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Spin transport in inhomogeneous magnetic fields: A proposal for Stern-Gerlach-like
experiments with conduction electrons
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Spin dynamics in spatially inhomogeneous magnetic fields is studied within the framework of Boltzmann
theory. Stern-Gerlach-like separation of spin up and spin down electrons occurs in ballistic and diffusive
regimes, before spin relaxation sets in. Transient dynamics and spectral response to time-dependent inhomo-
geneous magnetic fields are investigated, and possible experimental observations of our findings are discussed.
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Spin of mobile carriers~electrons and holes! plays an ac-
tive central role in the current spintronics efforts,1,2 where
electronic properties are determined, to a great degree, b
presence of nonequilibrium spin. The spin response to t
poral and spatial changes of the magnetic environment de
mines various properties of such devices. In the recently p
posed magnetic diode,3–5 for example, an inhomogeneou
magnetic environment results from inhomogeneous magn
doping. How a magnetic diode adjusts to the switching of
external magnetic field and to changes in the applied b
depends on the way the mobile carriers reach equilibriu
Since inhomogeneous magnetic fields are ubiquitous in s
tronic devices~mostly due to the presence of magnet
nonmagnetic interfaces!, it is important to understand non
equilibrium spin evolution in such fields. In this paper w
investigate in detail the transient behavior of conduct
electron spins, within a Boltzmann equation model. A uniq
feature of the model is that it is exactly soluble, allowing
detailed study of the transition from the ballistic to the d
fusive regime. We show that in inhomogeneous magn
fields a spatial separation between spins, an analog of
Stern-Gerlach effect, occurs before spin relaxation beg
but spin current vanishes much sooner, at times of the o
of transit times.

The model we consider is a degenerate electron ga~a
metal or semiconductor! in a magnetic field with the larges
component in theẑ direction, and with a gradient in tha
direction. The field has also transverse components~as re-
quired by ¹•B50), which are essential in rendering S
with electron beams useless,6 but which do not hinder an
effective spin separation of conduction electrons~see below!.
We show that an effective spatial spin separation, along w
a flow of spin, is possible within ballistic and diffusive dy
namics, demonstrating a Stern-Gerlach-like~SG! effect with
conduction electrons. The formalism we use, linear respo
theory within the Boltzmann equation, has been applied
lier in various forms in transport in general,7,8 and more spe-
cifically for spin transport in the framework of conductio
electron spin resonance9,10 and giant magnetoresistance11

Here we apply this formalism to a special case of spin
namics in an inhomogeneous magnetic field, and solv
exactly for specific boundary conditions.
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In the presence of a uniform electric fieldE and inhomo-
geneous magnetic fieldB, semiclassical dynamics of elec
trons in ~nonmagnetic! solids is governed by the Boltzman
equation

] f kl

]t
1vk

] f kl

]r
2eEl

] f kl

]\k
52

d f̄ kl

t
2

d f kl

T1
, ~1!

where f kl[ f kl(r ,t) is the distribution function of electron
with lattice momentumk ~band index is suppressed! and spin
l (1 or ↑ for up and 1 or↓ for down!, at pointr and timet.
The notation for the drift field is simplified asEl5Eẑ
1l(mB /e)]Bẑ/]z, wheremB is the Bohr magneton and th
electrong factor is taken to be 2; the fields are oriented in t
ẑ direction. Band velocityvk[]«k /]\k, with «k standing
for band energy~we consider systems with inversion sym
metry where band energy is spin independent!. Two momen-
tum relaxation processes are distinguished in Eq.~1!. First,
spin-conserving momentum scattering with rate 1/t (t is
momentum relaxation time!, and leading to a quasiequilib
rium distributionf̄ kl (d f̄ kl[ f kl2 f̄ kl), in which spin up and
down electrons have different chemical potentials. Seco
spin-flip momentum relaxation with rate 1/T1 (T1 is spin-
relaxation time!, and leading to complete~momentum and
spin! equilibrium at the local and instantaneousB field: f kl

0

5 f 0@«k1lmBB(z,t)#, where f 0(«)51/@exp(«2m)/kBT11#
is the Fermi-Dirac distribution function with chemical pote
tial m, temperatureT, and Boltzmann constantkB (d f kl

