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Néel transition, spin fluctuations, and pseudogap in underdoped cuprates by a Lorentz invariant
four-fermion model in 2¿1 dimensions
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We show that the Ne´el transition and spin fluctuations near the Ne´el transition in planar cuprates can be
described by an SU~2! invariant relativistic four-fermion model in 211 dimensions. Features of the pseudogap
phenomenon are naturally described by the appearance of an anomalous dimension for the spinon propagator.
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The two dimensional one-band repulsive Hubbard mod1

is considered as one of the best candidates for descri
microscopically the planar cuprate high-Tc superconductors
The strong-coupling limit of the Hubbard model is equiv
lent to the t-J model.2 In the t-J model at half-filling, on
each site of a square lattice, on average a single elec
interacts antiferromagnetically with its nearest neighbors
the system is an antiferromagnetic~AF! insulator ~a Mott
insulator! described by Ne´el ordering. By introducing doped
holes, thus charge carriers, on this lattice, the AF interac
is frustrated and a transition from the Ne´el ordered to the
disordered, so-called spin-gapped phase or normal state
curs. For the Hubbard-Heisenberg model at and near h
filling Affleck and Marston showed, using a leading-ord
1/N expansion, that the ground state is thep-flux phase for
appropriate values of the hopping amplitudet, dopingd, and
AF interactionJ.3 The numberN is the generalization of the
physical up-down spins,N52, to N types. In thep-flux
phase the spinon spectrum has the dispersion

Ek.2uxuaAcos2ak11cos2ak2,

where uxu is the absolute value of thep-flux phase order
parameter. This spectrum is gapless at the two Fermi vec
fWp5(p/2a,6p/2a) in the reduced Brillioun zone of the
even and odd lattices with lattice spacinga. The linearization
around these Fermi points gives a continuum~211!-
dimensional massless Dirac theory describingN flavors of
four-component Dirac spinors having a global U(2N)
symmetry.3,4 At half-filling, the Dirac spectrum is isotropic
and the flux-phase order parameter is equal to the so-ca
d-wave pairing order parameteruDu5uxu.5

Recently Kim and Lee addressed the question, how
spin gapped phase is connected to the Ne´el ordered phase a
zero doping.6 In their work the mean-fieldp-flux phase of
Affleck and Marston is taken as the reference state for
scribing the spin fluctuations around the AF Fermi points.
introducing gauge-field fluctuations, enhancing AF corre
tions around thep-flux phase solution, Kim and Lee pro
pose, along the lines of Ref. 7 that Ne´el ordering is described
by dynamical symmetry breaking~DSB! and mass genera
tion in QED3. Néel ordering corresponds to the dynamica
broken phase, which is characterized by a ‘‘mass gap’’
the spinon spectrum and Nambu-Goldstone bosons as b
states of spinons and antispinons. These Nambu-Golds
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bosons are the massless AF spin waves. The disordered
gapped phase is equivalent to the subcritical symme
phase and is characterized by the existence of mass
spinons and unstable bound states as broad resona
These resonances supposedly correspond to the spin ex
tions observed in the normal state and superconducting s
of underdoped and optimally doped cuprates.8

Although the physical picture sketched by Kim and Lee
plausible, it was pointed out that QED3 is not an appropriate
model for describing unstable bound states.9 The main prob-
lem being that DSB in QED3 is not a phase transition of th
second-order type, but a so-called conformal phase trans
which does not allow light unstable bound states in the sy
metric phase.10 As an alternative for the gauge interaction
we propose that relevant, Lorentz-invariant four-fermion
four-Fermi ~4F! interactions with an ultraviolet stable fixe
point for the four-fermion coupling drive the AF ordering

The AF lattice Heisenberg interactionH5J(^x,y&SW x•SW y , ex-
panded around the two Fermi points, gives rise to SU~2!
invariant attractive 4F terms in the action of the model.
sufficient strong AF coupling DSB occurs, giving rise to th
Néel state. Despite the fact that the real temperature is
necessarily zero, the time-dependent quantum fluctuat
and ordering are given by a zero-temperature 4F model.
mean-fieldp-flux phase local order parameterx describes
the thermodynamic equilibrium state and is therefore ti
independent. In addition, there is no need for a chem
potential in the proposed model, since the~nearly! half-
filling constraint has already been taken into account via
mean-field equilibrium real bosonic Lagrange field.3 The
present idea is partly inspired by Ref. 4, where it was s
gested, by analyzing various lattice 4F operators, that
only relevant operators are those which are Lorentz invar
in the continuum.

