisenberg antiferromag-

nets can be generalized to WY( and studied in the N S Y(p)=p(—A2/p?)~2. (10)

expansior?. This is analogous to the SN generalization of

Eq. (8). Contrary to models of the Gross-Neveu typsuch  The dependence of the anomalous dimengian N is de-
an expansion resembles the topological Bxpansion of 't  termined, and foN=2, we have/~0.21** Moreover the
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model described in Ref. 14, with the dimensionless 4F cou-
pling g=2GA/x?, has an ultraviolet stable fixed point gt

=g.=1+2¢. The appearance of a positive anomalous di- os |
mension forSis considered to provide a description of the

pseudogap phenomenditt’ 2 o6l
An important point is whether the critical couplirg® g
=1+2/{ is in agreement with the estimations for the physi- E o4}
cal parameters. Sinc€c/2=J.a%,c=2|y|a,A==/2a, we
have thaig=J, /| x|. With the estimatiorg®=1.4, we ob- 021
tain that a valugy|~0.23J, would get us close to criticality. 0 , , , ,
This is remarkably close to the mean-field va|wé~0.24] 0 1 2 3 4 5
given in Ref. 3. p/mg

In the ladder approximatiotFig. 1), the connected propa-

gator of theo, field in momentum space reads FIG. 2. The spin susceptibility or spin-correlation function

Im[Aﬁ(p)] vs p/m,, with the peak renormalized at unity,
1 =0.21 (»=0.58).
Aﬁ‘l(q)z—6+ifMd3kTr[TAS(k+q)TAS(k)],

whereS(k) is the full spinon propagator, given by EQ.0), ~ With a single two-component Dirac fermioNE1). The
see also Fig. 1. In the subcritical or WY symmetric re-  universality class of the model presented in this pdper,
gime, we can takeS(k) =k/[k?A(k)]. The integral can be Eq. (8)] deviates considerably from the Gross-Neveu

A : - model** Although the anomalous dimension for both
performed, andi,(q) has the following scaling form for models is comparabley~0.58 for the present model, and

2_ 2 2 2y.
lal <A (9°=do— a1~ a2): 7=16/(37*N)~0.54 (N=1) for the Gross-Neveu model,
C (= A%g)i+ie the main difference is in the value of the anomalous dimen-
AXNgq)=-— PN (11  sion of the fermion propagator, which for the present model
A [1+(—miig?) 12 is {~0.21, whereas for the Gross-Neveu model it s

=2/(37N)~0.07 (N=1). Another approach was adopted
in Ref. 20, where the antiferromagnetic correlations and the
Neel transition are described by the nonlinear sigma model
in the largeN expansion. In that work, the order parameter is
a three-component one, corresponding to the three spin-1
m, /A~ (gl —g)V1+20, (120  components, and no Dirac fermions are taken into account.
The anomalous dimensionfor the spin waves turned out to
From these expressions, it follows that the critical exponentge 7=8/(372N)~0.09 (N=3), which is considerably
7, v, andy are p=1-2¢, v=1/(1+2¢), andy=1. These smaller thany for the two above-mentioned 4F Dirac mod-
exponents satisfy the three-dimensional hyperscalingls. In this paper, we have a three-component order param-
equations* Moreover, in Lorentz-invariant field theories, eter (the composite spin degréeand two flavors =2) of
the scaling of the energy equals the scaling of momentumfour-component Dirac fermions. To determine which univer-
and consequently the dynamical scaling exporzent . sality class describes the Bletransition, the low doping
In experiments, the isotropic dynamical susceptibility region §~ 5, needs to be examined in more detail experi-
x"(q) is measured with q=(w,ﬁ). In Ref. 8 magnetic reso- mentally.
nances were observed in underdoped and optimally doped Since in the subcritical phase, all three correlation func-
YBa,Cu;04., With the famous 41-meV peak at optimal tions of the staggered spin components are degenerate, the
doping. For lower doping the resonance peak shifts to loweimaginary part of the correlation functiamﬁ(q) is directly
energies. It is tempting to assume that, along the lines ofroportional to the so-called odd acoustic modeytq).12
Refs. 6 and 9, these resonances might be described by thige spin-correlation function only gets low-energy contribu-

where C is some flavor dependent positive constdrithe
massm, (spin-wave stiffnegsdenotes the position of the
resonance peak given by the imaginary part of @4), and
plays the role of the inverse correlation length,

Dirac models, see Fig. 2. tions from the staggered spin operators:
However, optimal dopingd=0.2) is rather far from Nel
doping, which is one order of magnitude Ie&;s%,:O.OZ.18 <SA(p)sB(_p)>o<<gA(p)gB(_p)>:5ABiAﬁ(p)_
Therefore the question is whether we are “sufficiently” close
to the scaling region of the Nétransition. Moreover, sinceg is proportional toJ,, g reduces when

Let us compare a couple ¢2+1)-dimensional Lorentz-  doping is increaset!. The critical couplingg!® of the Neel
covariant quantum field models, capable of describing ARransition is a quantum critical pofittand corresponds to a
fluctuation and Nel transition. For instance, KW&)% pre- critical Neel d0p|ng §C<1 Equa“on(lz) gives the relation
sented a nodal-wave spin liquid model for the N transi-  petween the position of the peak of the magnetic resonance
tion, which has the universality class of the Gross-Neveynd the doping rate. Assumingd, is sufficiently close to
model. This model has a single AF order parameter, correzerg, we obtain that the resonance peak is linearly propor-
sponding to the singlet composite order paramétgy), tional to doping(for small doping rates witl$> §,). Conse-
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qguently, the peak position moves to lower energies whering on the AF interaction and the anisotropy of the Dirac
doping is reduced; neaf. the peak height diverges. For spectrum is left open. For the future, it would be interesting
doping valuess< &, spin waves appear. to include the contribution of the slave bosdhslons (e.g.,

In summary, we have shown that(a+1)-dimensional see Refs. 6 and 18n order to take into account anisotropy
Lorentz-invariant 4F model with a global spin 8Jsym-  and to determine the effective AF couplidg. We demon-
metry describes the low-energy time-dependent “quasipartistrated that the unstable spin modes found in experiments
cle” spin excitations of thet-J model near the AF wave might be well described by the Nambu-Goldstone boson pre-
vector. The spin excitations are given in terms of quantuntyrsor modes in the subcritical region. Furthermore, the
fluctuations around the mean-fietd-flux phase. The Nel spinon propagator acquires an anomalous dimension, but re-
transition is described as the DSB of &DJ_—>U)(1) in the  mains gapless near the AF wave vector in the normal state.
model. The magnitude of the critical coupling® of the 4F g appearance of a spinon anomalous wave function gives a

model turned out to be in good agreement with the inpufyatyral description of the pseudogap phenomenon.
parameterd and| x|, which define the flux-phase spin liquid.

Nevertheless, the question of the precise effects of hole dop- The author thanks V. P. Gusynin for useful suggestions.
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