5 f kl2 f kl
0 ). In writing the Boltzmann equation as Eq.~1!,

we neglect the Lorentz force as unimportant, as the larg
part of the magnetic field is oriented along the same direc
as the drift velocity itself~see below for the reasons why w
also neglect the orbital effects of the small transverse m
netic fields!. The dynamics of the transverse spin comp
nents (x and y) is also not considered, as it is masked
their fast precession aboutB. Finally, the contribution of the
electronic magnetization to the magnetic field is neglec
for our nonmagnetic systems. The relaxation time appro
mation used in Eq.~1! is good for all practical purposes, bu
some caution is needed especially at low temperatures
shown in Appendix A. Generalization of Eq.~1! to
©2002 The American Physical Society36-1
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k-dependentt, T1 ~which can vary more wildly over the
Fermi surface thant—see Ref. 12!, and theg factor is
straightforward.

We search for the solution of Eq.~1! in the form f kl

5 f kl
0 2(] f 0 /]«k)fkl , and write the quasiequilibrium distri

bution function asf̄ kl5 f kl
0 2(] f 0 /]«k)ml , where the non-

equilibrium chemical potentialml5^fkl& is obtained self-
consistently from the integral relation for spin conservat
(kd f̄ kl50. The angular brackets introduce the Ferm
surface averaging:̂•••&[(k•••] f 0 /]«k /(k] f 0 /]«k . Af-
ter linearizing Eq.~1! in terms off andEl , we obtain

2lmB

]B

]t
1

]fkl

]t
1vzk

]fkl

]z
1eEvzk5I ~fkl!, ~2!

with the collision integral

I ~fkl!52
fkl2^fkl&

t
2

fkl

T1
. ~3!

Particle number conservation requires that^fk↑1fk↓& van-
ishes. The total spin density is

S52gFmBB1~1/2!gF^fk↑2fk↓&, ~4!

wheregF522(k] f 0 /]«k is the density of states, per un
volume, at the Fermi level. The first term on the RHS of E
~4! is the equilibrium spin value, yielding the electron g
paramagnetic susceptibility ofmB

2gF , while the second par
dS represents the nonequilibrium contribution to spin de
sity. The spin current density is

Js5~1/2!gF^vzk~fk↑2fk↓!&, ~5!

and is connected toS via the continuity equation derive
from Eq. ~2!,

]S/]t1]Js /]z52dS/T1 , ~6!

which, together with the linear response equation~see Ref.
13 for a systematic treatment of linear spin transport!

Js52D]dS/]z, ~7!

whereD5^vzk
2 &t is the electron diffusivity constant, give

the diffusion formula for investigating diffusive spin tran
port

]dS

]t
2D

]2dS

]z2
52

dS

T1
2

]S0

]t
. ~8!

We first study transient phenomena that describe ev
tion of S and Js towards equilibrium. Consider an unpola
ized sample~whose band structure is assumed isotropic,vk
5\k/m, wherem is electron band mass!, stretching from 0
to L along thez axis, with no charge current (E50). At t
50, magnetic fieldB(z)5B01B1z is applied. Our goal is to
find, by solving Eq.~2!, ^f&[^f↑&52^f↓& @so thatS5
2gFmBB1gF^f&], subject to the initial condition
^f(z,0)&5mB@B(z)#, where@B(z)#5B01B1@z# is the even
periodic extension ofB(z) from interval (0,L) to the wholez
02443
-

.

-
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axis; thus formulated initial condition guarantees that s
current vanishes at the boundary–the assumption well ju
fied in nonmagnetic interfaces with negligible spin-flip sc
tering. The spin profile can be written asS5Sh1Sin , where
the homogeneousSh and inhomogeneousSin spin compo-
nents are

Sh~ t !52gFmBS B01
1

2
B1L D @12K~0,t !#, ~9!

Sin~z,t !5gFmBB14L (
n>0

cos~qnz!

qn
2L2

@12K~qn ,t !#,

~10!

with qn[(2n11)p/L. The sum comes from the Fourier ex
pansion of@B(z)#. Kernel K(q,t) describes the time evolu
tion of the Fourierq components of the nonequilibrium spi

K~q,t ![dS~q,t !/dS~q,0!5^f~q,t !&/^f~q,0!&. ~11!

