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Spin dynamics in spatially inhomogeneous magnetic fields is studied within the framework of Boltzmann
theory. Stern-Gerlach-like separation of spin up and spin down electrons occurs in ballistic and diffusive
regimes, before spin relaxation sets in. Transient dynamics and spectral response to time-dependent inhomo-
geneous magnetic fields are investigated, and possible experimental observations of our findings are discussed.
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Spin of mobile carriergelectrons and holégplays an ac- In the presence of a uniform electric fidikdand inhomo-
tive central role in the current spintronics effottswhere  geneous magnetic fielB, semiclassical dynamics of elec-
electronic properties are determined, to a great degree, by theons in (nonmagnetig solids is governed by the Boltzmann
presence of nonequilibrium spin. The spin response to temgquation
poral and spatial changes of the magnetic environment deter-
mines various properties of such devices. In the recently pro- PN I PPN St O
posed magnetic diodE® for example, an inhomogeneous 7+Vk7—e N R
magnetic environment results from inhomogeneous magnetic 7 !

doping. How a magnetic diode adjusts to the switching of anwherekaszx(r,t) is the distribution function of electrons

external magnetic field and to changes in the applied biaali,[h lattice momentunk (band index is suppresseand spin
depends on the way the mobile carriers reach equilibrium}\ (1 or1 for up and 1 or| for dowr), at pointr and timet

Since inhomogeneous magnetic fields are ubiquitous in spin- . e e o
tronic devices(mostly due to the presence of magnetic/ he notatlonAfor the drift f_'EId is simplified af, =Ez
nonmagnetic interfacgsit is important to understand non- 1 X\(ugs/€)9B2/dz, wherepug is the Bohr magneton and the

equilibrium spin evolution in such fields. In this paper we electrong factor is taken to be 2; the fields are oriented in the

investigate in detail the transient behavior of conductionz direction. Band velocity, = de, /dfik, with g standing
electron spins, within a Boltzmann equation model. A uniquefor band energywe consider systems with inversion sym-
feature of the model is that it is exactly soluble, allowing ametry where band energy is spin indepengl€fito momen-
detailed study of the transition from the ballistic to the dif- tum relaxation processes are distinguished in @&g. First,
fusive regime. We show that in inhomogeneous magneti§Pin-conserving momentum scattering with rate {f is
fields a spatial separation between spins, an analog of tH8omentum relaxation timeand leading to a quasiequilib-
Stern-Gerlach effect, occurs before spin relaxation begingjum distributionf,, (5f=f\— ), in which spin up and
but spin current vanishes much sooner, at times of the ordefown electrons have different chemical potentials. Second,
of transit times. spin-flip momentum relaxation with rateTL/ (T, is spin-
The model we consider is a degenerate electron(gas relaxation time, and leading to completétmomentum and
metal or semiconductpin a magnetic field with the largest spin) equilibrium at the local and instantanedBsield: fJ,
component in thez direction, and with a gradient in that =fo[ex+AugB(zt)], where fo(e)=1[exple—u)/kgT+1]
direction. The field has also transverse componéagsre- is the Fermi-Dirac distribution function with chemical poten-
quired by V-B=0), which are essential in rendering SG tial w, temperatureT, and Boltzmann constarkg (5fy,
with electron beams usele¥gut which do not hinder an =ka—f(k’x). In writing the Boltzmann equation as E({),
effective spin separation of conduction electr¢gse below.  we neglect the Lorentz force as unimportant, as the largest
We show that an effective spatial spin separation, along wittpart of the magnetic field is oriented along the same direction
a flow of spin, is possible within ballistic and diffusive dy- as the drift velocity itselfsee below for the reasons why we
namics, demonstrating a Stern-Gerlach-l{g&) effect with  also neglect the orbital effects of the small transverse mag-
conduction electrons. The formalism we use, linear responseetic fieldg. The dynamics of the transverse spin compo-
theory within the Boltzmann equation, has been applied eaments & andy) is also not considered, as it is masked by
lier in various forms in transport in general,and more spe- their fast precession aboBt Finally, the contribution of the
cifically for spin transport in the framework of conduction electronic magnetization to the magnetic field is neglected
electron spin resonant® and giant magnetoresistante. for our nonmagnetic systems. The relaxation time approxi-
Here we apply this formalism to a special case of spin dy-mation used in Eq(1) is good for all practical purposes, but
namics in an inhomogeneous magnetic field, and solve isome caution is needed especially at low temperatures, as
exactly for specific boundary conditions. shown in Appendix A. Generalization of Egq(l) to
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k-dependentr, T, (which can vary more wildly over the axis; thus formulated initial condition guarantees that spin
Fermi surface thanr—see Ref. 12 and theg factor is  current vanishes at the boundary—the assumption well justi-
straightforward. fied in nonmagnetic interfaces with negligible spin-flip scat-
We search for the solution of Edl) in the form f,,  tering. The spin profile can be written 8s- S,+ S, , where
=12, — (9fo/de\) dyy , and write the quasiequilibrium distri- the homogeneou$,, and inhomogeneouS;, spin compo-