We adopt the spin liquid ansatz of Refs. 3 and 6; the s
liquid is described by the mean-field large-N p-flux-phase
for low doping. The flux-phase order parameteruxu depends
on temperature and doping. The AF Heisenberg interactio
reinstated for this spin liquid. The fluctuations of the hol
are ignored, and their effect is only included via their mea
field effect on reducing the AF exchangeJ to Je5J
(12d)2.11 Therefore, on a lattice with spacinga85a/A2,
we consider the action
©2002 The American Physical Society01-1



pi
s

e

q.
ra

g

n

si

on-
ete
ned

ce.

in-

iant
-

int

ing
ero
-
rise

MANUEL REENDERS PHYSICAL REVIEW B66, 024501 ~2002!
S5E dtF (
^x,y&

ca
†~x,t !~ i ] t2xyx!ca~y,t !2HI G , ~1!

with

HI5 (
^x,y&

JeSW x•SW y , ~2!

and wherê x,y& denotes nearest neighbors on an isotro
cubic lattice. The indexa5↑,↓ labels the spin component
and the spin operator is

SW x5ca
†~x,t !sW abcb~x,t !/2,

where s are the Pauli matrices andc,c† are the spinon,
antispinon operators. A particular representation for this H
mitian p-flux-phase hopping parameterxyx is3

xx6a1 ,x5 i uxu, xx6a2 ,x51uxu,

with the nearest-neighbor vectorsaW 15(a8,0) and aW 2
5(0,a8). The low-energy behavior of the kinetic term in E
~1! is known to be equivalent to a two-flavor massless Di
theory with the action

Sk5E dtE
k<L

d2kc̄a@ i ] tg
01c~k1g11k2g2!#ca , ~3!

wherec52uxua is the ‘‘speed of light’’ andc̄5c†g0. The
momentum cutoffL is naturally related to the lattice spacin
via L.p/2a. The fieldsc,c† are four-component spinors,

ca5S ce1a

co1a

co2a

ce2a

D , ca
†5~ce1a

† co1a
† co2a

† ce2a
† !,

~4!

where 1,2 labels the Fermi point ande,o label fields on the
even and odd lattices, respectively. The 434g matrices sat-
isfy a Clifford algebra corresponding to the Minkowskia
metric gmn5diag(1,21,21). The following representation
for the g matrices has been chosen:

g05S s3 0

0 2s3
D , g15S is1 0

0 2 is1
D ,

g25S is2 0

0 2 is2
D ,

wheres i are Pauli matrices, acting on the even and odd
fermion operators.

Expanding the AF Heisenberg interaction~2! around the
two Fermi points, we obtain
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HI54Jea
2E

p1 ,p2 ,k1 ,k2<L
~2p!2d~pW 11kW12kW22pW 2!

3@ce1a
† ~pW 1 ,t !ce1b~pW 2 ,t !1ce2a

† ~pW 1 ,t !ce2b~pW 2 ,t !#

3@co1g
† ~kW1 ,t !co1d~kW2 ,t !1co2g

† ~kW1 ,t !co2d~kW2 ,t !#

3~daddgb2dabdgd/2!, ~5!

where the SU~2! Fierz identity has been used,sW ab•sW gd
52daddgb2dabdgb . Using Eq.~4!, Eq. ~5! can be written
as

HI52Jea
2E

p1 ,p2 ,k1 ,k2<L
~2p!2d~pW 11kW12kW22pW 2!

3~ c̄acbc̄gcd2ca
†cbcg

†cd!~daddgb2dabdgd/2!.

~6!

Subsequently, it is straightforward to show that Eq.~6! to-
gether with Eq.~3! gives rise to the actionS5Sk1SI , with

SI5Jea
2E dtE

p1 ,p2 ,k1 ,k2<L
~2p!2d~pW 11kW12kW22pW 2!

3H (
A51

3

@~ c̄tAc!22~c†tAc!2#2
~ c̄c!2

4
1

~c†c!2

4 J ,

~7!

with tA the generators of the SU~2! symmetry with
Tr (tAtB)5dAB (tA5sA/A2), and c̄tAc5(a,bc̄atab

A cb .
The action~7! is invariant under global SU(2)3U(1) corre-
sponding to the spin orientation symmetry and total spin c
servation. Moreover the action is invariant under the discr
transformations; space reflection, parity, and the combi
CT ~charge-conjugation and time-reversal! transformations.
Naturally, it is invariant under continuous rotations in spa
However, the terms of the formc†c are not invariant under
Lorentz boosts and therefore the action is not relativistic
variant.