Having the spin, the spin current can be calculated from
continuity equation as

Js~z,t !52E
0

z

dz8~]/]t11/T1!dS~z8,t !. ~12!

Equation~2! gives also an exactquasilocalrelationship be-
tween spin current and spin, valid at all times, and expres
in terms of the Fourier coefficients as

Js~q,t !5 ivFdS~q,0!R1~q,t !1 ivF

1

t
@dS* R1#~q,t !.

~13!

HerevF is the Fermi velocity,

R1~q,t !5exp~2t/tm!
d@sin~x!/x#

dx
, ~14!

with x5qvFt and 1/tm51/t11/T1 the total momentum
scattering rate, and the asterisks denote temporal conv
tion:

@ f 1* f 2#~q,t ![E
0

t

dt8 f 1~q,t2t8! f 2~q,t8!. ~15!

In real space Eq.~13! expressesJs in terms of derivatives~in
principle of all odd orders—that is why the term quasiloc!
of dS. In the diffusive regime, att@t, the memory of the
initial condition is lost, and Eq.~13! reduces to Eq.~7!. An
exact generalization of the diffusion Eq.~8! is obtained by
substitutingJs from Eq. ~13! to the continuity equation. The
result is

K~q,t !5R0~q,t !1
1

t
@K* R0#~q,t !, ~16!

where now

R0~q,t !5exp~2t/tm!sin~qvFt !/~qvFt !. ~17!

At t.t, Eq. ~16! is equivalent to Eq.~8!.
6-2
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Equation ~2! can be solved exactly with the help o
Laplace transform. The solution is provided in Appendix
The result is

K~q,t !5~qvFt!2e2t/tmUexp@qvFt cot~qvFt!#

sin~qvFt!2 U
qvFt

sing

,

~18!

where the vertical bars denote the singular~principal! part of
the Laurent series in terms ofqvFt, of the expression inside
An alternative formulation for the Kernel is

K~q,t !52~t/t !e2t/tm (
n52`

21

nFn~qvFt !~qvFt!n, ~19!

where functionsFn(x) are described in Appendix B.
Let us consider the limiting behavior ofK(q,t) for the

ballistic and diffusive regimes. For ballistic transport,t!t,
the evolution kernel, Eq.~18!, reduces to

Kball~q,t !5
sin~qvFt !

qvFt
. ~20!

This is the solution of Eq.~2! in the absence of scattering.
finite S(z,t) in the ballistic case is solely due to SG effect
semiclassical separation of spins. At the left boundary,

Sball~0!52gFmBB1L~vFt/2L !, ~21!

in the middle Sball(L/2)50, and at the right boundar
Sball(L)52Sball(0). Thespin separationS(L)2S(0) grows
linearly with time, reaching its maximum of about
2gFmBB1l at t5t. For the diffusive transport,t@t, Eq.~2!
givesK'Kdiff , where

Kdiff~q,t !5exp~2q2Dt2t/T1!, ~22!

which is also a solution of Eq.~8!. A new time scaletT
5L2/Dp2 appears, for the transit time of a diffusing electr
crossing the sample (p2tT is called the Thouless time!. We
considerL smaller than the spin diffusion length~which can
be as large as a millimeter14!, so thattT,T1. For t,tT the
spin density grows diffusively,

Sdiff~0!5gFmBB1L2~Dt/L2p!0.5, ~23!

Sdiff(L)52Sdiff(0), while Sdiff(L/2)50; a large spin curren
flows in the middle of the sample. While the spin curre
vanishes at greater times,t.tT ~when drift is being balanced
by diffusion!, an effective spin separation remains almo
stationary untilt5T1, when spin relaxation establishes equ
librium. Note that the homogeneous component of spinSh ,
evolves towards equilibrium with spin-flip processes on
sinceK(0,t)5exp(2t/T1) at all times. In the following we
will use normalized spinS̃ and spin currentJ̃s defined asS
52gFmBB1LS̃ andJs52gFmBB1DJ̃s, respectively.