bution function asfy, = %, — (3fo/dei) . » Where the non- "ENtS are

equilibrium chemical potentiak, ={¢y,) is obtained self- 1
consistently from the integral relation for spin conservation Sh(t)=—0grup| Bo+ zBlL)[l—K(O,t)], 9
2 0fin=0. The angular brackets introduce the Fermi-
surface averagingt: - )= --dfglde /2 dfolde, . Af- cog(q,2)
ter linearizing Eq(1) in terms of¢ andE, , we obtain Sin(z,t) =grupBi4L >, %[1_“% 1,
n=0 (o]
B b Ibir (10

“Mup ot Toa o~ TeBa=1(da), (2 . .
with g,=(2n+1)=/L. The sum comes from the Fourier ex-
with the collision integral pansion of[ B(z)]. KernelK(q,t) describes the time evolu-
tion of the Fourierg components of the nonequilibrium spin
¢k)\_<¢k>\> . @

T, ) K(0,)=05(q,1)/85(q,0)=((a.))/{$(a,0)). (1D

Having the spin, the spin current can be calculated from the
continuity equation as

()=~

T

Particle number conservation requires thét; + ¢ ) van-
ishes. The total spin density is

z
S= —grueB+ (112 9e( i — b ) 4 Js(z,t)=—f dz' (9l gt+1T,) 8(Z' ). (12)
wheregeg= —23,9f¢/de is the density of states, per unit °
volume, at the Fermi level. The first term on the RHS of Eq.Equation(2) gives also an exaajuasilocalrelationship be-
(4) is the equilibrium spin value, yielding the electron gastween spin current and spin, valid at all times, and expressed
paramagnetic susceptibility gf3gr, while the second part in terms of the Fourier coefficients as
8S represents the nonequilibrium contribution to spin den-

i : ity | . 1
sity. The spin current density is Js(q,t)=|vF58(q,O)R1(q,t)+|vF;[5S* R,1(q,1).
Js=(12)ge(v a( bir — dx))) 5 (13
and is connected t& via the continuity equation derived Herevg is the Fermi velocity,
from Eq. (2), ]
B d[ sin(x)/x]
dSlgt+ 3dgldz=— 6SITy, (6) Ry(a,) =exp(—t/mn) =5 — (14
which, together with the linear response equatisee Ref. with x=qugt and 1f,=1/7+1/T, the total momentum
13 for a systematic treatment of linear spin transport scattering rate, and the asterisks denote temporal convolu-
tion:
Js=—Dd8Sl oz, (7)
t
whereD=(vZ )7 is the electron diffusivity constant, gives [fl*fz](q,t)zf dt'fi(qg,t—t")f,(q,t"). (15
the diffusion formula for investigating diffusive spin trans- 0
port In real space Eq.13) expressed, in terms of derivativesin
5 principle of all odd orders—that is why the term quasilgcal
‘9_‘55_ J 552_ 5_5_ @ ®) of 8S. In the diffusive regime, at>r, the memory of the