In what follows, we shall show that the action~7! lies in
the same universality class as that of a Lorentz-covar
SU~2! invariant ~211!-dimensional 4F model for two mass
less fermion flavors:

S5E d3x F c̄ i ]̂c1
cG

2 (
A51

3

~ c̄tAc!2G , ~8!

where x05ct,]̂5gm]/]xm, and whereG is an attractive
four-fermion coupling,cG/2.Jea

2. The universality only
holds close to a critical point or ultraviolet stable fixed po
Gc of a second-order phase transition of Eq.~8! at which the
SU~2! symmetry is dynamically broken to a U~1! symmetry.
There is a dynamical generation of a parity-conserv
‘‘mass term’’ms connected with the appearance of a nonz
vacuum condensatêc̄t3c&. This Lorentz-invariant conden
sate describes a staggered spin expectation value giving
1-2
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NÉEL TRANSITION, SPIN FLUCTUATIONS, AND . . . PHYSICAL REVIEW B66, 024501 ~2002!
to AF ordering.6,7 In the broken phase, two massless pions
spin waves appear as Goldstone bosons.7

The spinon propagatorSab can be written as

Sab~p!5
p̂A~p!dab1A2mstab

3

A2~p!p22ms
2

,

with Minskowskian momentump25p0
22pW •pW and where

A(p) is the fermion wave function. In the Hartree-Fock a
proximation, the equation forms gets contributions only
from the tadpole diagram and the fermion wave funct
A(p)51. Settingc51, the gap equation forms reads

ms5GiE
M

d3p

~2p!3

4ms

p22ms
2

,

with the subscriptM denoting the Minskowskian metric with
cutoff L. This gap equation gives rise to the familiar critic
coupling gc

(s)[2GcL/p251. Above the critical couplingg
52GL/p2.gc

(s) , the SU~2! spin symmetry is broken and

^c̄t3c& condensate is formed.
Now let us show that the nonrelativistic interaction term

in Eq. ~7! are irrelevant close togc
(s) . We investigate the

generation of a massmu connected with the uniform spin
expectation valuêc†t3c&.6 In the Hartree-Fock approxima
tion, keeping only the Lorentz-noninvariant terms, the spin
propagator is of the form

Sab~p!5~ p̂dab2mug0tab
3 !Ka ,

Ka5$@p02~21!a11mu /A2#22p1
22p2

2%21,

with a51,2 (a5↑,↓). The gap equation formu then reads

mu

4Gi
5E

M

d3p

~2p!3 Fmu

2
~K11K2!2

p0

A2
~K12K2!G .

The bifurcation equation is

1

4Gi
52E

M

d3p

~2p!3

p0
21p1

21p2
2

~p0
22p1

22p2
2!2

,

giving rise to a critical couplinggc
(u)[2GcL/p253. This

shows that wheng is close to the critical valuegc
(s) , it is far

(ug2gc
(u)u/g.2) from the critical regime ofg(u). Upon in-

creasingg it first encounters the critical value for stagger
magnetization. Hence, the nonrelativistic terms in Eq.~7! are
irrelevant in that area of the coupling constant space.

Naturally, the Hartree-Fock approximation ignores
fluctuations and therefore gives a rather crude descriptio
the critical behavior. Nevertheless the irrelevance of the n
Lorentz-covariant terms in Eq.~7! to gc

(s) can be demon-
strated in more advanced approximations, such as theN
expansion. In particular, the SU~2! Heisenberg antiferromag
nets can be generalized to SU(N) and studied in the 1/N
expansion.3 This is analogous to the SU(N) generalization of
Eq. ~8!. Contrary to models of the Gross-Neveu type,12 such
an expansion resembles the topological 1/N expansion of ’t
02450
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n
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Hooft,13 corresponding to an expansion in planar Feynm
diagrams instead of Fermion loops.

Recently, the generalization of Eq.~8! to N fermion fla-
vors with a SU(N)3U(1) invariant 4F potential containing
N221 terms has been studied in the planar largeN
approximation.14 After a Hubbard-Stratonovich transforma
tion (sA52Gc̄tAc), the action~8! can be expressed as

S5E d3xH c̄ i ]̂c2(
A

c̄tAcsA2
1

2G (
A

sA
2J . ~9!