An example of a transient evolution of spin and spin c
rent is shown in Figs. 1 and 2. We take a model sample
size L51mm, with realistic electronic parameterst
50.1 ps, D50.01 m2 s21, vF5(3D/t)0.5'5.5
3105 m s21, tT5L2/Dp2'10 ps, andT1510 ns. Mag-
02443
.
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t
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f

netic field is normalized toB05B1L. We evaluate our exac
solution, Eq.~18!, numerically to obtain spin, and then ca
culate the spin current from the continuity equation. T
physics that emerges from our calculation, and which can
seen on the model example in Figs. 1 and 2, is the followi
There are four time scales to consider~Fig. 2!. ~i! In the
ballistic regime (t,t), electron spin density at the edge
begins to grow as;t, as electrons with one spin directio
after bouncing off the boundary decelerate and stay clo
while the electrons with the opposite spin accelerate in
other direction. Spin current, which is always largest in t
middle of the sample, rapidly increases to reach its ma
mum value att5t ~see Fig. 2!. Note that positiveJ̃s means
negativeJs , and largely a drift spin flow~spin diffusion acts
in the other direction!. ~ii ! The diffusive regime (t,t,tT) is
characterized by a further build-up of spin density at t

FIG. 2. Calculated time evolution of normalized spin densityS̃
at z50 ~a!, z5L/2 ~b!, andz5L ~c!. The dashed line is the time

evolution of normalized spin currentJ̃s at z5L/2. The three vertical
lines separate the ballistic (t,t510213 s), diffusive (t,t,tT

'10211 s), quasiequilibrium (tT,t,T151028 s), and spin re-
laxational (t.T1) regimes.

FIG. 1. Calculated normalized spin densityS̃ ~top! and spin

current J̃s ~bottom! for a model sample defined in the text. Th
curves represent profiles at timest510214–1027 s ~increasing by a
decade!, and are denoted by a corresponding number 1–8~except
for a few cases at the top, where the trend is clear!. The dotted lines
represent the initial ballistic transport att510214 s, while the long-
dashed lines are for the longest times.
6-3
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edges of the sample~by diffusion! at the rate;t0.5. This is
accompanied by a decay of spin current, as the initial drif
now being balanced by diffusion. We call this diffusive S
effect. ~iii ! The quasiequilibrium regime (tT,t,T1), where
momenta are in equilibrium characterized by a finite diff
ence in the chemical potentials of spin up and down e
trons,dS is spatially uniform so that no spin currents flow
and spin densities remain almost constant in time.~iv! Fi-
nally, in the spin relaxation regime (t.T1), the uniform non-
equilibrium spin density vanishes and complete equilibri
is established.

We now ask the question of how the electron spin sys
responds to a time-varying inhomogeneous magnetic fi
SupposeB(z,t)5(B01B1z)exp(2ivt). We show the results
for diffusive dynamics, and solve Eq.~8! with 2]S0 /]t as
the source term. Linear-response theory for magnetic sus
tibility for diffusive transport is well known;10 here we illus-
trate it for the specific boundary conditions of our model
spin separation, where various time scales discussed a
will be manifest on the frequency domain. In response to
oscillating field, spin density changes asS̃5@R1(v)
1R2(z,v)#exp(2ivt), where

R15S B0

B1L
1

1

2D 1

2 ivT111
, ~24!

R2524(
n>0

cos~qnz!

qn
2L2

Dqn
2T111

2 ivT11Dqn
2T111

. ~25!

Spin relaxation is primarily taken over byR1, which mea-
sures the response of the uniform (q50) components of the
spin density. On the other hand,R2 collects the terms respon
sible for diffusion, as diffusion modes (q.0) are the first
ones to achieve equilibrium (tT!T1). The total response
calculated for our model system, is displayed in Fig. 3.
small frequencies spins can adiabatically~in equilibrium!

follow the local and instantaneousB(z,t): at low v, S̃

FIG. 3. Calculated dimensionless spectral responseR1(v)
1R2(z,v) at z50 for the model sample. The two shoulders in t
real part of the response~and the corresponding peaks in the ima
nary part! correspond to spin relaxation (v51/T15108 s21) and
diffusion (v51/tT'1011 s21).
02443
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'(B0 /B1L1z/L)exp(2ivt). At greater frequencies, first th
spin-relaxation peak~in the ImR1) and shoulder~in ReR1)
appear, while atv'1/tT , a second peak and shoulder~now
due toR2! appear, as the time scale of the diffusive regime
reached. The second peak signals the SG effects, where

sipation is due to drift spin currents;S̃ reaches negative val
ues of21/2, showing spin separation~compare with Fig. 2!.