ot D 972 T, oat° initial condition is lost, and Eq(13) reduces to Eq(7). An

exact generalization of the diffusion E(B) is obtained by
We first study transient phenomena that describe evolusubstitutingJs from Eq.(13) to the continuity equation. The

tion of SandJg towards equilibrium. Consider an unpolar- result is

ized samplgwhose band structure is assumed isotropjc,

=fk/m, wherem is electron band majsstretching from 0

to L along thez axis, with no charge currenE=0). At t

=0, magnetic field3(z) =By+ B,z is applied. Our goal is to

find, by solving Eq.(2), (¢)=(¢)=—(¢,) [so thatS= where now

—grugB+0r(#)], subject to the initial condition _ _ ;

<<;/>(z,0)>=,uB[<B(z)], where[ B(2)]=Bq+ By[ ] is the even Ro(@ . =exp(—tm)sin(quet)/(quet). - (17)

periodic extension oB(z) from interval (OL) to the wholez At t> 7, Eq. (16) is equivalent to Eq(8).

1
K(g,t)=Ro(q,t) + ;[K*Ro](q.t), (16)
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Equation (2) can be solved exactly with the help of 2] P
Laplace transform. The solution is provided in Appendix B. 154 T 7 e
The result is 1777 e

sing
exd quet cotlqueT
K00 = (qo e ZHLAE qup )]| |
sin(queT) ‘qUFT

(18

where the vertical bars denote the sing\aincipal) part of
the Laurent series in terms gb g7, of the expression inside.
An alternative formulation for the Kernel is

-1

K(g,t)=—(r/t)e”m X nFy(quet)(quen)", (19) Z (um)
= FIG. 1. Calculated normalized spin densiy(top) and spin
where functiond=,,(x) are described in Appendix B. currentJg (bottom for a model sample defined in the text. The

Let us consider the limiting behavior ¢€(q,t) for the  curves represent profiles at times10™*4-10"" s (increasing by a
ballistic and diffusive regimes. For ballistic transpdrg 7, ~ decadg and are denoted by a corresponding number (ex8ept

the evolution kernel, Eq.18), reduces to for a few cases at the top, where the trend is ¢léére dotted lines
represent the initial ballistic transporttat 10~ 4 s, while the long-
sin(qugt) dashed lines are for the longest times.
Kpan(Q,t) = ————. (20) o .
quet netic field is normalized t®,=B;L. We evaluate our exact

This is the solution of Eq(2) in the absence of scattering. A Solution, Eq.(18), numerically to obtain spin, and then cal-
finite S(z,t) in the ballistic case is solely due to SG effect of culate the spin current from the continuity equation. The

semiclassical separation of spins. At the left boundary, physics that emerges from our calculation, and which can be
seen on the model example in Figs. 1 and 2, is the following.
Spai(0) = —geugBiL(vet/2L), (21)  There are four time scales to considéig. 2). (i) In the

ballistic regime {<7), electron spin density at the edges
begins to grow as-t, as electrons with one spin direction
X , , ) : : after bouncing off the boundary decelerate and stay close,
linearly with time, reaching its maximum of about pije the electrons with the opposite spin accelerate in the
—OrpgBy/ att=r. For the diffusive transport>7, Eq.(2)  gther direction. Spin current, which is always largest in the
givesK~Kgis, where middle of the sample, rapidly increases to reach its maxi-

Kgin(Q,t) = exp( —g?Dt—t/T,), (220 mMum value at=r (see Fig. 2 Note that p.ositi-vésl means
o . . negativelgs, and largely a drift spin flowispin diffusion acts
which is also a solution of Eq(8). A new time scalet;  in the other direction (i) The diffusive regime f<t<ty) is