In the SU(N) case, the spin labelA runs from 1 toN221
and the fermion label from 1 toN. Thus there areN221
composite operators, giving rise toN221 spin propagators
~connected!, iDs

A(q)[^sA(q)sA(2q)&c , and N spinon

propagators,iS(p)[^c(p)c̄(2p)&. This allows for a ’t
Hooft topological 1/N expansion as is conjectured in Ref. 1
Moreover, it was argued in Ref. 14 that the leading largeN
or planar approximation reduces to the ladder approxima
for the so-called Yukawa vertex@i.e., Gs

A(k,p)5tA1#. The
Yukawa vertexGs

A is the fully amputated three-point interac
tion vertex for the action~9!. In the ladder approximation
the Schwinger-Dyson equations for the spin propagatorsDs

A

and the spinon propagatorsS form a closed set, as depicte
in Fig. 1.

For the physically relevant case (N52), the propagators
Ds

1 ,Ds
2 of the auxiliary fieldss1 , s2 describe the Goldstone

modes, whereas the fields3 acquires a nonzero, but Lorentz
covariant, vacuum expectation value in the broken ph
(^s3&Þ0,g.gc

(s)), describing the Ne´el state, corresponding
to the symmetry-breaking pattern SU(2)→U(1). In thesub-
critical region (g<gc

(s)) the propagators of all three auxiliar
fields describe Goldstone precursor modes that come d
in energy as the transition is approached. Hence, the s
gered spin fluctuations or spin waves are described by
propagators of the auxiliary fieldssA , which become light
close to the critical pointg5gc

(s) .
In Ref. 14, the Schwinger-Dyson equations represente

Fig. 1 were solved. It was shown that the fermion or spin
propagatorSacquires an anomalous dimensionz via the fer-
mion wave functionA(p);(L/p)z, so that at the critical
couplingG5Gc the fermion~spinon! propagator scales as

S21~p!. p̂~2L2/p2!z/2. ~10!

The dependence of the anomalous dimensionz on N is de-
termined, and forN52, we havez'0.2114. Moreover the

FIG. 1. The leading large-N truncation or ladder approximation
for the Schwinger-Dyson equations for the spin-wave propag
Ds

A(p) ~dashed line with blob! and the spinon propagatorS(p)
~solid line with blob!.
1-3
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model described in Ref. 14, with the dimensionless 4F c
pling g52GL/p2, has an ultraviolet stable fixed point atg
5gc5112z. The appearance of a positive anomalous
mension forS is considered to provide a description of th
pseudogap phenomenon.15–17

An important point is whether the critical couplinggc
(s)

.112z is in agreement with the estimations for the phy
cal parameters. SinceGc/2.Jea

2,c.2uxua,L.p/2a, we
have thatg.Je /puxu. With the estimationgc

(s).1.4, we ob-
tain that a valueuxu'0.23Je would get us close to criticality
This is remarkably close to the mean-field valueuxu'0.24J
given in Ref. 3.

In the ladder approximation~Fig. 1!, the connected propa
gator of thesA field in momentum space reads

Ds
A21~q![2

1

G
1 i E

M
d3k Tr @tAS~k1q!tAS~k!#,

whereS(k) is the full spinon propagator, given by Eq.~10!,
see also Fig. 1. In the subcritical or SU(N) symmetric re-
gime, we can takeS(k)5 k̂/@k2A(k)#. The integral can be
performed, andDs

A(q) has the following scaling form for
uqu!L (q25q0

22q1
22q2

2):

Ds
A~q!.2

C

L

~2L2/q2!z11/2

@11~2ms
2/q2!z11/2#

, ~11!

whereC is some flavor dependent positive constant.14 The
massms ~spin-wave stiffness! denotes the position of th
resonance peak given by the imaginary part of Eq.~11!, and
plays the role of the inverse correlation length,9

ms /L;~gc
(s)2g!1/(112z). ~12!

From these expressions, it follows that the critical expone
h, n, andg areh5122z, n51/(112z), andg51. These
exponents satisfy the three-dimensional hypersca
equations.14 Moreover, in Lorentz-invariant field theories
the scaling of the energy equals the scaling of moment
and consequently the dynamical scaling exponentz51.

In experiments, the isotropic dynamical susceptibil
x9(q) is measured,8 with q5(v,qW ). In Ref. 8 magnetic reso
nances were observed in underdoped and optimally do
YBa2Cu3O61x , with the famous 41-meV peak at optim
doping. For lower doping the resonance peak shifts to lo
energies. It is tempting to assume that, along the lines
Refs. 6 and 9, these resonances might be described b
Dirac models, see Fig. 2.