Spectral response of the spin current isJ̃s(t)5(1
2]R2 /]z)exp(2ivt), and shows a structure only aroundv
'1/tT , as spin current relaxes during the transit time~and
not on T1 scale!.

Finally, we discuss some issues related to a possible
perimental observation of our findings. What we call a S
like effect is an effective spin~not particle! separation of
electrons in metals and semiconductors. Let us summa
the time scales involved. Ballistic transport lasts for fem
seconds up to a picosecond, diffusive transit across a mic
sample can take from a picosecond to a nanosecond, and
relaxation times can be between a fraction of a nanosec
to a microsecond.15 Ordinary SG fails to work with electrons
because transverse magnetic fields~say, By52B1y) give
rise to the Lorentz force which makes, say, moving to the
spin up electrons turn around and move to the right, sm
ing out spin separation6 ~see, however, Ref. 16!. In our case
the time scale of the Larmor precession,tL5m/eB, is large
enough to be neglected. Indeed, for such a largeB1 as 10
T/cm, the transverse field would be of order 10 G for
micron sample, turning an electron around intL'5 ns, long
after spin separation sets in. In addition, orbital effects
inhibited due to momentum scattering. One can still go t
one- or two-dimensional sample to study SG with ballis
cally propagating electrons,17 if Larmor precession is faste
than momentum relaxation.

A SG-like spin separation should be observable in b
metals and semiconductors.~We are not aware of any exper
mental method of measuring directly the spin current, in o
case the diffusive regime, although theoretical propos
exist—see Ref. 18!. One way of measuring a nonequilibrium
spin in metals is the Silsbee-Johnson method of spin-cha
coupling.14 One can either switch an external inhomog
neous magnetic field, or inject nonequilibrium spin into
metal in a static field, to measure the time evolution of t
spin. This can be accomplished, for example, by placin
ferromagnetic electrode on the top of a sample’s edge,
measure the voltage across the interface, which is pro
tional to the nonequilibrium spin14 ~the spin in the ferromag-
netic electrode can be considered to be in equilibrium, si
it relaxes much faster than in the nonmagnetic sample!. The
voltage would be present even when the spin current v
ishes~that is, in the quasiequilibrium regime!, and thus can
be monitored with the sub-T1 ~not tT) resolution. Gradient
B1 can create spin at the sample edges of aboutmBB1L/EF
spins per electron (EF is the Fermi energy!, which, for typi-
cal values of, say,B1'1 T/cm, L510 mm, and EF
'10 meV gives about 1 spin per 108 electrons~note thatL
must be smaller than the spin diffusion length to observe
separation!. For comparison, in the Johnson-Silsbee spin
jection experiment 1 spin per 1011 electrons was detected.14
6-4
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In semiconductors like GaAs, the traditional tool to o
serve spin polarization of the carriers has been photolu
nescence polarization detection.19 A degenerate semiconduc
tor with EF'1 meV ~and otherwise the same conditions
above! would be polarized to about 0.01%~for more sensi-
tivity a greaterB1 or L, or a material with a largerg factor
could be used!, emitting light with circular polarization of
the same order. If the sample isn doped, for example, and
the edges form the interfaces with ap-doped material, the
spin polarization of the light emitted at the edges would
opposite in the quasiequilibrium regime, demonstrating
SG separation. Pico-to-micro-second resolved pump
probe photoluminescence measurements in an inhom
neous butstatic magnetic field could follow the evolution
from ballistic regime to full equilibrium of a semiconducto
spin system, yielding information not only about spin, b
also about charge transport, as seen from our calculation
addition to the optical technique and the Johnson-Sils
method, one could also in principle observe our predic
effect using the magnetic resonance force microscopy.

In summary we have studied transient spin dynamics
itinerant electrons in metals and degenerate semicondu
placed in an inhomogeneous magnetic field. In particular,
have solved exactly a spin dynamics model based on
Boltzmann equation, and demonstrated that the spin ev
tion proceeds through four distinct modes: ballistic, diff
sive, quasiequilibrium, and equilibrium. An effective sp
separation is possible in the quasiequilibrium regime, wh
the spin current vanishes and the spin is in equilibrium o
with the inhomogeneous component of the magnetic fiel

We thank Igor Zˇutić and Xuedong Hu for useful discus
sions. This work was supported by the U.S. ONR a
DARPA.