=L?/D 7 appears, for the transit time of a diffusing electron characterized by a further build-up of spin density at the
crossing the samplen’t; is called the Thouless timeWe

in the middle S,,(L/2)=0, and at the right boundary
Spail(L) = — Spa(0). Thespin separatiors(L) —S(0) grows

considerL smaller than the spin diffusion lengtwhich can 2.5
be as large as a millimetdy, so thatt<T,. Fort<t; the 53
spin density grows diffusively, ]
1.5
Suit(0) = grupB1L2(Dt/L? )07, (23 .
- =
Sair(L) = — Sy (0), while Syix(L/2)=0; a large spin current g2 ! ]
flows in the middle of the sample. While the spin current g 0.5 /
vanishes at greater times; t+ (when drift is being balanced =
by diffusion), an effective spin separation remains almost 0==
stationary untilt=T,, when spin relaxation establishes equi- 0.5
librium. Note that the homogeneous component of SRin T
evolves towards equilibrium with spin-flip processes only, AF—rrm——rrm Ty T
sinceK(0t) =exp(~t/T,) at all times. In the following we 10" 10" 1™ 10 107 10°
will use normalized spir and spin currend, defined asS t(s)
= —0grmgBiL S andJs= —grugB,DJs, respectively. FIG. 2. Calculated time evolution of normalized spin denSity

An example of a transient evolution of spin and spin cur-at z=0 (a), z=L/2 (b), andz=L (c). The dashed line is the time
rent is shown in Figs. 1 and 2. We take a model sample 0gyolution of normalized spin curreit atz=L/2. The three vertical
size L=1um, with realistic electronic parameters |ines separate the ballistic<7=10"13 s), diffusive (r<t<t;
=0.1 ps, D=0.01 nfs %, vE=(3D/7)%°~5.5 ~101 s), quasiequilibrium tg<t<T,=10"8 s), and spin re-
X10° ms !, tt=L?%/D#?~10 ps, andT;=10 ns. Mag- laxational ¢>T,) regimes.
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1.5 ~(By/BiL+Z/L)exp(—iwt). At greater frequencies, first the

] spin-relaxation peakin the ImR;) and shouldefin ReR;)
appear, while atv~1/ty, a second peak and shouldeow
due toR,) appear, as the time scale of the diffusive regime is
reached. The second peak signals the SG effects, where dis-

sipation is due to drift spin currentS;reaches negative val-
ues of—1/2, showing spin separatignompare with Fig. 2

Spectral response of the spin current &(t)=(1
—dR,/dz)exp(—iwt), and shows a structure only around
~1/ity, as spin current relaxes during the transit titaed
noton T, scale.

Finally, we discuss some issues related to a possible ex-
10° 10° 10" 10" 10 perimental observation of our findings. What we call a SG-
o ) like effect is an effective spirinot particle separation of
_ _ electrons in metals and semiconductors. Let us summarize

FIG. 3. Calculated dimensionless spectral respoRs€w)  the time scales involved. Ballistic transport lasts for femto-
*+Ro(2,0) atz=0 for the model sample. The two shoulders in the g5 yp to a picosecond, diffusive transit across a micron
real part of the respons{and_the corre;pondmg peaks m_tlhe imag- sample can take from a picosecond to a nanosecond, and spin
gﬁgsﬁja?(ccirf:piqgﬁossﬂ')n relaxations(= 1/T; =10° %) and relaxation times can be between a fraction of a nanosecond

@ T ' to a microsecond® Ordinary SG fails to work with electrons
edges of the sampléy diffusion) at the rate~t%%. This is b_ecause transverse magn_etic fielday, B, = _B.ly) give
dJiseto the Lorentz force which makes, say, moving to the left

accompanied by a decay of spin current, as the initial drift is > ;
now being balanced by diffusion. We call this diffusive SG Spin up electrons turn around and move to the right, smear-

effect. (iii) The quasiequilibrium regimet{<t<T;), where Ing out spin separatidr(see, however,_Ref. 16in our case
momenta are in equilibrium characterized by a finite dif‘fer-the time scale of the Larmor precessiys=m/eB, is large
ence in the chemical potentials of spin up and down elecgnough to be neglecteq. Indeed, for such a l&geas 10
trons, &S is spatially uniform so that no spin currents flow, T/_cm, the transvers_e field would be of °Tder 10 G for a
and spin densities remain almost constant in tie). Fi- micron s_ample, t“?”'”g an (_alectron af‘?“”‘*t'”’? ns, long
nally, in the spin relaxation regime=T,), the uniform non- after spin separation sets in. In addition, orbital effects are

equilibrium spin density vanishes and complete equilibriummh'b'te‘j due to momentum scattering. One can .St'” gotoa
is established. one- or two-dimensional sample to study SG with ballisti-