However, optimal doping (d.0.2) is rather far from Ne´el
doping, which is one order of magnitude less,dc.0.02.18

Therefore the question is whether we are ‘‘sufficiently’’ clo
to the scaling region of the Ne´el transition.

Let us compare a couple of~211!-dimensional Lorentz-
covariant quantum field models, capable of describing
fluctuation and Ne´el transition. For instance, Kwon19 pre-
sented a nodald-wave spin liquid model for the Ne´el transi-
tion, which has the universality class of the Gross-Nev
model. This model has a single AF order parameter, co
sponding to the singlet composite order parameter^c̄c&,
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with a single two-component Dirac fermion (N51). The
universality class of the model presented in this paper@i.e.,
Eq. ~8!# deviates considerably from the Gross-Nev
model.14 Although the anomalous dimensionh for both
models is comparable:h'0.58 for the present model, an
h516/(3p2N)'0.54 (N51) for the Gross-Neveu mode
the main difference is in the value of the anomalous dim
sion of the fermion propagator, which for the present mo
is z'0.21, whereas for the Gross-Neveu model it ish
52/(3p2N)'0.07 (N51). Another approach was adopte
in Ref. 20, where the antiferromagnetic correlations and
Néel transition are described by the nonlinear sigma mo
in the large-N expansion. In that work, the order parameter
a three-component one, corresponding to the three sp
components, and no Dirac fermions are taken into acco
The anomalous dimensionh for the spin waves turned out t
be h58/(3p2N)'0.09 (N53), which is considerably
smaller thanh for the two above-mentioned 4F Dirac mod
els. In this paper, we have a three-component order par
eter~the composite spin degrees! and two flavors (N52) of
four-component Dirac fermions. To determine which univ
sality class describes the Ne´el transition, the low doping
region d;dc needs to be examined in more detail expe
mentally.

Since in the subcritical phase, all three correlation fun
tions of the staggered spin components are degenerate
imaginary part of the correlation functionDs

A(q) is directly
proportional to the so-called odd acoustic mode ofx9(q).18

The spin-correlation function only gets low-energy contrib
tions from the staggered spin operators:

^SA~p!SB~2p!&}^sA~p!sB~2p!&.dABiDs
A~p!.

Moreover, sinceg is proportional toJe , g reduces when
doping is increased.11 The critical couplinggc

(s) of the Néel
transition is a quantum critical point21 and corresponds to a
critical Néel dopingdc!1. Equation~12! gives the relation
between the position of the peak of the magnetic resona
and the doping rated. Assumingdc is sufficiently close to
zero, we obtain that the resonance peak is linearly prop
tional to doping~for small doping rates withd.dc). Conse-

FIG. 2. The spin susceptibility or spin-correlation functio
Im @Ds

A(p)# vs p/ms , with the peak renormalized at unity,z
50.21 (h50.58).
1-4
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quently, the peak position moves to lower energies wh
doping is reduced; neardc the peak height diverges. For
doping valuesd,dc spin waves appear.

In summary, we have shown that a~211!-dimensional
Lorentz-invariant 4F model with a global spin SU~2! sym-
metry describes the low-energy time-dependent ‘‘quasipa
cle’’ spin excitations of thet-J model near the AF wave
vector. The spin excitations are given in terms of quantu
fluctuations around the mean-fieldp-flux phase. The Ne´el
transition is described as the DSB of SU~2!→U~1! in the
model. The magnitude of the critical couplinggc

(s) of the 4F
model turned out to be in good agreement with the inp
parametersJ anduxu, which define the flux-phase spin liquid
Nevertheless, the question of the precise effects of hole d
u

.
-
.
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ing on the AF interaction and the anisotropy of the Dir
spectrum is left open. For the future, it would be interesti
to include the contribution of the slave bosons~holons! ~e.g.,
see Refs. 6 and 18! in order to take into account anisotrop
and to determine the effective AF couplingJe . We demon-
strated that the unstable spin modes found in experime
might be well described by the Nambu-Goldstone boson p
cursor modes in the subcritical region. Furthermore,
spinon propagator acquires an anomalous dimension, bu
mains gapless near the AF wave vector in the normal st
The appearance of a spinon anomalous wave function giv
natural description of the pseudogap phenomenon.
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