APPENDIX A

To demonstrate the effect of spin-flip scattering on cha
and spin transport, consider electrons in a simple metal, s
tering elastically off impurities at the rateWkl,k8l8 . Spin-flip
events are characterized byWk↑,k8↓ and result mainly from
the spin-orbit interaction. The collision integral is

(
k8l8

@Wk8l8,kl f k8l8~12 f kl!2Wkl,k8l8 f kl~12 f k8l8!#.

~A1!

The first term describes scattering fromk8l8 to kl, which
increasesf kl , while the second term represents revers
processes, which decreasef kl . Factors such asf kl(1
2 f k8l8) ensure that the initial state is occupied and fin
state empty, in accord with the Pauli principle.

Let the system is driven off equilibrium by an applie
electric field E and an inhomogeneous chemical poten
ldm. The latter does not disturb the equilibrium electron
density, but maintains an inhomogeneous nonequilbrium s
polarization (ldm is essentially the driving term for spi
diffusion caused, for example, by spin injection!. We seek
the solution to Eq.~1! with the RHS Eq.~A1! in the form
02443
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f kl5 f kl
0 2(] f 0 /]ek)fkl , where now f kl

0 5 f 0(ek2ldm).
After linearization the Boltzmann equation becomes

~eE1l“dm!vk5 (
k8l8

Wkl,k8l8~fkl2fk8l8!, ~A2!

where we left out the Lorentz force as unimportant for t
present discussion. Equation~A2! has the formal solution

fkl52eE•ak2l“dm•bk , ~A3!

with ak andbk satisfying the integral equations

vk5(
k8

@Wk↑,k8↑~ak82ak!1Wk↑,k8↓~ak82ak!#, ~A4!

and

vk5(
k8

@Wk↑,k8↑~bk82bk!2Wk↑,k8↓~bk81bk!#. ~A5!

Vectors ak and bk have magnitudes of orderl , and their
knowledge allows to calculate the tensors of charge and
conductivitiess52e2(k(2] f k

0/]ek)vk•ak and sS52e2(k

(2] f k
0/]ek)vk•bk . The spin conductivitysS is related to the

spin diffusivity DS as sS5e2gFDS , since the nonequilib-
rium spin isdS5gFdm. Here we use spin conductivity in
stead of the more usual spin diffusivity only to stress t
contrast with charge conductivity.

If there is no spin-flip scattering,ak5bk , the effective
mean free paths are the same for both currents, and the
ductivities are equal:sS5s. Spin-flip scattering, however
implies akÞbk , and so it plays different roles in charge an
spin transport. Assume, for a moment, that scattering is
tropic, and energy surfaces spherical. Then Eqs.~A4! and
~A5! can be solved exactly20 by introducing transport relax
ation timest andtS : ak52tvk andbk52tSvk , and, with
u being the angle betweenvk andvk8 ,

1

t
5(

k8
@Wk↑,k8↑~12cosu!1Wk↑,k8↓~12cosu!#

~A6!

and

1

tS
5(

k8
@Wk↑,k8↑~12cosu!1Wk↑,k8↓~11cosu!#.

~A7!

In charge transport, spin-conserving and spin-flip p
cesses contribute in the same way: they are weighted by
well known 12cosu, which suppresses contributions fro
small-angle scattering as ineffective in degrading charge
rent. Spin transport is a different story. Here spin-flip pr
cesses come with 11cosu, and backscattering (u'p) is the
least effective in degrading spin current, while small-an
events contribute most. There is illuminating physics beh
this: Spin up and down electrons move antiparallel to e
other, so if any spin flip is accompanied by the velocity r
versal, the current does not change. But if the velocity st
the same, the effect is maximal, as if the electron spin d
6-5



a
e

b

n
o-
t
th
/

al
g

in

ex

m
a

is

go

it-

.