We now ask the question of how the electron spin systen‘?a"y propagating electrontg,if Larmor precession is faster

responds to a time-varying inhomogeneous magnetic ﬁelot.han momentum relaxation.

SupposeB(z,t) =(By+ B1z)exp(—iwt). We show the results
for diffusive dynamics, and solve E@) with —3S,/dt as

the source term. Linear-response theory for magnetic susce
tibility for diffusive transport is well knowrt® here we illus-

0.5

R,+R,

real
——— imaginary

T 2' s

] s T

T

10

M4

A SG-like spin separation should be observable in both
metals and semiconducto(§Ve are not aware of any experi-
1ental method of measuring directly the spin current, in our
ase the diffusive regime, although theoretical proposals
fexist—see Ref. 18 One way of measuring a nonequilibrium
§Bin in metals is the Silsbee-Johnson method of spin-charge
goupling.14 One can either switch an external inhomoge-
neous magnetic field, or inject nonequilibrium spin into a
metal in a static field, to measure the time evolution of the

will be manifest on the frequency domain. In response to th
oscillating field, spin density changes &aS=[R;(w)

+Ry(z,w) |exp(—iwt), where spin. This can be accomplished, for example, by placing a
B, 1 1 ferromagnetic electrode on the top of a sample’s edge, and
Rl:(—+ —),—, (24) measure the voltage across the interface, which is propor-
Bil 2/ -iwTy+1 tional to the nonequilibrium spifi (the spin in the ferromag-
5 netic electrode can be considered to be in equilibrium, since
Ry=—43 cogqnz) DopTi+1 (25 it relaxes much faster than in the nonmagnetic samplee

voltage would be present even when the spin current van-
ishes(that is, in the quasiequilibrium regimeand thus can
Spin relaxation is primarily taken over dy;, which mea-  pe monitored with the sull; (not t;) resolution. Gradient
sures the response of the uniforg=0) components of the B, can create spin at the sample edges of apqiB;L/Er

spin density. On the other harf; collects the terms respon- spins per electronH is the Fermi energy which, for typi-
sible for diffusion, as diffusion modesjt>0) are the first cal values of, say,B;~1 T/cm, L=10 um, and Er
ones to achieve equilibriumt{<T,). The total response, ~10 meV gives about 1 spin per 4@lectrons(note thatl
calculated for our model system, is displayed in Fig. 3. Atmust be smaller than the spin diffusion length to observe the
small frequencies spins can adiabatically equilibrium)  separation For comparison, in the Johnson-Silsbee spin in-
follow the local and instantaneou(z,t): at low w, S  jection experiment 1 spin per 10electrons was detected.

=0 2L? —iwT;+Dg2T;+1
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In semiconductors like GaAs, the traditional tool to Ob-fk)\:f%\—(afolafk) ér, Where nowf%\:fo(fk_)\é‘lu)_
serve spin polarization of the carriers has been photolumiafter linearization the Boltzmann equation becomes
nescence polarization detectibhA degenerate semiconduc-
tor with Ep~1 meV (and otherwise the same conditions as
above would be polarized to about 0.01%or more sensi- (eE’L)‘Véf’“)VK—kZ}\, Wi konr (o= dienr), - (A2)
tivity a greaterB, or L, or a material with a largeg factor )
could be used emitting light with circular polarization of Where we left out the Lorentz force as unimportant for the
the same order. If the sample risdoped, for example, and Present discussion. EquatioA2) has the formal solution
the edges form the interfaces withpadoped material, the . B
spin polarization of the light emitted at the edges would be bia= ~€E- A=AV - by, (A3)
opposite in the quasiequilibrium regime, demonstrating thevith a, andb, satisfying the integral equations
SG separation. Pico-to-micro-second resolved pump and
probe photoluminescence measurements in an inhomoge- _ _ B
neous butstatic magnetic field could follow the evolution Vi %“ (Wt et (@ = @) + Wi i (3 = a1, (A4)
from ballistic regime to full equilibrium of a semiconductor
spin system, yielding information not only about spin, butand
also about charge transport, as seen from our calculation. In
addition to the optical te_chnlqug and the Johnson-SH_sbee V=2, [Wi k1 (B =) = Wiy oo (byr +by) 1. (A5)
method, one could also in principle observe our predicted K’

effect using the magnetic resonance force microscopy. L/ectorsak and b, have magnitudes of ordef, and their

. In summary We'have Studied transient spin dynamlcs 0 nowledge allows to calculate the tensors of charge and spin
itinerant electrons in metals and degenerate semiconductors

L e . conductivities o= 26?3 (— dfp/ de) Vi 3 and o= 2?3,
placed in an inhomogeneous magnetic field. In particular, w 0 . S )
have solved exactly a spin dynamics model based on th __afk/,afk)_v_k'bk' The spin c2:onduct|v!tyrs is related to Fhe
Boltzmann equation, and demonstrated that the spin evol@Pin diffusivity Ds asos=e°geDs, since the nonequilib-
tion proceeds through four distinct modes: ballistic, diffu- UM SPIN is 5S=ggou. Here we use spin conductivity in-
sive, quasiequilibrium, and equilibrium. An effective spin Stéad of the more usual spin diffusivity only to stress the
separation is possible in the quasiequilibrium regime, wher&ontrast with charge conductivity. B _
the spin current vanishes and the spin is in equilibrium only T there is no spin-flip scatteringa, =Dy, the effective

with the inhomogeneous component of the magnetic field. Méan free paths are the same for both currents, and the con-
ductivities are equalos= . Spin-flip scattering, however,

We thank Igor Zitic and Xuedong Hu for useful discus- impliesa,#b,, and so it plays different roles in charge and
sions. This work was supported by the U.S. ONR andspin transport. Assume, for a moment, that scattering is iso-
DARPA. tropic, and energy surfaces spherical. Then Hgg) and

(A5) can be solved exactly by introducing transport relax-
APPENDIX A ation. timesr and r5: a,= — 7v, andb,= — gV, and, with
0 being the angle between, andvy,

To demonstrate the effect of spin-flip scattering on charge
and spin transport, consider electrons in a simple metal, scat- 1
tering elastically off impurities at the raW,, ., . Spin-flip P 2 [ Wit (1= €086) + Wy ko (1~ COS0) ]
events are characterized WYy, \»; and result mainly from : (AB)
the spin-orbit interaction. The collision integral is

and
1
2 [Wienr i Freon (3= o) = Wi ke fra (L= i) 1 —:2 [Wi; k(1 —cos8) + Wy s (1+cosb) ].
k'\' s ’ ’
(A1) (A7)
The first term describes scattering frdch\’ to kA, which In charge transport, spin-conserving and spin-flip pro-

increasesf,, , while the second term represents reversectesses contribute in the same way: they are weighted by the
processes, which decreadg,. Factors such ad,(1  well known 1—cosé, which suppresses contributions from
—fy\+) ensure that the initial state is occupied and finalsmall-angle scattering as ineffective in degrading charge cur-
state empty, in accord with the Pauli principle. rent. Spin transport is a different story. Here spin-flip pro-
Let the system is driven off equilibrium by an applied cesses come with-tcosé, and backscatteringdé ) is the

electric field E and an inhomogeneous chemical potentialleast effective in degrading spin current, while small-angle
N6uw. The latter does not disturb the equilibrium electronicevents contribute most. There is illuminating physics behind
density, but maintains an inhomogeneous nonequilbrium spithis: Spin up and down electrons move antiparallel to each
polarization § Su is essentially the driving term for spin other, so if any spin flip is accompanied by the velocity re-
diffusion caused, for example, by spin injectioM/e seek versal, the current does not change. But if the velocity stays
the solution to Eq(1) with the RHS Eq.(Al) in the form  the same, the effect is maximal, as if the electron spin does
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integral overC, plus the residue apy. The pathC, cuts
away the branch line extending fropL = — 1/7,—iqug t0
p.=—1lr,+iqug, from the complex plane. The residue is
C evaluated for the pole giy= — 1/7,+ qug cOt(Qug7) present