t

ed

by
q.
rt

p

JAROSLAV FABIAN AND S. DAS SARMA PHYSICAL REVIEW B66, 024436 ~2002!
not flip, but the velocity reverses. Equations~A6! and ~A7!
are not valid in more general cases of anisotropic bands
inelastic anisotropic scattering, but, with some caution, th
are still a useful approximation~justified by variational
analysis20! in the interesting case of electrons scattering
thermal fluctuations~lattice or spin! at low T. Such fluctua-
tions will allow only small-angle scattering, suppressing co
tributions from spin-conserving, but not from spin-flip pr
cesses. Spin-flip processes are thus much more importan
spin transport than for charge transport. For example,
contribution of the phonon-induced spin-flip scattering to 1t
falls as T7, while to 1/tS only as T5 ~this follows from
Yafet’s theory21 as also confirmed by a numeric
calculation15!. The contribution from the spin-conservin
electron-phonon interaction falls asT5 ~the Bloch-Gru¨neisen
law!, for both charge and spin currents.

APPENDIX B

The solution of Eq.~2! @or, equivalently, Eq.~16!# can be
written with the help of Laplace transform as the integral
the complex plane:

K~q,t !5E
2`1 is

`1 is dp

2p i

ept^~p1 iqv11/tm!21&

12^~p1 iqv11/tm!21&/t
,

~B1!

wheres.0. For a degenerate system considered in the t

^~p1 iqv11/tm!21&5
1

2iqvF
lnFp1 iqvF11/tm

p2 iqvF11/tm
G .

~B2!

The integral can be evaluated by a suitable contour defor
tion in the complex plane, as indicated in Fig. 4. The origin
integral in Eq.~B1!, which goes alongC1 is the same as the

FIG. 4. Integration contour forK(q,t) of Eq. ~B1! with the
horizontal and vertical axes representing the real and imaginary
of p, respectively. The integral in Eq.~B1!, which runs alongC1, is
the same as the integral along the pathC2 cutting out the branch
line from p2 to p1 , plus the residue atp0.
02443
nd
y

y

-

for
e

t,

a-
l

integral overC2 plus the residue atp0. The pathC2 cuts
away the branch line extending fromp2521/tm2 iqvF to
p1521/tm1 iqvF , from the complex plane. The residue
evaluated for the pole atp0521/tm1qvF cot(qvFt) present
for qvFt<p/2 ~defining the Riemann sheet for arctan to
from 2p/2 to p/2).

The result of the contour integration can be formally wr
ten as

K~q,t !5~qvFt!2e2t/tmUexp@qvFt cot~qvFt!#

sin2~qvFt!
U

qvFt

sing

,

~B3!

where the vertical bars denote the singular~principal! part of
the Laurent series in terms ofqvFt, of the expression inside
An alternative formulation is

K~q,t !52~t/t !e2t/tm (
n52`

21

nFn~qvFt !~qvFt!n,

~B4!

where functionsFn(x) are the coefficients of the Lauren
series

exp@x cot~y!#5 (
n52`

`

Fn~x!yn, ~B5!

satisfying the recursion relation

Fn~x!1Fn9~x!52
n11

x
Fn11~x!, ~B6!

with the boundary conditionsFn(0)50 and Fn8(0)5dn,21

for n<21. In principle, all the functionsFn(x), n5
22, . . . ,2` can thus be generated from

F21~x!5sin~x!, ~B7!

which is readily obtained from Eq.~B6!.
The limiting case for ballistic transport can be obtain

from Eq. ~B4! by letting qvFt ~and thus alsoqvFT1) going
to infinity. The result is

K~q,t !'Kball~q,t !5
F21

qvFt
. ~B8!

On the other hand, the diffusive limit can be obtained
letting qvFt to zero, in which case the vertical bar in E
~B3! can be removed~the singular part equals the whole pa
since the regular part vanishes!. By expanding cot(qvFt)
'1/(qvFt)2(qvFt)/3 and denoting asD[vF

2t/3, one ob-
tains

K~q,t !'Kdiff~q,t !5exp~2t/T12q2Dt !. ~B9!
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4I. Žutić, J. Fabian, and S. Das Sarma, Appl. Phys. Lett.79, 1558
~2001!.
6-6



nd

d

Lett.

.

a

l

SPIN TRANSPORT IN INHOMOGENEOUS MAGNETIC . . . PHYSICAL REVIEW B66, 024436 ~2002!
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