Ca for que7<m/2 (defining the Riemann sheet for arctan to go
from — /2 to w/2).

Po The result of the contour integration can be formally writ-
ten as

sing

exd vt cotque 7)]|
sif(quer) |

UpT
FIG. 4. Integration contour foK(q,t) of Eq. (B1) with the v (B3)
horizontal and vertical axes representing the real and imaginary part . . L
of p, respectively. The integral in EG81), which runs alondC,, is ~ Where the vertical bars denote the singufaincipa) part of
the same as the integral along the p@thcutting out the branch the Laurent series in terms qb g7, of the expression inside.

line fromp_ to p,, plus the residue at,. An alternative formulation is

-1
not flip, but the velocity reverses. Equatio@t) and (A7) _ t/r
are ngt valid in more g)éneral cases ?)f anisotropic bands and K(a.H)=—(/t)e”" mn;x NFa(Quet) (quen)",
inelastic anisotropic scattering, but, with some caution, they (B4)
are still a useful approximatiorjustified by variational . i
analysi€?) in the interesting case of electrons scattering byWh.ere functionsFy(x) are the coefficients of the Laurent
thermal fluctuationglattice or spin at low T. Such fluctua- enes
tions will allow only small-angle scattering, suppressing con- o
tributions from spin-conserving, but not from spin-flip pro- exgxcoty)]= >, Fa(x)y", (B5)
cesses. Spin-flip processes are thus much more important for n=—o
spin transport than for charge transport. For example, th@atisfying the recursion relation
contribution of the phonon-induced spin-flip scattering to 1/
falls as T’, while to 1/g only as T° (this follows from +
Yafet's theory' as also confirmed by a numerical Fa(X)+Fp(x)=— — Fnra(®), (B6)
calculatiort®). The contribution from the spin-conserving
electron-phonon interaction falls @S (the Bloch-Gimeisen  with the boundary condition§,(0)=0 andF/(0)= &, 1

K(g,t)=(queT)%e m

law), for both charge and spin currents. for n<—1. In principle, all the functionsF,(x), n=
—2,...,— can thus be generated from
APPENDIX B )
F_1(x)=sin(x), (B7)

The solution of Eq(2) [or, equivalently, Eq(16)] can be

written with the help of Laplace transform as the integral inWhich is readily obtained from EB6). _
the complex plane: The limiting case for ballistic transport can be obtained

from Eq.(B4) by letting que7 (and thus als@uT;) going
K@D Jochi(r dp eP{(p+iqu+1/ry) b to infinity. The result is
q' =

—otic2T 1—((p+iqu+ Ury) N7

F_
(B1) K(g,t) ~Kpai(d,t) = quet’ (B8)
whereo>0. For a degenerate system considered in the text(Dn the other hand, the diffusive limit can be obtained by

letting qugT to zero, in which case the vertical bar in Eg.
. (B3) can be removedthe singular part equals the whole part
(B2) since the regular part vanishesBy expanding cot{vg7)
~1/(queT) — (queT)/3 and denoting aﬁ)zv§7/3, one ob-
The integral can be evaluated by a suitable contour deformagijns
tion in the complex plane, as indicated in Fig. 4. The original

p+iqug+ 1/,
n -
p—iqug+ 1/,

((p+iqu+1imy) Y=

2iqu

integral in Eq.(B1), which goes along, is the same as the K(g,t)~Kgx(q,t) =exp(—t/T;—g?Dt). (B9)
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